aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-xtensa/pgtable.h
diff options
context:
space:
mode:
authorChris Zankel <czankel@tensilica.com>2005-06-24 01:01:26 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-06-24 03:05:22 -0400
commit9a8fd5589902153a134111ed7a40f9cca1f83254 (patch)
tree6f7a06de25bdf0b2d94623794c2cbbc66b5a77f6 /include/asm-xtensa/pgtable.h
parent3f65ce4d141e435e54c20ed2379d983d362a2cb5 (diff)
[PATCH] xtensa: Architecture support for Tensilica Xtensa Part 6
The attached patches provides part 6 of an architecture implementation for the Tensilica Xtensa CPU series. Signed-off-by: Chris Zankel <chris@zankel.net> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'include/asm-xtensa/pgtable.h')
-rw-r--r--include/asm-xtensa/pgtable.h468
1 files changed, 468 insertions, 0 deletions
diff --git a/include/asm-xtensa/pgtable.h b/include/asm-xtensa/pgtable.h
new file mode 100644
index 000000000000..0bb6416ae266
--- /dev/null
+++ b/include/asm-xtensa/pgtable.h
@@ -0,0 +1,468 @@
1/*
2 * linux/include/asm-xtensa/page.h
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version2 as
6 * published by the Free Software Foundation.
7 *
8 * Copyright (C) 2001 - 2005 Tensilica Inc.
9 */
10
11#ifndef _XTENSA_PGTABLE_H
12#define _XTENSA_PGTABLE_H
13
14#include <asm-generic/pgtable-nopmd.h>
15#include <asm/page.h>
16
17/* Assertions. */
18
19#ifdef CONFIG_MMU
20
21
22#if (XCHAL_MMU_RINGS < 2)
23# error Linux build assumes at least 2 ring levels.
24#endif
25
26#if (XCHAL_MMU_CA_BITS != 4)
27# error We assume exactly four bits for CA.
28#endif
29
30#if (XCHAL_MMU_SR_BITS != 0)
31# error We have no room for SR bits.
32#endif
33
34/*
35 * Use the first min-wired way for mapping page-table pages.
36 * Page coloring requires a second min-wired way.
37 */
38
39#if (XCHAL_DTLB_MINWIRED_SETS == 0)
40# error Need a min-wired way for mapping page-table pages
41#endif
42
43#define DTLB_WAY_PGTABLE XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAY)
44
45#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
46# if XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAYS) >= 2
47# define DTLB_WAY_DCACHE_ALIAS0 (DTLB_WAY_PGTABLE + 1)
48# define DTLB_WAY_DCACHE_ALIAS1 (DTLB_WAY_PGTABLE + 2)
49# else
50# error Page coloring requires its own wired dtlb way!
51# endif
52#endif
53
54#endif /* CONFIG_MMU */
55
56/*
57 * We only use two ring levels, user and kernel space.
58 */
59
60#define USER_RING 1 /* user ring level */
61#define KERNEL_RING 0 /* kernel ring level */
62
63/*
64 * The Xtensa architecture port of Linux has a two-level page table system,
65 * i.e. the logical three-level Linux page table layout are folded.
66 * Each task has the following memory page tables:
67 *
68 * PGD table (page directory), ie. 3rd-level page table:
69 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
70 * (Architectures that don't have the PMD folded point to the PMD tables)
71 *
72 * The pointer to the PGD table for a given task can be retrieved from
73 * the task structure (struct task_struct*) t, e.g. current():
74 * (t->mm ? t->mm : t->active_mm)->pgd
75 *
76 * PMD tables (page middle-directory), ie. 2nd-level page tables:
77 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
78 *
79 * PTE tables (page table entry), ie. 1st-level page tables:
80 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
81 * invalid_pte_table for absent mappings.
82 *
83 * The individual pages are 4 kB big with special pages for the empty_zero_page.
84 */
85#define PGDIR_SHIFT 22
86#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
87#define PGDIR_MASK (~(PGDIR_SIZE-1))
88
89/*
90 * Entries per page directory level: we use two-level, so
91 * we don't really have any PMD directory physically.
