aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-x86
diff options
context:
space:
mode:
authorJack Steiner <steiner@sgi.com>2008-03-28 15:12:13 -0400
committerIngo Molnar <mingo@elte.hu>2008-04-17 11:41:33 -0400
commit952cf6d7ae52cc5423baa57e978e20e732a89ba6 (patch)
treee0d6d076199c4b9e7cda10af4612d12f443a5102 /include/asm-x86
parent0d3e865b2644e4a2250ab25c5475a0cd0d514b7e (diff)
x86: define the macros and tables for the basic UV infrastructure.
Define the macros and tables for the basic UV infrastructure. Signed-off-by: Jack Steiner <steiner@sgi.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'include/asm-x86')
-rw-r--r--include/asm-x86/uv/uv_hub.h210
1 files changed, 210 insertions, 0 deletions
diff --git a/include/asm-x86/uv/uv_hub.h b/include/asm-x86/uv/uv_hub.h
new file mode 100644
index 000000000000..b4fcf9cf8951
--- /dev/null
+++ b/include/asm-x86/uv/uv_hub.h
@@ -0,0 +1,210 @@
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
8 * Copyright (C) 2007 Silicon Graphics, Inc. All rights reserved.
9 */
10
11#ifndef __ASM_X86_UV_HUB_H__
12#define __ASM_X86_UV_HUB_H__
13
14#include <linux/numa.h>
15#include <linux/percpu.h>
16#include <asm/types.h>
17#include <asm/percpu.h>
18
19
20/*
21 * Addressing Terminology
22 *
23 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
24 * routers always have low bit of 1, C/MBricks have low bit
25 * equal to 0. Most addressing macros that target UV hub chips
26 * right shift the NASID by 1 to exclude the always-zero bit.
27 *
28 * SNASID - NASID right shifted by 1 bit.
29 *
30 *
31 * Memory/UV-HUB Processor Socket Address Format:
32 * +--------+---------------+---------------------+
33 * |00..0000| SNASID | NodeOffset |
34 * +--------+---------------+---------------------+
35 * <--- N bits --->|<--------M bits ----->
36 *
37 * M number of node offset bits (35 .. 40)
38 * N number of SNASID bits (0 .. 10)
39 *
40 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
41 * The actual values are configuration dependent and are set at
42 * boot time
43 *
44 * APICID format
45 * NOTE!!!!!! This is the current format of the APICID. However, code
46 * should assume that this will change in the future. Use functions
47 * in this file for all APICID bit manipulations and conversion.
48 *
49 * 1111110000000000
50 * 5432109876543210
51 * nnnnnnnnnnlc0cch
52 * sssssssssss
53 *
54 * n = snasid bits
55 * l = socket number on board
56 * c = core
57 * h = hyperthread
58 * s = bits that are in the socket CSR
59 *
60 * Note: Processor only supports 12 bits in the APICID register. The ACPI
61 * tables hold all 16 bits. Software needs to be aware of this.
62 *
63 * Unless otherwise specified, all references to APICID refer to
64 * the FULL value contained in ACPI tables, not the subset in the
65 * processor APICID register.
66 */
67
68
69/*
70 * Maximum number of bricks in all partitions and in all coherency domains.
71 * This is the total number of bricks accessible in the numalink fabric. It
72 * includes all C & M bricks. Routers are NOT included.
73 *
74 * This value is also the value of the maximum number of non-router NASIDs
75 * in the numalink fabric.
76 *
77 * NOTE: a brick may be 1 or 2 OS nodes. Don't get these confused.
78 */
79#define UV_MAX_NUMALINK_BLADES 16384
80
81/*
82 * Maximum number of C/Mbricks within a software SSI (hardware may support
83 * more).
84 */
85#define UV_MAX_SSI_BLADES 256
86
87/*
88 * The largest possible NASID of a C or M brick (+ 2)
89 */
90#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
91
92/*
93 * The following defines attributes of the HUB chip. These attributes are
94 * frequently referenced and are kept in the per-cpu data areas of each cpu.
