aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-powerpc/mmu-hash64.h
diff options
context:
space:
mode:
authorPaul Mackerras <paulus@samba.org>2007-10-11 06:37:10 -0400
committerPaul Mackerras <paulus@samba.org>2007-10-12 00:05:17 -0400
commit1189be6508d45183013ddb82b18f4934193de274 (patch)
tree58924481b4de56699e4a884dce8dc601e71cf7d1 /include/asm-powerpc/mmu-hash64.h
parent287e5d6fcccfa38b953cebe307e1ddfd32363355 (diff)
[POWERPC] Use 1TB segments
This makes the kernel use 1TB segments for all kernel mappings and for user addresses of 1TB and above, on machines which support them (currently POWER5+, POWER6 and PA6T). We detect that the machine supports 1TB segments by looking at the ibm,processor-segment-sizes property in the device tree. We don't currently use 1TB segments for user addresses < 1T, since that would effectively prevent 32-bit processes from using huge pages unless we also had a way to revert to using 256MB segments. That would be possible but would involve extra complications (such as keeping track of which segment size was used when HPTEs were inserted) and is not addressed here. Parts of this patch were originally written by Ben Herrenschmidt. Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'include/asm-powerpc/mmu-hash64.h')
-rw-r--r--include/asm-powerpc/mmu-hash64.h140
1 files changed, 98 insertions, 42 deletions
diff --git a/include/asm-powerpc/mmu-hash64.h b/include/asm-powerpc/mmu-hash64.h
index b22b0d20e157..82328dec2b52 100644
--- a/include/asm-powerpc/mmu-hash64.h
+++ b/include/asm-powerpc/mmu-hash64.h
@@ -47,6 +47,8 @@ extern char initial_stab[];
47 47
48/* Bits in the SLB VSID word */ 48/* Bits in the SLB VSID word */
49#define SLB_VSID_SHIFT 12 49#define SLB_VSID_SHIFT 12
50#define SLB_VSID_SHIFT_1T 24
51#define SLB_VSID_SSIZE_SHIFT 62
50#define SLB_VSID_B ASM_CONST(0xc000000000000000) 52#define SLB_VSID_B ASM_CONST(0xc000000000000000)
51#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) 53#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
52#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) 54#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
@@ -66,6 +68,7 @@ extern char initial_stab[];
66#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) 68#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
67 69
68#define SLBIE_C (0x08000000) 70#define SLBIE_C (0x08000000)
71#define SLBIE_SSIZE_SHIFT 25
69 72
70/* 73/*
71 * Hash table 74 * Hash table
@@ -77,7 +80,7 @@ extern char initial_stab[];
77#define HPTE_V_AVPN_SHIFT 7 80#define HPTE_V_AVPN_SHIFT 7
78#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) 81#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
79#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) 82#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
80#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & HPTE_V_AVPN)) 83#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80))
81#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) 84#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
82#define HPTE_V_LOCK ASM_CONST(0x0000000000000008) 85#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
83#define HPTE_V_LARGE ASM_CONST(0x0000000000000004) 86#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
@@ -164,16 +167,19 @@ struct mmu_psize_def
164#define MMU_SEGSIZE_256M 0 167#define MMU_SEGSIZE_256M 0
165#define MMU_SEGSIZE_1T 1 168#define MMU_SEGSIZE_1T 1
166 169
170
167#ifndef __ASSEMBLY__ 171#ifndef __ASSEMBLY__
168 172
169/* 173/*
170 * The current system page sizes 174 * The current system page and segment sizes
171 */ 175 */
172extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; 176extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
173extern int mmu_linear_psize; 177extern int mmu_linear_psize;
174extern int mmu_virtual_psize; 178extern int mmu_virtual_psize;
175extern int mmu_vmalloc_psize; 179extern int mmu_vmalloc_psize;
176extern int mmu_io_psize; 180extern int mmu_io_psize;
181extern int mmu_kernel_ssize;
182extern int mmu_highuser_ssize;
177 183
178/* 184/*
179 * If the processor supports 64k normal pages but not 64k cache 185 * If the processor supports 64k normal pages but not 64k cache
@@ -195,13 +201,15 @@ extern int mmu_huge_psize;
195 * This function sets the AVPN and L fields of the HPTE appropriately 201 * This function sets the AVPN and L fields of the HPTE appropriately
196 * for the page size 202 * for the page size
197 */ 203 */
