aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_vnodeops.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-07-08 04:32:56 -0400
committerIngo Molnar <mingo@elte.hu>2008-07-08 04:32:56 -0400
commit896395c290f902576270d84291c1f7f8bfbe339d (patch)
tree650114bff3a5f808ee1d713ecc443b0eaab2e1c3 /fs/xfs/xfs_vnodeops.c
parentaf1cf204ba2fd8135933a2e4df523fb1112dc0e2 (diff)
parent1b40a895df6c7d5a80e71f65674060b03d84bbef (diff)
Merge branch 'linus' into tmp.x86.mpparse.new
Diffstat (limited to 'fs/xfs/xfs_vnodeops.c')
-rw-r--r--fs/xfs/xfs_vnodeops.c112
1 files changed, 42 insertions, 70 deletions
diff --git a/fs/xfs/xfs_vnodeops.c b/fs/xfs/xfs_vnodeops.c
index 70702a60b4bb..e475e3717eb3 100644
--- a/fs/xfs/xfs_vnodeops.c
+++ b/fs/xfs/xfs_vnodeops.c
@@ -856,18 +856,14 @@ xfs_readlink(
856/* 856/*
857 * xfs_fsync 857 * xfs_fsync
858 * 858 *
859 * This is called to sync the inode and its data out to disk. 859 * This is called to sync the inode and its data out to disk. We need to hold
860 * We need to hold the I/O lock while flushing the data, and 860 * the I/O lock while flushing the data, and the inode lock while flushing the
861 * the inode lock while flushing the inode. The inode lock CANNOT 861 * inode. The inode lock CANNOT be held while flushing the data, so acquire
862 * be held while flushing the data, so acquire after we're done 862 * after we're done with that.
863 * with that.
864 */ 863 */
865int 864int
866xfs_fsync( 865xfs_fsync(
867 xfs_inode_t *ip, 866 xfs_inode_t *ip)
868 int flag,
869 xfs_off_t start,
870 xfs_off_t stop)
871{ 867{
872 xfs_trans_t *tp; 868 xfs_trans_t *tp;
873 int error; 869 int error;
@@ -875,103 +871,79 @@ xfs_fsync(
875 871
876 xfs_itrace_entry(ip); 872 xfs_itrace_entry(ip);
877 873
878 ASSERT(start >= 0 && stop >= -1);
879
880 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 874 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
881 return XFS_ERROR(EIO); 875 return XFS_ERROR(EIO);
882 876
883 if (flag & FSYNC_DATA) 877 /* capture size updates in I/O completion before writing the inode. */
884 filemap_fdatawait(vn_to_inode(XFS_ITOV(ip))->i_mapping); 878 error = filemap_fdatawait(vn_to_inode(XFS_ITOV(ip))->i_mapping);
879 if (error)
880 return XFS_ERROR(error);
885 881
886 /* 882 /*
887 * We always need to make sure that the required inode state 883 * We always need to make sure that the required inode state is safe on
888 * is safe on disk. The vnode might be clean but because 884 * disk. The vnode might be clean but we still might need to force the
889 * of committed transactions that haven't hit the disk yet. 885 * log because of committed transactions that haven't hit the disk yet.
890 * Likewise, there could be unflushed non-transactional 886 * Likewise, there could be unflushed non-transactional changes to the
891 * changes to the inode core that have to go to disk. 887 * inode core that have to go to disk and this requires us to issue
888 * a synchronous transaction to capture these changes correctly.
892 * 889 *
893 * The following code depends on one assumption: that 890 * This code relies on the assumption that if the update_* fields
894 * any transaction that changes an inode logs the core 891 * of the inode are clear and the inode is unpinned then it is clean
895 * because it has to change some field in the inode core 892 * and no action is required.
896 * (typically nextents or nblocks). That assumption
897 * implies that any transactions against an inode will
898 * catch any non-transactional updates. If inode-altering
899 * transactions exist that violate this assumption, the
900 * code breaks. Right now, it figures that if the involved
901 * update_* field is clear and the inode is unpinned, the
902 * inode is clean. Either it's been flushed or it's been
903 * committed and the commit has hit the disk unpinning the inode.
904 * (Note that xfs_inode_item_format() called at commit clears
905 * the update_* fields.)
906 */ 893 */
907 xfs_ilock(ip, XFS_ILOCK_SHARED); 894 xfs_ilock(ip, XFS_ILOCK_SHARED);
908 895
909 /* If we are flushing data then we care about update_size 896 if (!(ip->i_update_size || ip->i_update_core)) {
910 * being set, otherwise we care about update_core
911 */
912 if ((flag & FSYNC_DATA) ?
