aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs
diff options
context:
space:
mode:
authorDave Chinner <david@fromorbit.com>2010-01-10 18:51:47 -0500
committerAlex Elder <aelder@sgi.com>2010-01-15 14:44:44 -0500
commit57817c68229984818fea9e614d6f95249c3fb098 (patch)
tree1c3265ae92ccf51617763a568c4c76be3a596578 /fs/xfs
parent018027be90a6946e8cf3f9b17b5582384f7ed117 (diff)
xfs: reclaim all inodes by background tree walks
We cannot do direct inode reclaim without taking the flush lock to ensure that we do not reclaim an inode under IO. We check the inode is clean before doing direct reclaim, but this is not good enough because the inode flush code marks the inode clean once it has copied the in-core dirty state to the backing buffer. It is the flush lock that determines whether the inode is still under IO, even though it is marked clean, and the inode is still required at IO completion so we can't reclaim it even though it is clean in core. Hence the requirement that we need to take the flush lock even on clean inodes because this guarantees that the inode writeback IO has completed and it is safe to reclaim the inode. With delayed write inode flushing, we coul dend up waiting a long time on the flush lock even for a clean inode. The background reclaim already handles this efficiently, so avoid all the problems by killing the direct reclaim path altogether. Signed-off-by: Dave Chinner <david@fromorbit.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Alex Elder <aelder@sgi.com>
Diffstat (limited to 'fs/xfs')
-rw-r--r--fs/xfs/linux-2.6/xfs_super.c14
1 files changed, 6 insertions, 8 deletions
diff --git a/fs/xfs/linux-2.6/xfs_super.c b/fs/xfs/linux-2.6/xfs_super.c
index 09783cc444ac..77414db10dc2 100644
--- a/fs/xfs/linux-2.6/xfs_super.c
+++ b/fs/xfs/linux-2.6/xfs_super.c
@@ -954,16 +954,14 @@ xfs_fs_destroy_inode(
954 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); 954 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
955 955
956 /* 956 /*
957 * If we have nothing to flush with this inode then complete the 957 * We always use background reclaim here because even if the
958 * teardown now, otherwise delay the flush operation. 958 * inode is clean, it still may be under IO and hence we have
959 * to take the flush lock. The background reclaim path handles
960 * this more efficiently than we can here, so simply let background
961 * reclaim tear down all inodes.
959 */ 962 */
960 if (!xfs_inode_clean(ip)) {
961 xfs_inode_set_reclaim_tag(ip);
962 return;
963 }
964
965out_reclaim: 963out_reclaim:
966 xfs_ireclaim(ip); 964 xfs_inode_set_reclaim_tag(ip);
967} 965}
968 966
969/* 967/*