95 * They are kept together in a struct to minimize cache misses.
96 */
97struct uv_hub_info_s {
98 unsigned long global_mmr_base;
99 unsigned short local_nasid;
100 unsigned short gnode_upper;
101 unsigned short coherency_domain_number;
102 unsigned short numa_blade_id;
103 unsigned char blade_processor_id;
104 unsigned char m_val;
105 unsigned char n_val;
106};
107DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
108#define uv_hub_info (&__get_cpu_var(__uv_hub_info))
109#define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
110
111/*
112 * Local & Global MMR space macros.
113 * Note: macros are intended to be used ONLY by inline functions
114 * in this file - not by other kernel code.
115 */
116#define UV_SNASID(n) ((n) >> 1)
117#define UV_NASID(n) ((n) << 1)
118
119#define UV_LOCAL_MMR_BASE 0xf4000000UL
120#define UV_GLOBAL_MMR32_BASE 0xf8000000UL
121#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
122
123#define UV_GLOBAL_MMR32_SNASID_MASK 0x3ff
124#define UV_GLOBAL_MMR32_SNASID_SHIFT 15
125#define UV_GLOBAL_MMR64_SNASID_SHIFT 26
126
127#define UV_GLOBAL_MMR32_NASID_BITS(n) \
128 (((UV_SNASID(n) & UV_GLOBAL_MMR32_SNASID_MASK)) << \
129 (UV_GLOBAL_MMR32_SNASID_SHIFT))
130
131#define UV_GLOBAL_MMR64_NASID_BITS(n) \
132 ((unsigned long)UV_SNASID(n) << UV_GLOBAL_MMR64_SNASID_SHIFT)
133
134#define UV_APIC_NASID_SHIFT 6
135
136/*
137 * Extract a NASID from an APICID (full apicid, not processor subset)
138 */
139static inline int uv_apicid_to_nasid(int apicid)
140{
141 return (UV_NASID(apicid >> UV_APIC_NASID_SHIFT));
142}
143
144/*
145 * Access global MMRs using the low memory MMR32 space. This region supports
146 * faster MMR access but not all MMRs are accessible in this space.
147 */
148static inline unsigned long *uv_global_mmr32_address(int nasid,
149 unsigned long offset)
150{
151 return __va(UV_GLOBAL_MMR32_BASE |
152 UV_GLOBAL_MMR32_NASID_BITS(nasid) | offset);
153}
154
155static inline void uv_write_global_mmr32(int nasid, unsigned long offset,
156 unsigned long val)
157{
158 *uv_global_mmr32_address(nasid, offset) = val;
159}
160
161static inline unsigned long uv_read_global_mmr32(int nasid,
162 unsigned long offset)
163{
164 return *uv_global_mmr32_address(nasid, offset);
165}
166
167/*
168 * Access Global MMR space using the MMR space located at the top of physical
169 * memory.
170 */
171static inline unsigned long *uv_global_mmr64_address(int nasid,
172 unsigned long offset)
173{
174 return __va(UV_GLOBAL_MMR64_BASE |
175 UV_GLOBAL_MMR64_NASID_BITS(nasid) | offset);
176}
177
178static inline void uv_write_global_mmr64(int nasid, unsigned long offset,
179 unsigned long val)
180{
181 *uv_global_mmr64_address(nasid, offset) = val;
182}
183
184static inline unsigned long uv_read_global_mmr64(int nasid,
185 unsigned long offset)
186{
187 return *uv_global_mmr64_address(nasid, offset);
188}
189
190/*
191 * Access node local MMRs. Faster than using global space but only local MMRs
192 * are accessible.
193 */
194static inline unsigned long *uv_local_mmr_address(unsigned long offset)
195{
196 return __va(UV_LOCAL_MMR_BASE | offset);
197}
198
199static inline unsigned long uv_read_local_mmr(unsigned long offset)
200{
201 return *uv_local_mmr_address(offset);
202}
203
204static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
205{
206 *uv_local_mmr_address(offset) = val;
207}
208
209#endif /* __ASM_X86_UV_HUB__ */
210