diff options
author | David Gibson <david@gibson.dropbear.id.au> | 2007-04-30 02:30:56 -0400 |
---|---|---|
committer | Paul Mackerras <paulus@samba.org> | 2007-05-02 06:04:30 -0400 |
commit | f88df14b1f15cdeffa060580a40c1ce3e13bb79e (patch) | |
tree | 0619f32c2be79a85792537ad4410cc8d729f4f75 /include/asm-powerpc/pgtable-ppc32.h | |
parent | 69d48b409cac747cc0707b05b769e38488a6ad35 (diff) |
[POWERPC] Remove arch/powerpc's dependence on asm-ppc/pg{alloc,table}.h
Currently, all 32-bit powerpc platforms use asm-ppc/pgtable.h and
asm-ppc/pgalloc.h, even when otherwise compiled with ARCH=powerpc.
Those asm-ppc files are a fairly nasty tangle of #ifdefs including a
bunch of things which shouldn't be necessary any more in arch/powerpc.
Cleaning up that mess is going to take a while, but this patch is a
first step. It separates the asm-powerpc/pg{alloc,table}.h into 64
bit and 32 bit versions in asm-powerpc, which the basic .h files in
asm-powerpc select based on config. We make a few tiny tweaks to the
innards of the files along the way, making the outermost ifdefs
(double-inclusion protection and __KERNEL__) a little cleaner, and
#including asm-generic/pgtable.h from the top-level
asm-powerpc/pgtable.h (since both the old 32-bit and 64-bit versions
ended with such an #include).
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'include/asm-powerpc/pgtable-ppc32.h')
-rw-r--r-- | include/asm-powerpc/pgtable-ppc32.h | 838 |
1 files changed, 838 insertions, 0 deletions
diff --git a/include/asm-powerpc/pgtable-ppc32.h b/include/asm-powerpc/pgtable-ppc32.h new file mode 100644 index 000000000000..80c75474c65b --- /dev/null +++ b/include/asm-powerpc/pgtable-ppc32.h | |||
@@ -0,0 +1,838 @@ | |||
1 | #ifndef _ASM_POWERPC_PGTABLE_PPC32_H | ||
2 | #define _ASM_POWERPC_PGTABLE_PPC32_H | ||
3 | |||
4 | #include <asm-generic/4level-fixup.h> | ||
5 | |||
6 | #ifndef __ASSEMBLY__ | ||
7 | #include <linux/sched.h> | ||
8 | #include <linux/threads.h> | ||
9 | #include <asm/processor.h> /* For TASK_SIZE */ | ||
10 | #include <asm/mmu.h> | ||
11 | #include <asm/page.h> | ||
12 | #include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */ | ||
13 | struct mm_struct; | ||
14 | |||
15 | extern unsigned long va_to_phys(unsigned long address); | ||
16 | extern pte_t *va_to_pte(unsigned long address); | ||
17 | extern unsigned long ioremap_bot, ioremap_base; | ||
18 | #endif /* __ASSEMBLY__ */ | ||
19 | |||
20 | /* | ||
21 | * The PowerPC MMU uses a hash table containing PTEs, together with | ||
22 | * a set of 16 segment registers (on 32-bit implementations), to define | ||
23 | * the virtual to physical address mapping. | ||
24 | * | ||
25 | * We use the hash table as an extended TLB, i.e. a cache of currently | ||
26 | * active mappings. We maintain a two-level page table tree, much | ||
27 | * like that used by the i386, for the sake of the Linux memory | ||
28 | * management code. Low-level assembler code in hashtable.S | ||
29 | * (procedure hash_page) is responsible for extracting ptes from the | ||
30 | * tree and putting them into the hash table when necessary, and | ||
31 | * updating the accessed and modified bits in the page table tree. | ||
32 | */ | ||
33 | |||
34 | /* | ||
35 | * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. | ||
36 | * We also use the two level tables, but we can put the real bits in them | ||
37 | * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0, | ||
38 | * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has | ||
39 | * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit | ||
40 | * based upon user/super access. The TLB does not have accessed nor write | ||
41 | * protect. We assume that if the TLB get loaded with an entry it is | ||
42 | * accessed, and overload the changed bit for write protect. We use | ||
43 | * two bits in the software pte that are supposed to be set to zero in | ||
44 | * the TLB entry (24 and 25) for these indicators. Although the level 1 | ||
45 | * descriptor contains the guarded and writethrough/copyback bits, we can | ||
46 | * set these at the page level since they get copied from the Mx_TWC | ||
47 | * register when the TLB entry is loaded. We will use bit 27 for guard, since | ||
48 | * that is where it exists in the MD_TWC, and bit 26 for writethrough. | ||
49 | * These will get masked from the level 2 descriptor at TLB load time, and | ||
50 | * copied to the MD_TWC before it gets loaded. | ||
51 | * Large page sizes added. We currently support two sizes, 4K and 8M. | ||
52 | * This also allows a TLB hander optimization because we can directly | ||
53 | * load the PMD into MD_TWC. The 8M pages are only used for kernel | ||
54 | * mapping of well known areas. The PMD (PGD) entries contain control | ||
55 | * flags in addition to the address, so care must be taken that the | ||
56 | * software no longer assumes these are only pointers. | ||
57 | */ | ||
58 | |||
59 | /* | ||
60 | * At present, all PowerPC 400-class processors share a similar TLB | ||
