diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-ia64/uaccess.h |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'include/asm-ia64/uaccess.h')
-rw-r--r-- | include/asm-ia64/uaccess.h | 408 |
1 files changed, 408 insertions, 0 deletions
diff --git a/include/asm-ia64/uaccess.h b/include/asm-ia64/uaccess.h new file mode 100644 index 000000000000..8edd9a90949c --- /dev/null +++ b/include/asm-ia64/uaccess.h | |||
@@ -0,0 +1,408 @@ | |||
1 | #ifndef _ASM_IA64_UACCESS_H | ||
2 | #define _ASM_IA64_UACCESS_H | ||
3 | |||
4 | /* | ||
5 | * This file defines various macros to transfer memory areas across | ||
6 | * the user/kernel boundary. This needs to be done carefully because | ||
7 | * this code is executed in kernel mode and uses user-specified | ||
8 | * addresses. Thus, we need to be careful not to let the user to | ||
9 | * trick us into accessing kernel memory that would normally be | ||
10 | * inaccessible. This code is also fairly performance sensitive, | ||
11 | * so we want to spend as little time doing safety checks as | ||
12 | * possible. | ||
13 | * | ||
14 | * To make matters a bit more interesting, these macros sometimes also | ||
15 | * called from within the kernel itself, in which case the address | ||
16 | * validity check must be skipped. The get_fs() macro tells us what | ||
17 | * to do: if get_fs()==USER_DS, checking is performed, if | ||
18 | * get_fs()==KERNEL_DS, checking is bypassed. | ||
19 | * | ||
20 | * Note that even if the memory area specified by the user is in a | ||
21 | * valid address range, it is still possible that we'll get a page | ||
22 | * fault while accessing it. This is handled by filling out an | ||
23 | * exception handler fixup entry for each instruction that has the | ||
24 | * potential to fault. When such a fault occurs, the page fault | ||
25 | * handler checks to see whether the faulting instruction has a fixup | ||
26 | * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and | ||
27 | * then resumes execution at the continuation point. | ||
28 | * | ||
29 | * Based on <asm-alpha/uaccess.h>. | ||
30 | * | ||
31 | * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co | ||
32 | * David Mosberger-Tang <davidm@hpl.hp.com> | ||
33 | */ | ||
34 | |||
35 | #include <linux/compiler.h> | ||
36 | #include <linux/errno.h> | ||
37 | #include <linux/sched.h> | ||
38 | #include <linux/page-flags.h> | ||
39 | #include <linux/mm.h> | ||
40 | |||
41 | #include <asm/intrinsics.h> | ||
42 | #include <asm/pgtable.h> | ||
43 | #include <asm/io.h> | ||
44 | |||
45 | /* | ||
46 | * For historical reasons, the following macros are grossly misnamed: | ||
47 | */ | ||
48 | #define KERNEL_DS ((mm_segment_t) { ~0UL }) /* cf. access_ok() */ | ||
49 | #define USER_DS ((mm_segment_t) { TASK_SIZE-1 }) /* cf. access_ok() */ | ||
50 | |||
51 | #define VERIFY_READ 0 | ||
52 | #define VERIFY_WRITE 1 | ||
53 | |||
54 | #define get_ds() (KERNEL_DS) | ||
55 | #define get_fs() (current_thread_info()->addr_limit) | ||
56 | #define set_fs(x) (current_thread_info()->addr_limit = (x)) | ||
57 | |||
58 | #define segment_eq(a, b) ((a).seg == (b).seg) | ||
59 | |||
60 | /* | ||
61 | * When accessing user memory, we need to make sure the entire area really is in | ||
62 | * user-level space. In order to do this efficiently, we make sure that the page at | ||
63 | * address TASK_SIZE is never valid. We also need to make sure that the address doesn't | ||
64 | * point inside the virtually mapped linear page table. | ||
65 | */ | ||
