diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/xfs/xfs_log_recover.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/xfs/xfs_log_recover.c')
-rw-r--r-- | fs/xfs/xfs_log_recover.c | 4098 |
1 files changed, 4098 insertions, 0 deletions
diff --git a/fs/xfs/xfs_log_recover.c b/fs/xfs/xfs_log_recover.c new file mode 100644 index 000000000000..9824b5bf0ec0 --- /dev/null +++ b/fs/xfs/xfs_log_recover.c | |||
@@ -0,0 +1,4098 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2000-2003 Silicon Graphics, Inc. All Rights Reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify it | ||
5 | * under the terms of version 2 of the GNU General Public License as | ||
6 | * published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it would be useful, but | ||
9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | ||
11 | * | ||
12 | * Further, this software is distributed without any warranty that it is | ||
13 | * free of the rightful claim of any third person regarding infringement | ||
14 | * or the like. Any license provided herein, whether implied or | ||
15 | * otherwise, applies only to this software file. Patent licenses, if | ||
16 | * any, provided herein do not apply to combinations of this program with | ||
17 | * other software, or any other product whatsoever. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License along | ||
20 | * with this program; if not, write the Free Software Foundation, Inc., 59 | ||
21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. | ||
22 | * | ||
23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, | ||
24 | * Mountain View, CA 94043, or: | ||
25 | * | ||
26 | * http://www.sgi.com | ||
27 | * | ||
28 | * For further information regarding this notice, see: | ||
29 | * | ||
30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ | ||
31 | */ | ||
32 | |||
33 | #include "xfs.h" | ||
34 | #include "xfs_macros.h" | ||
35 | #include "xfs_types.h" | ||
36 | #include "xfs_inum.h" | ||
37 | #include "xfs_log.h" | ||
38 | #include "xfs_ag.h" | ||
39 | #include "xfs_sb.h" | ||
40 | #include "xfs_trans.h" | ||
41 | #include "xfs_dir.h" | ||
42 | #include "xfs_dir2.h" | ||
43 | #include "xfs_dmapi.h" | ||
44 | #include "xfs_mount.h" | ||
45 | #include "xfs_error.h" | ||
46 | #include "xfs_bmap_btree.h" | ||
47 | #include "xfs_alloc.h" | ||
48 | #include "xfs_attr_sf.h" | ||
49 | #include "xfs_dir_sf.h" | ||
50 | #include "xfs_dir2_sf.h" | ||
51 | #include "xfs_dinode.h" | ||
52 | #include "xfs_imap.h" | ||
53 | #include "xfs_inode_item.h" | ||
54 | #include "xfs_inode.h" | ||
55 | #include "xfs_ialloc_btree.h" | ||
56 | #include "xfs_ialloc.h" | ||
57 | #include "xfs_log_priv.h" | ||
58 | #include "xfs_buf_item.h" | ||
59 | #include "xfs_alloc_btree.h" | ||
60 | #include "xfs_log_recover.h" | ||
61 | #include "xfs_extfree_item.h" | ||
62 | #include "xfs_trans_priv.h" | ||
63 | #include "xfs_bit.h" | ||
64 | #include "xfs_quota.h" | ||
65 | #include "xfs_rw.h" | ||
66 | |||
67 | STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *); | ||
68 | STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t); | ||
69 | STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q, | ||
70 | xlog_recover_item_t *item); | ||
71 | #if defined(DEBUG) | ||
72 | STATIC void xlog_recover_check_summary(xlog_t *); | ||
73 | STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int); | ||
74 | #else | ||
75 | #define xlog_recover_check_summary(log) | ||
76 | #define xlog_recover_check_ail(mp, lip, gen) | ||
77 | #endif | ||
78 | |||
79 | |||
80 | /* | ||
81 | * Sector aligned buffer routines for buffer create/read/write/access | ||
82 | */ | ||
83 | |||
84 | #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \ | ||
85 | ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \ | ||
86 | ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) ) | ||
87 | #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask) | ||
88 | |||
89 | xfs_buf_t * | ||
90 | xlog_get_bp( | ||
91 | xlog_t *log, | ||
92 | int num_bblks) | ||
93 | { | ||
94 | ASSERT(num_bblks > 0); | ||
95 | |||
96 | if (log->l_sectbb_log) { | ||
97 | if (num_bblks > 1) | ||
98 | num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); | ||
99 | num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks); | ||
100 | } | ||
101 | return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp); | ||
102 | } | ||
103 | |||
104 | void | ||
105 | xlog_put_bp( | ||
106 | xfs_buf_t *bp) | ||
107 | { | ||
108 | xfs_buf_free(bp); | ||
109 | } | ||
110 | |||
111 | |||
112 | /* | ||
113 | * nbblks should be uint, but oh well. Just want to catch that 32-bit length. | ||
114 | */ | ||
115 | int | ||
116 | xlog_bread( | ||
117 | xlog_t *log, | ||
118 | xfs_daddr_t blk_no, | ||
119 | int nbblks, | ||
120 | xfs_buf_t *bp) | ||
121 | { | ||
122 | int error; | ||
123 | |||
124 | if (log->l_sectbb_log) { | ||
125 | blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); | ||
126 | nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); | ||
127 | } | ||
128 | |||
129 | ASSERT(nbblks > 0); | ||
130 | ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); | ||
131 | ASSERT(bp); | ||
132 | |||
133 | XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); | ||
134 | XFS_BUF_READ(bp); | ||
135 | XFS_BUF_BUSY(bp); | ||
136 | XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); | ||
137 | XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); | ||
138 | |||
139 | xfsbdstrat(log->l_mp, bp); | ||
140 | if ((error = xfs_iowait(bp))) | ||
141 | xfs_ioerror_alert("xlog_bread", log->l_mp, | ||
142 | bp, XFS_BUF_ADDR(bp)); | ||
143 | return error; | ||
144 | } | ||
145 | |||
146 | /* | ||
147 | * Write out the buffer at the given block for the given number of blocks. | ||
148 | * The buffer is kept locked across the write and is returned locked. | ||
149 | * This can only be used for synchronous log writes. | ||
150 | */ | ||
151 | int | ||
152 | xlog_bwrite( | ||
153 | xlog_t *log, | ||
154 | xfs_daddr_t blk_no, | ||
155 | int nbblks, | ||
156 | xfs_buf_t *bp) | ||
157 | { | ||
158 | int error; | ||
159 | |||
160 | if (log->l_sectbb_log) { | ||
161 | blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no); | ||
162 | nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks); | ||
163 | } | ||
164 | |||
165 | ASSERT(nbblks > 0); | ||
166 | ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp)); | ||
167 | |||
168 | XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); | ||
169 | XFS_BUF_ZEROFLAGS(bp); | ||
170 | XFS_BUF_BUSY(bp); | ||
171 | XFS_BUF_HOLD(bp); | ||
172 | XFS_BUF_PSEMA(bp, PRIBIO); | ||
173 | XFS_BUF_SET_COUNT(bp, BBTOB(nbblks)); | ||
174 | XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp); | ||
175 | |||
176 | if ((error = xfs_bwrite(log->l_mp, bp))) | ||
177 | xfs_ioerror_alert("xlog_bwrite", log->l_mp, | ||
178 | bp, XFS_BUF_ADDR(bp)); | ||
179 | return error; | ||
180 | } | ||
181 | |||
182 | xfs_caddr_t | ||
183 | xlog_align( | ||
184 | xlog_t *log, | ||
185 | xfs_daddr_t blk_no, | ||
186 | int nbblks, | ||
187 | xfs_buf_t *bp) | ||
188 | { | ||
189 | xfs_caddr_t ptr; | ||
190 | |||
191 | if (!log->l_sectbb_log) | ||
192 | return XFS_BUF_PTR(bp); | ||
193 | |||
194 | ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask); | ||
195 | ASSERT(XFS_BUF_SIZE(bp) >= | ||
196 | BBTOB(nbblks + (blk_no & log->l_sectbb_mask))); | ||
197 | return ptr; | ||
198 | } | ||
199 | |||
200 | #ifdef DEBUG | ||
201 | /* | ||
202 | * dump debug superblock and log record information | ||
203 | */ | ||
204 | STATIC void | ||
205 | xlog_header_check_dump( | ||
206 | xfs_mount_t *mp, | ||
207 | xlog_rec_header_t *head) | ||
208 | { | ||
209 | int b; | ||
210 | |||
211 | printk("%s: SB : uuid = ", __FUNCTION__); | ||
212 | for (b = 0; b < 16; b++) | ||
213 | printk("%02x",((unsigned char *)&mp->m_sb.sb_uuid)[b]); | ||
214 | printk(", fmt = %d\n", XLOG_FMT); | ||
215 | printk(" log : uuid = "); | ||
216 | for (b = 0; b < 16; b++) | ||
217 | printk("%02x",((unsigned char *)&head->h_fs_uuid)[b]); | ||
218 | printk(", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT)); | ||
219 | } | ||
220 | #else | ||
221 | #define xlog_header_check_dump(mp, head) | ||
222 | #endif | ||
223 | |||
224 | /* | ||
225 | * check log record header for recovery | ||
226 | */ | ||
227 | STATIC int | ||
228 | xlog_header_check_recover( | ||
229 | xfs_mount_t *mp, | ||
230 | xlog_rec_header_t *head) | ||
231 | { | ||
232 | ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); | ||
233 | |||
234 | /* | ||
235 | * IRIX doesn't write the h_fmt field and leaves it zeroed | ||
236 | * (XLOG_FMT_UNKNOWN). This stops us from trying to recover | ||
237 | * a dirty log created in IRIX. | ||
238 | */ | ||
239 | if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) { | ||
240 | xlog_warn( | ||
241 | "XFS: dirty log written in incompatible format - can't recover"); | ||
242 | xlog_header_check_dump(mp, head); | ||
243 | XFS_ERROR_REPORT("xlog_header_check_recover(1)", | ||
244 | XFS_ERRLEVEL_HIGH, mp); | ||
245 | return XFS_ERROR(EFSCORRUPTED); | ||
246 | } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { | ||
247 | xlog_warn( | ||
248 | "XFS: dirty log entry has mismatched uuid - can't recover"); | ||
249 | xlog_header_check_dump(mp, head); | ||
250 | XFS_ERROR_REPORT("xlog_header_check_recover(2)", | ||
251 | XFS_ERRLEVEL_HIGH, mp); | ||
252 | return XFS_ERROR(EFSCORRUPTED); | ||
253 | } | ||
254 | return 0; | ||
255 | } | ||
256 | |||
257 | /* | ||
258 | * read the head block of the log and check the header | ||
259 | */ | ||
260 | STATIC int | ||
261 | xlog_header_check_mount( | ||
262 | xfs_mount_t *mp, | ||
263 | xlog_rec_header_t *head) | ||
264 | { | ||
265 | ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM); | ||
266 | |||
267 | if (uuid_is_nil(&head->h_fs_uuid)) { | ||
268 | /* | ||
269 | * IRIX doesn't write the h_fs_uuid or h_fmt fields. If | ||
270 | * h_fs_uuid is nil, we assume this log was last mounted | ||
271 | * by IRIX and continue. | ||
272 | */ | ||
273 | xlog_warn("XFS: nil uuid in log - IRIX style log"); | ||