61 | * architecture. The instruction and data sides share a unified, | ||
62 | * 64-entry, fully-associative TLB which is maintained totally under | ||
63 | * software control. In addition, the instruction side has a | ||
64 | * hardware-managed, 4-entry, fully-associative TLB which serves as a | ||
65 | * first level to the shared TLB. These two TLBs are known as the UTLB | ||
66 | * and ITLB, respectively (see "mmu.h" for definitions). | ||
67 | */ | ||
68 | |||
69 | /* | ||
70 | * The normal case is that PTEs are 32-bits and we have a 1-page | ||
71 | * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus | ||
72 | * | ||
73 | * For any >32-bit physical address platform, we can use the following | ||
74 | * two level page table layout where the pgdir is 8KB and the MS 13 bits | ||
75 | * are an index to the second level table. The combined pgdir/pmd first | ||
76 | * level has 2048 entries and the second level has 512 64-bit PTE entries. | ||
77 | * -Matt | ||
78 | */ | ||
79 | /* PMD_SHIFT determines the size of the area mapped by the PTE pages */ | ||
80 | #define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) | ||
81 | #define PMD_SIZE (1UL << PMD_SHIFT) | ||
82 | #define PMD_MASK (~(PMD_SIZE-1)) | ||
83 | |||
84 | /* PGDIR_SHIFT determines what a top-level page table entry can map */ | ||
85 | #define PGDIR_SHIFT PMD_SHIFT | ||
86 | #define PGDIR_SIZE (1UL << PGDIR_SHIFT) | ||
87 | #define PGDIR_MASK (~(PGDIR_SIZE-1)) | ||
88 | |||
89 | /* | ||
90 | * entries per page directory level: our page-table tree is two-level, so | ||
91 | * we don't really have any PMD directory. | ||
92 | */ | ||
93 | #define PTRS_PER_PTE (1 << PTE_SHIFT) | ||
94 | #define PTRS_PER_PMD 1 | ||
95 | #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) | ||
96 | |||
97 | #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) | ||
98 | #define FIRST_USER_ADDRESS 0 | ||
99 | |||
100 | #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) | ||
101 | #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) | ||
102 | |||
103 | #define pte_ERROR(e) \ | ||
104 | printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e)) | ||
105 | #define pmd_ERROR(e) \ | ||
106 | printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) | ||
107 | #define pgd_ERROR(e) \ | ||
108 | printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) | ||
109 | |||
110 | /* | ||
111 | * Just any arbitrary offset to the start of the vmalloc VM area: the | ||
112 | * current 64MB value just means that there will be a 64MB "hole" after the | ||
113 | * physical memory until the kernel virtual memory starts. That means that | ||
114 | * any out-of-bounds memory accesses will hopefully be caught. | ||
115 | * The vmalloc() routines leaves a hole of 4kB between each vmalloced | ||
116 | * area for the same reason. ;) | ||
117 | * | ||
118 | * We no longer map larger than phys RAM with the BATs so we don't have | ||
119 | * to worry about the VMALLOC_OFFSET causing problems. We do have to worry | ||
120 | * about clashes between our early calls to ioremap() that start growing down | ||
121 | * from ioremap_base being run into the VM area allocations (growing upwards | ||
122 | * from VMALLOC_START). For this reason we have ioremap_bot to check when | ||
123 | * we actually run into our mappings setup in the early boot with the VM | ||
124 | * system. This really does become a problem for machines with good amounts | ||
125 | * of RAM. -- Cort | ||
126 | */ | ||
127 | #define VMALLOC_OFFSET (0x1000000) /* 16M */ | ||
128 | #ifdef PPC_PIN_SIZE | ||
129 | #define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) | ||
130 | #else | ||
131 | #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) | ||
132 | #endif | ||
133 | #define VMALLOC_END ioremap_bot | ||
134 | |||
135 | /* | ||
136 | * Bits in a linux-style PTE. These match the bits in the | ||
137 | * (hardware-defined) PowerPC PTE as closely as possible. | ||
138 | */ | ||
139 | |||
140 | #if defined(CONFIG_40x) | ||
141 | |||
142 | /* There are several potential gotchas here. The 40x hardware TLBLO | ||
143 | field looks like this: | ||
144 | |||
145 | 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ||
146 | RPN..................... 0 0 EX WR ZSEL....... W I M G | ||
147 | |||
148 | Where possible we make the Linux PTE bits match up with this | ||
149 | |||
150 | - bits 20 and 21 must be cleared, because we use 4k pages (40x can | ||
151 | support down to 1k pages), this is done in the TLBMiss exception | ||
152 | handler. | ||
153 | - We use only zones 0 (for kernel pages) and 1 (for user pages) | ||
154 | of the 16 available. Bit 24-26 of the TLB are cleared in the TLB | ||
155 | miss handler. Bit 27 is PAGE_USER, thus selecting the correct | ||
156 | zone. | ||
157 | - PRESENT *must* be in the bottom two bits because swap cache | ||
158 | entries use the top 30 bits. Because 40x doesn't support SMP | ||
