diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-arm/cacheflush.h |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'include/asm-arm/cacheflush.h')
-rw-r--r-- | include/asm-arm/cacheflush.h | 387 |
1 files changed, 387 insertions, 0 deletions
diff --git a/include/asm-arm/cacheflush.h b/include/asm-arm/cacheflush.h new file mode 100644 index 000000000000..09ffeed507c2 --- /dev/null +++ b/include/asm-arm/cacheflush.h | |||
@@ -0,0 +1,387 @@ | |||
1 | /* | ||
2 | * linux/include/asm-arm/cacheflush.h | ||
3 | * | ||
4 | * Copyright (C) 1999-2002 Russell King | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License version 2 as | ||
8 | * published by the Free Software Foundation. | ||
9 | */ | ||
10 | #ifndef _ASMARM_CACHEFLUSH_H | ||
11 | #define _ASMARM_CACHEFLUSH_H | ||
12 | |||
13 | #include <linux/config.h> | ||
14 | #include <linux/sched.h> | ||
15 | #include <linux/mm.h> | ||
16 | |||
17 | #include <asm/mman.h> | ||
18 | #include <asm/glue.h> | ||
19 | |||
20 | /* | ||
21 | * Cache Model | ||
22 | * =========== | ||
23 | */ | ||
24 | #undef _CACHE | ||
25 | #undef MULTI_CACHE | ||
26 | |||
27 | #if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710) | ||
28 | # ifdef _CACHE | ||
29 | # define MULTI_CACHE 1 | ||
30 | # else | ||
31 | # define _CACHE v3 | ||
32 | # endif | ||
33 | #endif | ||
34 | |||
35 | #if defined(CONFIG_CPU_ARM720T) | ||
36 | # ifdef _CACHE | ||
37 | # define MULTI_CACHE 1 | ||
38 | # else | ||
39 | # define _CACHE v4 | ||
40 | # endif | ||
41 | #endif | ||
42 | |||
43 | #if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ | ||
44 | defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) | ||
45 | # define MULTI_CACHE 1 | ||
46 | #endif | ||
47 | |||
48 | #if defined(CONFIG_CPU_ARM926T) | ||
49 | # ifdef _CACHE | ||
50 | # define MULTI_CACHE 1 | ||
51 | # else | ||
52 | # define _CACHE arm926 | ||
53 | # endif | ||
54 | #endif | ||
55 | |||
56 | #if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100) | ||
57 | # ifdef _CACHE | ||
58 | # define MULTI_CACHE 1 | ||
59 | # else | ||
60 | # define _CACHE v4wb | ||
61 | # endif | ||
62 | #endif | ||
63 | |||
64 | #if defined(CONFIG_CPU_XSCALE) | ||
65 | # ifdef _CACHE | ||
66 | # define MULTI_CACHE 1 | ||
67 | # else | ||
68 | # define _CACHE xscale | ||
69 | # endif | ||
70 | #endif | ||
71 | |||
72 | #if defined(CONFIG_CPU_V6) | ||
73 | //# ifdef _CACHE | ||
74 | # define MULTI_CACHE 1 | ||
75 | //# else | ||
76 | //# define _CACHE v6 | ||
77 | //# endif | ||
78 | #endif | ||
79 | |||
80 | #if !defined(_CACHE) && !defined(MULTI_CACHE) | ||
81 | #error Unknown cache maintainence model | ||
82 | #endif | ||
83 | |||
84 | /* | ||
85 | * This flag is used to indicate that the page pointed to by a pte | ||
86 | * is dirty and requires cleaning before returning it to the user. | ||
87 | */ | ||
88 | #define PG_dcache_dirty PG_arch_1 | ||
89 | |||
90 | /* | ||
91 | * MM Cache Management | ||
92 | * =================== | ||
93 | * | ||
94 | * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files | ||
95 | * implement these methods. | ||
96 | * | ||
97 | * Start addresses are inclusive and end addresses are exclusive; | ||
98 | * start addresses should be rounded down, end addresses up. | ||
99 | * | ||
100 | * See Documentation/cachetlb.txt for more information. | ||
101 | * Please note that the implementation of these, and the required | ||
102 | * effects are cache-type (VIVT/VIPT/PIPT) specific. | ||
103 | * | ||
104 | * flush_cache_kern_all() | ||
105 | * | ||
106 | * Unconditionally clean and invalidate the entire cache. | ||
107 | * | ||
108 | * flush_cache_user_mm(mm) | ||
109 | * | ||
110 | * Clean and invalidate all user space cache entries | ||
111 | * before a change of page tables. | ||
112 | * | ||
113 | * flush_cache_user_range(start, end, flags) | ||