66 | #define __access_ok(addr, size, segment) \ | ||
67 | ({ \ | ||
68 | __chk_user_ptr(addr); \ | ||
69 | (likely((unsigned long) (addr) <= (segment).seg) \ | ||
70 | && ((segment).seg == KERNEL_DS.seg \ | ||
71 | || likely(REGION_OFFSET((unsigned long) (addr)) < RGN_MAP_LIMIT))); \ | ||
72 | }) | ||
73 | #define access_ok(type, addr, size) __access_ok((addr), (size), get_fs()) | ||
74 | |||
75 | /* this function will go away soon - use access_ok() instead */ | ||
76 | static inline int __deprecated | ||
77 | verify_area (int type, const void __user *addr, unsigned long size) | ||
78 | { | ||
79 | return access_ok(type, addr, size) ? 0 : -EFAULT; | ||
80 | } | ||
81 | |||
82 | /* | ||
83 | * These are the main single-value transfer routines. They automatically | ||
84 | * use the right size if we just have the right pointer type. | ||
85 | * | ||
86 | * Careful to not | ||
87 | * (a) re-use the arguments for side effects (sizeof/typeof is ok) | ||
88 | * (b) require any knowledge of processes at this stage | ||
89 | */ | ||
90 | #define put_user(x, ptr) __put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)), get_fs()) | ||
91 | #define get_user(x, ptr) __get_user_check((x), (ptr), sizeof(*(ptr)), get_fs()) | ||
92 | |||
93 | /* | ||
94 | * The "__xxx" versions do not do address space checking, useful when | ||
95 | * doing multiple accesses to the same area (the programmer has to do the | ||
96 | * checks by hand with "access_ok()") | ||
97 | */ | ||
98 | #define __put_user(x, ptr) __put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr))) | ||
99 | #define __get_user(x, ptr) __get_user_nocheck((x), (ptr), sizeof(*(ptr))) | ||
100 | |||
101 | extern long __put_user_unaligned_unknown (void); | ||
102 | |||
103 | #define __put_user_unaligned(x, ptr) \ | ||
104 | ({ \ | ||
105 | long __ret; \ | ||
106 | switch (sizeof(*(ptr))) { \ | ||
107 | case 1: __ret = __put_user((x), (ptr)); break; \ | ||
108 | case 2: __ret = (__put_user((x), (u8 __user *)(ptr))) \ | ||
109 | | (__put_user((x) >> 8, ((u8 __user *)(ptr) + 1))); break; \ | ||
110 | case 4: __ret = (__put_user((x), (u16 __user *)(ptr))) \ | ||
111 | | (__put_user((x) >> 16, ((u16 __user *)(ptr) + 1))); break; \ | ||
112 | case 8: __ret = (__put_user((x), (u32 __user *)(ptr))) \ | ||
113 | | (__put_user((x) >> 32, ((u32 __user *)(ptr) + 1))); break; \ | ||
114 | default: __ret = __put_user_unaligned_unknown(); \ | ||
115 | } \ | ||
116 | __ret; \ | ||
117 | }) | ||
118 | |||
119 | extern long __get_user_unaligned_unknown (void); | ||
120 | |||
121 | #define __get_user_unaligned(x, ptr) \ | ||
122 | ({ \ | ||
123 | long __ret; \ | ||
124 | switch (sizeof(*(ptr))) { \ | ||
125 | case 1: __ret = __get_user((x), (ptr)); break; \ | ||
126 | case 2: __ret = (__get_user((x), (u8 __user *)(ptr))) \ | ||
127 | | (__get_user((x) >> 8, ((u8 __user *)(ptr) + 1))); break; \ | ||
128 | case 4: __ret = (__get_user((x), (u16 __user *)(ptr))) \ | ||
129 | | (__get_user((x) >> 16, ((u16 __user *)(ptr) + 1))); break; \ | ||
130 | case 8: __ret = (__get_user((x), (u32 __user *)(ptr))) \ | ||
131 | | (__get_user((x) >> 32, ((u32 __user *)(ptr) + 1))); break; \ | ||
132 | default: __ret = __get_user_unaligned_unknown(); \ | ||
133 | } \ | ||
134 | __ret; \ | ||
135 | }) | ||
136 | |||
137 | #ifdef ASM_SUPPORTED | ||
138 | struct __large_struct { unsigned long buf[100]; }; | ||
139 | # define __m(x) (*(struct __large_struct __user *)(x)) | ||
140 | |||
141 | /* We need to declare the __ex_table section before we can use it in .xdata. */ | ||