913 (ip->i_update_size == 0) :
914 (ip->i_update_core == 0)) {
915 /* 897 /*
916 * Timestamps/size haven't changed since last inode 898 * Timestamps/size haven't changed since last inode flush or
917 * flush or inode transaction commit. That means 899 * inode transaction commit. That means either nothing got
918 * either nothing got written or a transaction 900 * written or a transaction committed which caught the updates.
919 * committed which caught the updates. If the 901 * If the latter happened and the transaction hasn't hit the
920 * latter happened and the transaction hasn't 902 * disk yet, the inode will be still be pinned. If it is,
921 * hit the disk yet, the inode will be still 903 * force the log.
922 * be pinned. If it is, force the log.
923 */ 904 */
924 905
925 xfs_iunlock(ip, XFS_ILOCK_SHARED); 906 xfs_iunlock(ip, XFS_ILOCK_SHARED);
926 907
927 if (xfs_ipincount(ip)) { 908 if (xfs_ipincount(ip)) {
928 _xfs_log_force(ip->i_mount, (xfs_lsn_t)0, 909 error = _xfs_log_force(ip->i_mount, (xfs_lsn_t)0,
929 XFS_LOG_FORCE | 910 XFS_LOG_FORCE | XFS_LOG_SYNC,
930 ((flag & FSYNC_WAIT)
931 ? XFS_LOG_SYNC : 0),
932 &log_flushed); 911 &log_flushed);
933 } else { 912 } else {
934 /* 913 /*
935 * If the inode is not pinned and nothing 914 * If the inode is not pinned and nothing has changed
936 * has changed we don't need to flush the 915 * we don't need to flush the cache.
937 * cache.
938 */ 916 */
939 changed = 0; 917 changed = 0;
940 } 918 }
941 error = 0;
942 } else { 919 } else {
943 /* 920 /*
944 * Kick off a transaction to log the inode 921 * Kick off a transaction to log the inode core to get the
945 * core to get the updates. Make it 922 * updates. The sync transaction will also force the log.
946 * sync if FSYNC_WAIT is passed in (which
947 * is done by everybody but specfs). The
948 * sync transaction will also force the log.
949 */ 923 */
950 xfs_iunlock(ip, XFS_ILOCK_SHARED); 924 xfs_iunlock(ip, XFS_ILOCK_SHARED);
951 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS); 925 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
952 if ((error = xfs_trans_reserve(tp, 0, 926 error = xfs_trans_reserve(tp, 0,
953 XFS_FSYNC_TS_LOG_RES(ip->i_mount), 927 XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
954 0, 0, 0))) { 928 if (error) {
955 xfs_trans_cancel(tp, 0); 929 xfs_trans_cancel(tp, 0);
956 return error; 930 return error;
957 } 931 }
958 xfs_ilock(ip, XFS_ILOCK_EXCL); 932 xfs_ilock(ip, XFS_ILOCK_EXCL);
959 933
960 /* 934 /*
961 * Note - it's possible that we might have pushed 935 * Note - it's possible that we might have pushed ourselves out
962 * ourselves out of the way during trans_reserve 936 * of the way during trans_reserve which would flush the inode.
963 * which would flush the inode. But there's no 937 * But there's no guarantee that the inode buffer has actually
964 * guarantee that the inode buffer has actually 938 * gone out yet (it's delwri). Plus the buffer could be pinned
965 * gone out yet (it's delwri). Plus the buffer 939 * anyway if it's part of an inode in another recent
966 * could be pinned anyway if it's part of an 940 * transaction. So we play it safe and fire off the
967 * inode in another recent transaction. So we 941 * transaction anyway.
968 * play it safe and fire off the transaction anyway.
969 */ 942 */
970 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 943 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
971 xfs_trans_ihold(tp, ip); 944 xfs_trans_ihold(tp, ip);
972 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 945 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
973 if (flag & FSYNC_WAIT) 946 xfs_trans_set_sync(tp);
974 xfs_trans_set_sync(tp);
975 error = _xfs_trans_commit(tp, 0, &log_flushed); 947 error = _xfs_trans_commit(tp, 0, &log_flushed);
976 948
977 xfs_iunlock(ip, XFS_ILOCK_EXCL); 949 xfs_iunlock(ip, XFS_ILOCK_EXCL);