92 */
93#define PTRS_PER_PTE 1024
94#define PTRS_PER_PTE_SHIFT 10
95#define PTRS_PER_PMD 1
96#define PTRS_PER_PGD 1024
97#define PGD_ORDER 0
98#define PMD_ORDER 0
99#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
100#define FIRST_USER_ADDRESS XCHAL_SEG_MAPPABLE_VADDR
101#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
102
103/* virtual memory area. We keep a distance to other memory regions to be
104 * on the safe side. We also use this area for cache aliasing.
105 */
106
107// FIXME: virtual memory area must be configuration-dependent
108
109#define VMALLOC_START 0xC0000000
110#define VMALLOC_END 0xC7FF0000
111
112/* Xtensa Linux config PTE layout (when present):
113 * 31-12: PPN
114 * 11-6: Software
115 * 5-4: RING
116 * 3-0: CA
117 *
118 * Similar to the Alpha and MIPS ports, we need to keep track of the ref
119 * and mod bits in software. We have a software "you can read
120 * from this page" bit, and a hardware one which actually lets the
121 * process read from the page. On the same token we have a software
122 * writable bit and the real hardware one which actually lets the
123 * process write to the page.
124 *
125 * See further below for PTE layout for swapped-out pages.
126 */
127
128#define _PAGE_VALID (1<<0) /* hardware: page is accessible */
129#define _PAGE_WRENABLE (1<<1) /* hardware: page is writable */
130
131/* None of these cache modes include MP coherency: */
132#define _PAGE_NO_CACHE (0<<2) /* bypass, non-speculative */
133#if XCHAL_DCACHE_IS_WRITEBACK
134# define _PAGE_WRITEBACK (1<<2) /* write back */
135# define _PAGE_WRITETHRU (2<<2) /* write through */
136#else
137# define _PAGE_WRITEBACK (1<<2) /* assume write through */
138# define _PAGE_WRITETHRU (1<<2)
139#endif
140#define _PAGE_NOALLOC (3<<2) /* don't allocate cache,if not cached */
141#define _CACHE_MASK (3<<2)
142
143#define _PAGE_USER (1<<4) /* user access (ring=1) */
144#define _PAGE_KERNEL (0<<4) /* kernel access (ring=0) */
145
146/* Software */
147#define _PAGE_RW (1<<6) /* software: page writable */
148#define _PAGE_DIRTY (1<<7) /* software: page dirty */
149#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
150#define _PAGE_FILE (1<<9) /* nonlinear file mapping*/
151
152#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY)
153#define _PAGE_PRESENT ( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED)
154
155#ifdef CONFIG_MMU
156
157# define PAGE_NONE __pgprot(_PAGE_PRESENT)
158# define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW)
159# define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
160# define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
161# define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE)
162# define PAGE_INVALID __pgprot(_PAGE_USER)
163
164# if (DCACHE_WAY_SIZE > PAGE_SIZE)
165# define PAGE_DIRECTORY __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL)
166# else
167# define PAGE_DIRECTORY __pgprot(_PAGE_PRESENT | _PAGE_KERNEL)
168# endif
169
170#else /* no mmu */
171
172# define PAGE_NONE __pgprot(0)
173# define PAGE_SHARED __pgprot(0)
174# define PAGE_COPY __pgprot(0)
175# define PAGE_READONLY __pgprot(0)
176# define PAGE_KERNEL __pgprot(0)
177
178#endif
179
180/*
181 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
182 * the MMU can't do page protection for execute, and considers that the same as
183 * read. Also, write permissions may imply read permissions.
184 * What follows is the closest we can get by reasonable means..
