aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-powerpc/bitops.h
diff options
context:
space:
mode:
authorDavid Gibson <david@gibson.dropbear.id.au>2005-11-01 01:28:10 -0500
committerPaul Mackerras <paulus@samba.org>2005-11-01 05:49:02 -0500
commita0e60b2033b30a6bb8479629001cf98e58e4079a (patch)
tree6386eeca340a25c4ae1876f2f9663f94628c8cc3 /include/asm-powerpc/bitops.h
parent031ef0a72aa8f7ee63ae9f307c1bcff92b3ccc2c (diff)
[PATCH] powerpc: Merge bitops.h
Here's a revised version. This re-introduces the set_bits() function from ppc64, which I removed because I thought it was unused (it exists on no other arch). In fact it is used in the powermac interrupt code (but not on pSeries). - We use LARXL/STCXL macros to generate the right (32 or 64 bit) instructions, similar to LDL/STL from ppc_asm.h, used in fpu.S - ppc32 previously used a full "sync" barrier at the end of test_and_*_bit(), whereas ppc64 used an "isync". The merged version uses "isync", since I believe that's sufficient. - The ppc64 versions of then minix_*() bitmap functions have changed semantics. Previously on ppc64, these functions were big-endian (that is bit 0 was the LSB in the first 64-bit, big-endian word). On ppc32 (and x86, for that matter, they were little-endian. As far as I can tell, the big-endian usage was simply wrong - I guess no-one ever tried to use minixfs on ppc64. - On ppc32 find_next_bit() and find_next_zero_bit() are no longer inline (they were already out-of-line on ppc64). - For ppc64, sched_find_first_bit() has moved from mmu_context.h to the merged bitops. What it was doing in mmu_context.h in the first place, I have no idea. - The fls() function is now implemented using the cntlzw instruction on ppc64, instead of generic_fls(), as it already was on ppc32. - For ARCH=ppc, this patch requires adding arch/powerpc/lib to the arch/ppc/Makefile. This in turn requires some changes to arch/powerpc/lib/Makefile which didn't correctly handle ARCH=ppc. Built and running on G5. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@samba.org>
Diffstat (limited to 'include/asm-powerpc/bitops.h')
-rw-r--r--include/asm-powerpc/bitops.h437
1 files changed, 437 insertions, 0 deletions
diff --git a/include/asm-powerpc/bitops.h b/include/asm-powerpc/bitops.h
new file mode 100644
index 000000000000..dc25c53704d5
--- /dev/null
+++ b/include/asm-powerpc/bitops.h
@@ -0,0 +1,437 @@
1/*
2 * PowerPC atomic bit operations.
3 *
4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
7 * originally took it from the ppc32 code.
8 *
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
14 *
15 * The bitop functions are defined to work on unsigned longs, so for a
16 * ppc64 system the bits end up numbered:
17 * |63..............0|127............64|191...........128|255...........196|
18 * and on ppc32:
19 * |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224|
20 *
21 * There are a few little-endian macros used mostly for filesystem
22 * bitmaps, these work on similar bit arrays layouts, but
23 * byte-oriented:
24 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
25 *
26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
27 * number field needs to be reversed compared to the big-endian bit
28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
29 *
30 * This program is free software; you can redistribute it and/or
31 * modify it under the terms of the GNU General Public License
32 * as published by the Free Software Foundation; either version
33 * 2 of the License, or (at your option) any later version.
34 */
35
36#ifndef _ASM_POWERPC_BITOPS_H
37#define _ASM_POWERPC_BITOPS_H
38
39#ifdef __KERNEL__
40
41#include <linux/compiler.h>
42#include <asm/atomic.h>
43#include <asm/synch.h>
44
45/*
46 * clear_bit doesn't imply a memory barrier
47 */
48#define smp_mb__before_clear_bit() smp_mb()
49#define smp_mb__after_clear_bit() smp_mb()
50
51#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
52#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
53#define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
54
55#ifdef CONFIG_PPC64
56#define LARXL "ldarx"
57#define STCXL "stdcx."
58#define CNTLZL "cntlzd"
59#else
60#define LARXL "lwarx"
61#define STCXL "stwcx."
