aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-alpha/dma.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/asm-alpha/dma.h
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'include/asm-alpha/dma.h')
-rw-r--r--include/asm-alpha/dma.h377
1 files changed, 377 insertions, 0 deletions
diff --git a/include/asm-alpha/dma.h b/include/asm-alpha/dma.h
new file mode 100644
index 000000000000..683afaa3deed
--- /dev/null
+++ b/include/asm-alpha/dma.h
@@ -0,0 +1,377 @@
1/*
2 * include/asm-alpha/dma.h
3 *
4 * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
5 * use ISA-compatible dma. The only extension is support for high-page
6 * registers that allow to set the top 8 bits of a 32-bit DMA address.
7 * This register should be written last when setting up a DMA address
8 * as this will also enable DMA across 64 KB boundaries.
9 */
10
11/* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
12 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
13 * Written by Hennus Bergman, 1992.
14 * High DMA channel support & info by Hannu Savolainen
15 * and John Boyd, Nov. 1992.
16 */
17
18#ifndef _ASM_DMA_H
19#define _ASM_DMA_H
20
21#include <linux/config.h>
22#include <linux/spinlock.h>
23#include <asm/io.h>
24
25#define dma_outb outb
26#define dma_inb inb
27
28/*
29 * NOTES about DMA transfers:
30 *
31 * controller 1: channels 0-3, byte operations, ports 00-1F
32 * controller 2: channels 4-7, word operations, ports C0-DF
33 *
34 * - ALL registers are 8 bits only, regardless of transfer size
35 * - channel 4 is not used - cascades 1 into 2.
36 * - channels 0-3 are byte - addresses/counts are for physical bytes
37 * - channels 5-7 are word - addresses/counts are for physical words
38 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
39 * - transfer count loaded to registers is 1 less than actual count
40 * - controller 2 offsets are all even (2x offsets for controller 1)
41 * - page registers for 5-7 don't use data bit 0, represent 128K pages
42 * - page registers for 0-3 use bit 0, represent 64K pages
43 *
44 * DMA transfers are limited to the lower 16MB of _physical_ memory.
45 * Note that addresses loaded into registers must be _physical_ addresses,
46 * not logical addresses (which may differ if paging is active).
47 *
48 * Address mapping for channels 0-3:
49 *
50 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses)
51 * | ... | | ... | | ... |
52 * | ... | | ... | | ... |
53 * | ... | | ... | | ... |
54 * P7 ... P0 A7 ... A0 A7 ... A0
55 * | Page | Addr MSB | Addr LSB | (DMA registers)
56 *
57 * Address mapping for channels 5-7:
58 *
59 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses)
60 * | ... | \ \ ... \ \ \ ... \ \
61 * | ... | \ \ ... \ \ \ ... \ (not used)
62 * | ... | \ \ ... \ \ \ ... \
63 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0
64 * | Page | Addr MSB | Addr LSB | (DMA registers)
65 *
66 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
67 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
68 * the hardware level, so odd-byte transfers aren't possible).
69 *
70 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
71 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more,
72 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
73 *
74 */
75
76#define MAX_DMA_CHANNELS 8
77
78/*
79 ISA DMA limitations on Alpha platforms,
80
81 These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
82 just a wiring limit.
83*/
84
85/* The maximum address for ISA DMA transfer on Alpha XL, due to an
86 hardware SIO limitation, is 64MB.
87*/
88#define ALPHA_XL_MAX_ISA_DMA_ADDRESS 0x04000000UL
89
90/* The maximum address for ISA DMA transfer on RUFFIAN,
91 due to an hardware SIO limitation, is 16MB.
92*/
93#define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS 0x01000000UL
94
95/* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
96 due to an hardware SIO chip limitation, is 2GB.
97*/
98#define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS 0x80000000UL
99#define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS 0x80000000UL
100
101/*
102 Maximum address for all the others is the complete 32-bit bus
103 address space.
104*/
105#define ALPHA_MAX_ISA_DMA_ADDRESS 0x100000000UL
106
107#ifdef CONFIG_ALPHA_GENERIC
108# define MAX_ISA_DMA_ADDRESS (alpha_mv.max_isa_dma_address)
109#else
110# if defined(CONFIG_ALPHA_XL)
111# define MAX_ISA_DMA_ADDRESS ALPHA_XL_MAX_ISA_DMA_ADDRESS
112# elif defined(CONFIG_ALPHA_RUFFIAN)
113# define MAX_ISA_DMA_ADDRESS ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
114# elif defined(CONFIG_ALPHA_SABLE)
115# define MAX_ISA_DMA_ADDRESS ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
116# elif defined(CONFIG_ALPHA_ALCOR)
117# define MAX_ISA_DMA_ADDRESS ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
118# else
119# define MAX_ISA_DMA_ADDRESS ALPHA_MAX_ISA_DMA_ADDRESS
120# endif
121#endif
122
123/* If we have the iommu, we don't have any address limitations on DMA.
