aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_vnodeops.c
diff options
context:
space:
mode:
authorDavid Chinner <dgc@sgi.com>2007-07-10 21:09:12 -0400
committerTim Shimmin <tes@chook.melbourne.sgi.com>2007-07-14 01:40:53 -0400
commit2a82b8be8a8dacb48cb7371449a7a9daa558b4a8 (patch)
tree44e6a81dd0e7d7dc634e04b9230b5262a254c5ee /fs/xfs/xfs_vnodeops.c
parent0892ccd6fe13e08ad9e57007afbb78fe02d66005 (diff)
[XFS] Concurrent Multi-File Data Streams
In media spaces, video is often stored in a frame-per-file format. When dealing with uncompressed realtime HD video streams in this format, it is crucial that files do not get fragmented and that multiple files a placed contiguously on disk. When multiple streams are being ingested and played out at the same time, it is critical that the filesystem does not cross the streams and interleave them together as this creates seek and readahead cache miss latency and prevents both ingest and playout from meeting frame rate targets. This patch set creates a "stream of files" concept into the allocator to place all the data from a single stream contiguously on disk so that RAID array readahead can be used effectively. Each additional stream gets placed in different allocation groups within the filesystem, thereby ensuring that we don't cross any streams. When an AG fills up, we select a new AG for the stream that is not in use. The core of the functionality is the stream tracking - each inode that we create in a directory needs to be associated with the directories' stream. Hence every time we create a file, we look up the directories' stream object and associate the new file with that object. Once we have a stream object for a file, we use the AG that the stream object point to for allocations. If we can't allocate in that AG (e.g. it is full) we move the entire stream to another AG. Other inodes in the same stream are moved to the new AG on their next allocation (i.e. lazy update). Stream objects are kept in a cache and hold a reference on the inode. Hence the inode cannot be reclaimed while there is an outstanding stream reference. This means that on unlink we need to remove the stream association and we also need to flush all the associations on certain events that want to reclaim all unreferenced inodes (e.g. filesystem freeze). SGI-PV: 964469 SGI-Modid: xfs-linux-melb:xfs-kern:29096a Signed-off-by: David Chinner <dgc@sgi.com> Signed-off-by: Barry Naujok <bnaujok@sgi.com> Signed-off-by: Donald Douwsma <donaldd@sgi.com> Signed-off-by: Christoph Hellwig <hch@infradead.org> Signed-off-by: Tim Shimmin <tes@sgi.com> Signed-off-by: Vlad Apostolov <vapo@sgi.com>
Diffstat (limited to 'fs/xfs/xfs_vnodeops.c')
-rw-r--r--fs/xfs/xfs_vnodeops.c25
1 files changed, 23 insertions, 2 deletions
diff --git a/fs/xfs/xfs_vnodeops.c b/fs/xfs/xfs_vnodeops.c
index 2067d0b0a10e..60fd0be90a16 100644
--- a/fs/xfs/xfs_vnodeops.c
+++ b/fs/xfs/xfs_vnodeops.c
@@ -51,6 +51,7 @@
51#include "xfs_refcache.h" 51#include "xfs_refcache.h"
52#include "xfs_trans_space.h" 52#include "xfs_trans_space.h"
53#include "xfs_log_priv.h" 53#include "xfs_log_priv.h"
54#include "xfs_filestream.h"
54 55
55STATIC int 56STATIC int
56xfs_open( 57xfs_open(
@@ -783,6 +784,8 @@ xfs_setattr(
783 di_flags |= XFS_DIFLAG_PROJINHERIT; 784 di_flags |= XFS_DIFLAG_PROJINHERIT;
784 if (vap->va_xflags & XFS_XFLAG_NODEFRAG) 785 if (vap->va_xflags & XFS_XFLAG_NODEFRAG)
785 di_flags |= XFS_DIFLAG_NODEFRAG; 786 di_flags |= XFS_DIFLAG_NODEFRAG;
787 if (vap->va_xflags & XFS_XFLAG_FILESTREAM)
788 di_flags |= XFS_DIFLAG_FILESTREAM;
786 if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) { 789 if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
787 if (vap->va_xflags & XFS_XFLAG_RTINHERIT) 790 if (vap->va_xflags & XFS_XFLAG_RTINHERIT)
788 di_flags |= XFS_DIFLAG_RTINHERIT; 791 di_flags |= XFS_DIFLAG_RTINHERIT;
@@ -1536,7 +1539,17 @@ xfs_release(
1536 if (vp->v_vfsp->vfs_flag & VFS_RDONLY) 1539 if (vp->v_vfsp->vfs_flag & VFS_RDONLY)
1537 return 0; 1540 return 0;
1538 1541
1539 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1542 if (!XFS_FORCED_SHUTDOWN(mp)) {
1543 /*
1544 * If we are using filestreams, and we have an unlinked
1545 * file that we are processing the last close on, then nothing
1546 * will be able to reopen and write to this file. Purge this
1547 * inode from the filestreams cache so that it doesn't delay
1548 * teardown of the inode.
1549 */
1550 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1551 xfs_filestream_deassociate(ip);
1552
1540 /* 1553 /*
1541 * If we previously truncated this file and removed old data 1554 * If we previously truncated this file and removed old data
1542 * in the process, we want to initiate "early" writeout on 1555 * in the process, we want to initiate "early" writeout on
@@ -1551,7 +1564,6 @@ xfs_release(
1551 bhv_vop_flush_pages(vp, 0, -1, XFS_B_ASYNC, FI_NONE); 1564 bhv_vop_flush_pages(vp, 0, -1, XFS_B_ASYNC, FI_NONE);
1552 } 1565 }
1553 1566
1554
1555#ifdef HAVE_REFCACHE 1567#ifdef HAVE_REFCACHE
1556 /* If we are in the NFS reference cache then don't do this now */ 1568 /* If we are in the NFS reference cache then don't do this now */
1557 if (ip->i_refcache) 1569 if (ip->i_refcache)
@@ -2541,6 +2553,15 @@ xfs_remove(
2541 */ 2553 */
2542 xfs_refcache_purge_ip(ip); 2554 xfs_refcache_purge_ip(ip);
2543 2555
2556 /*
2557 * If we are using filestreams, kill the stream association.
2558 * If the file is still open it may get a new one but that
2559 * will get killed on last close in xfs_close() so we don't
2560 * have to worry about that.
2561 */
2562 if (link_zero && xfs_inode_is_filestream(ip))
2563 xfs_filestream_deassociate(ip);
2564
2544 vn_trace_exit(XFS_ITOV(ip), __FUNCTION__, (inst_t *)__return_address); 2565 vn_trace_exit(XFS_ITOV(ip), __FUNCTION__, (inst_t *)__return_address);
2545 2566
2546 /* 2567 /*