274 | } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { | ||
275 | xlog_warn("XFS: log has mismatched uuid - can't recover"); | ||
276 | xlog_header_check_dump(mp, head); | ||
277 | XFS_ERROR_REPORT("xlog_header_check_mount", | ||
278 | XFS_ERRLEVEL_HIGH, mp); | ||
279 | return XFS_ERROR(EFSCORRUPTED); | ||
280 | } | ||
281 | return 0; | ||
282 | } | ||
283 | |||
284 | STATIC void | ||
285 | xlog_recover_iodone( | ||
286 | struct xfs_buf *bp) | ||
287 | { | ||
288 | xfs_mount_t *mp; | ||
289 | |||
290 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *)); | ||
291 | |||
292 | if (XFS_BUF_GETERROR(bp)) { | ||
293 | /* | ||
294 | * We're not going to bother about retrying | ||
295 | * this during recovery. One strike! | ||
296 | */ | ||
297 | mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *); | ||
298 | xfs_ioerror_alert("xlog_recover_iodone", | ||
299 | mp, bp, XFS_BUF_ADDR(bp)); | ||
300 | xfs_force_shutdown(mp, XFS_METADATA_IO_ERROR); | ||
301 | } | ||
302 | XFS_BUF_SET_FSPRIVATE(bp, NULL); | ||
303 | XFS_BUF_CLR_IODONE_FUNC(bp); | ||
304 | xfs_biodone(bp); | ||
305 | } | ||
306 | |||
307 | /* | ||
308 | * This routine finds (to an approximation) the first block in the physical | ||
309 | * log which contains the given cycle. It uses a binary search algorithm. | ||
310 | * Note that the algorithm can not be perfect because the disk will not | ||
311 | * necessarily be perfect. | ||
312 | */ | ||
313 | int | ||
314 | xlog_find_cycle_start( | ||
315 | xlog_t *log, | ||
316 | xfs_buf_t *bp, | ||
317 | xfs_daddr_t first_blk, | ||
318 | xfs_daddr_t *last_blk, | ||
319 | uint cycle) | ||
320 | { | ||
321 | xfs_caddr_t offset; | ||
322 | xfs_daddr_t mid_blk; | ||
323 | uint mid_cycle; | ||
324 | int error; | ||
325 | |||
326 | mid_blk = BLK_AVG(first_blk, *last_blk); | ||
327 | while (mid_blk != first_blk && mid_blk != *last_blk) { | ||
328 | if ((error = xlog_bread(log, mid_blk, 1, bp))) | ||
329 | return error; | ||
330 | offset = xlog_align(log, mid_blk, 1, bp); | ||
331 | mid_cycle = GET_CYCLE(offset, ARCH_CONVERT); | ||
332 | if (mid_cycle == cycle) { | ||
333 | *last_blk = mid_blk; | ||
334 | /* last_half_cycle == mid_cycle */ | ||
335 | } else { | ||
336 | first_blk = mid_blk; | ||
337 | /* first_half_cycle == mid_cycle */ | ||
338 | } | ||
339 | mid_blk = BLK_AVG(first_blk, *last_blk); | ||
340 | } | ||
341 | ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) || | ||
342 | (mid_blk == *last_blk && mid_blk-1 == first_blk)); | ||
343 | |||
344 | return 0; | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * Check that the range of blocks does not contain the cycle number | ||
349 | * given. The scan needs to occur from front to back and the ptr into the | ||
350 | * region must be updated since a later routine will need to perform another | ||
351 | * test. If the region is completely good, we end up returning the same | ||
352 | * last block number. | ||
353 | * | ||
354 | * Set blkno to -1 if we encounter no errors. This is an invalid block number | ||
355 | * since we don't ever expect logs to get this large. | ||
356 | */ | ||
357 | STATIC int | ||
358 | xlog_find_verify_cycle( | ||
359 | xlog_t *log, | ||
360 | xfs_daddr_t start_blk, | ||
361 | int nbblks, | ||
362 | uint stop_on_cycle_no, | ||
363 | xfs_daddr_t *new_blk) | ||
364 | { | ||
365 | xfs_daddr_t i, j; | ||
366 | uint cycle; | ||
367 | xfs_buf_t *bp; | ||
368 | xfs_daddr_t bufblks; | ||
369 | xfs_caddr_t buf = NULL; | ||
370 | int error = 0; | ||
371 | |||
372 | bufblks = 1 << ffs(nbblks); | ||
373 | |||
374 | while (!(bp = xlog_get_bp(log, bufblks))) { | ||
375 | /* can't get enough memory to do everything in one big buffer */ | ||
376 | bufblks >>= 1; | ||
377 | if (bufblks <= log->l_sectbb_log) | ||
378 | return ENOMEM; | ||
379 | } | ||
380 | |||
381 | for (i = start_blk; i < start_blk + nbblks; i += bufblks) { | ||
382 | int bcount; | ||
383 | |||
384 | bcount = min(bufblks, (start_blk + nbblks - i)); | ||
385 | |||
386 | if ((error = xlog_bread(log, i, bcount, bp))) | ||
387 | goto out; | ||
388 | |||
389 | buf = xlog_align(log, i, bcount, bp); | ||
390 | for (j = 0; j < bcount; j++) { | ||
391 | cycle = GET_CYCLE(buf, ARCH_CONVERT); | ||
392 | if (cycle == stop_on_cycle_no) { | ||
393 | *new_blk = i+j; | ||
394 | goto out; | ||
395 | } | ||
396 | |||
397 | buf += BBSIZE; | ||
398 | } | ||
399 | } | ||
400 | |||
401 | *new_blk = -1; | ||
402 | |||
403 | out: | ||
404 | xlog_put_bp(bp); | ||
405 | return error; | ||
406 | } | ||
407 | |||
408 | /* | ||
409 | * Potentially backup over partial log record write. | ||
410 | * | ||
411 | * In the typical case, last_blk is the number of the block directly after | ||
412 | * a good log record. Therefore, we subtract one to get the block number | ||
413 | * of the last block in the given buffer. extra_bblks contains the number | ||
414 | * of blocks we would have read on a previous read. This happens when the | ||
415 | * last log record is split over the end of the physical log. | ||
416 | * | ||
417 | * extra_bblks is the number of blocks potentially verified on a previous | ||
418 | * call to this routine. | ||
419 | */ | ||
420 | STATIC int | ||
421 | xlog_find_verify_log_record( | ||
422 | xlog_t *log, | ||
423 | xfs_daddr_t start_blk, | ||
424 | xfs_daddr_t *last_blk, | ||
425 | int extra_bblks) | ||
426 | { | ||
427 | xfs_daddr_t i; | ||
428 | xfs_buf_t *bp; | ||
429 | xfs_caddr_t offset = NULL; | ||
430 | xlog_rec_header_t *head = NULL; | ||
431 | int error = 0; | ||
432 | int smallmem = 0; | ||
433 | int num_blks = *last_blk - start_blk; | ||
434 | int xhdrs; | ||
435 | |||
436 | ASSERT(start_blk != 0 || *last_blk != start_blk); | ||
437 | |||
438 | if (!(bp = xlog_get_bp(log, num_blks))) { | ||
439 | if (!(bp = xlog_get_bp(log, 1))) | ||
440 | return ENOMEM; | ||
441 | smallmem = 1; | ||
442 | } else { | ||
443 | if ((error = xlog_bread(log, start_blk, num_blks, bp))) | ||
444 | goto out; | ||
445 | offset = xlog_align(log, start_blk, num_blks, bp); | ||
446 | offset += ((num_blks - 1) << BBSHIFT); | ||
447 | } | ||
448 | |||
449 | for (i = (*last_blk) - 1; i >= 0; i--) { | ||
450 | if (i < start_blk) { | ||
451 | /* valid log record not found */ | ||
452 | xlog_warn( | ||
453 | "XFS: Log inconsistent (didn't find previous header)"); | ||
454 | ASSERT(0); | ||
455 | error = XFS_ERROR(EIO); | ||
456 | goto out; | ||
457 | } | ||
458 | |||
459 | if (smallmem) { | ||
460 | if ((error = xlog_bread(log, i, 1, bp))) | ||
461 | goto out; | ||
462 | offset = xlog_align(log, i, 1, bp); | ||
463 | } | ||
464 | |||
465 | head = (xlog_rec_header_t *)offset; | ||
466 | |||
467 | if (XLOG_HEADER_MAGIC_NUM == | ||
468 | INT_GET(head->h_magicno, ARCH_CONVERT)) | ||
469 | break; | ||
470 | |||
471 | if (!smallmem) | ||
472 | offset -= BBSIZE; | ||
473 | } | ||
474 | |||
475 | /* | ||
476 | * We hit the beginning of the physical log & still no header. Return | ||
477 | * to caller. If caller can handle a return of -1, then this routine | ||
478 | * will be called again for the end of the physical log. | ||
479 | */ | ||
480 | if (i == -1) { | ||
481 | error = -1; | ||
482 | goto out; | ||
483 | } | ||
484 | |||
485 | /* | ||
486 | * We have the final block of the good log (the first block | ||
487 | * of the log record _before_ the head. So we check the uuid. | ||
488 | */ | ||
489 | if ((error = xlog_header_check_mount(log->l_mp, head))) | ||
490 | goto out; | ||
491 | |||
492 | /* | ||
493 | * We may have found a log record header before we expected one. | ||
494 | * last_blk will be the 1st block # with a given cycle #. We may end | ||
495 | * up reading an entire log record. In this case, we don't want to | ||
496 | * reset last_blk. Only when last_blk points in the middle of a log | ||
497 | * record do we update last_blk. | ||
498 | */ | ||
499 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { | ||
500 | uint h_size = INT_GET(head->h_size, ARCH_CONVERT); | ||
501 | |||
502 | xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; | ||
503 | if (h_size % XLOG_HEADER_CYCLE_SIZE) | ||
504 | xhdrs++; | ||
505 | } else { | ||
506 | xhdrs = 1; | ||
507 | } | ||
508 | |||
509 | if (*last_blk - i + extra_bblks | ||
510 | != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs) | ||
511 | *last_blk = i; | ||
512 | |||
513 | out: | ||
514 | xlog_put_bp(bp); | ||
515 | return error; | ||
516 | } | ||
517 | |||
518 | /* | ||
519 | * Head is defined to be the point of the log where the next log write | ||
520 | * write could go. This means that incomplete LR writes at the end are | ||
521 | * eliminated when calculating the head. We aren't guaranteed that previous | ||
522 | * LR have complete transactions. We only know that a cycle number of | ||
523 | * current cycle number -1 won't be present in the log if we start writing | ||
524 | * from our current block number. | ||
525 | * | ||
526 | * last_blk contains the block number of the first block with a given | ||
527 | * cycle number. | ||
528 | * | ||
529 | * Return: zero if normal, non-zero if error. | ||
530 | */ | ||
531 | int | ||
532 | xlog_find_head( | ||
533 | xlog_t *log, | ||
534 | xfs_daddr_t *return_head_blk) | ||
535 | { | ||
536 | xfs_buf_t *bp; | ||
537 | xfs_caddr_t offset; | ||
538 | xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; | ||
539 | int num_scan_bblks; | ||
540 | uint first_half_cycle, last_half_cycle; | ||
541 | uint stop_on_cycle; | ||
542 | int error, log_bbnum = log->l_logBBsize; | ||
543 | |||
544 | /* Is the end of the log device zeroed? */ | ||
545 | if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { | ||
546 | *return_head_blk = first_blk; | ||
547 | |||
548 | /* Is the whole lot zeroed? */ | ||
549 | if (!first_blk) { | ||
550 | /* Linux XFS shouldn't generate totally zeroed logs - | ||
551 | * mkfs etc write a dummy unmount record to a fresh | ||
552 | * log so we can store the uuid in there | ||
553 | */ | ||
554 | xlog_warn("XFS: totally zeroed log"); | ||
555 | } | ||
556 | |||
557 | return 0; | ||
558 | } else if (error) { | ||
