aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-arm/cacheflush.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-arm/cacheflush.h
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'include/asm-arm/cacheflush.h')
-rw-r--r--include/asm-arm/cacheflush.h387
1 files changed, 387 insertions, 0 deletions
diff --git a/include/asm-arm/cacheflush.h b/include/asm-arm/cacheflush.h
new file mode 100644
index 000000000000..09ffeed507c2
--- /dev/null
+++ b/include/asm-arm/cacheflush.h
@@ -0,0 +1,387 @@
1/*
2 * linux/include/asm-arm/cacheflush.h
3 *
4 * Copyright (C) 1999-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_CACHEFLUSH_H
11#define _ASMARM_CACHEFLUSH_H
12
13#include <linux/config.h>
14#include <linux/sched.h>
15#include <linux/mm.h>
16
17#include <asm/mman.h>
18#include <asm/glue.h>
19
20/*
21 * Cache Model
22 * ===========
23 */
24#undef _CACHE
25#undef MULTI_CACHE
26
27#if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710)
28# ifdef _CACHE
29# define MULTI_CACHE 1
30# else
31# define _CACHE v3
32# endif
33#endif
34
35#if defined(CONFIG_CPU_ARM720T)
36# ifdef _CACHE
37# define MULTI_CACHE 1
38# else
39# define _CACHE v4
40# endif
41#endif
42
43#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \
44 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020)
45# define MULTI_CACHE 1
46#endif
47
48#if defined(CONFIG_CPU_ARM926T)
49# ifdef _CACHE
50# define MULTI_CACHE 1
51# else
52# define _CACHE arm926
53# endif
54#endif
55
56#if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100)
57# ifdef _CACHE
58# define MULTI_CACHE 1
59# else
60# define _CACHE v4wb
61# endif
62#endif
63
64#if defined(CONFIG_CPU_XSCALE)
65# ifdef _CACHE
66# define MULTI_CACHE 1
67# else
68# define _CACHE xscale
69# endif
70#endif
71
72#if defined(CONFIG_CPU_V6)
73//# ifdef _CACHE
74# define MULTI_CACHE 1
75//# else
76//# define _CACHE v6
77//# endif
78#endif
79
80#if !defined(_CACHE) && !defined(MULTI_CACHE)
81#error Unknown cache maintainence model
82#endif
83
84/*
85 * This flag is used to indicate that the page pointed to by a pte
86 * is dirty and requires cleaning before returning it to the user.
87 */
88#define PG_dcache_dirty PG_arch_1
89
90/*
91 * MM Cache Management
92 * ===================
93 *
94 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
95 * implement these methods.
96 *
97 * Start addresses are inclusive and end addresses are exclusive;
98 * start addresses should be rounded down, end addresses up.
99 *
100 * See Documentation/cachetlb.txt for more information.
101 * Please note that the implementation of these, and the required
102 * effects are cache-type (VIVT/VIPT/PIPT) specific.
103 *
104 * flush_cache_kern_all()
105 *
106 * Unconditionally clean and invalidate the entire cache.
107 *
108 * flush_cache_user_mm(mm)
109 *
110 * Clean and invalidate all user space cache entries
111 * before a change of page tables.
112 *
113 * flush_cache_user_range(start, end, flags)
114 *
115 * Clean and invalidate a range of cache entries in the
116 * specified address space before a change of page tables.
117 * - start - user start address (inclusive, page aligned)
118 * - end - user end address (exclusive, page aligned)
119 * - flags - vma->vm_flags field
120 *
121 * coherent_kern_range(start, end)
122 *
123 * Ensure coherency between the Icache and the Dcache in the
124 * region described by start, end. If you have non-snooping
125 * Harvard caches, you need to implement this function.
126 * - start - virtual start address
127 * - end - virtual end address
128 *
129 * DMA Cache Coherency
130 * ===================
131 *
132 * dma_inv_range(start, end)
133 *
134 * Invalidate (discard) the specified virtual address range.