142 | asm (".section \"__ex_table\", \"a\"\n\t.previous"); | ||
143 | |||
144 | # define __get_user_size(val, addr, n, err) \ | ||
145 | do { \ | ||
146 | register long __gu_r8 asm ("r8") = 0; \ | ||
147 | register long __gu_r9 asm ("r9"); \ | ||
148 | asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n" \ | ||
149 | "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n" \ | ||
150 | "[1:]" \ | ||
151 | : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8)); \ | ||
152 | (err) = __gu_r8; \ | ||
153 | (val) = __gu_r9; \ | ||
154 | } while (0) | ||
155 | |||
156 | /* | ||
157 | * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it. This | ||
158 | * is because they do not write to any memory gcc knows about, so there are no aliasing | ||
159 | * issues. | ||
160 | */ | ||
161 | # define __put_user_size(val, addr, n, err) \ | ||
162 | do { \ | ||
163 | register long __pu_r8 asm ("r8") = 0; \ | ||
164 | asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n" \ | ||
165 | "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n" \ | ||
166 | "[1:]" \ | ||
167 | : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8)); \ | ||
168 | (err) = __pu_r8; \ | ||
169 | } while (0) | ||
170 | |||
171 | #else /* !ASM_SUPPORTED */ | ||
172 | # define RELOC_TYPE 2 /* ip-rel */ | ||
173 | # define __get_user_size(val, addr, n, err) \ | ||
174 | do { \ | ||
175 | __ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE); \ | ||
176 | (err) = ia64_getreg(_IA64_REG_R8); \ | ||
177 | (val) = ia64_getreg(_IA64_REG_R9); \ | ||
178 | } while (0) | ||
179 | # define __put_user_size(val, addr, n, err) \ | ||
180 | do { \ | ||
181 | __st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE, (unsigned long) (val)); \ | ||
182 | (err) = ia64_getreg(_IA64_REG_R8); \ | ||
183 | } while (0) | ||
184 | #endif /* !ASM_SUPPORTED */ | ||
185 | |||
186 | extern void __get_user_unknown (void); | ||
187 | |||
188 | /* | ||
189 | * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which | ||
190 | * could clobber r8 and r9 (among others). Thus, be careful not to evaluate it while | ||
191 | * using r8/r9. | ||
192 | */ | ||
193 | #define __do_get_user(check, x, ptr, size, segment) \ | ||
194 | ({ \ | ||
195 | const __typeof__(*(ptr)) __user *__gu_ptr = (ptr); \ | ||
196 | __typeof__ (size) __gu_size = (size); \ | ||
197 | long __gu_err = -EFAULT, __gu_val = 0; \ | ||
198 | \ | ||
199 | if (!check || __access_ok(__gu_ptr, size, segment)) \ | ||
200 | switch (__gu_size) { \ | ||
201 | case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break; \ | ||
202 | case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break; \ | ||
203 | case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break; \ | ||
204 | case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break; \ | ||
205 | default: __get_user_unknown(); break; \ | ||
206 | } \ | ||
207 | (x) = (__typeof__(*(__gu_ptr))) __gu_val; \ | ||
208 | __gu_err; \ | ||
209 | }) | ||
210 | |||
211 | #define __get_user_nocheck(x, ptr, size) __do_get_user(0, x, ptr, size, KERNEL_DS) | ||
212 | #define __get_user_check(x, ptr, size, segment) __do_get_user(1, x, ptr, size, segment) | ||
213 | |||
214 | extern void __put_user_unknown (void); | ||
215 | |||
216 | /* | ||
217 | * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which | ||
218 | * could clobber r8 (among others). Thus, be careful not to evaluate them while using r8. | ||
219 | */ | ||