559 | xlog_warn("XFS: empty log check failed"); | ||
560 | return error; | ||
561 | } | ||
562 | |||
563 | first_blk = 0; /* get cycle # of 1st block */ | ||
564 | bp = xlog_get_bp(log, 1); | ||
565 | if (!bp) | ||
566 | return ENOMEM; | ||
567 | if ((error = xlog_bread(log, 0, 1, bp))) | ||
568 | goto bp_err; | ||
569 | offset = xlog_align(log, 0, 1, bp); | ||
570 | first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); | ||
571 | |||
572 | last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ | ||
573 | if ((error = xlog_bread(log, last_blk, 1, bp))) | ||
574 | goto bp_err; | ||
575 | offset = xlog_align(log, last_blk, 1, bp); | ||
576 | last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT); | ||
577 | ASSERT(last_half_cycle != 0); | ||
578 | |||
579 | /* | ||
580 | * If the 1st half cycle number is equal to the last half cycle number, | ||
581 | * then the entire log is stamped with the same cycle number. In this | ||
582 | * case, head_blk can't be set to zero (which makes sense). The below | ||
583 | * math doesn't work out properly with head_blk equal to zero. Instead, | ||
584 | * we set it to log_bbnum which is an invalid block number, but this | ||
585 | * value makes the math correct. If head_blk doesn't changed through | ||
586 | * all the tests below, *head_blk is set to zero at the very end rather | ||
587 | * than log_bbnum. In a sense, log_bbnum and zero are the same block | ||
588 | * in a circular file. | ||
589 | */ | ||
590 | if (first_half_cycle == last_half_cycle) { | ||
591 | /* | ||
592 | * In this case we believe that the entire log should have | ||
593 | * cycle number last_half_cycle. We need to scan backwards | ||
594 | * from the end verifying that there are no holes still | ||
595 | * containing last_half_cycle - 1. If we find such a hole, | ||
596 | * then the start of that hole will be the new head. The | ||
597 | * simple case looks like | ||
598 | * x | x ... | x - 1 | x | ||
599 | * Another case that fits this picture would be | ||
600 | * x | x + 1 | x ... | x | ||
601 | * In this case the head really is somwhere at the end of the | ||
602 | * log, as one of the latest writes at the beginning was | ||
603 | * incomplete. | ||
604 | * One more case is | ||
605 | * x | x + 1 | x ... | x - 1 | x | ||
606 | * This is really the combination of the above two cases, and | ||
607 | * the head has to end up at the start of the x-1 hole at the | ||
608 | * end of the log. | ||
609 | * | ||
610 | * In the 256k log case, we will read from the beginning to the | ||
611 | * end of the log and search for cycle numbers equal to x-1. | ||
612 | * We don't worry about the x+1 blocks that we encounter, | ||
613 | * because we know that they cannot be the head since the log | ||
614 | * started with x. | ||
615 | */ | ||
616 | head_blk = log_bbnum; | ||
617 | stop_on_cycle = last_half_cycle - 1; | ||
618 | } else { | ||
619 | /* | ||
620 | * In this case we want to find the first block with cycle | ||
621 | * number matching last_half_cycle. We expect the log to be | ||
622 | * some variation on | ||
623 | * x + 1 ... | x ... | ||
624 | * The first block with cycle number x (last_half_cycle) will | ||
625 | * be where the new head belongs. First we do a binary search | ||
626 | * for the first occurrence of last_half_cycle. The binary | ||
627 | * search may not be totally accurate, so then we scan back | ||
628 | * from there looking for occurrences of last_half_cycle before | ||
629 | * us. If that backwards scan wraps around the beginning of | ||
630 | * the log, then we look for occurrences of last_half_cycle - 1 | ||
631 | * at the end of the log. The cases we're looking for look | ||
632 | * like | ||
633 | * x + 1 ... | x | x + 1 | x ... | ||
634 | * ^ binary search stopped here | ||
635 | * or | ||
636 | * x + 1 ... | x ... | x - 1 | x | ||
637 | * <---------> less than scan distance | ||
638 | */ | ||
639 | stop_on_cycle = last_half_cycle; | ||
640 | if ((error = xlog_find_cycle_start(log, bp, first_blk, | ||
641 | &head_blk, last_half_cycle))) | ||
642 | goto bp_err; | ||
643 | } | ||
644 | |||
645 | /* | ||
646 | * Now validate the answer. Scan back some number of maximum possible | ||
647 | * blocks and make sure each one has the expected cycle number. The | ||
648 | * maximum is determined by the total possible amount of buffering | ||
649 | * in the in-core log. The following number can be made tighter if | ||
650 | * we actually look at the block size of the filesystem. | ||
651 | */ | ||
652 | num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); | ||
653 | if (head_blk >= num_scan_bblks) { | ||
654 | /* | ||
655 | * We are guaranteed that the entire check can be performed | ||
656 | * in one buffer. | ||
657 | */ | ||
658 | start_blk = head_blk - num_scan_bblks; | ||
659 | if ((error = xlog_find_verify_cycle(log, | ||
660 | start_blk, num_scan_bblks, | ||
661 | stop_on_cycle, &new_blk))) | ||
662 | goto bp_err; | ||
663 | if (new_blk != -1) | ||
664 | head_blk = new_blk; | ||
665 | } else { /* need to read 2 parts of log */ | ||
666 | /* | ||
667 | * We are going to scan backwards in the log in two parts. | ||
668 | * First we scan the physical end of the log. In this part | ||
669 | * of the log, we are looking for blocks with cycle number | ||
670 | * last_half_cycle - 1. | ||
671 | * If we find one, then we know that the log starts there, as | ||
672 | * we've found a hole that didn't get written in going around | ||
673 | * the end of the physical log. The simple case for this is | ||
674 | * x + 1 ... | x ... | x - 1 | x | ||
675 | * <---------> less than scan distance | ||
676 | * If all of the blocks at the end of the log have cycle number | ||
677 | * last_half_cycle, then we check the blocks at the start of | ||
678 | * the log looking for occurrences of last_half_cycle. If we | ||
679 | * find one, then our current estimate for the location of the | ||
680 | * first occurrence of last_half_cycle is wrong and we move | ||
681 | * back to the hole we've found. This case looks like | ||
682 | * x + 1 ... | x | x + 1 | x ... | ||
683 | * ^ binary search stopped here | ||
684 | * Another case we need to handle that only occurs in 256k | ||
685 | * logs is | ||
686 | * x + 1 ... | x ... | x+1 | x ... | ||
687 | * ^ binary search stops here | ||
688 | * In a 256k log, the scan at the end of the log will see the | ||
689 | * x + 1 blocks. We need to skip past those since that is | ||
690 | * certainly not the head of the log. By searching for | ||
691 | * last_half_cycle-1 we accomplish that. | ||
692 | */ | ||
693 | start_blk = log_bbnum - num_scan_bblks + head_blk; | ||
694 | ASSERT(head_blk <= INT_MAX && | ||
695 | (xfs_daddr_t) num_scan_bblks - head_blk >= 0); | ||
696 | if ((error = xlog_find_verify_cycle(log, start_blk, | ||
697 | num_scan_bblks - (int)head_blk, | ||
698 | (stop_on_cycle - 1), &new_blk))) | ||
699 | goto bp_err; | ||
700 | if (new_blk != -1) { | ||
701 | head_blk = new_blk; | ||
702 | goto bad_blk; | ||
703 | } | ||
704 | |||
705 | /* | ||
706 | * Scan beginning of log now. The last part of the physical | ||
707 | * log is good. This scan needs to verify that it doesn't find | ||
708 | * the last_half_cycle. | ||
709 | */ | ||
710 | start_blk = 0; | ||
711 | ASSERT(head_blk <= INT_MAX); | ||
712 | if ((error = xlog_find_verify_cycle(log, | ||
713 | start_blk, (int)head_blk, | ||
714 | stop_on_cycle, &new_blk))) | ||
715 | goto bp_err; | ||
716 | if (new_blk != -1) | ||
717 | head_blk = new_blk; | ||
718 | } | ||
719 | |||
720 | bad_blk: | ||
721 | /* | ||
722 | * Now we need to make sure head_blk is not pointing to a block in | ||
723 | * the middle of a log record. | ||
724 | */ | ||
725 | num_scan_bblks = XLOG_REC_SHIFT(log); | ||
726 | if (head_blk >= num_scan_bblks) { | ||
727 | start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ | ||
728 | |||
729 | /* start ptr at last block ptr before head_blk */ | ||
730 | if ((error = xlog_find_verify_log_record(log, start_blk, | ||
731 | &head_blk, 0)) == -1) { | ||
732 | error = XFS_ERROR(EIO); | ||
733 | goto bp_err; | ||
734 | } else if (error) | ||
735 | goto bp_err; | ||
736 | } else { | ||
737 | start_blk = 0; | ||
738 | ASSERT(head_blk <= INT_MAX); | ||
739 | if ((error = xlog_find_verify_log_record(log, start_blk, | ||
740 | &head_blk, 0)) == -1) { | ||
741 | /* We hit the beginning of the log during our search */ | ||
742 | start_blk = log_bbnum - num_scan_bblks + head_blk; | ||
743 | new_blk = log_bbnum; | ||
744 | ASSERT(start_blk <= INT_MAX && | ||
745 | (xfs_daddr_t) log_bbnum-start_blk >= 0); | ||
746 | ASSERT(head_blk <= INT_MAX); | ||
747 | if ((error = xlog_find_verify_log_record(log, | ||
748 | start_blk, &new_blk, | ||
749 | (int)head_blk)) == -1) { | ||
750 | error = XFS_ERROR(EIO); | ||
751 | goto bp_err; | ||
752 | } else if (error) | ||
753 | goto bp_err; | ||
754 | if (new_blk != log_bbnum) | ||
755 | head_blk = new_blk; | ||
756 | } else if (error) | ||
757 | goto bp_err; | ||
758 | } | ||
759 | |||
760 | xlog_put_bp(bp); | ||
761 | if (head_blk == log_bbnum) | ||
762 | *return_head_blk = 0; | ||
763 | else | ||
764 | *return_head_blk = head_blk; | ||
765 | /* | ||
766 | * When returning here, we have a good block number. Bad block | ||
767 | * means that during a previous crash, we didn't have a clean break | ||
768 | * from cycle number N to cycle number N-1. In this case, we need | ||
769 | * to find the first block with cycle number N-1. | ||
770 | */ | ||
771 | return 0; | ||
772 | |||
773 | bp_err: | ||
774 | xlog_put_bp(bp); | ||
775 | |||
776 | if (error) | ||
777 | xlog_warn("XFS: failed to find log head"); | ||
778 | return error; | ||
779 | } | ||
780 | |||
781 | /* | ||
782 | * Find the sync block number or the tail of the log. | ||
783 | * | ||
784 | * This will be the block number of the last record to have its | ||
785 | * associated buffers synced to disk. Every log record header has | ||
786 | * a sync lsn embedded in it. LSNs hold block numbers, so it is easy | ||