62#define CNTLZL "cntlzw"
63#endif
64
65static __inline__ void set_bit(int nr, volatile unsigned long *addr)
66{
67 unsigned long old;
68 unsigned long mask = BITOP_MASK(nr);
69 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
70
71 __asm__ __volatile__(
72"1:" LARXL " %0,0,%3 # set_bit\n"
73 "or %0,%0,%2\n"
74 PPC405_ERR77(0,%3)
75 STCXL " %0,0,%3\n"
76 "bne- 1b"
77 : "=&r"(old), "=m"(*p)
78 : "r"(mask), "r"(p), "m"(*p)
79 : "cc" );
80}
81
82static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
83{
84 unsigned long old;
85 unsigned long mask = BITOP_MASK(nr);
86 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
87
88 __asm__ __volatile__(
89"1:" LARXL " %0,0,%3 # set_bit\n"
90 "andc %0,%0,%2\n"
91 PPC405_ERR77(0,%3)
92 STCXL " %0,0,%3\n"
93 "bne- 1b"
94 : "=&r"(old), "=m"(*p)
95 : "r"(mask), "r"(p), "m"(*p)
96 : "cc" );
97}
98
99static __inline__ void change_bit(int nr, volatile unsigned long *addr)
100{
101 unsigned long old;
102 unsigned long mask = BITOP_MASK(nr);
103 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
104
105 __asm__ __volatile__(
106"1:" LARXL " %0,0,%3 # set_bit\n"
107 "xor %0,%0,%2\n"
108 PPC405_ERR77(0,%3)
109 STCXL " %0,0,%3\n"
110 "bne- 1b"
111 : "=&r"(old), "=m"(*p)
112 : "r"(mask), "r"(p), "m"(*p)
113 : "cc" );
114}
115
116static __inline__ int test_and_set_bit(unsigned long nr,
117 volatile unsigned long *addr)
118{
119 unsigned long old, t;
120 unsigned long mask = BITOP_MASK(nr);
121 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
122
123 __asm__ __volatile__(
124 EIEIO_ON_SMP
125"1:" LARXL " %0,0,%3 # test_and_set_bit\n"
126 "or %1,%0,%2 \n"
127 PPC405_ERR77(0,%3)
128 STCXL " %1,0,%3 \n"
129 "bne- 1b"
130 ISYNC_ON_SMP
131 : "=&r" (old), "=&r" (t)
132 : "r" (mask), "r" (p)
133 : "cc", "memory");
134
135 return (old & mask) != 0;
136}
137
138static __inline__ int test_and_clear_bit(unsigned long nr,
139 volatile unsigned long *addr)
140{
141 unsigned long old, t;
142 unsigned long mask = BITOP_MASK(nr);
143 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
144
145 __asm__ __volatile__(
146 EIEIO_ON_SMP
147"1:" LARXL " %0,0,%3 # test_and_clear_bit\n"
148 "andc %1,%0,%2 \n"
149 PPC405_ERR77(0,%3)
150 STCXL " %1,0,%3 \n"
151 "bne- 1b"
152 ISYNC_ON_SMP
153 : "=&r" (old), "=&r" (t)
154 : "r" (mask), "r" (p)
155 : "cc", "memory");
156
157 return (old & mask) != 0;
158}
159
160static __inline__ int test_and_change_bit(unsigned long nr,
161 volatile unsigned long *addr)
162{
163 unsigned long old, t;
164 unsigned long mask = BITOP_MASK(nr);
165 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
166
167 __asm__ __volatile__(
168 EIEIO_ON_SMP
169"1:" LARXL " %0,0,%3 # test_and_change_bit\n"
170 "xor %1,%0,%2 \n"
171 PPC405_ERR77(0,%3)
172 STCXL " %1,0,%3 \n"
173 "bne- 1b"
174 ISYNC_ON_SMP
175 : "=&r" (old), "=&r" (t)
176 : "r" (mask), "r" (p)
177 : "cc", "memory");
178
179 return (old & mask) != 0;
180}
181
182static __inline__ void set_bits(unsigned long mask, unsigned long *addr)
183{
184 unsigned long old;
185
186 __asm__ __volatile__(
187"1:" LARXL " %0,0,%3 # set_bit\n"
188 "or %0,%0,%2\n"
189 STCXL " %0,0,%3\n"
190 "bne- 1b"
191 : "=&r" (old), "=m" (*addr)
192 : "r" (mask), "r" (addr), "m" (*addr)
193 : "cc");
194}
195
196/* Non-atomic versions */
197static __inline__ int test_bit(unsigned long nr,
198 __const__ volatile unsigned long *addr)
199{
200 return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
201}
202
203static __inline__ void __set_bit(unsigned long nr,
204 volatile unsigned long *addr)
205{
206 unsigned long mask = BITOP_MASK(nr);
207 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
208
209 *p |= mask;
210}
211
212static __inline__ void __clear_bit(unsigned long nr,