220 | #define __do_put_user(check, x, ptr, size, segment) \ | ||
221 | ({ \ | ||
222 | __typeof__ (x) __pu_x = (x); \ | ||
223 | __typeof__ (*(ptr)) __user *__pu_ptr = (ptr); \ | ||
224 | __typeof__ (size) __pu_size = (size); \ | ||
225 | long __pu_err = -EFAULT; \ | ||
226 | \ | ||
227 | if (!check || __access_ok(__pu_ptr, __pu_size, segment)) \ | ||
228 | switch (__pu_size) { \ | ||
229 | case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break; \ | ||
230 | case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break; \ | ||
231 | case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break; \ | ||
232 | case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break; \ | ||
233 | default: __put_user_unknown(); break; \ | ||
234 | } \ | ||
235 | __pu_err; \ | ||
236 | }) | ||
237 | |||
238 | #define __put_user_nocheck(x, ptr, size) __do_put_user(0, x, ptr, size, KERNEL_DS) | ||
239 | #define __put_user_check(x, ptr, size, segment) __do_put_user(1, x, ptr, size, segment) | ||
240 | |||
241 | /* | ||
242 | * Complex access routines | ||
243 | */ | ||
244 | extern unsigned long __must_check __copy_user (void __user *to, const void __user *from, | ||
245 | unsigned long count); | ||
246 | |||
247 | static inline unsigned long | ||
248 | __copy_to_user (void __user *to, const void *from, unsigned long count) | ||
249 | { | ||
250 | return __copy_user(to, (void __user *) from, count); | ||
251 | } | ||
252 | |||
253 | static inline unsigned long | ||
254 | __copy_from_user (void *to, const void __user *from, unsigned long count) | ||
255 | { | ||
256 | return __copy_user((void __user *) to, from, count); | ||
257 | } | ||
258 | |||
259 | #define __copy_to_user_inatomic __copy_to_user | ||
260 | #define __copy_from_user_inatomic __copy_from_user | ||
261 | #define copy_to_user(to, from, n) \ | ||
262 | ({ \ | ||
263 | void __user *__cu_to = (to); \ | ||
264 | const void *__cu_from = (from); \ | ||
265 | long __cu_len = (n); \ | ||
266 | \ | ||
267 | if (__access_ok(__cu_to, __cu_len, get_fs())) \ | ||
268 | __cu_len = __copy_user(__cu_to, (void __user *) __cu_from, __cu_len); \ | ||
269 | __cu_len; \ | ||
270 | }) | ||
271 | |||
272 | #define copy_from_user(to, from, n) \ | ||
273 | ({ \ | ||
274 | void *__cu_to = (to); \ | ||
275 | const void __user *__cu_from = (from); \ | ||
276 | long __cu_len = (n); \ | ||
277 | \ | ||
278 | __chk_user_ptr(__cu_from); \ | ||
279 | if (__access_ok(__cu_from, __cu_len, get_fs())) \ | ||
280 | __cu_len = __copy_user((void __user *) __cu_to, __cu_from, __cu_len); \ | ||
281 | __cu_len; \ | ||
282 | }) | ||
283 | |||
284 | #define __copy_in_user(to, from, size) __copy_user((to), (from), (size)) | ||
285 | |||
286 | static inline unsigned long | ||
287 | copy_in_user (void __user *to, const void __user *from, unsigned long n) | ||
288 | { | ||
289 | if (likely(access_ok(VERIFY_READ, from, n) && access_ok(VERIFY_WRITE, to, n))) | ||
290 | n = __copy_user(to, from, n); | ||
291 | return n; | ||
292 | } | ||
293 | |||
294 | extern unsigned long __do_clear_user (void __user *, unsigned long); | ||
295 | |||
296 | #define __clear_user(to, n) __do_clear_user(to, n) | ||
297 | |||
298 | #define clear_user(to, n) \ | ||
299 | ({ \ | ||
300 | unsigned long __cu_len = (n); \ | ||
301 | if (__access_ok(to, __cu_len, get_fs())) \ | ||
302 | __cu_len = __do_clear_user(to, __cu_len); \ | ||
303 | __cu_len; \ | ||
304 | }) | ||
305 | |||
306 | |||
307 | /* | ||
308 | * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else | ||
309 | * strlen. | ||