787 | * to get a sync block number. The only concern is to figure out which | ||
788 | * log record header to believe. | ||
789 | * | ||
790 | * The following algorithm uses the log record header with the largest | ||
791 | * lsn. The entire log record does not need to be valid. We only care | ||
792 | * that the header is valid. | ||
793 | * | ||
794 | * We could speed up search by using current head_blk buffer, but it is not | ||
795 | * available. | ||
796 | */ | ||
797 | int | ||
798 | xlog_find_tail( | ||
799 | xlog_t *log, | ||
800 | xfs_daddr_t *head_blk, | ||
801 | xfs_daddr_t *tail_blk, | ||
802 | int readonly) | ||
803 | { | ||
804 | xlog_rec_header_t *rhead; | ||
805 | xlog_op_header_t *op_head; | ||
806 | xfs_caddr_t offset = NULL; | ||
807 | xfs_buf_t *bp; | ||
808 | int error, i, found; | ||
809 | xfs_daddr_t umount_data_blk; | ||
810 | xfs_daddr_t after_umount_blk; | ||
811 | xfs_lsn_t tail_lsn; | ||
812 | int hblks; | ||
813 | |||
814 | found = 0; | ||
815 | |||
816 | /* | ||
817 | * Find previous log record | ||
818 | */ | ||
819 | if ((error = xlog_find_head(log, head_blk))) | ||
820 | return error; | ||
821 | |||
822 | bp = xlog_get_bp(log, 1); | ||
823 | if (!bp) | ||
824 | return ENOMEM; | ||
825 | if (*head_blk == 0) { /* special case */ | ||
826 | if ((error = xlog_bread(log, 0, 1, bp))) | ||
827 | goto bread_err; | ||
828 | offset = xlog_align(log, 0, 1, bp); | ||
829 | if (GET_CYCLE(offset, ARCH_CONVERT) == 0) { | ||
830 | *tail_blk = 0; | ||
831 | /* leave all other log inited values alone */ | ||
832 | goto exit; | ||
833 | } | ||
834 | } | ||
835 | |||
836 | /* | ||
837 | * Search backwards looking for log record header block | ||
838 | */ | ||
839 | ASSERT(*head_blk < INT_MAX); | ||
840 | for (i = (int)(*head_blk) - 1; i >= 0; i--) { | ||
841 | if ((error = xlog_bread(log, i, 1, bp))) | ||
842 | goto bread_err; | ||
843 | offset = xlog_align(log, i, 1, bp); | ||
844 | if (XLOG_HEADER_MAGIC_NUM == | ||
845 | INT_GET(*(uint *)offset, ARCH_CONVERT)) { | ||
846 | found = 1; | ||
847 | break; | ||
848 | } | ||
849 | } | ||
850 | /* | ||
851 | * If we haven't found the log record header block, start looking | ||
852 | * again from the end of the physical log. XXXmiken: There should be | ||
853 | * a check here to make sure we didn't search more than N blocks in | ||
854 | * the previous code. | ||
855 | */ | ||
856 | if (!found) { | ||
857 | for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { | ||
858 | if ((error = xlog_bread(log, i, 1, bp))) | ||
859 | goto bread_err; | ||
860 | offset = xlog_align(log, i, 1, bp); | ||
861 | if (XLOG_HEADER_MAGIC_NUM == | ||
862 | INT_GET(*(uint*)offset, ARCH_CONVERT)) { | ||
863 | found = 2; | ||
864 | break; | ||
865 | } | ||
866 | } | ||
867 | } | ||
868 | if (!found) { | ||
869 | xlog_warn("XFS: xlog_find_tail: couldn't find sync record"); | ||
870 | ASSERT(0); | ||
871 | return XFS_ERROR(EIO); | ||
872 | } | ||
873 | |||
874 | /* find blk_no of tail of log */ | ||
875 | rhead = (xlog_rec_header_t *)offset; | ||
876 | *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT)); | ||
877 | |||
878 | /* | ||
879 | * Reset log values according to the state of the log when we | ||
880 | * crashed. In the case where head_blk == 0, we bump curr_cycle | ||
881 | * one because the next write starts a new cycle rather than | ||
882 | * continuing the cycle of the last good log record. At this | ||
883 | * point we have guaranteed that all partial log records have been | ||
884 | * accounted for. Therefore, we know that the last good log record | ||
885 | * written was complete and ended exactly on the end boundary | ||
886 | * of the physical log. | ||
887 | */ | ||
888 | log->l_prev_block = i; | ||
889 | log->l_curr_block = (int)*head_blk; | ||
890 | log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT); | ||
891 | if (found == 2) | ||
892 | log->l_curr_cycle++; | ||
893 | log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT); | ||
894 | log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT); | ||
895 | log->l_grant_reserve_cycle = log->l_curr_cycle; | ||
896 | log->l_grant_reserve_bytes = BBTOB(log->l_curr_block); | ||
897 | log->l_grant_write_cycle = log->l_curr_cycle; | ||
898 | log->l_grant_write_bytes = BBTOB(log->l_curr_block); | ||
899 | |||
900 | /* | ||
901 | * Look for unmount record. If we find it, then we know there | ||
902 | * was a clean unmount. Since 'i' could be the last block in | ||
903 | * the physical log, we convert to a log block before comparing | ||
904 | * to the head_blk. | ||
905 | * | ||
906 | * Save the current tail lsn to use to pass to | ||
907 | * xlog_clear_stale_blocks() below. We won't want to clear the | ||
908 | * unmount record if there is one, so we pass the lsn of the | ||
909 | * unmount record rather than the block after it. | ||
910 | */ | ||
911 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { | ||
912 | int h_size = INT_GET(rhead->h_size, ARCH_CONVERT); | ||
913 | int h_version = INT_GET(rhead->h_version, ARCH_CONVERT); | ||
914 | |||
915 | if ((h_version & XLOG_VERSION_2) && | ||
916 | (h_size > XLOG_HEADER_CYCLE_SIZE)) { | ||
917 | hblks = h_size / XLOG_HEADER_CYCLE_SIZE; | ||
918 | if (h_size % XLOG_HEADER_CYCLE_SIZE) | ||
919 | hblks++; | ||
920 | } else { | ||
921 | hblks = 1; | ||
922 | } | ||
923 | } else { | ||
924 | hblks = 1; | ||
925 | } | ||
926 | after_umount_blk = (i + hblks + (int) | ||
927 | BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize; | ||
928 | tail_lsn = log->l_tail_lsn; | ||
929 | if (*head_blk == after_umount_blk && | ||
930 | INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) { | ||
931 | umount_data_blk = (i + hblks) % log->l_logBBsize; | ||
932 | if ((error = xlog_bread(log, umount_data_blk, 1, bp))) { | ||
933 | goto bread_err; | ||
934 | } | ||
935 | offset = xlog_align(log, umount_data_blk, 1, bp); | ||
936 | op_head = (xlog_op_header_t *)offset; | ||
937 | if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { | ||
938 | /* | ||
939 | * Set tail and last sync so that newly written | ||
940 | * log records will point recovery to after the | ||
941 | * current unmount record. | ||
942 | */ | ||
943 | ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle, | ||
944 | after_umount_blk); | ||
945 | ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle, | ||
946 | after_umount_blk); | ||
947 | *tail_blk = after_umount_blk; | ||
948 | } | ||
949 | } | ||
950 | |||
951 | /* | ||
952 | * Make sure that there are no blocks in front of the head | ||
953 | * with the same cycle number as the head. This can happen | ||
954 | * because we allow multiple outstanding log writes concurrently, | ||
955 | * and the later writes might make it out before earlier ones. | ||
956 | * | ||
957 | * We use the lsn from before modifying it so that we'll never | ||
958 | * overwrite the unmount record after a clean unmount. | ||
959 | * | ||
960 | * Do this only if we are going to recover the filesystem | ||
961 | * | ||
962 | * NOTE: This used to say "if (!readonly)" | ||
963 | * However on Linux, we can & do recover a read-only filesystem. | ||
964 | * We only skip recovery if NORECOVERY is specified on mount, | ||
965 | * in which case we would not be here. | ||
966 | * | ||
967 | * But... if the -device- itself is readonly, just skip this. | ||
968 | * We can't recover this device anyway, so it won't matter. | ||
969 | */ | ||
970 | if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) { | ||
971 | error = xlog_clear_stale_blocks(log, tail_lsn); | ||
972 | } | ||
973 | |||
974 | bread_err: | ||
975 | exit: | ||
976 | xlog_put_bp(bp); | ||
977 | |||
978 | if (error) | ||
979 | xlog_warn("XFS: failed to locate log tail"); | ||
980 | return error; | ||
981 | } | ||
982 | |||
983 | /* | ||
984 | * Is the log zeroed at all? | ||
985 | * | ||
986 | * The last binary search should be changed to perform an X block read | ||
987 | * once X becomes small enough. You can then search linearly through | ||
988 | * the X blocks. This will cut down on the number of reads we need to do. | ||
989 | * | ||
990 | * If the log is partially zeroed, this routine will pass back the blkno | ||
991 | * of the first block with cycle number 0. It won't have a complete LR | ||
992 | * preceding it. | ||
993 | * | ||
994 | * Return: | ||
995 | * 0 => the log is completely written to | ||
996 | * -1 => use *blk_no as the first block of the log | ||
997 | * >0 => error has occurred | ||
998 | */ | ||
999 | int | ||
1000 | xlog_find_zeroed( | ||
1001 | xlog_t *log, | ||
1002 | xfs_daddr_t *blk_no) | ||
1003 | { | ||
1004 | xfs_buf_t *bp; | ||
1005 | xfs_caddr_t offset; | ||
1006 | uint first_cycle, last_cycle; | ||
1007 | xfs_daddr_t new_blk, last_blk, start_blk; | ||
1008 | xfs_daddr_t num_scan_bblks; | ||
1009 | int error, log_bbnum = log->l_logBBsize; | ||
1010 | |||
1011 | /* check totally zeroed log */ | ||
1012 | bp = xlog_get_bp(log, 1); | ||
1013 | if (!bp) | ||
1014 | return ENOMEM; | ||
1015 | if ((error = xlog_bread(log, 0, 1, bp))) | ||
1016 | goto bp_err; | ||
1017 | offset = xlog_align(log, 0, 1, bp); | ||
1018 | first_cycle = GET_CYCLE(offset, ARCH_CONVERT); | ||
1019 | if (first_cycle == 0) { /* completely zeroed log */ | ||
1020 | *blk_no = 0; | ||
1021 | xlog_put_bp(bp); | ||
1022 | return -1; | ||
1023 | } | ||
1024 | |||
1025 | /* check partially zeroed log */ | ||
1026 | if ((error = xlog_bread(log, log_bbnum-1, 1, bp))) | ||
1027 | goto bp_err; | ||
1028 | offset = xlog_align(log, log_bbnum-1, 1, bp); | ||
1029 | last_cycle = GET_CYCLE(offset, ARCH_CONVERT); | ||
1030 | if (last_cycle != 0) { /* log completely written to */ | ||
1031 | xlog_put_bp(bp); | ||
1032 | return 0; | ||
1033 | } else if (first_cycle != 1) { | ||
1034 | /* | ||
1035 | * If the cycle of the last block is zero, the cycle of | ||
1036 | * the first block must be 1. If it's not, maybe we're | ||
1037 | * not looking at a log... Bail out. | ||
1038 | */ | ||
1039 | xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)"); | ||
1040 | return XFS_ERROR(EINVAL); | ||
1041 | } | ||
