aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-sh64/bitops.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-sh64/bitops.h
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'include/asm-sh64/bitops.h')
-rw-r--r--include/asm-sh64/bitops.h516
1 files changed, 516 insertions, 0 deletions
diff --git a/include/asm-sh64/bitops.h b/include/asm-sh64/bitops.h
new file mode 100644
index 000000000000..e1ff63e09227
--- /dev/null
+++ b/include/asm-sh64/bitops.h
@@ -0,0 +1,516 @@
1#ifndef __ASM_SH64_BITOPS_H
2#define __ASM_SH64_BITOPS_H
3
4/*
5 * This file is subject to the terms and conditions of the GNU General Public
6 * License. See the file "COPYING" in the main directory of this archive
7 * for more details.
8 *
9 * include/asm-sh64/bitops.h
10 *
11 * Copyright (C) 2000, 2001 Paolo Alberelli
12 * Copyright (C) 2003 Paul Mundt
13 */
14
15#ifdef __KERNEL__
16#include <linux/compiler.h>
17#include <asm/system.h>
18/* For __swab32 */
19#include <asm/byteorder.h>
20
21static __inline__ void set_bit(int nr, volatile void * addr)
22{
23 int mask;
24 volatile unsigned int *a = addr;
25 unsigned long flags;
26
27 a += nr >> 5;
28 mask = 1 << (nr & 0x1f);
29 local_irq_save(flags);
30 *a |= mask;
31 local_irq_restore(flags);
32}
33
34static inline void __set_bit(int nr, void *addr)
35{
36 int mask;
37 unsigned int *a = addr;
38
39 a += nr >> 5;
40 mask = 1 << (nr & 0x1f);
41 *a |= mask;
42}
43
44/*
45 * clear_bit() doesn't provide any barrier for the compiler.
46 */
47#define smp_mb__before_clear_bit() barrier()
48#define smp_mb__after_clear_bit() barrier()
49static inline void clear_bit(int nr, volatile unsigned long *a)
50{
51 int mask;
52 unsigned long flags;
53
54 a += nr >> 5;
55 mask = 1 << (nr & 0x1f);
56 local_irq_save(flags);
57 *a &= ~mask;
58 local_irq_restore(flags);
59}
60
61static inline void __clear_bit(int nr, volatile unsigned long *a)
62{
63 int mask;
64
65 a += nr >> 5;
66 mask = 1 << (nr & 0x1f);
67 *a &= ~mask;
68}
69
70static __inline__ void change_bit(int nr, volatile void * addr)
71{
72 int mask;
73 volatile unsigned int *a = addr;
74 unsigned long flags;
75
76 a += nr >> 5;
77 mask = 1 << (nr & 0x1f);
78 local_irq_save(flags);
79 *a ^= mask;
80 local_irq_restore(flags);
81}
82
83static __inline__ void __change_bit(int nr, volatile void * addr)
84{
85 int mask;
86 volatile unsigned int *a = addr;
87
88 a += nr >> 5;
89 mask = 1 << (nr & 0x1f);
90 *a ^= mask;
91}
92
93static __inline__ int test_and_set_bit(int nr, volatile void * addr)
94{
95 int mask, retval;
96 volatile unsigned int *a = addr;
97 unsigned long flags;
98
99 a += nr >> 5;
100 mask = 1 << (nr & 0x1f);
101 local_irq_save(flags);
102 retval = (mask & *a) != 0;
103 *a |= mask;
104 local_irq_restore(flags);
105
106 return retval;
107}
108
109static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
110{
111 int mask, retval;
112 volatile unsigned int *a = addr;
113
114 a += nr >> 5;
115 mask = 1 << (nr & 0x1f);
116 retval = (mask & *a) != 0;
117 *a |= mask;
118
119 return retval;
120}
121
122static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
123{
124 int mask, retval;
125 volatile unsigned int *a = addr;
126 unsigned long flags;
127
128 a += nr >> 5;
129 mask = 1 << (nr & 0x1f);
130 local_irq_save(flags);
131 retval = (mask & *a) != 0;
132 *a &= ~mask;
133 local_irq_restore(flags);
134
135 return retval;
136}
137
138static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
139{
140 int mask, retval;
141 volatile unsigned int *a = addr;
142
143 a += nr >> 5;
144 mask = 1 << (nr & 0x1f);
145 retval = (mask & *a) != 0;
146 *a &= ~mask;
147
148 return retval;
149}
150
151static __inline__ int test_and_change_bit(int nr, volatile void * addr)
152{
153 int mask, retval;
154 volatile unsigned int *a = addr;
155 unsigned long flags;
156
157 a += nr >> 5;
158 mask = 1 << (nr & 0x1f);
159 local_irq_save(flags);
160 retval = (mask & *a) != 0;
161 *a ^= mask;
162 local_irq_restore(flags);
163
164 return retval;
165}
166
167static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
168{
169 int mask, retval;
170 volatile unsigned int *a = addr;
171
172 a += nr >> 5;
173 mask = 1 << (nr & 0x1f);
174 retval = (mask & *a) != 0;
175 *a ^= mask;
176
177 return retval;
178}
179
180static __inline__ int test_bit(int nr, const volatile void *addr)
181{
182 return 1UL & (((const volatile unsigned int *) addr)[nr >> 5] >> (nr & 31));
183}
184
185static __inline__ unsigned long ffz(unsigned long word)
186{
187 unsigned long result, __d2, __d3;
188
189 __asm__("gettr tr0, %2\n\t"
190 "pta $+32, tr0\n\t"
191 "andi %1, 1, %3\n\t"
192 "beq %3, r63, tr0\n\t"
193 "pta $+4, tr0\n"
194 "0:\n\t"
195 "shlri.l %1, 1, %1\n\t"
196 "addi %0, 1, %0\n\t"
197 "andi %1, 1, %3\n\t"
198 "beqi %3, 1, tr0\n"
199 "1:\n\t"
200 "ptabs %2, tr0\n\t"
201 : "=r" (result), "=r" (word), "=r" (__d2), "=r" (__d3)
202 : "0" (0L), "1" (word));
203
204 return result;
205}
206
207/**
208 * __ffs - find first bit in word
209 * @word: The word to search
210 *
211 * Undefined if no bit exists, so code should check against 0 first.