114 | * | ||
115 | * Clean and invalidate a range of cache entries in the | ||
116 | * specified address space before a change of page tables. | ||
117 | * - start - user start address (inclusive, page aligned) | ||
118 | * - end - user end address (exclusive, page aligned) | ||
119 | * - flags - vma->vm_flags field | ||
120 | * | ||
121 | * coherent_kern_range(start, end) | ||
122 | * | ||
123 | * Ensure coherency between the Icache and the Dcache in the | ||
124 | * region described by start, end. If you have non-snooping | ||
125 | * Harvard caches, you need to implement this function. | ||
126 | * - start - virtual start address | ||
127 | * - end - virtual end address | ||
128 | * | ||
129 | * DMA Cache Coherency | ||
130 | * =================== | ||
131 | * | ||
132 | * dma_inv_range(start, end) | ||
133 | * | ||
134 | * Invalidate (discard) the specified virtual address range. | ||
135 | * May not write back any entries. If 'start' or 'end' | ||
136 | * are not cache line aligned, those lines must be written | ||
137 | * back. | ||
138 | * - start - virtual start address | ||
139 | * - end - virtual end address | ||
140 | * | ||
141 | * dma_clean_range(start, end) | ||
142 | * | ||
143 | * Clean (write back) the specified virtual address range. | ||
144 | * - start - virtual start address | ||
145 | * - end - virtual end address | ||
146 | * | ||
147 | * dma_flush_range(start, end) | ||
148 | * | ||
149 | * Clean and invalidate the specified virtual address range. | ||
150 | * - start - virtual start address | ||
151 | * - end - virtual end address | ||
152 | */ | ||
153 | |||
154 | struct cpu_cache_fns { | ||
155 | void (*flush_kern_all)(void); | ||
156 | void (*flush_user_all)(void); | ||
157 | void (*flush_user_range)(unsigned long, unsigned long, unsigned int); | ||
158 | |||
159 | void (*coherent_kern_range)(unsigned long, unsigned long); | ||
160 | void (*coherent_user_range)(unsigned long, unsigned long); | ||
161 | void (*flush_kern_dcache_page)(void *); | ||
162 | |||
163 | void (*dma_inv_range)(unsigned long, unsigned long); | ||
164 | void (*dma_clean_range)(unsigned long, unsigned long); | ||
165 | void (*dma_flush_range)(unsigned long, unsigned long); | ||
166 | }; | ||
167 | |||
168 | /* | ||
169 | * Select the calling method | ||
170 | */ | ||
171 | #ifdef MULTI_CACHE | ||
172 | |||
173 | extern struct cpu_cache_fns cpu_cache; | ||
174 | |||
175 | #define __cpuc_flush_kern_all cpu_cache.flush_kern_all | ||
176 | #define __cpuc_flush_user_all cpu_cache.flush_user_all | ||
177 | #define __cpuc_flush_user_range cpu_cache.flush_user_range | ||
178 | #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range | ||
179 | #define __cpuc_coherent_user_range cpu_cache.coherent_user_range | ||
180 | #define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page | ||
181 | |||
182 | /* | ||
183 | * These are private to the dma-mapping API. Do not use directly. | ||
184 | * Their sole purpose is to ensure that data held in the cache | ||
185 | * is visible to DMA, or data written by DMA to system memory is | ||
186 | * visible to the CPU. | ||
187 | */ | ||
188 | #define dmac_inv_range cpu_cache.dma_inv_range | ||
189 | #define dmac_clean_range cpu_cache.dma_clean_range | ||
190 | #define dmac_flush_range cpu_cache.dma_flush_range | ||
191 | |||
192 | #else | ||
193 | |||
194 | #define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) | ||
195 | #define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) | ||
196 | #define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) | ||
197 | #define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) | ||
198 | #define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) | ||
199 | #define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) | ||
200 | |||
201 | extern void __cpuc_flush_kern_all(void); | ||