159 | anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 | ||
160 | is cleared in the TLB miss handler before the TLB entry is loaded. | ||
161 | - All other bits of the PTE are loaded into TLBLO without | ||
162 | modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for | ||
163 | software PTE bits. We actually use use bits 21, 24, 25, and | ||
164 | 30 respectively for the software bits: ACCESSED, DIRTY, RW, and | ||
165 | PRESENT. | ||
166 | */ | ||
167 | |||
168 | /* Definitions for 40x embedded chips. */ | ||
169 | #define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ | ||
170 | #define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */ | ||
171 | #define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ | ||
172 | #define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ | ||
173 | #define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ | ||
174 | #define _PAGE_USER 0x010 /* matches one of the zone permission bits */ | ||
175 | #define _PAGE_RW 0x040 /* software: Writes permitted */ | ||
176 | #define _PAGE_DIRTY 0x080 /* software: dirty page */ | ||
177 | #define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ | ||
178 | #define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ | ||
179 | #define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ | ||
180 | |||
181 | #define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */ | ||
182 | #define _PMD_BAD 0x802 | ||
183 | #define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */ | ||
184 | #define _PMD_SIZE_4M 0x0c0 | ||
185 | #define _PMD_SIZE_16M 0x0e0 | ||
186 | #define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4)) | ||
187 | |||
188 | #elif defined(CONFIG_44x) | ||
189 | /* | ||
190 | * Definitions for PPC440 | ||
191 | * | ||
192 | * Because of the 3 word TLB entries to support 36-bit addressing, | ||
193 | * the attribute are difficult to map in such a fashion that they | ||
194 | * are easily loaded during exception processing. I decided to | ||
195 | * organize the entry so the ERPN is the only portion in the | ||
196 | * upper word of the PTE and the attribute bits below are packed | ||
197 | * in as sensibly as they can be in the area below a 4KB page size | ||
198 | * oriented RPN. This at least makes it easy to load the RPN and | ||
199 | * ERPN fields in the TLB. -Matt | ||
200 | * | ||
201 | * Note that these bits preclude future use of a page size | ||
202 | * less than 4KB. | ||
203 | * | ||
204 | * | ||
205 | * PPC 440 core has following TLB attribute fields; | ||
206 | * | ||
207 | * TLB1: | ||
208 | * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ||
209 | * RPN................................. - - - - - - ERPN....... | ||
210 | * | ||
211 | * TLB2: | ||
212 | * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ||
213 | * - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR | ||
214 | * | ||
215 | * There are some constrains and options, to decide mapping software bits | ||
216 | * into TLB entry. | ||
217 | * | ||
218 | * - PRESENT *must* be in the bottom three bits because swap cache | ||
219 | * entries use the top 29 bits for TLB2. | ||
220 | * | ||
221 | * - FILE *must* be in the bottom three bits because swap cache | ||
222 | * entries use the top 29 bits for TLB2. | ||
223 | * | ||
224 | * - CACHE COHERENT bit (M) has no effect on PPC440 core, because it | ||
225 | * doesn't support SMP. So we can use this as software bit, like | ||
226 | * DIRTY. | ||
227 | * | ||
228 | * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used | ||
229 | * for memory protection related functions (see PTE structure in | ||
230 | * include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the | ||
231 | * above bits. Note that the bit values are CPU specific, not architecture | ||
232 | * specific. | ||
233 | * | ||
234 | * The kernel PTE entry holds an arch-dependent swp_entry structure under | ||
235 | * certain situations. In other words, in such situations some portion of | ||
236 | * the PTE bits are used as a swp_entry. In the PPC implementation, the | ||
237 | * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still | ||
238 | * hold protection values. That means the three protection bits are | ||
239 | * reserved for both PTE and SWAP entry at the most significant three | ||
240 | * LSBs. | ||
241 | * | ||
242 | * There are three protection bits available for SWAP entry: | ||
243 | * _PAGE_PRESENT | ||
244 | * _PAGE_FILE | ||
245 | * _PAGE_HASHPTE (if HW has) | ||
246 | * | ||
247 | * So those three bits have to be inside of 0-2nd LSB of PTE. | ||
248 | * | ||
249 | */ | ||
250 | |||
251 | #define _PAGE_PRESENT 0x00000001 /* S: PTE valid */ | ||
252 | #define _PAGE_RW 0x00000002 /* S: Write permission */ | ||
253 | #define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */ | ||
254 | #define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */ | ||
255 | #define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */ | ||
256 | #define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */ | ||