212 */
213static inline unsigned long __ffs(unsigned long word)
214{
215 int r = 0;
216
217 if (!word)
218 return 0;
219 if (!(word & 0xffff)) {
220 word >>= 16;
221 r += 16;
222 }
223 if (!(word & 0xff)) {
224 word >>= 8;
225 r += 8;
226 }
227 if (!(word & 0xf)) {
228 word >>= 4;
229 r += 4;
230 }
231 if (!(word & 3)) {
232 word >>= 2;
233 r += 2;
234 }
235 if (!(word & 1)) {
236 word >>= 1;
237 r += 1;
238 }
239 return r;
240}
241
242/**
243 * find_next_bit - find the next set bit in a memory region
244 * @addr: The address to base the search on
245 * @offset: The bitnumber to start searching at
246 * @size: The maximum size to search
247 */
248static inline unsigned long find_next_bit(const unsigned long *addr,
249 unsigned long size, unsigned long offset)
250{
251 unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
252 unsigned int result = offset & ~31UL;
253 unsigned int tmp;
254
255 if (offset >= size)
256 return size;
257 size -= result;
258 offset &= 31UL;
259 if (offset) {
260 tmp = *p++;
261 tmp &= ~0UL << offset;
262 if (size < 32)
263 goto found_first;
264 if (tmp)
265 goto found_middle;
266 size -= 32;
267 result += 32;
268 }
269 while (size >= 32) {
270 if ((tmp = *p++) != 0)
271 goto found_middle;
272 result += 32;
273 size -= 32;
274 }
275 if (!size)
276 return result;
277 tmp = *p;
278
279found_first:
280 tmp &= ~0UL >> (32 - size);
281 if (tmp == 0UL) /* Are any bits set? */
282 return result + size; /* Nope. */
283found_middle:
284 return result + __ffs(tmp);
285}
286
287/**
288 * find_first_bit - find the first set bit in a memory region
289 * @addr: The address to start the search at
290 * @size: The maximum size to search
291 *
292 * Returns the bit-number of the first set bit, not the number of the byte
293 * containing a bit.
294 */
295#define find_first_bit(addr, size) \
296 find_next_bit((addr), (size), 0)
297
298
299static inline int find_next_zero_bit(void *addr, int size, int offset)
300{
301 unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
302 unsigned long result = offset & ~31UL;
303 unsigned long tmp;
304
305 if (offset >= size)
306 return size;
307 size -= result;
308 offset &= 31UL;
309 if (offset) {
310 tmp = *(p++);
311 tmp |= ~0UL >> (32-offset);
312 if (size < 32)
313 goto found_first;
314 if (~tmp)
315 goto found_middle;
316 size -= 32;
317 result += 32;
318 }
319 while (size & ~31UL) {
320 if (~(tmp = *(p++)))
321 goto found_middle;
322 result += 32;
323 size -= 32;
324 }
325 if (!size)
326 return result;
327 tmp = *p;
328
329found_first:
330 tmp |= ~0UL << size;
331found_middle:
332 return result + ffz(tmp);
333}
334
335#define find_first_zero_bit(addr, size) \
336 find_next_zero_bit((addr), (size), 0)
337
338/*
339 * hweightN: returns the hamming weight (i.e. the number
340 * of bits set) of a N-bit word
341 */
342
343#define hweight32(x) generic_hweight32(x)
344#define hweight16(x) generic_hweight16(x)
345#define hweight8(x) generic_hweight8(x)
346
347/*
348 * Every architecture must define this function. It's the fastest
349 * way of searching a 140-bit bitmap where the first 100 bits are
350 * unlikely to be set. It's guaranteed that at least one of the 140
351 * bits is cleared.