202 | extern void __cpuc_flush_user_all(void); | ||
203 | extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); | ||
204 | extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); | ||
205 | extern void __cpuc_coherent_user_range(unsigned long, unsigned long); | ||
206 | extern void __cpuc_flush_dcache_page(void *); | ||
207 | |||
208 | /* | ||
209 | * These are private to the dma-mapping API. Do not use directly. | ||
210 | * Their sole purpose is to ensure that data held in the cache | ||
211 | * is visible to DMA, or data written by DMA to system memory is | ||
212 | * visible to the CPU. | ||
213 | */ | ||
214 | #define dmac_inv_range __glue(_CACHE,_dma_inv_range) | ||
215 | #define dmac_clean_range __glue(_CACHE,_dma_clean_range) | ||
216 | #define dmac_flush_range __glue(_CACHE,_dma_flush_range) | ||
217 | |||
218 | extern void dmac_inv_range(unsigned long, unsigned long); | ||
219 | extern void dmac_clean_range(unsigned long, unsigned long); | ||
220 | extern void dmac_flush_range(unsigned long, unsigned long); | ||
221 | |||
222 | #endif | ||
223 | |||
224 | /* | ||
225 | * flush_cache_vmap() is used when creating mappings (eg, via vmap, | ||
226 | * vmalloc, ioremap etc) in kernel space for pages. Since the | ||
227 | * direct-mappings of these pages may contain cached data, we need | ||
228 | * to do a full cache flush to ensure that writebacks don't corrupt | ||
229 | * data placed into these pages via the new mappings. | ||
230 | */ | ||
231 | #define flush_cache_vmap(start, end) flush_cache_all() | ||
232 | #define flush_cache_vunmap(start, end) flush_cache_all() | ||
233 | |||
234 | /* | ||
235 | * Copy user data from/to a page which is mapped into a different | ||
236 | * processes address space. Really, we want to allow our "user | ||
237 | * space" model to handle this. | ||
238 | */ | ||
239 | #define copy_to_user_page(vma, page, vaddr, dst, src, len) \ | ||
240 | do { \ | ||
241 | flush_cache_page(vma, vaddr, page_to_pfn(page));\ | ||
242 | memcpy(dst, src, len); \ | ||
243 | flush_dcache_page(page); \ | ||
244 | } while (0) | ||
245 | |||
246 | #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ | ||
247 | do { \ | ||
248 | flush_cache_page(vma, vaddr, page_to_pfn(page));\ | ||
249 | memcpy(dst, src, len); \ | ||
250 | } while (0) | ||
251 | |||
252 | /* | ||
253 | * Convert calls to our calling convention. | ||
254 | */ | ||
255 | #define flush_cache_all() __cpuc_flush_kern_all() | ||
256 | |||
257 | static inline void flush_cache_mm(struct mm_struct *mm) | ||
258 | { | ||
259 | if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask)) | ||
260 | __cpuc_flush_user_all(); | ||
261 | } | ||
262 | |||
263 | static inline void | ||
264 | flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) | ||
265 | { | ||
266 | if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) | ||
267 | __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), | ||
268 | vma->vm_flags); | ||
269 | } | ||
270 | |||
271 | static inline void | ||
272 | flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) | ||
273 | { | ||
274 | if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { | ||
275 | unsigned long addr = user_addr & PAGE_MASK; | ||
276 | __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); | ||
277 | } | ||
278 | } | ||
279 | |||
280 | /* | ||
281 | * flush_cache_user_range is used when we want to ensure that the | ||
282 | * Harvard caches are synchronised for the user space address range. | ||
283 | * This is used for the ARM private sys_cacheflush system call. | ||
284 | */ | ||
285 | #define flush_cache_user_range(vma,start,end) \ | ||
286 | __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) | ||
287 | |||
288 | /* | ||
289 | * Perform necessary cache operations to ensure that data previously | ||