213 volatile unsigned long *addr)
214{
215 unsigned long mask = BITOP_MASK(nr);
216 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
217
218 *p &= ~mask;
219}
220
221static __inline__ void __change_bit(unsigned long nr,
222 volatile unsigned long *addr)
223{
224 unsigned long mask = BITOP_MASK(nr);
225 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
226
227 *p ^= mask;
228}
229
230static __inline__ int __test_and_set_bit(unsigned long nr,
231 volatile unsigned long *addr)
232{
233 unsigned long mask = BITOP_MASK(nr);
234 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
235 unsigned long old = *p;
236
237 *p = old | mask;
238 return (old & mask) != 0;
239}
240
241static __inline__ int __test_and_clear_bit(unsigned long nr,
242 volatile unsigned long *addr)
243{
244 unsigned long mask = BITOP_MASK(nr);
245 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
246 unsigned long old = *p;
247
248 *p = old & ~mask;
249 return (old & mask) != 0;
250}
251
252static __inline__ int __test_and_change_bit(unsigned long nr,
253 volatile unsigned long *addr)
254{
255 unsigned long mask = BITOP_MASK(nr);
256 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
257 unsigned long old = *p;
258
259 *p = old ^ mask;
260 return (old & mask) != 0;
261}
262
263/*
264 * Return the zero-based bit position (LE, not IBM bit numbering) of
265 * the most significant 1-bit in a double word.
266 */
267static __inline__ int __ilog2(unsigned long x)
268{
269 int lz;
270
271 asm (CNTLZL " %0,%1" : "=r" (lz) : "r" (x));
272 return BITS_PER_LONG - 1 - lz;
273}
274
275/*
276 * Determines the bit position of the least significant 0 bit in the
277 * specified double word. The returned bit position will be
278 * zero-based, starting from the right side (63/31 - 0).
279 */
280static __inline__ unsigned long ffz(unsigned long x)
281{
282 /* no zero exists anywhere in the 8 byte area. */
283 if ((x = ~x) == 0)
284 return BITS_PER_LONG;
285
286 /*
287 * Calculate the bit position of the least signficant '1' bit in x
288 * (since x has been changed this will actually be the least signficant
289 * '0' bit in * the original x). Note: (x & -x) gives us a mask that
290 * is the least significant * (RIGHT-most) 1-bit of the value in x.
291 */
292 return __ilog2(x & -x);
293}
294
295static __inline__ int __ffs(unsigned long x)
296{
297 return __ilog2(x & -x);
298}
299
300/*
301 * ffs: find first bit set. This is defined the same way as
302 * the libc and compiler builtin ffs routines, therefore
303 * differs in spirit from the above ffz (man ffs).
304 */
305static __inline__ int ffs(int x)
306{
307 unsigned long i = (unsigned long)x;
308 return __ilog2(i & -i) + 1;
309}
310
311/*
312 * fls: find last (most-significant) bit set.
313 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
314 */
315static __inline__ int fls(unsigned int x)
316{
317 int lz;
318
319 asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
320 return 32 - lz;
321}
322
323/*
324 * hweightN: returns the hamming weight (i.e. the number
325 * of bits set) of a N-bit word
326 */
327#define hweight64(x) generic_hweight64(x)
328#define hweight32(x) generic_hweight32(x)
329#define hweight16(x) generic_hweight16(x)
330#define hweight8(x) generic_hweight8(x)
331
332#define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0)
333unsigned long find_next_zero_bit(const unsigned long *addr,
334 unsigned long size, unsigned long offset);
335/**
336 * find_first_bit - find the first set bit in a memory region
337 * @addr: The address to start the search at
338 * @size: The maximum size to search
339 *
340 * Returns the bit-number of the first set bit, not the number of the byte
341 * containing a bit.