198static inline unsigned long hpte_encode_v(unsigned long va, int psize) 204static inline unsigned long hpte_encode_v(unsigned long va, int psize,
205 int ssize)
199{ 206{
200 unsigned long v = 207 unsigned long v;
201 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm); 208 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
202 v <<= HPTE_V_AVPN_SHIFT; 209 v <<= HPTE_V_AVPN_SHIFT;
203 if (psize != MMU_PAGE_4K) 210 if (psize != MMU_PAGE_4K)
204 v |= HPTE_V_LARGE; 211 v |= HPTE_V_LARGE;
212 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
205 return v; 213 return v;
206} 214}
207 215
@@ -226,20 +234,40 @@ static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
226} 234}
227 235
228/* 236/*
229 * This hashes a virtual address for a 256Mb segment only for now 237 * Build a VA given VSID, EA and segment size
230 */ 238 */
239static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
240 int ssize)
241{
242 if (ssize == MMU_SEGSIZE_256M)
243 return (vsid << 28) | (ea & 0xfffffffUL);
244 return (vsid << 40) | (ea & 0xffffffffffUL);
245}
231 246
232static inline unsigned long hpt_hash(unsigned long va, unsigned int shift) 247/*
248 * This hashes a virtual address
249 */
250
251static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
252 int ssize)
233{ 253{
234 return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift); 254 unsigned long hash, vsid;
255
256 if (ssize == MMU_SEGSIZE_256M) {
257 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
258 } else {
259 vsid = va >> 40;
260 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
261 }
262 return hash & 0x7fffffffffUL;
235} 263}
236 264
237extern int __hash_page_4K(unsigned long ea, unsigned long access, 265extern int __hash_page_4K(unsigned long ea, unsigned long access,
238 unsigned long vsid, pte_t *ptep, unsigned long trap, 266 unsigned long vsid, pte_t *ptep, unsigned long trap,
239 unsigned int local); 267 unsigned int local, int ssize);
240extern int __hash_page_64K(unsigned long ea, unsigned long access, 268extern int __hash_page_64K(unsigned long ea, unsigned long access,
241 unsigned long vsid, pte_t *ptep, unsigned long trap, 269 unsigned long vsid, pte_t *ptep, unsigned long trap,
242 unsigned int local); 270 unsigned int local, int ssize);
243struct mm_struct; 271struct mm_struct;
244extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); 272extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
245extern int hash_huge_page(struct mm_struct *mm, unsigned long access, 273extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
@@ -248,7 +276,7 @@ extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
248 276
249extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, 277extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
250 unsigned long pstart, unsigned long mode, 278 unsigned long pstart, unsigned long mode,
251 int psize); 279 int psize, int ssize);
252 280
253extern void htab_initialize(void); 281extern void htab_initialize(void);
254extern void htab_initialize_secondary(void); 282extern void htab_initialize_secondary(void);
@@ -317,12 +345,17 @@ extern void slb_vmalloc_update(void);
317 * which are used by the iSeries firmware. 345 * which are used by the iSeries firmware.
318 */ 346 */
319 347
320#define VSID_MULTIPLIER ASM_CONST(200730139) /* 28-bit prime */ 348#define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
321#define VSID_BITS 36 349#define VSID_BITS_256M 36
322#define VSID_MODULUS ((1UL<<VSID_BITS)-1) 350#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
323 351
324#define CONTEXT_BITS 19 352#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
325#define USER_ESID_BITS 16 353#define VSID_BITS_1T 24
354#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
355
356#define CONTEXT_BITS 19
357#define USER_ESID_BITS 16
358#define USER_ESID_BITS_1T 4
326 359
327#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT)) 360#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
328 361
@@ -336,17 +369,17 @@ extern void slb_vmalloc_update(void);
336 * rx = scratch register (clobbered) 369 * rx = scratch register (clobbered)
337 * 370 *
338 * - rt and rx must be different registers 371 * - rt and rx must be different registers
339 * - The answer will end up in the low 36 bits of rt. The higher 372 * - The answer will end up in the low VSID_BITS bits of rt. The higher
340 * bits may contain other garbage, so you may need to mask the 373 * bits may contain other garbage, so you may need to mask the
341 * result. 374 * result.
