aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-ia64/mca_asm.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-ia64/mca_asm.h
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'include/asm-ia64/mca_asm.h')
-rw-r--r--include/asm-ia64/mca_asm.h312
1 files changed, 312 insertions, 0 deletions
diff --git a/include/asm-ia64/mca_asm.h b/include/asm-ia64/mca_asm.h
new file mode 100644
index 000000000000..836953e0f91f
--- /dev/null
+++ b/include/asm-ia64/mca_asm.h
@@ -0,0 +1,312 @@
1/*
2 * File: mca_asm.h
3 *
4 * Copyright (C) 1999 Silicon Graphics, Inc.
5 * Copyright (C) Vijay Chander (vijay@engr.sgi.com)
6 * Copyright (C) Srinivasa Thirumalachar <sprasad@engr.sgi.com>
7 * Copyright (C) 2000 Hewlett-Packard Co.
8 * Copyright (C) 2000 David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Intel Corp.
10 * Copyright (C) 2002 Jenna Hall <jenna.s.hall@intel.com>
11 */
12#ifndef _ASM_IA64_MCA_ASM_H
13#define _ASM_IA64_MCA_ASM_H
14
15#define PSR_IC 13
16#define PSR_I 14
17#define PSR_DT 17
18#define PSR_RT 27
19#define PSR_MC 35
20#define PSR_IT 36
21#define PSR_BN 44
22
23/*
24 * This macro converts a instruction virtual address to a physical address
25 * Right now for simulation purposes the virtual addresses are
26 * direct mapped to physical addresses.
27 * 1. Lop off bits 61 thru 63 in the virtual address
28 */
29#define INST_VA_TO_PA(addr) \
30 dep addr = 0, addr, 61, 3
31/*
32 * This macro converts a data virtual address to a physical address
33 * Right now for simulation purposes the virtual addresses are
34 * direct mapped to physical addresses.
35 * 1. Lop off bits 61 thru 63 in the virtual address
36 */
37#define DATA_VA_TO_PA(addr) \
38 tpa addr = addr
39/*
40 * This macro converts a data physical address to a virtual address
41 * Right now for simulation purposes the virtual addresses are
42 * direct mapped to physical addresses.
43 * 1. Put 0x7 in bits 61 thru 63.
44 */
45#define DATA_PA_TO_VA(addr,temp) \
46 mov temp = 0x7 ;; \
47 dep addr = temp, addr, 61, 3
48
49#define GET_THIS_PADDR(reg, var) \
50 mov reg = IA64_KR(PER_CPU_DATA);; \
51 addl reg = THIS_CPU(var), reg
52
53/*
54 * This macro jumps to the instruction at the given virtual address
55 * and starts execution in physical mode with all the address
56 * translations turned off.
57 * 1. Save the current psr
58 * 2. Make sure that all the upper 32 bits are off
59 *
60 * 3. Clear the interrupt enable and interrupt state collection bits
61 * in the psr before updating the ipsr and iip.
62 *
63 * 4. Turn off the instruction, data and rse translation bits of the psr
64 * and store the new value into ipsr
65 * Also make sure that the interrupts are disabled.
66 * Ensure that we are in little endian mode.
67 * [psr.{rt, it, dt, i, be} = 0]
68 *
69 * 5. Get the physical address corresponding to the virtual address
70 * of the next instruction bundle and put it in iip.
71 * (Using magic numbers 24 and 40 in the deposint instruction since
72 * the IA64_SDK code directly maps to lower 24bits as physical address
73 * from a virtual address).
74 *
75 * 6. Do an rfi to move the values from ipsr to psr and iip to ip.