124 Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
125 like i386. */
126#define MAX_DMA_ADDRESS (alpha_mv.mv_pci_tbi ? \
127 ~0UL : IDENT_ADDR + 0x01000000)
128
129/* 8237 DMA controllers */
130#define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */
131#define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */
132
133/* DMA controller registers */
134#define DMA1_CMD_REG 0x08 /* command register (w) */
135#define DMA1_STAT_REG 0x08 /* status register (r) */
136#define DMA1_REQ_REG 0x09 /* request register (w) */
137#define DMA1_MASK_REG 0x0A /* single-channel mask (w) */
138#define DMA1_MODE_REG 0x0B /* mode register (w) */
139#define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */
140#define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */
141#define DMA1_RESET_REG 0x0D /* Master Clear (w) */
142#define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */
143#define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */
144#define DMA1_EXT_MODE_REG (0x400 | DMA1_MODE_REG)
145
146#define DMA2_CMD_REG 0xD0 /* command register (w) */
147#define DMA2_STAT_REG 0xD0 /* status register (r) */
148#define DMA2_REQ_REG 0xD2 /* request register (w) */
149#define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */
150#define DMA2_MODE_REG 0xD6 /* mode register (w) */
151#define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */
152#define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */
153#define DMA2_RESET_REG 0xDA /* Master Clear (w) */
154#define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */
155#define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */
156#define DMA2_EXT_MODE_REG (0x400 | DMA2_MODE_REG)
157
158#define DMA_ADDR_0 0x00 /* DMA address registers */
159#define DMA_ADDR_1 0x02
160#define DMA_ADDR_2 0x04
161#define DMA_ADDR_3 0x06
162#define DMA_ADDR_4 0xC0
163#define DMA_ADDR_5 0xC4
164#define DMA_ADDR_6 0xC8
165#define DMA_ADDR_7 0xCC
166
167#define DMA_CNT_0 0x01 /* DMA count registers */
168#define DMA_CNT_1 0x03
169#define DMA_CNT_2 0x05
170#define DMA_CNT_3 0x07
171#define DMA_CNT_4 0xC2
172#define DMA_CNT_5 0xC6
173#define DMA_CNT_6 0xCA
174#define DMA_CNT_7 0xCE
175
176#define DMA_PAGE_0 0x87 /* DMA page registers */
177#define DMA_PAGE_1 0x83
178#define DMA_PAGE_2 0x81
179#define DMA_PAGE_3 0x82
180#define DMA_PAGE_5 0x8B
181#define DMA_PAGE_6 0x89
182#define DMA_PAGE_7 0x8A
183
184#define DMA_HIPAGE_0 (0x400 | DMA_PAGE_0)
185#define DMA_HIPAGE_1 (0x400 | DMA_PAGE_1)
186#define DMA_HIPAGE_2 (0x400 | DMA_PAGE_2)
187#define DMA_HIPAGE_3 (0x400 | DMA_PAGE_3)
188#define DMA_HIPAGE_4 (0x400 | DMA_PAGE_4)
189#define DMA_HIPAGE_5 (0x400 | DMA_PAGE_5)
190#define DMA_HIPAGE_6 (0x400 | DMA_PAGE_6)
191#define DMA_HIPAGE_7 (0x400 | DMA_PAGE_7)
192
193#define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */
194#define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */
195#define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */
196
197#define DMA_AUTOINIT 0x10
198
199extern spinlock_t dma_spin_lock;
200
201static __inline__ unsigned long claim_dma_lock(void)
202{
203 unsigned long flags;
204 spin_lock_irqsave(&dma_spin_lock, flags);
205 return flags;
206}
207
208static __inline__ void release_dma_lock(unsigned long flags)
209{
210 spin_unlock_irqrestore(&dma_spin_lock, flags);
211}
212
213/* enable/disable a specific DMA channel */
214static __inline__ void enable_dma(unsigned int dmanr)
215{
216 if (dmanr<=3)
217 dma_outb(dmanr, DMA1_MASK_REG);
218 else
219 dma_outb(dmanr & 3, DMA2_MASK_REG);
220}
221
222static __inline__ void disable_dma(unsigned int dmanr)
223{
224 if (dmanr<=3)
225 dma_outb(dmanr | 4, DMA1_MASK_REG);
226 else
227 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG);
228}
229
230/* Clear the 'DMA Pointer Flip Flop'.
