aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs
diff options
context:
space:
mode:
authorDave Chinner <dchinner@redhat.com>2011-01-26 20:13:35 -0500
committerAlex Elder <aelder@sgi.com>2011-01-28 10:01:33 -0500
commite34a314c5e49fe6b763568f6576b19f1299c33c2 (patch)
tree25cd4abc329c68cdb268ae527e2319204d223d58 /fs/xfs
parent7db37c5e6575b229a5051be1d3ef15257ae0ba5d (diff)
xfs: fix efi item leak on forced shutdown
After test 139, kmemleak shows: unreferenced object 0xffff880078b405d8 (size 400): comm "xfs_io", pid 4904, jiffies 4294909383 (age 1186.728s) hex dump (first 32 bytes): 60 c1 17 79 00 88 ff ff 60 c1 17 79 00 88 ff ff `..y....`..y.... 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff81afb04d>] kmemleak_alloc+0x2d/0x60 [<ffffffff8115c6cf>] kmem_cache_alloc+0x13f/0x2b0 [<ffffffff814aaa97>] kmem_zone_alloc+0x77/0xf0 [<ffffffff814aab2e>] kmem_zone_zalloc+0x1e/0x50 [<ffffffff8147cd6b>] xfs_efi_init+0x4b/0xb0 [<ffffffff814a4ee8>] xfs_trans_get_efi+0x58/0x90 [<ffffffff81455fab>] xfs_bmap_finish+0x8b/0x1d0 [<ffffffff814851b4>] xfs_itruncate_finish+0x2c4/0x5d0 [<ffffffff814a970f>] xfs_setattr+0x8df/0xa70 [<ffffffff814b5c7b>] xfs_vn_setattr+0x1b/0x20 [<ffffffff8117dc00>] notify_change+0x170/0x2e0 [<ffffffff81163bf6>] do_truncate+0x66/0xa0 [<ffffffff81163d0b>] sys_ftruncate+0xdb/0xe0 [<ffffffff8103a002>] system_call_fastpath+0x16/0x1b [<ffffffffffffffff>] 0xffffffffffffffff The cause of the leak is that the "remove" parameter of IOP_UNPIN() is never set when a CIL push is aborted. This means that the EFI item is never freed if it was in the push being cancelled. The problem is specific to delayed logging, but has uncovered a couple of problems with the handling of IOP_UNPIN(remove). Firstly, we cannot safely call xfs_trans_del_item() from IOP_UNPIN() in the CIL commit failure path or the iclog write failure path because for delayed loging we have no transaction context. Hence we must only call xfs_trans_del_item() if the log item being unpinned has an active log item descriptor. Secondly, xfs_trans_uncommit() does not handle log item descriptor freeing during the traversal of log items on a transaction. It can reference a freed log item descriptor when unpinning an EFI item. Hence it needs to use a safe list traversal method to allow items to be removed from the transaction during IOP_UNPIN(). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Alex Elder <aelder@sgi.com>
Diffstat (limited to 'fs/xfs')
-rw-r--r--fs/xfs/xfs_buf_item.c12
-rw-r--r--fs/xfs/xfs_extfree_item.c3
-rw-r--r--fs/xfs/xfs_trans.c36
3 files changed, 38 insertions, 13 deletions
diff --git a/fs/xfs/xfs_buf_item.c b/fs/xfs/xfs_buf_item.c
index 98c6f73b6752..6f8c21ce0d6d 100644
--- a/fs/xfs/xfs_buf_item.c
+++ b/fs/xfs/xfs_buf_item.c
@@ -427,13 +427,15 @@ xfs_buf_item_unpin(
427 427
428 if (remove) { 428 if (remove) {
429 /* 429 /*
430 * We have to remove the log item from the transaction 430 * If we are in a transaction context, we have to
431 * as we are about to release our reference to the 431 * remove the log item from the transaction as we are
432 * buffer. If we don't, the unlock that occurs later 432 * about to release our reference to the buffer. If we
433 * in xfs_trans_uncommit() will ry to reference the 433 * don't, the unlock that occurs later in
434 * xfs_trans_uncommit() will try to reference the
434 * buffer which we no longer have a hold on. 435 * buffer which we no longer have a hold on.