257 | #define _PAGE_USER 0x00000040 /* S: User page */ | ||
258 | #define _PAGE_ENDIAN 0x00000080 /* H: E bit */ | ||
259 | #define _PAGE_GUARDED 0x00000100 /* H: G bit */ | ||
260 | #define _PAGE_DIRTY 0x00000200 /* S: Page dirty */ | ||
261 | #define _PAGE_NO_CACHE 0x00000400 /* H: I bit */ | ||
262 | #define _PAGE_WRITETHRU 0x00000800 /* H: W bit */ | ||
263 | |||
264 | /* TODO: Add large page lowmem mapping support */ | ||
265 | #define _PMD_PRESENT 0 | ||
266 | #define _PMD_PRESENT_MASK (PAGE_MASK) | ||
267 | #define _PMD_BAD (~PAGE_MASK) | ||
268 | |||
269 | /* ERPN in a PTE never gets cleared, ignore it */ | ||
270 | #define _PTE_NONE_MASK 0xffffffff00000000ULL | ||
271 | |||
272 | #elif defined(CONFIG_FSL_BOOKE) | ||
273 | /* | ||
274 | MMU Assist Register 3: | ||
275 | |||
276 | 32 33 34 35 36 ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | ||
277 | RPN...................... 0 0 U0 U1 U2 U3 UX SX UW SW UR SR | ||
278 | |||
279 | - PRESENT *must* be in the bottom three bits because swap cache | ||
280 | entries use the top 29 bits. | ||
281 | |||
282 | - FILE *must* be in the bottom three bits because swap cache | ||
283 | entries use the top 29 bits. | ||
284 | */ | ||
285 | |||
286 | /* Definitions for FSL Book-E Cores */ | ||
287 | #define _PAGE_PRESENT 0x00001 /* S: PTE contains a translation */ | ||
288 | #define _PAGE_USER 0x00002 /* S: User page (maps to UR) */ | ||
289 | #define _PAGE_FILE 0x00002 /* S: when !present: nonlinear file mapping */ | ||
290 | #define _PAGE_ACCESSED 0x00004 /* S: Page referenced */ | ||
291 | #define _PAGE_HWWRITE 0x00008 /* H: Dirty & RW, set in exception */ | ||
292 | #define _PAGE_RW 0x00010 /* S: Write permission */ | ||
293 | #define _PAGE_HWEXEC 0x00020 /* H: UX permission */ | ||
294 | |||
295 | #define _PAGE_ENDIAN 0x00040 /* H: E bit */ | ||
296 | #define _PAGE_GUARDED 0x00080 /* H: G bit */ | ||
297 | #define _PAGE_COHERENT 0x00100 /* H: M bit */ | ||
298 | #define _PAGE_NO_CACHE 0x00200 /* H: I bit */ | ||
299 | #define _PAGE_WRITETHRU 0x00400 /* H: W bit */ | ||
300 | |||
301 | #ifdef CONFIG_PTE_64BIT | ||
302 | #define _PAGE_DIRTY 0x08000 /* S: Page dirty */ | ||
303 | |||
304 | /* ERPN in a PTE never gets cleared, ignore it */ | ||
305 | #define _PTE_NONE_MASK 0xffffffffffff0000ULL | ||
306 | #else | ||
307 | #define _PAGE_DIRTY 0x00800 /* S: Page dirty */ | ||
308 | #endif | ||
309 | |||
310 | #define _PMD_PRESENT 0 | ||
311 | #define _PMD_PRESENT_MASK (PAGE_MASK) | ||
312 | #define _PMD_BAD (~PAGE_MASK) | ||
313 | |||
314 | #elif defined(CONFIG_8xx) | ||
315 | /* Definitions for 8xx embedded chips. */ | ||
316 | #define _PAGE_PRESENT 0x0001 /* Page is valid */ | ||
317 | #define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */ | ||
318 | #define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */ | ||
319 | #define _PAGE_SHARED 0x0004 /* No ASID (context) compare */ | ||
320 | |||
321 | /* These five software bits must be masked out when the entry is loaded | ||
322 | * into the TLB. | ||
323 | */ | ||
324 | #define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */ | ||
325 | #define _PAGE_GUARDED 0x0010 /* software: guarded access */ | ||
326 | #define _PAGE_DIRTY 0x0020 /* software: page changed */ | ||
327 | #define _PAGE_RW 0x0040 /* software: user write access allowed */ | ||
328 | #define _PAGE_ACCESSED 0x0080 /* software: page referenced */ | ||
329 | |||
330 | /* Setting any bits in the nibble with the follow two controls will | ||
331 | * require a TLB exception handler change. It is assumed unused bits | ||
332 | * are always zero. | ||
333 | */ | ||
334 | #define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */ | ||
335 | #define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */ | ||
336 | |||
337 | #define _PMD_PRESENT 0x0001 | ||
338 | #define _PMD_BAD 0x0ff0 | ||
339 | #define _PMD_PAGE_MASK 0x000c | ||
340 | #define _PMD_PAGE_8M 0x000c | ||
341 | |||
342 | /* | ||
343 | * The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE | ||
344 | * for an address even if _PAGE_PRESENT is not set, as a performance | ||
345 | * optimization. This is a bug if you ever want to use swap unless | ||
346 | * _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific | ||
347 | * definitions for __swp_entry etc. below, which would be gross. | ||
348 | * -- paulus | ||
349 | */ | ||
350 | #define _PTE_NONE_MASK _PAGE_ACCESSED | ||
351 | |||
352 | #else /* CONFIG_6xx */ | ||
353 | /* Definitions for 60x, 740/750, etc. */ | ||
354 | #define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ | ||
355 | #define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ | ||
356 | #define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */ | ||
357 | #define _PAGE_USER 0x004 /* usermode access allowed */ | ||
358 | #define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ | ||
359 | #define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ | ||