1042 | |||
1043 | /* we have a partially zeroed log */ | ||
1044 | last_blk = log_bbnum-1; | ||
1045 | if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) | ||
1046 | goto bp_err; | ||
1047 | |||
1048 | /* | ||
1049 | * Validate the answer. Because there is no way to guarantee that | ||
1050 | * the entire log is made up of log records which are the same size, | ||
1051 | * we scan over the defined maximum blocks. At this point, the maximum | ||
1052 | * is not chosen to mean anything special. XXXmiken | ||
1053 | */ | ||
1054 | num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); | ||
1055 | ASSERT(num_scan_bblks <= INT_MAX); | ||
1056 | |||
1057 | if (last_blk < num_scan_bblks) | ||
1058 | num_scan_bblks = last_blk; | ||
1059 | start_blk = last_blk - num_scan_bblks; | ||
1060 | |||
1061 | /* | ||
1062 | * We search for any instances of cycle number 0 that occur before | ||
1063 | * our current estimate of the head. What we're trying to detect is | ||
1064 | * 1 ... | 0 | 1 | 0... | ||
1065 | * ^ binary search ends here | ||
1066 | */ | ||
1067 | if ((error = xlog_find_verify_cycle(log, start_blk, | ||
1068 | (int)num_scan_bblks, 0, &new_blk))) | ||
1069 | goto bp_err; | ||
1070 | if (new_blk != -1) | ||
1071 | last_blk = new_blk; | ||
1072 | |||
1073 | /* | ||
1074 | * Potentially backup over partial log record write. We don't need | ||
1075 | * to search the end of the log because we know it is zero. | ||
1076 | */ | ||
1077 | if ((error = xlog_find_verify_log_record(log, start_blk, | ||
1078 | &last_blk, 0)) == -1) { | ||
1079 | error = XFS_ERROR(EIO); | ||
1080 | goto bp_err; | ||
1081 | } else if (error) | ||
1082 | goto bp_err; | ||
1083 | |||
1084 | *blk_no = last_blk; | ||
1085 | bp_err: | ||
1086 | xlog_put_bp(bp); | ||
1087 | if (error) | ||
1088 | return error; | ||
1089 | return -1; | ||
1090 | } | ||
1091 | |||
1092 | /* | ||
1093 | * These are simple subroutines used by xlog_clear_stale_blocks() below | ||
1094 | * to initialize a buffer full of empty log record headers and write | ||
1095 | * them into the log. | ||
1096 | */ | ||
1097 | STATIC void | ||
1098 | xlog_add_record( | ||
1099 | xlog_t *log, | ||
1100 | xfs_caddr_t buf, | ||
1101 | int cycle, | ||
1102 | int block, | ||
1103 | int tail_cycle, | ||
1104 | int tail_block) | ||
1105 | { | ||
1106 | xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; | ||
1107 | |||
1108 | memset(buf, 0, BBSIZE); | ||
1109 | INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM); | ||
1110 | INT_SET(recp->h_cycle, ARCH_CONVERT, cycle); | ||
1111 | INT_SET(recp->h_version, ARCH_CONVERT, | ||
1112 | XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1); | ||
1113 | ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block); | ||
1114 | ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block); | ||
1115 | INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT); | ||
1116 | memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); | ||
1117 | } | ||
1118 | |||
1119 | STATIC int | ||
1120 | xlog_write_log_records( | ||
1121 | xlog_t *log, | ||
1122 | int cycle, | ||
1123 | int start_block, | ||
1124 | int blocks, | ||
1125 | int tail_cycle, | ||
1126 | int tail_block) | ||
1127 | { | ||
1128 | xfs_caddr_t offset; | ||
1129 | xfs_buf_t *bp; | ||
1130 | int balign, ealign; | ||
1131 | int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1); | ||
1132 | int end_block = start_block + blocks; | ||
1133 | int bufblks; | ||
1134 | int error = 0; | ||
1135 | int i, j = 0; | ||
1136 | |||
1137 | bufblks = 1 << ffs(blocks); | ||
1138 | while (!(bp = xlog_get_bp(log, bufblks))) { | ||
1139 | bufblks >>= 1; | ||
1140 | if (bufblks <= log->l_sectbb_log) | ||
1141 | return ENOMEM; | ||
1142 | } | ||
1143 | |||
1144 | /* We may need to do a read at the start to fill in part of | ||
1145 | * the buffer in the starting sector not covered by the first | ||
1146 | * write below. | ||
1147 | */ | ||
1148 | balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block); | ||
1149 | if (balign != start_block) { | ||
1150 | if ((error = xlog_bread(log, start_block, 1, bp))) { | ||
1151 | xlog_put_bp(bp); | ||
1152 | return error; | ||
1153 | } | ||
1154 | j = start_block - balign; | ||
1155 | } | ||
1156 | |||
1157 | for (i = start_block; i < end_block; i += bufblks) { | ||
1158 | int bcount, endcount; | ||
1159 | |||
1160 | bcount = min(bufblks, end_block - start_block); | ||
1161 | endcount = bcount - j; | ||
1162 | |||
1163 | /* We may need to do a read at the end to fill in part of | ||
1164 | * the buffer in the final sector not covered by the write. | ||
1165 | * If this is the same sector as the above read, skip it. | ||
1166 | */ | ||
1167 | ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block); | ||
1168 | if (j == 0 && (start_block + endcount > ealign)) { | ||
1169 | offset = XFS_BUF_PTR(bp); | ||
1170 | balign = BBTOB(ealign - start_block); | ||
1171 | XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb)); | ||
1172 | if ((error = xlog_bread(log, ealign, sectbb, bp))) | ||
1173 | break; | ||
1174 | XFS_BUF_SET_PTR(bp, offset, bufblks); | ||
1175 | } | ||
1176 | |||
1177 | offset = xlog_align(log, start_block, endcount, bp); | ||
1178 | for (; j < endcount; j++) { | ||
1179 | xlog_add_record(log, offset, cycle, i+j, | ||
1180 | tail_cycle, tail_block); | ||
1181 | offset += BBSIZE; | ||
1182 | } | ||
1183 | error = xlog_bwrite(log, start_block, endcount, bp); | ||
1184 | if (error) | ||
1185 | break; | ||
1186 | start_block += endcount; | ||
1187 | j = 0; | ||
1188 | } | ||
1189 | xlog_put_bp(bp); | ||
1190 | return error; | ||
1191 | } | ||
1192 | |||
1193 | /* | ||
1194 | * This routine is called to blow away any incomplete log writes out | ||
1195 | * in front of the log head. We do this so that we won't become confused | ||
1196 | * if we come up, write only a little bit more, and then crash again. | ||
1197 | * If we leave the partial log records out there, this situation could | ||
1198 | * cause us to think those partial writes are valid blocks since they | ||
1199 | * have the current cycle number. We get rid of them by overwriting them | ||
1200 | * with empty log records with the old cycle number rather than the | ||
1201 | * current one. | ||
1202 | * | ||
1203 | * The tail lsn is passed in rather than taken from | ||
1204 | * the log so that we will not write over the unmount record after a | ||
1205 | * clean unmount in a 512 block log. Doing so would leave the log without | ||
1206 | * any valid log records in it until a new one was written. If we crashed | ||
1207 | * during that time we would not be able to recover. | ||
1208 | */ | ||
1209 | STATIC int | ||
1210 | xlog_clear_stale_blocks( | ||
1211 | xlog_t *log, | ||
1212 | xfs_lsn_t tail_lsn) | ||
1213 | { | ||
1214 | int tail_cycle, head_cycle; | ||
1215 | int tail_block, head_block; | ||
1216 | int tail_distance, max_distance; | ||
1217 | int distance; | ||
1218 | int error; | ||
1219 | |||
1220 | tail_cycle = CYCLE_LSN(tail_lsn); | ||
1221 | tail_block = BLOCK_LSN(tail_lsn); | ||
1222 | head_cycle = log->l_curr_cycle; | ||
1223 | head_block = log->l_curr_block; | ||
1224 | |||
1225 | /* | ||
1226 | * Figure out the distance between the new head of the log | ||
1227 | * and the tail. We want to write over any blocks beyond the | ||
1228 | * head that we may have written just before the crash, but | ||
1229 | * we don't want to overwrite the tail of the log. | ||
1230 | */ | ||
1231 | if (head_cycle == tail_cycle) { | ||
1232 | /* | ||
1233 | * The tail is behind the head in the physical log, | ||
1234 | * so the distance from the head to the tail is the | ||
1235 | * distance from the head to the end of the log plus | ||
1236 | * the distance from the beginning of the log to the | ||
1237 | * tail. | ||
1238 | */ | ||
1239 | if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { | ||
1240 | XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", | ||
1241 | XFS_ERRLEVEL_LOW, log->l_mp); | ||
1242 | return XFS_ERROR(EFSCORRUPTED); | ||
1243 | } | ||
1244 | tail_distance = tail_block + (log->l_logBBsize - head_block); | ||
1245 | } else { | ||
1246 | /* | ||
1247 | * The head is behind the tail in the physical log, | ||
1248 | * so the distance from the head to the tail is just | ||
1249 | * the tail block minus the head block. | ||
1250 | */ | ||
1251 | if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ | ||
1252 | XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", | ||
1253 | XFS_ERRLEVEL_LOW, log->l_mp); | ||
1254 | return XFS_ERROR(EFSCORRUPTED); | ||
1255 | } | ||
1256 | tail_distance = tail_block - head_block; | ||
1257 | } | ||
1258 | |||
1259 | /* | ||
1260 | * If the head is right up against the tail, we can't clear | ||
1261 | * anything. | ||
1262 | */ | ||
1263 | if (tail_distance <= 0) { | ||
1264 | ASSERT(tail_distance == 0); | ||
1265 | return 0; | ||
1266 | } | ||
1267 | |||
1268 | max_distance = XLOG_TOTAL_REC_SHIFT(log); | ||
1269 | /* | ||
1270 | * Take the smaller of the maximum amount of outstanding I/O | ||
1271 | * we could have and the distance to the tail to clear out. | ||
1272 | * We take the smaller so that we don't overwrite the tail and | ||
1273 | * we don't waste all day writing from the head to the tail | ||
1274 | * for no reason. | ||
1275 | */ | ||
1276 | max_distance = MIN(max_distance, tail_distance); | ||
1277 | |||
1278 | if ((head_block + max_distance) <= log->l_logBBsize) { | ||
1279 | /* | ||
1280 | * We can stomp all the blocks we need to without | ||
1281 | * wrapping around the end of the log. Just do it | ||
1282 | * in a single write. Use the cycle number of the | ||
1283 | * current cycle minus one so that the log will look like: | ||
1284 | * n ... | n - 1 ... | ||
1285 | */ | ||
1286 | error = xlog_write_log_records(log, (head_cycle - 1), | ||
1287 | head_block, max_distance, tail_cycle, | ||
1288 | tail_block); | ||
1289 | if (error) | ||
1290 | return error; | ||
1291 | } else { | ||
1292 | /* | ||
1293 | * We need to wrap around the end of the physical log in | ||