435 */ 436 */
436 xfs_trans_del_item(lip); 437 if (lip->li_desc)
438 xfs_trans_del_item(lip);
437 439
438 /* 440 /*
439 * Since the transaction no longer refers to the buffer, 441 * Since the transaction no longer refers to the buffer,
diff --git a/fs/xfs/xfs_extfree_item.c b/fs/xfs/xfs_extfree_item.c
index 75f2ef60e579..d22e62623437 100644
--- a/fs/xfs/xfs_extfree_item.c
+++ b/fs/xfs/xfs_extfree_item.c
@@ -138,7 +138,8 @@ xfs_efi_item_unpin(
138 138
139 if (remove) { 139 if (remove) {
140 ASSERT(!(lip->li_flags & XFS_LI_IN_AIL)); 140 ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
141 xfs_trans_del_item(lip); 141 if (lip->li_desc)
142 xfs_trans_del_item(lip);
142 xfs_efi_item_free(efip); 143 xfs_efi_item_free(efip);
143 return; 144 return;
144 } 145 }
diff --git a/fs/xfs/xfs_trans.c b/fs/xfs/xfs_trans.c
index 33dbc4e0ad62..29f5e5424897 100644
--- a/fs/xfs/xfs_trans.c
+++ b/fs/xfs/xfs_trans.c
@@ -1446,6 +1446,14 @@ xfs_log_item_batch_insert(
1446 * Bulk operation version of xfs_trans_committed that takes a log vector of 1446 * Bulk operation version of xfs_trans_committed that takes a log vector of
1447 * items to insert into the AIL. This uses bulk AIL insertion techniques to 1447 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1448 * minimise lock traffic. 1448 * minimise lock traffic.
1449 *
1450 * If we are called with the aborted flag set, it is because a log write during
1451 * a CIL checkpoint commit has failed. In this case, all the items in the
1452 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1453 * means that checkpoint commit abort handling is treated exactly the same
1454 * as an iclog write error even though we haven't started any IO yet. Hence in
1455 * this case all we need to do is IOP_COMMITTED processing, followed by an
1456 * IOP_UNPIN(aborted) call.
1449 */ 1457 */
1450void 1458void
1451xfs_trans_committed_bulk( 1459xfs_trans_committed_bulk(
@@ -1472,6 +1480,16 @@ xfs_trans_committed_bulk(
1472 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) 1480 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1473 continue; 1481 continue;
1474 1482
1483 /*
1484 * if we are aborting the operation, no point in inserting the
1485 * object into the AIL as we are in a shutdown situation.
1486 */
1487 if (aborted) {
1488 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1489 IOP_UNPIN(lip, 1);
1490 continue;
1491 }
1492
1475 if (item_lsn != commit_lsn) { 1493 if (item_lsn != commit_lsn) {
1476 1494
1477 /* 1495 /*
@@ -1503,20 +1521,24 @@ xfs_trans_committed_bulk(
1503} 1521}
1504 1522
1505/* 1523/*
1506 * Called from the trans_commit code when we notice that 1524 * Called from the trans_commit code when we notice that the filesystem is in
1507 * the filesystem is in the middle of a forced shutdown. 1525 * the middle of a forced shutdown.
1526 *
1527 * When we are called here, we have already pinned all the items in the
1528 * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called
1529 * so we can simply walk the items in the transaction, unpin them with an abort
1530 * flag and then free the items. Note that unpinning the items can result in
1531 * them being freed immediately, so we need to use a safe list traversal method
1532 * here.
1508 */ 1533 */
1509STATIC void 1534STATIC void
1510xfs_trans_uncommit( 1535xfs_trans_uncommit(
1511 struct xfs_trans *tp, 1536 struct xfs_trans *tp,
1512 uint flags) 1537 uint flags)
1513{ 1538{
1514 struct xfs_log_item_desc *lidp; 1539 struct xfs_log_item_desc *lidp, *n;
1515 1540
1516 list_for_each_entry(lidp, &tp->t_items, lid_trans) { 1541 list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) {
1517 /*
1518 * Unpin all but those that aren't dirty.
1519 */
1520 if (lidp->lid_flags & XFS_LID_DIRTY) 1542 if (lidp->lid_flags & XFS_LID_DIRTY)
1521 IOP_UNPIN(lidp->lid_item, 1); 1543 IOP_UNPIN(lidp->lid_item, 1);
1522 } 1544 }