aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-generic
diff options
context:
space:
mode:
authorK.Prasad <prasad@linux.vnet.ibm.com>2009-06-01 14:13:10 -0400
committerFrederic Weisbecker <fweisbec@gmail.com>2009-06-02 16:46:57 -0400
commitb332828c39326b1dca617f387dd15d12e81cd5f0 (patch)
treeb8cff4bd7a5b42a723e26d69cce4f3030bf68e62 /include/asm-generic
parent43bd1236234cacbc18d1476a9b57e7a306efddf5 (diff)
hw-breakpoints: prepare the code for Hardware Breakpoint interfaces
The generic hardware breakpoint interface provides an abstraction of hardware breakpoints in front of specific arch implementations for both kernel and user side breakpoints. This includes execution breakpoints and read/write breakpoints, also known as "watchpoints". This patch introduces header files containing constants, structure definitions and declaration of functions used by the hardware breakpoint core and x86 specific code. It also introduces an array based storage for the debug-register values in 'struct thread_struct', while modifying all users of debugreg<n> member in the structure. [ Impact: add headers for new hardware breakpoint interface ] Original-patch-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: K.Prasad <prasad@linux.vnet.ibm.com> Reviewed-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Diffstat (limited to 'include/asm-generic')
-rw-r--r--include/asm-generic/hw_breakpoint.h139
1 files changed, 139 insertions, 0 deletions
diff --git a/include/asm-generic/hw_breakpoint.h b/include/asm-generic/hw_breakpoint.h
new file mode 100644
index 000000000000..9bf2d12eb74a
--- /dev/null
+++ b/include/asm-generic/hw_breakpoint.h
@@ -0,0 +1,139 @@
1#ifndef _ASM_GENERIC_HW_BREAKPOINT_H
2#define _ASM_GENERIC_HW_BREAKPOINT_H
3
4#ifndef __ARCH_HW_BREAKPOINT_H
5#error "Please don't include this file directly"
6#endif
7
8#ifdef __KERNEL__
9#include <linux/list.h>
10#include <linux/types.h>
11#include <linux/kallsyms.h>
12
13/**
14 * struct hw_breakpoint - unified kernel/user-space hardware breakpoint
15 * @triggered: callback invoked after target address access
16 * @info: arch-specific breakpoint info (address, length, and type)
17 *
18 * %hw_breakpoint structures are the kernel's way of representing
19 * hardware breakpoints. These are data breakpoints
20 * (also known as "watchpoints", triggered on data access), and the breakpoint's
21 * target address can be located in either kernel space or user space.
22 *
23 * The breakpoint's address, length, and type are highly
24 * architecture-specific. The values are encoded in the @info field; you
25 * specify them when registering the breakpoint. To examine the encoded
26 * values use hw_breakpoint_get_{kaddress,uaddress,len,type}(), declared
27 * below.
28 *
29 * The address is specified as a regular kernel pointer (for kernel-space
30 * breakponts) or as an %__user pointer (for user-space breakpoints).
31 * With register_user_hw_breakpoint(), the address must refer to a
32 * location in user space. The breakpoint will be active only while the
33 * requested task is running. Conversely with
34 * register_kernel_hw_breakpoint(), the address must refer to a location
35 * in kernel space, and the breakpoint will be active on all CPUs
36 * regardless of the current task.
37 *
38 * The length is the breakpoint's extent in bytes, which is subject to
39 * certain limitations. include/asm/hw_breakpoint.h contains macros
40 * defining the available lengths for a specific architecture. Note that
41 * the address's alignment must match the length. The breakpoint will
42 * catch accesses to any byte in the range from address to address +
43 * (length - 1).
44 *
45 * The breakpoint's type indicates the sort of access that will cause it
46 * to trigger. Possible values may include:
47 *
48 * %HW_BREAKPOINT_RW (triggered on read or write access),
49 * %HW_BREAKPOINT_WRITE (triggered on write access), and
50 * %HW_BREAKPOINT_READ (triggered on read access).
51 *
52 * Appropriate macros are defined in include/asm/hw_breakpoint.h; not all
53 * possibilities are available on all architectures. Execute breakpoints
54 * must have length equal to the special value %HW_BREAKPOINT_LEN_EXECUTE.
55 *
56 * When a breakpoint gets hit, the @triggered callback is
57 * invoked in_interrupt with a pointer to the %hw_breakpoint structure and the
58 * processor registers.
59 * Data breakpoints occur after the memory access has taken place.
60 * Breakpoints are disabled during execution @triggered, to avoid
61 * recursive traps and allow unhindered access to breakpointed memory.
62 *
63 * This sample code sets a breakpoint on pid_max and registers a callback
64 * function for writes to that variable. Note that it is not portable
65 * as written, because not all architectures support HW_BREAKPOINT_LEN_4.
66 *
67 * ----------------------------------------------------------------------
68 *
69 * #include <asm/hw_breakpoint.h>
70 *
71 * struct hw_breakpoint my_bp;
72 *
73 * static void my_triggered(struct hw_breakpoint *bp, struct pt_regs *regs)
74 * {
75 * printk(KERN_DEBUG "Inside triggered routine of breakpoint exception\n");
76 * dump_stack();
77 * .......<more debugging output>........
78 * }
79 *
80 * static struct hw_breakpoint my_bp;
81 *
82 * static int init_module(void)
83 * {
84 * ..........<do anything>............
85 * my_bp.info.type = HW_BREAKPOINT_WRITE;
86 * my_bp.info.len = HW_BREAKPOINT_LEN_4;
87 *
88 * my_bp.installed = (void *)my_bp_installed;
89 *
90 * rc = register_kernel_hw_breakpoint(&my_bp);
91 * ..........<do anything>............
92 * }
93 *
94 * static void cleanup_module(void)
95 * {
96 * ..........<do anything>............
97 * unregister_kernel_hw_breakpoint(&my_bp);
98 * ..........<do anything>............
99 * }
100 *
101 * ----------------------------------------------------------------------
102 */
103struct hw_breakpoint {
104 void (*triggered)(struct hw_breakpoint *, struct pt_regs *);
105 struct arch_hw_breakpoint info;
106};
107
108/*
109 * len and type values are defined in include/asm/hw_breakpoint.h.
110 * Available values vary according to the architecture. On i386 the
111 * possibilities are:
112 *
113 * HW_BREAKPOINT_LEN_1
114 * HW_BREAKPOINT_LEN_2
115 * HW_BREAKPOINT_LEN_4
116 * HW_BREAKPOINT_RW
117 * HW_BREAKPOINT_READ
118 *
119 * On other architectures HW_BREAKPOINT_LEN_8 may be available, and the
120 * 1-, 2-, and 4-byte lengths may be unavailable. There also may be
121 * HW_BREAKPOINT_WRITE. You can use #ifdef to check at compile time.
122 */
123
124extern int register_user_hw_breakpoint(struct task_struct *tsk,
125 struct hw_breakpoint *bp);
126extern int modify_user_hw_breakpoint(struct task_struct *tsk,
127 struct hw_breakpoint *bp);
128extern void unregister_user_hw_breakpoint(struct task_struct *tsk,
129 struct hw_breakpoint *bp);
130/*
131 * Kernel breakpoints are not associated with any particular thread.
132 */
133extern int register_kernel_hw_breakpoint(struct hw_breakpoint *bp);
134extern void unregister_kernel_hw_breakpoint(struct hw_breakpoint *bp);
135
136extern unsigned int hbp_kernel_pos;
137
138#endif /* __KERNEL__ */
139#endif /* _ASM_GENERIC_HW_BREAKPOINT_H */