76 */
77#define PHYSICAL_MODE_ENTER(temp1, temp2, start_addr, old_psr) \
78 mov old_psr = psr; \
79 ;; \
80 dep old_psr = 0, old_psr, 32, 32; \
81 \
82 mov ar.rsc = 0 ; \
83 ;; \
84 srlz.d; \
85 mov temp2 = ar.bspstore; \
86 ;; \
87 DATA_VA_TO_PA(temp2); \
88 ;; \
89 mov temp1 = ar.rnat; \
90 ;; \
91 mov ar.bspstore = temp2; \
92 ;; \
93 mov ar.rnat = temp1; \
94 mov temp1 = psr; \
95 mov temp2 = psr; \
96 ;; \
97 \
98 dep temp2 = 0, temp2, PSR_IC, 2; \
99 ;; \
100 mov psr.l = temp2; \
101 ;; \
102 srlz.d; \
103 dep temp1 = 0, temp1, 32, 32; \
104 ;; \
105 dep temp1 = 0, temp1, PSR_IT, 1; \
106 ;; \
107 dep temp1 = 0, temp1, PSR_DT, 1; \
108 ;; \
109 dep temp1 = 0, temp1, PSR_RT, 1; \
110 ;; \
111 dep temp1 = 0, temp1, PSR_I, 1; \
112 ;; \
113 dep temp1 = 0, temp1, PSR_IC, 1; \
114 ;; \
115 dep temp1 = -1, temp1, PSR_MC, 1; \
116 ;; \
117 mov cr.ipsr = temp1; \
118 ;; \
119 LOAD_PHYSICAL(p0, temp2, start_addr); \
120 ;; \
121 mov cr.iip = temp2; \
122 mov cr.ifs = r0; \
123 DATA_VA_TO_PA(sp); \
124 DATA_VA_TO_PA(gp); \
125 ;; \
126 srlz.i; \
127 ;; \
128 nop 1; \
129 nop 2; \
130 nop 1; \
131 nop 2; \
132 rfi; \
133 ;;
134
135/*
136 * This macro jumps to the instruction at the given virtual address
137 * and starts execution in virtual mode with all the address
138 * translations turned on.
139 * 1. Get the old saved psr
140 *
141 * 2. Clear the interrupt state collection bit in the current psr.
142 *
143 * 3. Set the instruction translation bit back in the old psr
144 * Note we have to do this since we are right now saving only the
145 * lower 32-bits of old psr.(Also the old psr has the data and
146 * rse translation bits on)
147 *
148 * 4. Set ipsr to this old_psr with "it" bit set and "bn" = 1.
149 *
150 * 5. Reset the current thread pointer (r13).
151 *
152 * 6. Set iip to the virtual address of the next instruction bundle.
153 *
154 * 7. Do an rfi to move ipsr to psr and iip to ip.
155 */
156
157#define VIRTUAL_MODE_ENTER(temp1, temp2, start_addr, old_psr) \
158 mov temp2 = psr; \
159 ;; \
160 mov old_psr = temp2; \
161 ;; \
162 dep temp2 = 0, temp2, PSR_IC, 2; \
163 ;; \
164 mov psr.l = temp2; \
165 mov ar.rsc = 0; \
166 ;; \
167 srlz.d; \
168 mov r13 = ar.k6; \
169 mov temp2 = ar.bspstore; \
170 ;; \
171 DATA_PA_TO_VA(temp2,temp1); \
172 ;; \
173 mov temp1 = ar.rnat; \
174 ;; \
175 mov ar.bspstore = temp2; \
176 ;; \
177 mov ar.rnat = temp1; \
178 ;; \
179 mov temp1 = old_psr; \
180 ;; \
181 mov temp2 = 1; \
182 ;; \
183 dep temp1 = temp2, temp1, PSR_IC, 1; \
184 ;; \
185 dep temp1 = temp2, temp1, PSR_IT, 1; \
186 ;; \
187 dep temp1 = temp2, temp1, PSR_DT, 1; \
188 ;; \
189 dep temp1 = temp2, temp1, PSR_RT, 1; \
190 ;; \
191 dep temp1 = temp2, temp1, PSR_BN, 1; \
192 ;; \
193 \
194 mov cr.ipsr = temp1; \
195 movl temp2 = start_addr; \
196 ;; \
197 mov cr.iip = temp2; \
198 ;; \
199 DATA_PA_TO_VA(sp, temp1); \
200 DATA_PA_TO_VA(gp, temp2); \
201 srlz.i; \
202 ;; \
203 nop 1; \
204 nop 2; \
205 nop 1; \
206 rfi \
207 ;;
208
209/*
210 * The following offsets capture the order in which the
211 * RSE related registers from the old context are
212 * saved onto the new stack frame.