342 */
343#define find_first_bit(addr, size) find_next_bit((addr), (size), 0)
344unsigned long find_next_bit(const unsigned long *addr,
345 unsigned long size, unsigned long offset);
346
347/* Little-endian versions */
348
349static __inline__ int test_le_bit(unsigned long nr,
350 __const__ unsigned long *addr)
351{
352 __const__ unsigned char *tmp = (__const__ unsigned char *) addr;
353 return (tmp[nr >> 3] >> (nr & 7)) & 1;
354}
355
356#define __set_le_bit(nr, addr) \
357 __set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
358#define __clear_le_bit(nr, addr) \
359 __clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
360
361#define test_and_set_le_bit(nr, addr) \
362 test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
363#define test_and_clear_le_bit(nr, addr) \
364 test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
365
366#define __test_and_set_le_bit(nr, addr) \
367 __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
368#define __test_and_clear_le_bit(nr, addr) \
369 __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
370
371#define find_first_zero_le_bit(addr, size) find_next_zero_le_bit((addr), (size), 0)
372unsigned long find_next_zero_le_bit(const unsigned long *addr,
373 unsigned long size, unsigned long offset);
374
375/* Bitmap functions for the ext2 filesystem */
376
377#define ext2_set_bit(nr,addr) \
378 __test_and_set_le_bit((nr), (unsigned long*)addr)
379#define ext2_clear_bit(nr, addr) \
380 __test_and_clear_le_bit((nr), (unsigned long*)addr)
381
382#define ext2_set_bit_atomic(lock, nr, addr) \
383 test_and_set_le_bit((nr), (unsigned long*)addr)
384#define ext2_clear_bit_atomic(lock, nr, addr) \
385 test_and_clear_le_bit((nr), (unsigned long*)addr)
386
387#define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
388
389#define ext2_find_first_zero_bit(addr, size) \
390 find_first_zero_le_bit((unsigned long*)addr, size)
391#define ext2_find_next_zero_bit(addr, size, off) \
392 find_next_zero_le_bit((unsigned long*)addr, size, off)
393
394/* Bitmap functions for the minix filesystem. */
395
396#define minix_test_and_set_bit(nr,addr) \
397 __test_and_set_le_bit(nr, (unsigned long *)addr)
398#define minix_set_bit(nr,addr) \
399 __set_le_bit(nr, (unsigned long *)addr)
400#define minix_test_and_clear_bit(nr,addr) \
401 __test_and_clear_le_bit(nr, (unsigned long *)addr)
402#define minix_test_bit(nr,addr) \
403 test_le_bit(nr, (unsigned long *)addr)
404
405#define minix_find_first_zero_bit(addr,size) \
406 find_first_zero_le_bit((unsigned long *)addr, size)
407
408/*
409 * Every architecture must define this function. It's the fastest
410 * way of searching a 140-bit bitmap where the first 100 bits are
411 * unlikely to be set. It's guaranteed that at least one of the 140
412 * bits is cleared.
413 */
414static inline int sched_find_first_bit(const unsigned long *b)
415{
416#ifdef CONFIG_PPC64
417 if (unlikely(b[0]))
418 return __ffs(b[0]);
419 if (unlikely(b[1]))
420 return __ffs(b[1]) + 64;
421 return __ffs(b[2]) + 128;
422#else
423 if (unlikely(b[0]))
424 return __ffs(b[0]);
425 if (unlikely(b[1]))
426 return __ffs(b[1]) + 32;
427 if (unlikely(b[2]))
428 return __ffs(b[2]) + 64;
429 if (b[3])
430 return __ffs(b[3]) + 96;
431 return __ffs(b[4]) + 128;
432#endif
433}
434
435#endif /* __KERNEL__ */
436
437#endif /* _ASM_POWERPC_BITOPS_H */