360 | #define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ | ||
361 | #define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ | ||
362 | #define _PAGE_DIRTY 0x080 /* C: page changed */ | ||
363 | #define _PAGE_ACCESSED 0x100 /* R: page referenced */ | ||
364 | #define _PAGE_EXEC 0x200 /* software: i-cache coherency required */ | ||
365 | #define _PAGE_RW 0x400 /* software: user write access allowed */ | ||
366 | |||
367 | #define _PTE_NONE_MASK _PAGE_HASHPTE | ||
368 | |||
369 | #define _PMD_PRESENT 0 | ||
370 | #define _PMD_PRESENT_MASK (PAGE_MASK) | ||
371 | #define _PMD_BAD (~PAGE_MASK) | ||
372 | #endif | ||
373 | |||
374 | /* | ||
375 | * Some bits are only used on some cpu families... | ||
376 | */ | ||
377 | #ifndef _PAGE_HASHPTE | ||
378 | #define _PAGE_HASHPTE 0 | ||
379 | #endif | ||
380 | #ifndef _PTE_NONE_MASK | ||
381 | #define _PTE_NONE_MASK 0 | ||
382 | #endif | ||
383 | #ifndef _PAGE_SHARED | ||
384 | #define _PAGE_SHARED 0 | ||
385 | #endif | ||
386 | #ifndef _PAGE_HWWRITE | ||
387 | #define _PAGE_HWWRITE 0 | ||
388 | #endif | ||
389 | #ifndef _PAGE_HWEXEC | ||
390 | #define _PAGE_HWEXEC 0 | ||
391 | #endif | ||
392 | #ifndef _PAGE_EXEC | ||
393 | #define _PAGE_EXEC 0 | ||
394 | #endif | ||
395 | #ifndef _PMD_PRESENT_MASK | ||
396 | #define _PMD_PRESENT_MASK _PMD_PRESENT | ||
397 | #endif | ||
398 | #ifndef _PMD_SIZE | ||
399 | #define _PMD_SIZE 0 | ||
400 | #define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE() | ||
401 | #endif | ||
402 | |||
403 | #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) | ||
404 | |||
405 | /* | ||
406 | * Note: the _PAGE_COHERENT bit automatically gets set in the hardware | ||
407 | * PTE if CONFIG_SMP is defined (hash_page does this); there is no need | ||
408 | * to have it in the Linux PTE, and in fact the bit could be reused for | ||
409 | * another purpose. -- paulus. | ||
410 | */ | ||
411 | |||
412 | #ifdef CONFIG_44x | ||
413 | #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED) | ||
414 | #else | ||
415 | #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) | ||
416 | #endif | ||
417 | #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) | ||
418 | #define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE) | ||
419 | |||
420 | #ifdef CONFIG_PPC_STD_MMU | ||
421 | /* On standard PPC MMU, no user access implies kernel read/write access, | ||
422 | * so to write-protect kernel memory we must turn on user access */ | ||
423 | #define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER) | ||
424 | #else | ||
425 | #define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED) | ||
426 | #endif | ||
427 | |||
428 | #define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) | ||
429 | #define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC) | ||
430 | |||
431 | #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) | ||
432 | /* We want the debuggers to be able to set breakpoints anywhere, so | ||
433 | * don't write protect the kernel text */ | ||
434 | #define _PAGE_RAM_TEXT _PAGE_RAM | ||
435 | #else | ||
436 | #define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC) | ||
437 | #endif | ||
438 | |||
439 | #define PAGE_NONE __pgprot(_PAGE_BASE) | ||
440 | #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) | ||
441 | #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | ||
442 | #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) | ||
443 | #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) | ||
444 | #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) | ||
445 | #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) | ||
446 | |||
447 | #define PAGE_KERNEL __pgprot(_PAGE_RAM) | ||
448 | #define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO) | ||
449 | |||
450 | /* | ||
451 | * The PowerPC can only do execute protection on a segment (256MB) basis, | ||
452 | * not on a page basis. So we consider execute permission the same as read. | ||
453 | * Also, write permissions imply read permissions. | ||
454 | * This is the closest we can get.. | ||
455 | */ | ||
456 | #define __P000 PAGE_NONE | ||
457 | #define __P001 PAGE_READONLY_X | ||
458 | #define __P010 PAGE_COPY | ||
459 | #define __P011 PAGE_COPY_X | ||
460 | #define __P100 PAGE_READONLY | ||
461 | #define __P101 PAGE_READONLY_X | ||
462 | #define __P110 PAGE_COPY | ||
463 | #define __P111 PAGE_COPY_X | ||
464 | |||
465 | #define __S000 PAGE_NONE | ||
466 | #define __S001 PAGE_READONLY_X | ||
467 | #define __S010 PAGE_SHARED | ||
468 | #define __S011 PAGE_SHARED_X | ||
469 | #define __S100 PAGE_READONLY | ||
470 | #define __S101 PAGE_READONLY_X | ||
471 | #define __S110 PAGE_SHARED | ||
472 | #define __S111 PAGE_SHARED_X | ||
473 | |||
474 | #ifndef __ASSEMBLY__ | ||
475 | /* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a | ||
476 | * kernel without large page PMD support */ | ||
477 | extern unsigned long bad_call_to_PMD_PAGE_SIZE(void); | ||
478 | |||
479 | /* | ||
480 | * Conversions between PTE values and page frame numbers. | ||