135 * May not write back any entries. If 'start' or 'end'
136 * are not cache line aligned, those lines must be written
137 * back.
138 * - start - virtual start address
139 * - end - virtual end address
140 *
141 * dma_clean_range(start, end)
142 *
143 * Clean (write back) the specified virtual address range.
144 * - start - virtual start address
145 * - end - virtual end address
146 *
147 * dma_flush_range(start, end)
148 *
149 * Clean and invalidate the specified virtual address range.
150 * - start - virtual start address
151 * - end - virtual end address
152 */
153
154struct cpu_cache_fns {
155 void (*flush_kern_all)(void);
156 void (*flush_user_all)(void);
157 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
158
159 void (*coherent_kern_range)(unsigned long, unsigned long);
160 void (*coherent_user_range)(unsigned long, unsigned long);
161 void (*flush_kern_dcache_page)(void *);
162
163 void (*dma_inv_range)(unsigned long, unsigned long);
164 void (*dma_clean_range)(unsigned long, unsigned long);
165 void (*dma_flush_range)(unsigned long, unsigned long);
166};
167
168/*
169 * Select the calling method
170 */
171#ifdef MULTI_CACHE
172
173extern struct cpu_cache_fns cpu_cache;
174
175#define __cpuc_flush_kern_all cpu_cache.flush_kern_all
176#define __cpuc_flush_user_all cpu_cache.flush_user_all
177#define __cpuc_flush_user_range cpu_cache.flush_user_range
178#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
179#define __cpuc_coherent_user_range cpu_cache.coherent_user_range
180#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page
181
182/*
183 * These are private to the dma-mapping API. Do not use directly.
184 * Their sole purpose is to ensure that data held in the cache
185 * is visible to DMA, or data written by DMA to system memory is
186 * visible to the CPU.
187 */
188#define dmac_inv_range cpu_cache.dma_inv_range
189#define dmac_clean_range cpu_cache.dma_clean_range
190#define dmac_flush_range cpu_cache.dma_flush_range
191
192#else
193
194#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all)
195#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all)
196#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range)
197#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range)
198#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range)
199#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page)
200
201extern void __cpuc_flush_kern_all(void);
202extern void __cpuc_flush_user_all(void);
203extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
204extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
205extern void __cpuc_coherent_user_range(unsigned long, unsigned long);
206extern void __cpuc_flush_dcache_page(void *);
207
208/*
209 * These are private to the dma-mapping API. Do not use directly.
210 * Their sole purpose is to ensure that data held in the cache
211 * is visible to DMA, or data written by DMA to system memory is
212 * visible to the CPU.
213 */
214#define dmac_inv_range __glue(_CACHE,_dma_inv_range)
215#define dmac_clean_range __glue(_CACHE,_dma_clean_range)
216#define dmac_flush_range __glue(_CACHE,_dma_flush_range)
217
218extern void dmac_inv_range(unsigned long, unsigned long);
219extern void dmac_clean_range(unsigned long, unsigned long);
220extern void dmac_flush_range(unsigned long, unsigned long);
221
222#endif
223
224/*
225 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
226 * vmalloc, ioremap etc) in kernel space for pages. Since the
227 * direct-mappings of these pages may contain cached data, we need
228 * to do a full cache flush to ensure that writebacks don't corrupt
229 * data placed into these pages via the new mappings.
230 */
231#define flush_cache_vmap(start, end) flush_cache_all()
232#define flush_cache_vunmap(start, end) flush_cache_all()
233
234/*
235 * Copy user data from/to a page which is mapped into a different
236 * processes address space. Really, we want to allow our "user
237 * space" model to handle this.