1294 | * order to clear all the blocks. Do it in two separate | ||
1295 | * I/Os. The first write should be from the head to the | ||
1296 | * end of the physical log, and it should use the current | ||
1297 | * cycle number minus one just like above. | ||
1298 | */ | ||
1299 | distance = log->l_logBBsize - head_block; | ||
1300 | error = xlog_write_log_records(log, (head_cycle - 1), | ||
1301 | head_block, distance, tail_cycle, | ||
1302 | tail_block); | ||
1303 | |||
1304 | if (error) | ||
1305 | return error; | ||
1306 | |||
1307 | /* | ||
1308 | * Now write the blocks at the start of the physical log. | ||
1309 | * This writes the remainder of the blocks we want to clear. | ||
1310 | * It uses the current cycle number since we're now on the | ||
1311 | * same cycle as the head so that we get: | ||
1312 | * n ... n ... | n - 1 ... | ||
1313 | * ^^^^^ blocks we're writing | ||
1314 | */ | ||
1315 | distance = max_distance - (log->l_logBBsize - head_block); | ||
1316 | error = xlog_write_log_records(log, head_cycle, 0, distance, | ||
1317 | tail_cycle, tail_block); | ||
1318 | if (error) | ||
1319 | return error; | ||
1320 | } | ||
1321 | |||
1322 | return 0; | ||
1323 | } | ||
1324 | |||
1325 | /****************************************************************************** | ||
1326 | * | ||
1327 | * Log recover routines | ||
1328 | * | ||
1329 | ****************************************************************************** | ||
1330 | */ | ||
1331 | |||
1332 | STATIC xlog_recover_t * | ||
1333 | xlog_recover_find_tid( | ||
1334 | xlog_recover_t *q, | ||
1335 | xlog_tid_t tid) | ||
1336 | { | ||
1337 | xlog_recover_t *p = q; | ||
1338 | |||
1339 | while (p != NULL) { | ||
1340 | if (p->r_log_tid == tid) | ||
1341 | break; | ||
1342 | p = p->r_next; | ||
1343 | } | ||
1344 | return p; | ||
1345 | } | ||
1346 | |||
1347 | STATIC void | ||
1348 | xlog_recover_put_hashq( | ||
1349 | xlog_recover_t **q, | ||
1350 | xlog_recover_t *trans) | ||
1351 | { | ||
1352 | trans->r_next = *q; | ||
1353 | *q = trans; | ||
1354 | } | ||
1355 | |||
1356 | STATIC void | ||
1357 | xlog_recover_add_item( | ||
1358 | xlog_recover_item_t **itemq) | ||
1359 | { | ||
1360 | xlog_recover_item_t *item; | ||
1361 | |||
1362 | item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); | ||
1363 | xlog_recover_insert_item_backq(itemq, item); | ||
1364 | } | ||
1365 | |||
1366 | STATIC int | ||
1367 | xlog_recover_add_to_cont_trans( | ||
1368 | xlog_recover_t *trans, | ||
1369 | xfs_caddr_t dp, | ||
1370 | int len) | ||
1371 | { | ||
1372 | xlog_recover_item_t *item; | ||
1373 | xfs_caddr_t ptr, old_ptr; | ||
1374 | int old_len; | ||
1375 | |||
1376 | item = trans->r_itemq; | ||
1377 | if (item == 0) { | ||
1378 | /* finish copying rest of trans header */ | ||
1379 | xlog_recover_add_item(&trans->r_itemq); | ||
1380 | ptr = (xfs_caddr_t) &trans->r_theader + | ||
1381 | sizeof(xfs_trans_header_t) - len; | ||
1382 | memcpy(ptr, dp, len); /* d, s, l */ | ||
1383 | return 0; | ||
1384 | } | ||
1385 | item = item->ri_prev; | ||
1386 | |||
1387 | old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; | ||
1388 | old_len = item->ri_buf[item->ri_cnt-1].i_len; | ||
1389 | |||
1390 | ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0); | ||
1391 | memcpy(&ptr[old_len], dp, len); /* d, s, l */ | ||
1392 | item->ri_buf[item->ri_cnt-1].i_len += len; | ||
1393 | item->ri_buf[item->ri_cnt-1].i_addr = ptr; | ||
1394 | return 0; | ||
1395 | } | ||
1396 | |||
1397 | /* | ||
1398 | * The next region to add is the start of a new region. It could be | ||
1399 | * a whole region or it could be the first part of a new region. Because | ||
1400 | * of this, the assumption here is that the type and size fields of all | ||
1401 | * format structures fit into the first 32 bits of the structure. | ||
1402 | * | ||
1403 | * This works because all regions must be 32 bit aligned. Therefore, we | ||
1404 | * either have both fields or we have neither field. In the case we have | ||
1405 | * neither field, the data part of the region is zero length. We only have | ||
1406 | * a log_op_header and can throw away the header since a new one will appear | ||
1407 | * later. If we have at least 4 bytes, then we can determine how many regions | ||
1408 | * will appear in the current log item. | ||
1409 | */ | ||
1410 | STATIC int | ||
1411 | xlog_recover_add_to_trans( | ||
1412 | xlog_recover_t *trans, | ||
1413 | xfs_caddr_t dp, | ||
1414 | int len) | ||
1415 | { | ||
1416 | xfs_inode_log_format_t *in_f; /* any will do */ | ||
1417 | xlog_recover_item_t *item; | ||
1418 | xfs_caddr_t ptr; | ||
1419 | |||
1420 | if (!len) | ||
1421 | return 0; | ||
1422 | item = trans->r_itemq; | ||
1423 | if (item == 0) { | ||
1424 | ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC); | ||
1425 | if (len == sizeof(xfs_trans_header_t)) | ||
1426 | xlog_recover_add_item(&trans->r_itemq); | ||
1427 | memcpy(&trans->r_theader, dp, len); /* d, s, l */ | ||
1428 | return 0; | ||
1429 | } | ||
1430 | |||
1431 | ptr = kmem_alloc(len, KM_SLEEP); | ||
1432 | memcpy(ptr, dp, len); | ||
1433 | in_f = (xfs_inode_log_format_t *)ptr; | ||
1434 | |||
1435 | if (item->ri_prev->ri_total != 0 && | ||
1436 | item->ri_prev->ri_total == item->ri_prev->ri_cnt) { | ||
1437 | xlog_recover_add_item(&trans->r_itemq); | ||
1438 | } | ||
1439 | item = trans->r_itemq; | ||
1440 | item = item->ri_prev; | ||
1441 | |||
1442 | if (item->ri_total == 0) { /* first region to be added */ | ||
1443 | item->ri_total = in_f->ilf_size; | ||
1444 | ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM); | ||
1445 | item->ri_buf = kmem_zalloc((item->ri_total * | ||
1446 | sizeof(xfs_log_iovec_t)), KM_SLEEP); | ||
1447 | } | ||
1448 | ASSERT(item->ri_total > item->ri_cnt); | ||
1449 | /* Description region is ri_buf[0] */ | ||
1450 | item->ri_buf[item->ri_cnt].i_addr = ptr; | ||
1451 | item->ri_buf[item->ri_cnt].i_len = len; | ||
1452 | item->ri_cnt++; | ||
1453 | return 0; | ||
1454 | } | ||
1455 | |||
1456 | STATIC void | ||
1457 | xlog_recover_new_tid( | ||
1458 | xlog_recover_t **q, | ||
1459 | xlog_tid_t tid, | ||
1460 | xfs_lsn_t lsn) | ||
1461 | { | ||
1462 | xlog_recover_t *trans; | ||
1463 | |||
1464 | trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); | ||
1465 | trans->r_log_tid = tid; | ||
1466 | trans->r_lsn = lsn; | ||
1467 | xlog_recover_put_hashq(q, trans); | ||
1468 | } | ||
1469 | |||
1470 | STATIC int | ||
1471 | xlog_recover_unlink_tid( | ||
1472 | xlog_recover_t **q, | ||
1473 | xlog_recover_t *trans) | ||
1474 | { | ||
1475 | xlog_recover_t *tp; | ||
1476 | int found = 0; | ||
1477 | |||
1478 | ASSERT(trans != 0); | ||
1479 | if (trans == *q) { | ||
1480 | *q = (*q)->r_next; | ||
1481 | } else { | ||
1482 | tp = *q; | ||
1483 | while (tp != 0) { | ||
1484 | if (tp->r_next == trans) { | ||
1485 | found = 1; | ||
1486 | break; | ||
1487 | } | ||
1488 | tp = tp->r_next; | ||
1489 | } | ||
1490 | if (!found) { | ||
1491 | xlog_warn( | ||
1492 | "XFS: xlog_recover_unlink_tid: trans not found"); | ||
1493 | ASSERT(0); | ||
1494 | return XFS_ERROR(EIO); | ||
1495 | } | ||
1496 | tp->r_next = tp->r_next->r_next; | ||
1497 | } | ||
1498 | return 0; | ||
1499 | } | ||
1500 | |||
1501 | STATIC void | ||
1502 | xlog_recover_insert_item_backq( | ||
1503 | xlog_recover_item_t **q, | ||
1504 | xlog_recover_item_t *item) | ||
1505 | { | ||
1506 | if (*q == 0) { | ||
1507 | item->ri_prev = item->ri_next = item; | ||
1508 | *q = item; | ||
1509 | } else { | ||
1510 | item->ri_next = *q; | ||
1511 | item->ri_prev = (*q)->ri_prev; | ||
1512 | (*q)->ri_prev = item; | ||
1513 | item->ri_prev->ri_next = item; | ||
1514 | } | ||
1515 | } | ||
1516 | |||
1517 | STATIC void | ||
1518 | xlog_recover_insert_item_frontq( | ||
1519 | xlog_recover_item_t **q, | ||
1520 | xlog_recover_item_t *item) | ||
1521 | { | ||
1522 | xlog_recover_insert_item_backq(q, item); | ||
1523 | *q = item; | ||
1524 | } | ||
1525 | |||
1526 | STATIC int | ||
1527 | xlog_recover_reorder_trans( | ||
1528 | xlog_t *log, | ||
1529 | xlog_recover_t *trans) | ||
1530 | { | ||
1531 | xlog_recover_item_t *first_item, *itemq, *itemq_next; | ||
1532 | xfs_buf_log_format_t *buf_f; | ||
1533 | xfs_buf_log_format_v1_t *obuf_f; | ||
1534 | ushort flags = 0; | ||
1535 | |||
1536 | first_item = itemq = trans->r_itemq; | ||
1537 | trans->r_itemq = NULL; | ||
1538 | do { | ||
1539 | itemq_next = itemq->ri_next; | ||
1540 | buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr; | ||
1541 | switch (ITEM_TYPE(itemq)) { | ||
1542 | case XFS_LI_BUF: | ||
1543 | flags = buf_f->blf_flags; | ||
1544 | break; | ||
1545 | case XFS_LI_6_1_BUF: | ||
1546 | case XFS_LI_5_3_BUF: | ||
1547 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; | ||
1548 | flags = obuf_f->blf_flags; | ||
1549 | break; | ||
1550 | } | ||
1551 | |||
1552 | switch (ITEM_TYPE(itemq)) { | ||
1553 | case XFS_LI_BUF: | ||
1554 | case XFS_LI_6_1_BUF: | ||
1555 | case XFS_LI_5_3_BUF: | ||
1556 | if (!(flags & XFS_BLI_CANCEL)) { | ||
1557 | xlog_recover_insert_item_frontq(&trans->r_itemq, | ||
1558 | itemq); | ||
1559 | break; | ||
1560 | } | ||
1561 | case XFS_LI_INODE: | ||
1562 | case XFS_LI_6_1_INODE: | ||
1563 | case XFS_LI_5_3_INODE: | ||
1564 | case XFS_LI_DQUOT: | ||
1565 | case XFS_LI_QUOTAOFF: | ||
1566 | case XFS_LI_EFD: | ||
1567 | case XFS_LI_EFI: | ||
1568 | xlog_recover_insert_item_backq(&trans->r_itemq, itemq); | ||
1569 | break; | ||
1570 | default: | ||
1571 | xlog_warn( | ||
1572 | "XFS: xlog_recover_reorder_trans: unrecognized type of log operation"); | ||
1573 | ASSERT(0); | ||
1574 | return XFS_ERROR(EIO); | ||
1575 | } | ||
1576 | itemq = itemq_next; | ||
1577 | } while (first_item != itemq); | ||
1578 | return 0; | ||
1579 | } | ||
1580 | |||
1581 | /* | ||
1582 | * Build up the table of buf cancel records so that we don't replay | ||
1583 | * cancelled data in the second pass. For buffer records that are | ||
1584 | * not cancel records, there is nothing to do here so we just return. | ||
1585 | * | ||