310 | */ | ||
311 | extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len); | ||
312 | |||
313 | #define strncpy_from_user(to, from, n) \ | ||
314 | ({ \ | ||
315 | const char __user * __sfu_from = (from); \ | ||
316 | long __sfu_ret = -EFAULT; \ | ||
317 | if (__access_ok(__sfu_from, 0, get_fs())) \ | ||
318 | __sfu_ret = __strncpy_from_user((to), __sfu_from, (n)); \ | ||
319 | __sfu_ret; \ | ||
320 | }) | ||
321 | |||
322 | /* Returns: 0 if bad, string length+1 (memory size) of string if ok */ | ||
323 | extern unsigned long __strlen_user (const char __user *); | ||
324 | |||
325 | #define strlen_user(str) \ | ||
326 | ({ \ | ||
327 | const char __user *__su_str = (str); \ | ||
328 | unsigned long __su_ret = 0; \ | ||
329 | if (__access_ok(__su_str, 0, get_fs())) \ | ||
330 | __su_ret = __strlen_user(__su_str); \ | ||
331 | __su_ret; \ | ||
332 | }) | ||
333 | |||
334 | /* | ||
335 | * Returns: 0 if exception before NUL or reaching the supplied limit | ||
336 | * (N), a value greater than N if the limit would be exceeded, else | ||
337 | * strlen. | ||
338 | */ | ||
339 | extern unsigned long __strnlen_user (const char __user *, long); | ||
340 | |||
341 | #define strnlen_user(str, len) \ | ||
342 | ({ \ | ||
343 | const char __user *__su_str = (str); \ | ||
344 | unsigned long __su_ret = 0; \ | ||
345 | if (__access_ok(__su_str, 0, get_fs())) \ | ||
346 | __su_ret = __strnlen_user(__su_str, len); \ | ||
347 | __su_ret; \ | ||
348 | }) | ||
349 | |||
350 | /* Generic code can't deal with the location-relative format that we use for compactness. */ | ||
351 | #define ARCH_HAS_SORT_EXTABLE | ||
352 | #define ARCH_HAS_SEARCH_EXTABLE | ||
353 | |||
354 | struct exception_table_entry { | ||
355 | int addr; /* location-relative address of insn this fixup is for */ | ||
356 | int cont; /* location-relative continuation addr.; if bit 2 is set, r9 is set to 0 */ | ||
357 | }; | ||
358 | |||
359 | extern void ia64_handle_exception (struct pt_regs *regs, const struct exception_table_entry *e); | ||
360 | extern const struct exception_table_entry *search_exception_tables (unsigned long addr); | ||
361 | |||
362 | static inline int | ||
363 | ia64_done_with_exception (struct pt_regs *regs) | ||
364 | { | ||
365 | const struct exception_table_entry *e; | ||
366 | e = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri); | ||
367 | if (e) { | ||
368 | ia64_handle_exception(regs, e); | ||
369 | return 1; | ||
370 | } | ||
371 | return 0; | ||
372 | } | ||
373 | |||
374 | #define ARCH_HAS_TRANSLATE_MEM_PTR 1 | ||
375 | static __inline__ char * | ||
376 | xlate_dev_mem_ptr (unsigned long p) | ||
377 | { | ||
378 | struct page *page; | ||
379 | char * ptr; | ||
380 | |||
381 | page = pfn_to_page(p >> PAGE_SHIFT); | ||
382 | if (PageUncached(page)) | ||
383 | ptr = (char *)p + __IA64_UNCACHED_OFFSET; | ||
384 | else | ||
385 | ptr = __va(p); | ||
386 | |||
387 | return ptr; | ||
388 | } | ||
389 | |||
390 | /* | ||
391 | * Convert a virtual cached kernel memory pointer to an uncached pointer | ||
392 | */ | ||
393 | static __inline__ char * | ||
394 | xlate_dev_kmem_ptr (char * p) | ||
395 | { | ||
396 | struct page *page; | ||
397 | char * ptr; | ||
398 | |||
399 | page = virt_to_page((unsigned long)p >> PAGE_SHIFT); | ||
400 | if (PageUncached(page)) | ||
401 | ptr = (char *)__pa(p) + __IA64_UNCACHED_OFFSET; | ||
402 | else | ||
403 | ptr = p; | ||
404 | |||
405 | return ptr; | ||
406 | } | ||
407 | |||
408 | #endif /* _ASM_IA64_UACCESS_H */ | ||