481 | */ | ||
482 | |||
483 | /* in some case we want to additionaly adjust where the pfn is in the pte to | ||
484 | * allow room for more flags */ | ||
485 | #if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT) | ||
486 | #define PFN_SHIFT_OFFSET (PAGE_SHIFT + 8) | ||
487 | #else | ||
488 | #define PFN_SHIFT_OFFSET (PAGE_SHIFT) | ||
489 | #endif | ||
490 | |||
491 | #define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) | ||
492 | #define pte_page(x) pfn_to_page(pte_pfn(x)) | ||
493 | |||
494 | #define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\ | ||
495 | pgprot_val(prot)) | ||
496 | #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) | ||
497 | |||
498 | /* | ||
499 | * ZERO_PAGE is a global shared page that is always zero: used | ||
500 | * for zero-mapped memory areas etc.. | ||
501 | */ | ||
502 | extern unsigned long empty_zero_page[1024]; | ||
503 | #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) | ||
504 | |||
505 | #endif /* __ASSEMBLY__ */ | ||
506 | |||
507 | #define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) | ||
508 | #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) | ||
509 | #define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) | ||
510 | |||
511 | #define pmd_none(pmd) (!pmd_val(pmd)) | ||
512 | #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) | ||
513 | #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) | ||
514 | #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) | ||
515 | |||
516 | #ifndef __ASSEMBLY__ | ||
517 | /* | ||
518 | * The "pgd_xxx()" functions here are trivial for a folded two-level | ||
519 | * setup: the pgd is never bad, and a pmd always exists (as it's folded | ||
520 | * into the pgd entry) | ||
521 | */ | ||
522 | static inline int pgd_none(pgd_t pgd) { return 0; } | ||
523 | static inline int pgd_bad(pgd_t pgd) { return 0; } | ||
524 | static inline int pgd_present(pgd_t pgd) { return 1; } | ||
525 | #define pgd_clear(xp) do { } while (0) | ||
526 | |||
527 | #define pgd_page_vaddr(pgd) \ | ||
528 | ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) | ||
529 | |||
530 | /* | ||
531 | * The following only work if pte_present() is true. | ||
532 | * Undefined behaviour if not.. | ||
533 | */ | ||
534 | static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } | ||
535 | static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } | ||
536 | static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } | ||
537 | static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } | ||
538 | static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } | ||
539 | static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } | ||
540 | |||
541 | static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } | ||
542 | static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } | ||
543 | |||
544 | static inline pte_t pte_rdprotect(pte_t pte) { | ||
545 | pte_val(pte) &= ~_PAGE_USER; return pte; } | ||
546 | static inline pte_t pte_wrprotect(pte_t pte) { | ||
547 | pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } | ||
548 | static inline pte_t pte_exprotect(pte_t pte) { | ||
549 | pte_val(pte) &= ~_PAGE_EXEC; return pte; } | ||
550 | static inline pte_t pte_mkclean(pte_t pte) { | ||
551 | pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } | ||
552 | static inline pte_t pte_mkold(pte_t pte) { | ||
553 | pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } | ||
554 | |||
555 | static inline pte_t pte_mkread(pte_t pte) { | ||
556 | pte_val(pte) |= _PAGE_USER; return pte; } | ||
557 | static inline pte_t pte_mkexec(pte_t pte) { | ||
558 | pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } | ||
559 | static inline pte_t pte_mkwrite(pte_t pte) { | ||
560 | pte_val(pte) |= _PAGE_RW; return pte; } | ||
561 | static inline pte_t pte_mkdirty(pte_t pte) { | ||
562 | pte_val(pte) |= _PAGE_DIRTY; return pte; } | ||
563 | static inline pte_t pte_mkyoung(pte_t pte) { | ||
564 | pte_val(pte) |= _PAGE_ACCESSED; return pte; } | ||
565 | |||
566 | static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) | ||
567 | { | ||
568 | pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); | ||
569 | return pte; | ||
570 | } | ||
571 | |||
572 | /* | ||
573 | * When flushing the tlb entry for a page, we also need to flush the hash | ||
574 | * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. | ||
575 | */ | ||
576 | extern int flush_hash_pages(unsigned context, unsigned long va, | ||
577 | unsigned long pmdval, int count); | ||
578 | |||
579 | /* Add an HPTE to the hash table */ | ||
580 | extern void add_hash_page(unsigned context, unsigned long va, | ||
581 | unsigned long pmdval); | ||
582 | |||
583 | /* | ||
584 | * Atomic PTE updates. | ||
585 | * | ||
586 | * pte_update clears and sets bit atomically, and returns | ||
587 | * the old pte value. In the 64-bit PTE case we lock around the | ||
588 | * low PTE word since we expect ALL flag bits to be there | ||