1586 | * If we get a cancel record which is already in the table, this indicates | ||
1587 | * that the buffer was cancelled multiple times. In order to ensure | ||
1588 | * that during pass 2 we keep the record in the table until we reach its | ||
1589 | * last occurrence in the log, we keep a reference count in the cancel | ||
1590 | * record in the table to tell us how many times we expect to see this | ||
1591 | * record during the second pass. | ||
1592 | */ | ||
1593 | STATIC void | ||
1594 | xlog_recover_do_buffer_pass1( | ||
1595 | xlog_t *log, | ||
1596 | xfs_buf_log_format_t *buf_f) | ||
1597 | { | ||
1598 | xfs_buf_cancel_t *bcp; | ||
1599 | xfs_buf_cancel_t *nextp; | ||
1600 | xfs_buf_cancel_t *prevp; | ||
1601 | xfs_buf_cancel_t **bucket; | ||
1602 | xfs_buf_log_format_v1_t *obuf_f; | ||
1603 | xfs_daddr_t blkno = 0; | ||
1604 | uint len = 0; | ||
1605 | ushort flags = 0; | ||
1606 | |||
1607 | switch (buf_f->blf_type) { | ||
1608 | case XFS_LI_BUF: | ||
1609 | blkno = buf_f->blf_blkno; | ||
1610 | len = buf_f->blf_len; | ||
1611 | flags = buf_f->blf_flags; | ||
1612 | break; | ||
1613 | case XFS_LI_6_1_BUF: | ||
1614 | case XFS_LI_5_3_BUF: | ||
1615 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; | ||
1616 | blkno = (xfs_daddr_t) obuf_f->blf_blkno; | ||
1617 | len = obuf_f->blf_len; | ||
1618 | flags = obuf_f->blf_flags; | ||
1619 | break; | ||
1620 | } | ||
1621 | |||
1622 | /* | ||
1623 | * If this isn't a cancel buffer item, then just return. | ||
1624 | */ | ||
1625 | if (!(flags & XFS_BLI_CANCEL)) | ||
1626 | return; | ||
1627 | |||
1628 | /* | ||
1629 | * Insert an xfs_buf_cancel record into the hash table of | ||
1630 | * them. If there is already an identical record, bump | ||
1631 | * its reference count. | ||
1632 | */ | ||
1633 | bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % | ||
1634 | XLOG_BC_TABLE_SIZE]; | ||
1635 | /* | ||
1636 | * If the hash bucket is empty then just insert a new record into | ||
1637 | * the bucket. | ||
1638 | */ | ||
1639 | if (*bucket == NULL) { | ||
1640 | bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), | ||
1641 | KM_SLEEP); | ||
1642 | bcp->bc_blkno = blkno; | ||
1643 | bcp->bc_len = len; | ||
1644 | bcp->bc_refcount = 1; | ||
1645 | bcp->bc_next = NULL; | ||
1646 | *bucket = bcp; | ||
1647 | return; | ||
1648 | } | ||
1649 | |||
1650 | /* | ||
1651 | * The hash bucket is not empty, so search for duplicates of our | ||
1652 | * record. If we find one them just bump its refcount. If not | ||
1653 | * then add us at the end of the list. | ||
1654 | */ | ||
1655 | prevp = NULL; | ||
1656 | nextp = *bucket; | ||
1657 | while (nextp != NULL) { | ||
1658 | if (nextp->bc_blkno == blkno && nextp->bc_len == len) { | ||
1659 | nextp->bc_refcount++; | ||
1660 | return; | ||
1661 | } | ||
1662 | prevp = nextp; | ||
1663 | nextp = nextp->bc_next; | ||
1664 | } | ||
1665 | ASSERT(prevp != NULL); | ||
1666 | bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t), | ||
1667 | KM_SLEEP); | ||
1668 | bcp->bc_blkno = blkno; | ||
1669 | bcp->bc_len = len; | ||
1670 | bcp->bc_refcount = 1; | ||
1671 | bcp->bc_next = NULL; | ||
1672 | prevp->bc_next = bcp; | ||
1673 | } | ||
1674 | |||
1675 | /* | ||
1676 | * Check to see whether the buffer being recovered has a corresponding | ||
1677 | * entry in the buffer cancel record table. If it does then return 1 | ||
1678 | * so that it will be cancelled, otherwise return 0. If the buffer is | ||
1679 | * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement | ||
1680 | * the refcount on the entry in the table and remove it from the table | ||
1681 | * if this is the last reference. | ||
1682 | * | ||
1683 | * We remove the cancel record from the table when we encounter its | ||
1684 | * last occurrence in the log so that if the same buffer is re-used | ||
1685 | * again after its last cancellation we actually replay the changes | ||
1686 | * made at that point. | ||
1687 | */ | ||
1688 | STATIC int | ||
1689 | xlog_check_buffer_cancelled( | ||
1690 | xlog_t *log, | ||
1691 | xfs_daddr_t blkno, | ||
1692 | uint len, | ||
1693 | ushort flags) | ||
1694 | { | ||
1695 | xfs_buf_cancel_t *bcp; | ||
1696 | xfs_buf_cancel_t *prevp; | ||
1697 | xfs_buf_cancel_t **bucket; | ||
1698 | |||
1699 | if (log->l_buf_cancel_table == NULL) { | ||
1700 | /* | ||
1701 | * There is nothing in the table built in pass one, | ||
1702 | * so this buffer must not be cancelled. | ||
1703 | */ | ||
1704 | ASSERT(!(flags & XFS_BLI_CANCEL)); | ||
1705 | return 0; | ||
1706 | } | ||
1707 | |||
1708 | bucket = &log->l_buf_cancel_table[(__uint64_t)blkno % | ||
1709 | XLOG_BC_TABLE_SIZE]; | ||
1710 | bcp = *bucket; | ||
1711 | if (bcp == NULL) { | ||
1712 | /* | ||
1713 | * There is no corresponding entry in the table built | ||
1714 | * in pass one, so this buffer has not been cancelled. | ||
1715 | */ | ||
1716 | ASSERT(!(flags & XFS_BLI_CANCEL)); | ||
1717 | return 0; | ||
1718 | } | ||
1719 | |||
1720 | /* | ||
1721 | * Search for an entry in the buffer cancel table that | ||
1722 | * matches our buffer. | ||
1723 | */ | ||
1724 | prevp = NULL; | ||
1725 | while (bcp != NULL) { | ||
1726 | if (bcp->bc_blkno == blkno && bcp->bc_len == len) { | ||
1727 | /* | ||
1728 | * We've go a match, so return 1 so that the | ||
1729 | * recovery of this buffer is cancelled. | ||
1730 | * If this buffer is actually a buffer cancel | ||
1731 | * log item, then decrement the refcount on the | ||
1732 | * one in the table and remove it if this is the | ||
1733 | * last reference. | ||
1734 | */ | ||
1735 | if (flags & XFS_BLI_CANCEL) { | ||
1736 | bcp->bc_refcount--; | ||
1737 | if (bcp->bc_refcount == 0) { | ||
1738 | if (prevp == NULL) { | ||
1739 | *bucket = bcp->bc_next; | ||
1740 | } else { | ||
1741 | prevp->bc_next = bcp->bc_next; | ||
1742 | } | ||
1743 | kmem_free(bcp, | ||
1744 | sizeof(xfs_buf_cancel_t)); | ||
1745 | } | ||
1746 | } | ||
1747 | return 1; | ||
1748 | } | ||
1749 | prevp = bcp; | ||
1750 | bcp = bcp->bc_next; | ||
1751 | } | ||
1752 | /* | ||
1753 | * We didn't find a corresponding entry in the table, so | ||
1754 | * return 0 so that the buffer is NOT cancelled. | ||
1755 | */ | ||
1756 | ASSERT(!(flags & XFS_BLI_CANCEL)); | ||
1757 | return 0; | ||
1758 | } | ||
1759 | |||
1760 | STATIC int | ||
1761 | xlog_recover_do_buffer_pass2( | ||
1762 | xlog_t *log, | ||
1763 | xfs_buf_log_format_t *buf_f) | ||
1764 | { | ||
1765 | xfs_buf_log_format_v1_t *obuf_f; | ||
1766 | xfs_daddr_t blkno = 0; | ||
1767 | ushort flags = 0; | ||
1768 | uint len = 0; | ||
1769 | |||
1770 | switch (buf_f->blf_type) { | ||
1771 | case XFS_LI_BUF: | ||
1772 | blkno = buf_f->blf_blkno; | ||
1773 | flags = buf_f->blf_flags; | ||
1774 | len = buf_f->blf_len; | ||
1775 | break; | ||
1776 | case XFS_LI_6_1_BUF: | ||
1777 | case XFS_LI_5_3_BUF: | ||
1778 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; | ||
1779 | blkno = (xfs_daddr_t) obuf_f->blf_blkno; | ||
1780 | flags = obuf_f->blf_flags; | ||
1781 | len = (xfs_daddr_t) obuf_f->blf_len; | ||
1782 | break; | ||
1783 | } | ||
1784 | |||
1785 | return xlog_check_buffer_cancelled(log, blkno, len, flags); | ||
1786 | } | ||
1787 | |||
1788 | /* | ||
1789 | * Perform recovery for a buffer full of inodes. In these buffers, | ||
1790 | * the only data which should be recovered is that which corresponds | ||
1791 | * to the di_next_unlinked pointers in the on disk inode structures. | ||
1792 | * The rest of the data for the inodes is always logged through the | ||
1793 | * inodes themselves rather than the inode buffer and is recovered | ||
1794 | * in xlog_recover_do_inode_trans(). | ||
1795 | * | ||
1796 | * The only time when buffers full of inodes are fully recovered is | ||
1797 | * when the buffer is full of newly allocated inodes. In this case | ||
1798 | * the buffer will not be marked as an inode buffer and so will be | ||
1799 | * sent to xlog_recover_do_reg_buffer() below during recovery. | ||
1800 | */ | ||
1801 | STATIC int | ||
1802 | xlog_recover_do_inode_buffer( | ||
1803 | xfs_mount_t *mp, | ||
1804 | xlog_recover_item_t *item, | ||
1805 | xfs_buf_t *bp, | ||
1806 | xfs_buf_log_format_t *buf_f) | ||
1807 | { | ||
1808 | int i; | ||
1809 | int item_index; | ||
1810 | int bit; | ||
1811 | int nbits; | ||
1812 | int reg_buf_offset; | ||
1813 | int reg_buf_bytes; | ||
1814 | int next_unlinked_offset; | ||
1815 | int inodes_per_buf; | ||
1816 | xfs_agino_t *logged_nextp; | ||
1817 | xfs_agino_t *buffer_nextp; | ||
1818 | xfs_buf_log_format_v1_t *obuf_f; | ||
1819 | unsigned int *data_map = NULL; | ||
1820 | unsigned int map_size = 0; | ||
1821 | |||
1822 | switch (buf_f->blf_type) { | ||
1823 | case XFS_LI_BUF: | ||
1824 | data_map = buf_f->blf_data_map; | ||
1825 | map_size = buf_f->blf_map_size; | ||
1826 | break; | ||
1827 | case XFS_LI_6_1_BUF: | ||
1828 | case XFS_LI_5_3_BUF: | ||
1829 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; | ||
1830 | data_map = obuf_f->blf_data_map; | ||
1831 | map_size = obuf_f->blf_map_size; | ||
1832 | break; | ||
1833 | } | ||
1834 | /* | ||
1835 | * Set the variables corresponding to the current region to | ||
1836 | * 0 so that we'll initialize them on the first pass through | ||
1837 | * the loop. | ||
1838 | */ | ||
1839 | reg_buf_offset = 0; | ||
1840 | reg_buf_bytes = 0; | ||
1841 | bit = 0; | ||
1842 | nbits = 0; | ||
1843 | item_index = 0; | ||
1844 | inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog; | ||
1845 | for (i = 0; i < inodes_per_buf; i++) { | ||
1846 | next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + | ||
1847 | offsetof(xfs_dinode_t, di_next_unlinked); | ||
1848 | |||
1849 | while (next_unlinked_offset >= | ||
1850 | (reg_buf_offset + reg_buf_bytes)) { | ||
1851 | /* | ||
1852 | * The next di_next_unlinked field is beyond | ||
1853 | * the current logged region. Find the next | ||
1854 | * logged region that contains or is beyond | ||
1855 | * the current di_next_unlinked field. | ||
1856 | */ | ||
1857 | bit += nbits; | ||
1858 | bit = xfs_next_bit(data_map, map_size, bit); | ||
1859 | |||