185 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
186 */
187#define __P000 PAGE_NONE /* private --- */
188#define __P001 PAGE_READONLY /* private --r */
189#define __P010 PAGE_COPY /* private -w- */
190#define __P011 PAGE_COPY /* private -wr */
191#define __P100 PAGE_READONLY /* private x-- */
192#define __P101 PAGE_READONLY /* private x-r */
193#define __P110 PAGE_COPY /* private xw- */
194#define __P111 PAGE_COPY /* private xwr */
195
196#define __S000 PAGE_NONE /* shared --- */
197#define __S001 PAGE_READONLY /* shared --r */
198#define __S010 PAGE_SHARED /* shared -w- */
199#define __S011 PAGE_SHARED /* shared -wr */
200#define __S100 PAGE_READONLY /* shared x-- */
201#define __S101 PAGE_READONLY /* shared x-r */
202#define __S110 PAGE_SHARED /* shared xw- */
203#define __S111 PAGE_SHARED /* shared xwr */
204
205#ifndef __ASSEMBLY__
206
207#define pte_ERROR(e) \
208 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
209#define pgd_ERROR(e) \
210 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
211
212extern unsigned long empty_zero_page[1024];
213
214#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
215
216extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
217
218/*
219 * The pmd contains the kernel virtual address of the pte page.
220 */
221#define pmd_page_kernel(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
222#define pmd_page(pmd) virt_to_page(pmd_val(pmd))
223
224/*
225 * The following only work if pte_present() is true.
226 */
227#define pte_none(pte) (!(pte_val(pte) ^ _PAGE_USER))
228#define pte_present(pte) (pte_val(pte) & _PAGE_VALID)
229#define pte_clear(mm,addr,ptep) \
230 do { update_pte(ptep, __pte(_PAGE_USER)); } while(0)
231
232#define pmd_none(pmd) (!pmd_val(pmd))
233#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
234#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
235#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
236
237/* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */
238
239static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
240static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
241static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
242static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
243static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
244static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; }
245static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; }
246static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
247static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
248static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; }
249static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
250static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
251static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; }
252
253/*
254 * Conversion functions: convert a page and protection to a page entry,
255 * and a page entry and page directory to the page they refer to.
256 */
257#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
258#define pte_same(a,b) (pte_val(a) == pte_val(b))
259#define pte_page(x) pfn_to_page(pte_pfn(x))
260#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
261#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
262
263extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
264{
265 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
266}
267
268/*
269 * Certain architectures need to do special things when pte's
270 * within a page table are directly modified. Thus, the following
271 * hook is made available.
272 */
273static inline void update_pte(pte_t *ptep, pte_t pteval)
274{
275 *ptep = pteval;
276#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
277 __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep));
278#endif
279}
280
281extern inline void
282set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
283{
284 update_pte(ptep, pteval);
285}
286
287
288extern inline void
289set_pmd(pmd_t *pmdp, pmd_t pmdval)
290{
291 *pmdp = pmdval;
292#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
293 __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp));
294#endif
295}
296
297
298static inline int
299ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
300 pte_t *ptep)
301{
302 pte_t pte = *ptep;
303 if (!pte_young(pte))
304 return 0;
305 update_pte(ptep, pte_mkold(pte));
306 return 1;
307}
308
309static inline int
310ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr,
311 pte_t *ptep)
312{
313 pte_t pte = *ptep;
314 if (!pte_dirty(pte))
315 return 0;
316 update_pte(ptep, pte_mkclean(pte));
317 return 1;
318}
319
320static inline pte_t
321ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
322{
323 pte_t pte = *ptep;
324 pte_clear(mm, addr, ptep);
325 return pte;
326}
327
328static inline void
329ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
330{
331 pte_t pte = *ptep;
332 update_pte(ptep, pte_wrprotect(pte));
333}
334
335/* to find an entry in a kernel page-table-directory */
336#define pgd_offset_k(address) pgd_offset(&init_mm, address)
337
338/* to find an entry in a page-table-directory */
339#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
340
341#define pgd_index(address) ((address) >> PGDIR_SHIFT)
342
343/* Find an entry in the second-level page table.. */
344#define pmd_offset(dir,address) ((pmd_t*)(dir))
345
346/* Find an entry in the third-level page table.. */
347#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
348#define pte_offset_kernel(dir,addr) \
349 ((pte_t*) pmd_page_kernel(*(dir)) + pte_index(addr))
350#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
351#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr))
352
353#define pte_unmap(pte) do { } while (0)
354#define pte_unmap_nested(pte) do { } while (0)
355
356
357/*
358 * Encode and decode a swap entry.