213 *
214 * +-----------------------+
215 * |NDIRTY [BSP - BSPSTORE]|
216 * +-----------------------+
217 * | RNAT |
218 * +-----------------------+
219 * | BSPSTORE |
220 * +-----------------------+
221 * | IFS |
222 * +-----------------------+
223 * | PFS |
224 * +-----------------------+
225 * | RSC |
226 * +-----------------------+ <-------- Bottom of new stack frame
227 */
228#define rse_rsc_offset 0
229#define rse_pfs_offset (rse_rsc_offset+0x08)
230#define rse_ifs_offset (rse_pfs_offset+0x08)
231#define rse_bspstore_offset (rse_ifs_offset+0x08)
232#define rse_rnat_offset (rse_bspstore_offset+0x08)
233#define rse_ndirty_offset (rse_rnat_offset+0x08)
234
235/*
236 * rse_switch_context
237 *
238 * 1. Save old RSC onto the new stack frame
239 * 2. Save PFS onto new stack frame
240 * 3. Cover the old frame and start a new frame.
241 * 4. Save IFS onto new stack frame
242 * 5. Save the old BSPSTORE on the new stack frame
243 * 6. Save the old RNAT on the new stack frame
244 * 7. Write BSPSTORE with the new backing store pointer
245 * 8. Read and save the new BSP to calculate the #dirty registers
246 * NOTE: Look at pages 11-10, 11-11 in PRM Vol 2
247 */
248#define rse_switch_context(temp,p_stackframe,p_bspstore) \
249 ;; \
250 mov temp=ar.rsc;; \
251 st8 [p_stackframe]=temp,8;; \
252 mov temp=ar.pfs;; \
253 st8 [p_stackframe]=temp,8; \
254 cover ;; \
255 mov temp=cr.ifs;; \
256 st8 [p_stackframe]=temp,8;; \
257 mov temp=ar.bspstore;; \
258 st8 [p_stackframe]=temp,8;; \
259 mov temp=ar.rnat;; \
260 st8 [p_stackframe]=temp,8; \
261 mov ar.bspstore=p_bspstore;; \
262 mov temp=ar.bsp;; \
263 sub temp=temp,p_bspstore;; \
264 st8 [p_stackframe]=temp,8;;
265
266/*
267 * rse_return_context
268 * 1. Allocate a zero-sized frame
269 * 2. Store the number of dirty registers RSC.loadrs field
270 * 3. Issue a loadrs to insure that any registers from the interrupted
271 * context which were saved on the new stack frame have been loaded
272 * back into the stacked registers
273 * 4. Restore BSPSTORE
274 * 5. Restore RNAT
275 * 6. Restore PFS
276 * 7. Restore IFS
277 * 8. Restore RSC
278 * 9. Issue an RFI
279 */
280#define rse_return_context(psr_mask_reg,temp,p_stackframe) \
281 ;; \
282 alloc temp=ar.pfs,0,0,0,0; \
283 add p_stackframe=rse_ndirty_offset,p_stackframe;; \
284 ld8 temp=[p_stackframe];; \
285 shl temp=temp,16;; \
286 mov ar.rsc=temp;; \
287 loadrs;; \
288 add p_stackframe=-rse_ndirty_offset+rse_bspstore_offset,p_stackframe;;\
289 ld8 temp=[p_stackframe];; \
290 mov ar.bspstore=temp;; \
291 add p_stackframe=-rse_bspstore_offset+rse_rnat_offset,p_stackframe;;\
292 ld8 temp=[p_stackframe];; \
293 mov ar.rnat=temp;; \
294 add p_stackframe=-rse_rnat_offset+rse_pfs_offset,p_stackframe;; \
295 ld8 temp=[p_stackframe];; \
296 mov ar.pfs=temp;; \
297 add p_stackframe=-rse_pfs_offset+rse_ifs_offset,p_stackframe;; \
298 ld8 temp=[p_stackframe];; \
299 mov cr.ifs=temp;; \
300 add p_stackframe=-rse_ifs_offset+rse_rsc_offset,p_stackframe;; \
301 ld8 temp=[p_stackframe];; \
302 mov ar.rsc=temp ; \
303 mov temp=psr;; \
304 or temp=temp,psr_mask_reg;; \
305 mov cr.ipsr=temp;; \
306 mov temp=ip;; \
307 add temp=0x30,temp;; \
308 mov cr.iip=temp;; \
309 srlz.i;; \
310 rfi;;
311
312#endif /* _ASM_IA64_MCA_ASM_H */