589 | */ | ||
590 | #ifndef CONFIG_PTE_64BIT | ||
591 | static inline unsigned long pte_update(pte_t *p, unsigned long clr, | ||
592 | unsigned long set) | ||
593 | { | ||
594 | unsigned long old, tmp; | ||
595 | |||
596 | __asm__ __volatile__("\ | ||
597 | 1: lwarx %0,0,%3\n\ | ||
598 | andc %1,%0,%4\n\ | ||
599 | or %1,%1,%5\n" | ||
600 | PPC405_ERR77(0,%3) | ||
601 | " stwcx. %1,0,%3\n\ | ||
602 | bne- 1b" | ||
603 | : "=&r" (old), "=&r" (tmp), "=m" (*p) | ||
604 | : "r" (p), "r" (clr), "r" (set), "m" (*p) | ||
605 | : "cc" ); | ||
606 | return old; | ||
607 | } | ||
608 | #else | ||
609 | static inline unsigned long long pte_update(pte_t *p, unsigned long clr, | ||
610 | unsigned long set) | ||
611 | { | ||
612 | unsigned long long old; | ||
613 | unsigned long tmp; | ||
614 | |||
615 | __asm__ __volatile__("\ | ||
616 | 1: lwarx %L0,0,%4\n\ | ||
617 | lwzx %0,0,%3\n\ | ||
618 | andc %1,%L0,%5\n\ | ||
619 | or %1,%1,%6\n" | ||
620 | PPC405_ERR77(0,%3) | ||
621 | " stwcx. %1,0,%4\n\ | ||
622 | bne- 1b" | ||
623 | : "=&r" (old), "=&r" (tmp), "=m" (*p) | ||
624 | : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) | ||
625 | : "cc" ); | ||
626 | return old; | ||
627 | } | ||
628 | #endif | ||
629 | |||
630 | /* | ||
631 | * set_pte stores a linux PTE into the linux page table. | ||
632 | * On machines which use an MMU hash table we avoid changing the | ||
633 | * _PAGE_HASHPTE bit. | ||
634 | */ | ||
635 | static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, | ||
636 | pte_t *ptep, pte_t pte) | ||
637 | { | ||
638 | #if _PAGE_HASHPTE != 0 | ||
639 | pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE); | ||
640 | #else | ||
641 | *ptep = pte; | ||
642 | #endif | ||
643 | } | ||
644 | |||
645 | /* | ||
646 | * 2.6 calles this without flushing the TLB entry, this is wrong | ||
647 | * for our hash-based implementation, we fix that up here | ||
648 | */ | ||
649 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG | ||
650 | static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) | ||
651 | { | ||
652 | unsigned long old; | ||
653 | old = pte_update(ptep, _PAGE_ACCESSED, 0); | ||
654 | #if _PAGE_HASHPTE != 0 | ||
655 | if (old & _PAGE_HASHPTE) { | ||
656 | unsigned long ptephys = __pa(ptep) & PAGE_MASK; | ||
657 | flush_hash_pages(context, addr, ptephys, 1); | ||
658 | } | ||
659 | #endif | ||
660 | return (old & _PAGE_ACCESSED) != 0; | ||
661 | } | ||
662 | #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ | ||
663 | __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep) | ||
664 | |||
665 | #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY | ||
666 | static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, | ||
667 | unsigned long addr, pte_t *ptep) | ||
668 | { | ||
669 | return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; | ||
670 | } | ||
671 | |||
672 | #define __HAVE_ARCH_PTEP_GET_AND_CLEAR | ||
673 | static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, | ||
674 | pte_t *ptep) | ||
675 | { | ||
676 | return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); | ||
677 | } | ||
678 | |||
679 | #define __HAVE_ARCH_PTEP_SET_WRPROTECT | ||
680 | static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, | ||
681 | pte_t *ptep) | ||
682 | { | ||
683 | pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); | ||
684 | } | ||
685 | |||
686 | #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS | ||
687 | static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) | ||
688 | { | ||
689 | unsigned long bits = pte_val(entry) & | ||
690 | (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW); | ||
691 | pte_update(ptep, 0, bits); | ||
692 | } | ||
693 | |||
694 | #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ | ||
695 | do { \ | ||
696 | __ptep_set_access_flags(__ptep, __entry, __dirty); \ | ||
697 | flush_tlb_page_nohash(__vma, __address); \ | ||
698 | } while(0) | ||
699 | |||
700 | /* | ||
701 | * Macro to mark a page protection value as "uncacheable". | ||
702 | */ | ||
703 | #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) | ||
704 | |||
705 | struct file; | ||
706 | extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | ||
707 | unsigned long size, pgprot_t vma_prot); | ||
708 | #define __HAVE_PHYS_MEM_ACCESS_PROT | ||
709 | |||
710 | #define __HAVE_ARCH_PTE_SAME | ||
711 | #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) | ||
712 | |||
713 | /* | ||
714 | * Note that on Book E processors, the pmd contains the kernel virtual | ||
715 | * (lowmem) address of the pte page. The physical address is less useful | ||
716 | * because everything runs with translation enabled (even the TLB miss | ||
717 | * handler). On everything else the pmd contains the physical address | ||
718 | * of the pte page. -- paulus | ||
719 | */ | ||
720 | #ifndef CONFIG_BOOKE | ||
721 | #define pmd_page_vaddr(pmd) \ | ||
722 | ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) | ||