352 */
353
354static inline int sched_find_first_bit(unsigned long *b)
355{
356 if (unlikely(b[0]))
357 return __ffs(b[0]);
358 if (unlikely(b[1]))
359 return __ffs(b[1]) + 32;
360 if (unlikely(b[2]))
361 return __ffs(b[2]) + 64;
362 if (b[3])
363 return __ffs(b[3]) + 96;
364 return __ffs(b[4]) + 128;
365}
366
367/*
368 * ffs: find first bit set. This is defined the same way as
369 * the libc and compiler builtin ffs routines, therefore
370 * differs in spirit from the above ffz (man ffs).
371 */
372
373#define ffs(x) generic_ffs(x)
374
375/*
376 * hweightN: returns the hamming weight (i.e. the number
377 * of bits set) of a N-bit word
378 */
379
380#define hweight32(x) generic_hweight32(x)
381#define hweight16(x) generic_hweight16(x)
382#define hweight8(x) generic_hweight8(x)
383
384#ifdef __LITTLE_ENDIAN__
385#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr))
386#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr))
387#define ext2_test_bit(nr, addr) test_bit((nr), (addr))
388#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size))
389#define ext2_find_next_zero_bit(addr, size, offset) \
390 find_next_zero_bit((addr), (size), (offset))
391#else
392static __inline__ int ext2_set_bit(int nr, volatile void * addr)
393{
394 int mask, retval;
395 unsigned long flags;
396 volatile unsigned char *ADDR = (unsigned char *) addr;
397
398 ADDR += nr >> 3;
399 mask = 1 << (nr & 0x07);
400 local_irq_save(flags);
401 retval = (mask & *ADDR) != 0;
402 *ADDR |= mask;
403 local_irq_restore(flags);
404 return retval;
405}
406
407static __inline__ int ext2_clear_bit(int nr, volatile void * addr)
408{
409 int mask, retval;
410 unsigned long flags;
411 volatile unsigned char *ADDR = (unsigned char *) addr;
412
413 ADDR += nr >> 3;
414 mask = 1 << (nr & 0x07);
415 local_irq_save(flags);
416 retval = (mask & *ADDR) != 0;
417 *ADDR &= ~mask;
418 local_irq_restore(flags);
419 return retval;
420}
421
422static __inline__ int ext2_test_bit(int nr, const volatile void * addr)
423{
424 int mask;
425 const volatile unsigned char *ADDR = (const unsigned char *) addr;
426
427 ADDR += nr >> 3;
428 mask = 1 << (nr & 0x07);
429 return ((mask & *ADDR) != 0);
430}
431
432#define ext2_find_first_zero_bit(addr, size) \
433 ext2_find_next_zero_bit((addr), (size), 0)
434
435static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
436{
437 unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
438 unsigned long result = offset & ~31UL;
439 unsigned long tmp;
440
441 if (offset >= size)
442 return size;
443 size -= result;
444 offset &= 31UL;
445 if(offset) {
446 /* We hold the little endian value in tmp, but then the
447 * shift is illegal. So we could keep a big endian value
448 * in tmp, like this:
449 *
450 * tmp = __swab32(*(p++));
451 * tmp |= ~0UL >> (32-offset);
452 *
453 * but this would decrease preformance, so we change the
454 * shift:
455 */
456 tmp = *(p++);
457 tmp |= __swab32(~0UL >> (32-offset));
458 if(size < 32)
459 goto found_first;
460 if(~tmp)
461 goto found_middle;
462 size -= 32;
463 result += 32;
464 }
465 while(size & ~31UL) {
466 if(~(tmp = *(p++)))
467 goto found_middle;
468 result += 32;
469 size -= 32;
470 }
471 if(!size)
472 return result;
473 tmp = *p;
474
475found_first:
476 /* tmp is little endian, so we would have to swab the shift,
477 * see above. But then we have to swab tmp below for ffz, so
478 * we might as well do this here.
479 */
480 return result + ffz(__swab32(tmp) | (~0UL << size));
481found_middle:
482 return result + ffz(__swab32(tmp));
483}
484#endif
485
486#define ext2_set_bit_atomic(lock, nr, addr) \
487 ({ \
488 int ret; \
489 spin_lock(lock); \
490 ret = ext2_set_bit((nr), (addr)); \
491 spin_unlock(lock); \
492 ret; \
493 })
494
495#define ext2_clear_bit_atomic(lock, nr, addr) \
496 ({ \
497 int ret; \
498 spin_lock(lock); \
499 ret = ext2_clear_bit((nr), (addr)); \
500 spin_unlock(lock); \
501 ret; \
502 })
503
504/* Bitmap functions for the minix filesystem. */
505#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
506#define minix_set_bit(nr,addr) set_bit(nr,addr)
507#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
508#define minix_test_bit(nr,addr) test_bit(nr,addr)
509#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
510
511#define ffs(x) generic_ffs(x)
512#define fls(x) generic_fls(x)
513
514#endif /* __KERNEL__ */
515
516#endif /* __ASM_SH64_BITOPS_H */