231 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
232 * Use this once to initialize the FF to a known state.
233 * After that, keep track of it. :-)
234 * --- In order to do that, the DMA routines below should ---
235 * --- only be used while interrupts are disabled! ---
236 */
237static __inline__ void clear_dma_ff(unsigned int dmanr)
238{
239 if (dmanr<=3)
240 dma_outb(0, DMA1_CLEAR_FF_REG);
241 else
242 dma_outb(0, DMA2_CLEAR_FF_REG);
243}
244
245/* set mode (above) for a specific DMA channel */
246static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
247{
248 if (dmanr<=3)
249 dma_outb(mode | dmanr, DMA1_MODE_REG);
250 else
251 dma_outb(mode | (dmanr&3), DMA2_MODE_REG);
252}
253
254/* set extended mode for a specific DMA channel */
255static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
256{
257 if (dmanr<=3)
258 dma_outb(ext_mode | dmanr, DMA1_EXT_MODE_REG);
259 else
260 dma_outb(ext_mode | (dmanr&3), DMA2_EXT_MODE_REG);
261}
262
263/* Set only the page register bits of the transfer address.
264 * This is used for successive transfers when we know the contents of
265 * the lower 16 bits of the DMA current address register.
266 */
267static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
268{
269 switch(dmanr) {
270 case 0:
271 dma_outb(pagenr, DMA_PAGE_0);
272 dma_outb((pagenr >> 8), DMA_HIPAGE_0);
273 break;
274 case 1:
275 dma_outb(pagenr, DMA_PAGE_1);
276 dma_outb((pagenr >> 8), DMA_HIPAGE_1);
277 break;
278 case 2:
279 dma_outb(pagenr, DMA_PAGE_2);
280 dma_outb((pagenr >> 8), DMA_HIPAGE_2);
281 break;
282 case 3:
283 dma_outb(pagenr, DMA_PAGE_3);
284 dma_outb((pagenr >> 8), DMA_HIPAGE_3);
285 break;
286 case 5:
287 dma_outb(pagenr & 0xfe, DMA_PAGE_5);
288 dma_outb((pagenr >> 8), DMA_HIPAGE_5);
289 break;
290 case 6:
291 dma_outb(pagenr & 0xfe, DMA_PAGE_6);
292 dma_outb((pagenr >> 8), DMA_HIPAGE_6);
293 break;
294 case 7:
295 dma_outb(pagenr & 0xfe, DMA_PAGE_7);
296 dma_outb((pagenr >> 8), DMA_HIPAGE_7);
297 break;
298 }
299}
300
301
302/* Set transfer address & page bits for specific DMA channel.
303 * Assumes dma flipflop is clear.
304 */
305static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
306{
307 if (dmanr <= 3) {
308 dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
309 dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
310 } else {
311 dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
312 dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
313 }
314 set_dma_page(dmanr, a>>16); /* set hipage last to enable 32-bit mode */
315}
316
317
318/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
319 * a specific DMA channel.
320 * You must ensure the parameters are valid.
321 * NOTE: from a manual: "the number of transfers is one more
322 * than the initial word count"! This is taken into account.
323 * Assumes dma flip-flop is clear.
324 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
325 */
326static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
327{
328 count--;
329 if (dmanr <= 3) {
330 dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
331 dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
332 } else {
333 dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
334 dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
335 }
336}
337
338
339/* Get DMA residue count. After a DMA transfer, this
340 * should return zero. Reading this while a DMA transfer is
341 * still in progress will return unpredictable results.
342 * If called before the channel has been used, it may return 1.
343 * Otherwise, it returns the number of _bytes_ left to transfer.
344 *
345 * Assumes DMA flip-flop is clear.
346 */
347static __inline__ int get_dma_residue(unsigned int dmanr)
348{
349 unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
350 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
351
352 /* using short to get 16-bit wrap around */
353 unsigned short count;
354
355 count = 1 + dma_inb(io_port);
356 count += dma_inb(io_port) << 8;
357
358 return (dmanr<=3)? count : (count<<1);
359}
360
361
362/* These are in kernel/dma.c: */
363extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */
364extern void free_dma(unsigned int dmanr); /* release it again */
365#define KERNEL_HAVE_CHECK_DMA
366extern int check_dma(unsigned int dmanr);
367
368/* From PCI */
369
370#ifdef CONFIG_PCI
371extern int isa_dma_bridge_buggy;
372#else
373#define isa_dma_bridge_buggy (0)
374#endif
375
376
377#endif /* _ASM_DMA_H */