290 | * stored within this range of addresses can be executed by the CPU. | ||
291 | */ | ||
292 | #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) | ||
293 | |||
294 | /* | ||
295 | * Perform necessary cache operations to ensure that the TLB will | ||
296 | * see data written in the specified area. | ||
297 | */ | ||
298 | #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) | ||
299 | |||
300 | /* | ||
301 | * flush_dcache_page is used when the kernel has written to the page | ||
302 | * cache page at virtual address page->virtual. | ||
303 | * | ||
304 | * If this page isn't mapped (ie, page_mapping == NULL), or it might | ||
305 | * have userspace mappings, then we _must_ always clean + invalidate | ||
306 | * the dcache entries associated with the kernel mapping. | ||
307 | * | ||
308 | * Otherwise we can defer the operation, and clean the cache when we are | ||
309 | * about to change to user space. This is the same method as used on SPARC64. | ||
310 | * See update_mmu_cache for the user space part. | ||
311 | */ | ||
312 | extern void flush_dcache_page(struct page *); | ||
313 | |||
314 | #define flush_dcache_mmap_lock(mapping) \ | ||
315 | write_lock_irq(&(mapping)->tree_lock) | ||
316 | #define flush_dcache_mmap_unlock(mapping) \ | ||
317 | write_unlock_irq(&(mapping)->tree_lock) | ||
318 | |||
319 | #define flush_icache_user_range(vma,page,addr,len) \ | ||
320 | flush_dcache_page(page) | ||
321 | |||
322 | /* | ||
323 | * We don't appear to need to do anything here. In fact, if we did, we'd | ||
324 | * duplicate cache flushing elsewhere performed by flush_dcache_page(). | ||
325 | */ | ||
326 | #define flush_icache_page(vma,page) do { } while (0) | ||
327 | |||
328 | #define __cacheid_present(val) (val != read_cpuid(CPUID_ID)) | ||
329 | #define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25)) | ||
330 | #define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25)) | ||
331 | #define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25)) | ||
332 | #define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23)) | ||
333 | |||
334 | #if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT) | ||
335 | |||
336 | #define cache_is_vivt() 1 | ||
337 | #define cache_is_vipt() 0 | ||
338 | #define cache_is_vipt_nonaliasing() 0 | ||
339 | #define cache_is_vipt_aliasing() 0 | ||
340 | |||
341 | #elif defined(CONFIG_CPU_CACHE_VIPT) | ||
342 | |||
343 | #define cache_is_vivt() 0 | ||
344 | #define cache_is_vipt() 1 | ||
345 | #define cache_is_vipt_nonaliasing() \ | ||
346 | ({ \ | ||
347 | unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ | ||
348 | __cacheid_vipt_nonaliasing(__val); \ | ||
349 | }) | ||
350 | |||
351 | #define cache_is_vipt_aliasing() \ | ||
352 | ({ \ | ||
353 | unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ | ||
354 | __cacheid_vipt_aliasing(__val); \ | ||
355 | }) | ||
356 | |||
357 | #else | ||
358 | |||
359 | #define cache_is_vivt() \ | ||
360 | ({ \ | ||
361 | unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ | ||
362 | (!__cacheid_present(__val)) || __cacheid_vivt(__val); \ | ||
363 | }) | ||
364 | |||
365 | #define cache_is_vipt() \ | ||
366 | ({ \ | ||
367 | unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ | ||
368 | __cacheid_present(__val) && __cacheid_vipt(__val); \ | ||
369 | }) | ||
370 | |||
371 | #define cache_is_vipt_nonaliasing() \ | ||
372 | ({ \ | ||
373 | unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ | ||
374 | __cacheid_present(__val) && \ | ||
375 | __cacheid_vipt_nonaliasing(__val); \ | ||
376 | }) | ||
377 | |||
378 | #define cache_is_vipt_aliasing() \ | ||
379 | ({ \ | ||
380 | unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ | ||
381 | __cacheid_present(__val) && \ | ||
382 | __cacheid_vipt_aliasing(__val); \ | ||
383 | }) | ||
384 | |||
385 | #endif | ||
386 | |||
387 | #endif | ||