238 */
239#define copy_to_user_page(vma, page, vaddr, dst, src, len) \
240 do { \
241 flush_cache_page(vma, vaddr, page_to_pfn(page));\
242 memcpy(dst, src, len); \
243 flush_dcache_page(page); \
244 } while (0)
245
246#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
247 do { \
248 flush_cache_page(vma, vaddr, page_to_pfn(page));\
249 memcpy(dst, src, len); \
250 } while (0)
251
252/*
253 * Convert calls to our calling convention.
254 */
255#define flush_cache_all() __cpuc_flush_kern_all()
256
257static inline void flush_cache_mm(struct mm_struct *mm)
258{
259 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask))
260 __cpuc_flush_user_all();
261}
262
263static inline void
264flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
265{
266 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask))
267 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
268 vma->vm_flags);
269}
270
271static inline void
272flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
273{
274 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) {
275 unsigned long addr = user_addr & PAGE_MASK;
276 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
277 }
278}
279
280/*
281 * flush_cache_user_range is used when we want to ensure that the
282 * Harvard caches are synchronised for the user space address range.
283 * This is used for the ARM private sys_cacheflush system call.
284 */
285#define flush_cache_user_range(vma,start,end) \
286 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
287
288/*
289 * Perform necessary cache operations to ensure that data previously
290 * stored within this range of addresses can be executed by the CPU.
291 */
292#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
293
294/*
295 * Perform necessary cache operations to ensure that the TLB will
296 * see data written in the specified area.
297 */
298#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
299
300/*
301 * flush_dcache_page is used when the kernel has written to the page
302 * cache page at virtual address page->virtual.
303 *
304 * If this page isn't mapped (ie, page_mapping == NULL), or it might
305 * have userspace mappings, then we _must_ always clean + invalidate
306 * the dcache entries associated with the kernel mapping.
307 *
308 * Otherwise we can defer the operation, and clean the cache when we are
309 * about to change to user space. This is the same method as used on SPARC64.
310 * See update_mmu_cache for the user space part.
311 */
312extern void flush_dcache_page(struct page *);
313
314#define flush_dcache_mmap_lock(mapping) \
315 write_lock_irq(&(mapping)->tree_lock)
316#define flush_dcache_mmap_unlock(mapping) \
317 write_unlock_irq(&(mapping)->tree_lock)
318
319#define flush_icache_user_range(vma,page,addr,len) \
320 flush_dcache_page(page)
321
322/*
323 * We don't appear to need to do anything here. In fact, if we did, we'd
324 * duplicate cache flushing elsewhere performed by flush_dcache_page().
325 */
326#define flush_icache_page(vma,page) do { } while (0)
327
328#define __cacheid_present(val) (val != read_cpuid(CPUID_ID))
329#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25))
330#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25))
331#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25))
332#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23))
333
334#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT)
335
336#define cache_is_vivt() 1
337#define cache_is_vipt() 0
338#define cache_is_vipt_nonaliasing() 0
339#define cache_is_vipt_aliasing() 0
340
341#elif defined(CONFIG_CPU_CACHE_VIPT)
342
343#define cache_is_vivt() 0
344#define cache_is_vipt() 1
345#define cache_is_vipt_nonaliasing() \
346 ({ \
347 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
348 __cacheid_vipt_nonaliasing(__val); \
349 })
350
351#define cache_is_vipt_aliasing() \
352 ({ \
353 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
354 __cacheid_vipt_aliasing(__val); \
355 })
356
357#else
358
359#define cache_is_vivt() \
360 ({ \
361 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
362 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \
363 })
364
365#define cache_is_vipt() \
366 ({ \
367 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
368 __cacheid_present(__val) && __cacheid_vipt(__val); \
369 })
370
371#define cache_is_vipt_nonaliasing() \
372 ({ \
373 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
374 __cacheid_present(__val) && \
375 __cacheid_vipt_nonaliasing(__val); \
376 })
377
378#define cache_is_vipt_aliasing() \
379 ({ \
380 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \
381 __cacheid_present(__val) && \
382 __cacheid_vipt_aliasing(__val); \
383 })
384
385#endif
386
387#endif