342 */ 375 */
343#define ASM_VSID_SCRAMBLE(rt, rx) \ 376#define ASM_VSID_SCRAMBLE(rt, rx, size) \
344 lis rx,VSID_MULTIPLIER@h; \ 377 lis rx,VSID_MULTIPLIER_##size@h; \
345 ori rx,rx,VSID_MULTIPLIER@l; \ 378 ori rx,rx,VSID_MULTIPLIER_##size@l; \
346 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \ 379 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
347 \ 380 \
348 srdi rx,rt,VSID_BITS; \ 381 srdi rx,rt,VSID_BITS_##size; \
349 clrldi rt,rt,(64-VSID_BITS); \ 382 clrldi rt,rt,(64-VSID_BITS_##size); \
350 add rt,rt,rx; /* add high and low bits */ \ 383 add rt,rt,rx; /* add high and low bits */ \
351 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \ 384 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
352 * 2^36-1+2^28-1. That in particular means that if r3 >= \ 385 * 2^36-1+2^28-1. That in particular means that if r3 >= \
@@ -355,7 +388,7 @@ extern void slb_vmalloc_update(void);
355 * doesn't, the answer is the low 36 bits of r3+1. So in all \ 388 * doesn't, the answer is the low 36 bits of r3+1. So in all \
356 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ 389 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
357 addi rx,rt,1; \ 390 addi rx,rt,1; \
358 srdi rx,rx,VSID_BITS; /* extract 2^36 bit */ \ 391 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
359 add rt,rt,rx 392 add rt,rt,rx
360 393
361 394
@@ -377,37 +410,60 @@ typedef struct {
377} mm_context_t; 410} mm_context_t;
378 411
379 412
380static inline unsigned long vsid_scramble(unsigned long protovsid)
381{
382#if 0 413#if 0
383 /* The code below is equivalent to this function for arguments 414/*
384 * < 2^VSID_BITS, which is all this should ever be called 415 * The code below is equivalent to this function for arguments
385 * with. However gcc is not clever enough to compute the 416 * < 2^VSID_BITS, which is all this should ever be called
386 * modulus (2^n-1) without a second multiply. */ 417 * with. However gcc is not clever enough to compute the
387 return ((protovsid * VSID_MULTIPLIER) % VSID_MODULUS); 418 * modulus (2^n-1) without a second multiply.
388#else /* 1 */ 419 */
389 unsigned long x; 420#define vsid_scrample(protovsid, size) \
421 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
390 422
391 x = protovsid * VSID_MULTIPLIER; 423#else /* 1 */
392 x = (x >> VSID_BITS) + (x & VSID_MODULUS); 424#define vsid_scramble(protovsid, size) \
393 return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS; 425 ({ \
426 unsigned long x; \
427 x = (protovsid) * VSID_MULTIPLIER_##size; \
428 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
429 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
430 })
394#endif /* 1 */ 431#endif /* 1 */
395}
396 432
397/* This is only valid for addresses >= KERNELBASE */ 433/* This is only valid for addresses >= KERNELBASE */
398static inline unsigned long get_kernel_vsid(unsigned long ea) 434static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
399{ 435{
400 return vsid_scramble(ea >> SID_SHIFT); 436 if (ssize == MMU_SEGSIZE_256M)
437 return vsid_scramble(ea >> SID_SHIFT, 256M);
438 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
401} 439}
402 440
403/* This is only valid for user addresses (which are below 2^41) */ 441/* Returns the segment size indicator for a user address */
404static inline unsigned long get_vsid(unsigned long context, unsigned long ea) 442static inline int user_segment_size(unsigned long addr)
405{ 443{
406 return vsid_scramble((context << USER_ESID_BITS) 444 /* Use 1T segments if possible for addresses >= 1T */
407 | (ea >> SID_SHIFT)); 445 if (addr >= (1UL << SID_SHIFT_1T))
446 return mmu_highuser_ssize;
447 return MMU_SEGSIZE_256M;
408} 448}
409 449
410#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS) 450/* This is only valid for user addresses (which are below 2^44) */
451static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
452 int ssize)
453{
454 if (ssize == MMU_SEGSIZE_256M)
455 return vsid_scramble((context << USER_ESID_BITS)
456 | (ea >> SID_SHIFT), 256M);
457 return vsid_scramble((context << USER_ESID_BITS_1T)
458 | (ea >> SID_SHIFT_1T), 1T);
459}
460
461/*
462 * This is only used on legacy iSeries in lparmap.c,
463 * hence the 256MB segment assumption.
464 */
465#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
466 VSID_MODULUS_256M)
411#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea)) 467#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
412 468
413/* Physical address used by some IO functions */ 469/* Physical address used by some IO functions */