359 * Each PTE in a process VM's page table is either:
360 * "present" -- valid and not swapped out, protection bits are meaningful;
361 * "not present" -- which further subdivides in these two cases:
362 * "none" -- no mapping at all; identified by pte_none(), set by pte_clear(
363 * "swapped out" -- the page is swapped out, and the SWP macros below
364 * are used to store swap file info in the PTE itself.
365 *
366 * In the Xtensa processor MMU, any PTE entries in user space (or anywhere
367 * in virtual memory that can map differently across address spaces)
368 * must have a correct ring value that represents the RASID field that
369 * is changed when switching address spaces. Eg. such PTE entries cannot
370 * be set to ring zero, because that can cause a (global) kernel ASID
371 * entry to be created in the TLBs (even with invalid cache attribute),
372 * potentially causing a multihit exception when going back to another
373 * address space that mapped the same virtual address at another ring.
374 *
375 * SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs.
376 * We also avoid using the _PAGE_VALID bit which must be zero for non-present
377 * pages.
378 *
379 * We end up with the following available bits: 1..3 and 7..31.
380 * We don't bother with 1..3 for now (we can use them later if needed),
381 * and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits
382 * for SWP_OFFSET. At least 5 bits are needed for SWP_TYPE, because it
383 * is currently implemented as an index into swap_info[MAX_SWAPFILES]
384 * and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>.
385 * However, for some reason all other architectures in the 2.4 kernel
386 * reserve either 6, 7, or 8 bits so I'll not detract from that for now. :)
387 * SWP_OFFSET is an offset into the swap file in page-size units, so
388 * with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB.
389 *
390 * FIXME: 2 GB isn't very big. Other bits can be used to allow
391 * larger swap sizes. In the meantime, it appears relatively easy to get
392 * around the 2 GB limitation by simply using multiple swap files.
393 */
394
395#define __swp_type(entry) (((entry).val >> 7) & 0x3f)
396#define __swp_offset(entry) ((entry).val >> 13)
397#define __swp_entry(type,offs) ((swp_entry_t) {((type) << 7) | ((offs) << 13)})
398#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
399#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
400
401#define PTE_FILE_MAX_BITS 29
402#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
403#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
404
405
406#endif /* !defined (__ASSEMBLY__) */
407
408
409#ifdef __ASSEMBLY__
410
411/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
412 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
413 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
414 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
415 *
416 * Note: We require an additional temporary register which can be the same as
417 * the register that holds the address.
418 *
419 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
420 *
421 */
422#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
423#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
424
425#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
426 _PGD_INDEX(tmp, adr); \
427 addx4 mm, tmp, mm
428
429#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
430 srli pmd, pmd, PAGE_SHIFT; \
431 slli pmd, pmd, PAGE_SHIFT; \
432 addx4 pmd, tmp, pmd
433
434#else
435
436extern void paging_init(void);
437
438#define kern_addr_valid(addr) (1)
439
440extern void update_mmu_cache(struct vm_area_struct * vma,
441 unsigned long address, pte_t pte);
442
443/*
444 * remap a physical address `phys' of size `size' with page protection `prot'
445 * into virtual address `from'
446 */
447#define io_remap_page_range(vma,from,phys,size,prot) \
448 remap_pfn_range(vma, from, (phys) >> PAGE_SHIFT, size, prot)
449
450
451/* No page table caches to init */
452
453#define pgtable_cache_init() do { } while (0)
454
455typedef pte_t *pte_addr_t;
456
457#endif /* !defined (__ASSEMBLY__) */
458
459#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
460#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
461#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
462#define __HAVE_ARCH_PTEP_SET_WRPROTECT
463#define __HAVE_ARCH_PTEP_MKDIRTY
464#define __HAVE_ARCH_PTE_SAME
465
466#include <asm-generic/pgtable.h>
467
468#endif /* _XTENSA_PGTABLE_H */