723 | #define pmd_page(pmd) \ | ||
724 | (mem_map + (pmd_val(pmd) >> PAGE_SHIFT)) | ||
725 | #else | ||
726 | #define pmd_page_vaddr(pmd) \ | ||
727 | ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) | ||
728 | #define pmd_page(pmd) \ | ||
729 | (mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT)) | ||
730 | #endif | ||
731 | |||
732 | /* to find an entry in a kernel page-table-directory */ | ||
733 | #define pgd_offset_k(address) pgd_offset(&init_mm, address) | ||
734 | |||
735 | /* to find an entry in a page-table-directory */ | ||
736 | #define pgd_index(address) ((address) >> PGDIR_SHIFT) | ||
737 | #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) | ||
738 | |||
739 | /* Find an entry in the second-level page table.. */ | ||
740 | static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) | ||
741 | { | ||
742 | return (pmd_t *) dir; | ||
743 | } | ||
744 | |||
745 | /* Find an entry in the third-level page table.. */ | ||
746 | #define pte_index(address) \ | ||
747 | (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) | ||
748 | #define pte_offset_kernel(dir, addr) \ | ||
749 | ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) | ||
750 | #define pte_offset_map(dir, addr) \ | ||
751 | ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr)) | ||
752 | #define pte_offset_map_nested(dir, addr) \ | ||
753 | ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr)) | ||
754 | |||
755 | #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) | ||
756 | #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) | ||
757 | |||
758 | extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; | ||
759 | |||
760 | extern void paging_init(void); | ||
761 | |||
762 | /* | ||
763 | * Encode and decode a swap entry. | ||
764 | * Note that the bits we use in a PTE for representing a swap entry | ||
765 | * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the | ||
766 | *_PAGE_HASHPTE bit (if used). -- paulus | ||
767 | */ | ||
768 | #define __swp_type(entry) ((entry).val & 0x1f) | ||
769 | #define __swp_offset(entry) ((entry).val >> 5) | ||
770 | #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) | ||
771 | #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) | ||
772 | #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) | ||
773 | |||
774 | /* Encode and decode a nonlinear file mapping entry */ | ||
775 | #define PTE_FILE_MAX_BITS 29 | ||
776 | #define pte_to_pgoff(pte) (pte_val(pte) >> 3) | ||
777 | #define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) | ||
778 | |||
779 | /* CONFIG_APUS */ | ||
780 | /* For virtual address to physical address conversion */ | ||
781 | extern void cache_clear(__u32 addr, int length); | ||
782 | extern void cache_push(__u32 addr, int length); | ||
783 | extern int mm_end_of_chunk (unsigned long addr, int len); | ||
784 | extern unsigned long iopa(unsigned long addr); | ||
785 | extern unsigned long mm_ptov(unsigned long addr) __attribute_const__; | ||
786 | |||
787 | /* Values for nocacheflag and cmode */ | ||
788 | /* These are not used by the APUS kernel_map, but prevents | ||
789 | compilation errors. */ | ||
790 | #define KERNELMAP_FULL_CACHING 0 | ||
791 | #define KERNELMAP_NOCACHE_SER 1 | ||
792 | #define KERNELMAP_NOCACHE_NONSER 2 | ||
793 | #define KERNELMAP_NO_COPYBACK 3 | ||
794 | |||
795 | /* | ||
796 | * Map some physical address range into the kernel address space. | ||
797 | */ | ||
798 | extern unsigned long kernel_map(unsigned long paddr, unsigned long size, | ||
799 | int nocacheflag, unsigned long *memavailp ); | ||
800 | |||
801 | /* | ||
802 | * Set cache mode of (kernel space) address range. | ||
803 | */ | ||
804 | extern void kernel_set_cachemode (unsigned long address, unsigned long size, | ||
805 | unsigned int cmode); | ||
806 | |||
807 | /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ | ||
808 | #define kern_addr_valid(addr) (1) | ||
809 | |||
810 | #ifdef CONFIG_PHYS_64BIT | ||
811 | extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, | ||
812 | unsigned long paddr, unsigned long size, pgprot_t prot); | ||
813 | |||
814 | static inline int io_remap_pfn_range(struct vm_area_struct *vma, | ||
815 | unsigned long vaddr, | ||
816 | unsigned long pfn, | ||
817 | unsigned long size, | ||
818 | pgprot_t prot) | ||
819 | { | ||
820 | phys_addr_t paddr64 = fixup_bigphys_addr(pfn << PAGE_SHIFT, size); | ||
821 | return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot); | ||
822 | } | ||
823 | #else | ||
824 | #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ | ||
825 | remap_pfn_range(vma, vaddr, pfn, size, prot) | ||
826 | #endif | ||
827 | |||
828 | /* | ||
829 | * No page table caches to initialise | ||
830 | */ | ||
831 | #define pgtable_cache_init() do { } while (0) | ||
832 | |||
833 | extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, | ||
834 | pmd_t **pmdp); | ||
835 | |||
836 | #endif /* !__ASSEMBLY__ */ | ||
837 | |||
838 | #endif /* _ASM_POWERPC_PGTABLE_PPC32_H */ | ||