1860 | /* | ||
1861 | * If there are no more logged regions in the | ||
1862 | * buffer, then we're done. | ||
1863 | */ | ||
1864 | if (bit == -1) { | ||
1865 | return 0; | ||
1866 | } | ||
1867 | |||
1868 | nbits = xfs_contig_bits(data_map, map_size, | ||
1869 | bit); | ||
1870 | ASSERT(nbits > 0); | ||
1871 | reg_buf_offset = bit << XFS_BLI_SHIFT; | ||
1872 | reg_buf_bytes = nbits << XFS_BLI_SHIFT; | ||
1873 | item_index++; | ||
1874 | } | ||
1875 | |||
1876 | /* | ||
1877 | * If the current logged region starts after the current | ||
1878 | * di_next_unlinked field, then move on to the next | ||
1879 | * di_next_unlinked field. | ||
1880 | */ | ||
1881 | if (next_unlinked_offset < reg_buf_offset) { | ||
1882 | continue; | ||
1883 | } | ||
1884 | |||
1885 | ASSERT(item->ri_buf[item_index].i_addr != NULL); | ||
1886 | ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0); | ||
1887 | ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp)); | ||
1888 | |||
1889 | /* | ||
1890 | * The current logged region contains a copy of the | ||
1891 | * current di_next_unlinked field. Extract its value | ||
1892 | * and copy it to the buffer copy. | ||
1893 | */ | ||
1894 | logged_nextp = (xfs_agino_t *) | ||
1895 | ((char *)(item->ri_buf[item_index].i_addr) + | ||
1896 | (next_unlinked_offset - reg_buf_offset)); | ||
1897 | if (unlikely(*logged_nextp == 0)) { | ||
1898 | xfs_fs_cmn_err(CE_ALERT, mp, | ||
1899 | "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field", | ||
1900 | item, bp); | ||
1901 | XFS_ERROR_REPORT("xlog_recover_do_inode_buf", | ||
1902 | XFS_ERRLEVEL_LOW, mp); | ||
1903 | return XFS_ERROR(EFSCORRUPTED); | ||
1904 | } | ||
1905 | |||
1906 | buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, | ||
1907 | next_unlinked_offset); | ||
1908 | INT_SET(*buffer_nextp, ARCH_CONVERT, *logged_nextp); | ||
1909 | } | ||
1910 | |||
1911 | return 0; | ||
1912 | } | ||
1913 | |||
1914 | /* | ||
1915 | * Perform a 'normal' buffer recovery. Each logged region of the | ||
1916 | * buffer should be copied over the corresponding region in the | ||
1917 | * given buffer. The bitmap in the buf log format structure indicates | ||
1918 | * where to place the logged data. | ||
1919 | */ | ||
1920 | /*ARGSUSED*/ | ||
1921 | STATIC void | ||
1922 | xlog_recover_do_reg_buffer( | ||
1923 | xfs_mount_t *mp, | ||
1924 | xlog_recover_item_t *item, | ||
1925 | xfs_buf_t *bp, | ||
1926 | xfs_buf_log_format_t *buf_f) | ||
1927 | { | ||
1928 | int i; | ||
1929 | int bit; | ||
1930 | int nbits; | ||
1931 | xfs_buf_log_format_v1_t *obuf_f; | ||
1932 | unsigned int *data_map = NULL; | ||
1933 | unsigned int map_size = 0; | ||
1934 | int error; | ||
1935 | |||
1936 | switch (buf_f->blf_type) { | ||
1937 | case XFS_LI_BUF: | ||
1938 | data_map = buf_f->blf_data_map; | ||
1939 | map_size = buf_f->blf_map_size; | ||
1940 | break; | ||
1941 | case XFS_LI_6_1_BUF: | ||
1942 | case XFS_LI_5_3_BUF: | ||
1943 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; | ||
1944 | data_map = obuf_f->blf_data_map; | ||
1945 | map_size = obuf_f->blf_map_size; | ||
1946 | break; | ||
1947 | } | ||
1948 | bit = 0; | ||
1949 | i = 1; /* 0 is the buf format structure */ | ||
1950 | while (1) { | ||
1951 | bit = xfs_next_bit(data_map, map_size, bit); | ||
1952 | if (bit == -1) | ||
1953 | break; | ||
1954 | nbits = xfs_contig_bits(data_map, map_size, bit); | ||
1955 | ASSERT(nbits > 0); | ||
1956 | ASSERT(item->ri_buf[i].i_addr != 0); | ||
1957 | ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0); | ||
1958 | ASSERT(XFS_BUF_COUNT(bp) >= | ||
1959 | ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT)); | ||
1960 | |||
1961 | /* | ||
1962 | * Do a sanity check if this is a dquot buffer. Just checking | ||
1963 | * the first dquot in the buffer should do. XXXThis is | ||
1964 | * probably a good thing to do for other buf types also. | ||
1965 | */ | ||
1966 | error = 0; | ||
1967 | if (buf_f->blf_flags & (XFS_BLI_UDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) { | ||
1968 | error = xfs_qm_dqcheck((xfs_disk_dquot_t *) | ||
1969 | item->ri_buf[i].i_addr, | ||
1970 | -1, 0, XFS_QMOPT_DOWARN, | ||
1971 | "dquot_buf_recover"); | ||
1972 | } | ||
1973 | if (!error) | ||
1974 | memcpy(xfs_buf_offset(bp, | ||
1975 | (uint)bit << XFS_BLI_SHIFT), /* dest */ | ||
1976 | item->ri_buf[i].i_addr, /* source */ | ||
1977 | nbits<<XFS_BLI_SHIFT); /* length */ | ||
1978 | i++; | ||
1979 | bit += nbits; | ||
1980 | } | ||
1981 | |||
1982 | /* Shouldn't be any more regions */ | ||
1983 | ASSERT(i == item->ri_total); | ||
1984 | } | ||
1985 | |||
1986 | /* | ||
1987 | * Do some primitive error checking on ondisk dquot data structures. | ||
1988 | */ | ||
1989 | int | ||
1990 | xfs_qm_dqcheck( | ||
1991 | xfs_disk_dquot_t *ddq, | ||
1992 | xfs_dqid_t id, | ||
1993 | uint type, /* used only when IO_dorepair is true */ | ||
1994 | uint flags, | ||
1995 | char *str) | ||
1996 | { | ||
1997 | xfs_dqblk_t *d = (xfs_dqblk_t *)ddq; | ||
1998 | int errs = 0; | ||
1999 | |||
2000 | /* | ||
2001 | * We can encounter an uninitialized dquot buffer for 2 reasons: | ||
2002 | * 1. If we crash while deleting the quotainode(s), and those blks got | ||
2003 | * used for user data. This is because we take the path of regular | ||
2004 | * file deletion; however, the size field of quotainodes is never | ||
2005 | * updated, so all the tricks that we play in itruncate_finish | ||
2006 | * don't quite matter. | ||
2007 | * | ||
2008 | * 2. We don't play the quota buffers when there's a quotaoff logitem. | ||
2009 | * But the allocation will be replayed so we'll end up with an | ||
2010 | * uninitialized quota block. | ||
2011 | * | ||
2012 | * This is all fine; things are still consistent, and we haven't lost | ||
2013 | * any quota information. Just don't complain about bad dquot blks. | ||
2014 | */ | ||
2015 | if (INT_GET(ddq->d_magic, ARCH_CONVERT) != XFS_DQUOT_MAGIC) { | ||
2016 | if (flags & XFS_QMOPT_DOWARN) | ||
2017 | cmn_err(CE_ALERT, | ||
2018 | "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x", | ||
2019 | str, id, | ||
2020 | INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_MAGIC); | ||
2021 | errs++; | ||
2022 | } | ||
2023 | if (INT_GET(ddq->d_version, ARCH_CONVERT) != XFS_DQUOT_VERSION) { | ||
2024 | if (flags & XFS_QMOPT_DOWARN) | ||
2025 | cmn_err(CE_ALERT, | ||
2026 | "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x", | ||
2027 | str, id, | ||
2028 | INT_GET(ddq->d_magic, ARCH_CONVERT), XFS_DQUOT_VERSION); | ||
2029 | errs++; | ||
2030 | } | ||
2031 | |||
2032 | if (INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_USER && | ||
2033 | INT_GET(ddq->d_flags, ARCH_CONVERT) != XFS_DQ_GROUP) { | ||
2034 | if (flags & XFS_QMOPT_DOWARN) | ||
2035 | cmn_err(CE_ALERT, | ||
2036 | "%s : XFS dquot ID 0x%x, unknown flags 0x%x", | ||
2037 | str, id, INT_GET(ddq->d_flags, ARCH_CONVERT)); | ||
2038 | errs++; | ||
2039 | } | ||
2040 | |||
2041 | if (id != -1 && id != INT_GET(ddq->d_id, ARCH_CONVERT)) { | ||
2042 | if (flags & XFS_QMOPT_DOWARN) | ||
2043 | cmn_err(CE_ALERT, | ||
2044 | "%s : ondisk-dquot 0x%p, ID mismatch: " | ||
2045 | "0x%x expected, found id 0x%x", | ||
2046 | str, ddq, id, INT_GET(ddq->d_id, ARCH_CONVERT)); | ||
2047 | errs++; | ||
2048 | } | ||
2049 | |||
2050 | if (!errs && ddq->d_id) { | ||
2051 | if (INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT) && | ||
2052 | INT_GET(ddq->d_bcount, ARCH_CONVERT) >= | ||
2053 | INT_GET(ddq->d_blk_softlimit, ARCH_CONVERT)) { | ||
2054 | if (!ddq->d_btimer) { | ||
2055 | if (flags & XFS_QMOPT_DOWARN) | ||
2056 | cmn_err(CE_ALERT, | ||
2057 | "%s : Dquot ID 0x%x (0x%p) " | ||
2058 | "BLK TIMER NOT STARTED", | ||
2059 | str, (int) | ||
2060 | INT_GET(ddq->d_id, ARCH_CONVERT), ddq); | ||
2061 | errs++; | ||
2062 | } | ||
2063 | } | ||
2064 | if (INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT) && | ||
2065 | INT_GET(ddq->d_icount, ARCH_CONVERT) >= | ||
2066 | INT_GET(ddq->d_ino_softlimit, ARCH_CONVERT)) { | ||
2067 | if (!ddq->d_itimer) { | ||
2068 | if (flags & XFS_QMOPT_DOWARN) | ||
2069 | cmn_err(CE_ALERT, | ||
2070 | "%s : Dquot ID 0x%x (0x%p) " | ||
2071 | "INODE TIMER NOT STARTED", | ||
2072 | str, (int) | ||
2073 | INT_GET(ddq->d_id, ARCH_CONVERT), ddq); | ||
2074 | errs++; | ||
2075 | } | ||
2076 | } | ||
2077 | if (INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT) && | ||
2078 | INT_GET(ddq->d_rtbcount, ARCH_CONVERT) >= | ||
2079 | INT_GET(ddq->d_rtb_softlimit, ARCH_CONVERT)) { | ||
2080 | if (!ddq->d_rtbtimer) { | ||
2081 | if (flags & XFS_QMOPT_DOWARN) | ||
2082 | cmn_err(CE_ALERT, | ||
2083 | "%s : Dquot ID 0x%x (0x%p) " | ||
2084 | "RTBLK TIMER NOT STARTED", | ||
2085 | str, (int) | ||
2086 | INT_GET(ddq->d_id, ARCH_CONVERT), ddq); | ||
2087 | errs++; | ||
2088 | } | ||
2089 | } | ||
2090 | } | ||
2091 | |||
2092 | if (!errs || !(flags & XFS_QMOPT_DQREPAIR)) | ||
2093 | return errs; | ||
2094 | |||
2095 | if (flags & XFS_QMOPT_DOWARN) | ||
2096 | cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id); | ||
2097 | |||
2098 | /* | ||
2099 | * Typically, a repair is only requested by quotacheck. | ||
2100 | */ | ||
2101 | ASSERT(id != -1); | ||
2102 | ASSERT(flags & XFS_QMOPT_DQREPAIR); | ||
2103 | memset(d, 0, sizeof(xfs_dqblk_t)); | ||
2104 | INT_SET(d->dd_diskdq.d_magic, ARCH_CONVERT, XFS_DQUOT_MAGIC); | ||
2105 | INT_SET(d->dd_diskdq.d_version, ARCH_CONVERT, XFS_DQUOT_VERSION); | ||
2106 | INT_SET(d->dd_diskdq.d_id, ARCH_CONVERT, id); | ||
2107 | INT_SET(d->dd_diskdq.d_flags, ARCH_CONVERT, type); | ||
2108 | |||
2109 | return errs; | ||
2110 | } | ||
2111 | |||
2112 | /* | ||
2113 | * Perform a dquot buffer recovery. | ||
2114 | * Simple algorithm: if we have found a QUOTAOFF logitem of the same type | ||
2115 | * (ie. USR or GRP), then just toss this buffer away; don't recover it. | ||
2116 | * Else, treat it as a regular buffer and do recovery. | ||
2117 | */ | ||
2118 | STATIC void | ||
2119 | xlog_recover_do_dquot_buffer( | ||
2120 | xfs_mount_t *mp, | ||
2121 | xlog_t *log, | ||
2122 | xlog_recover_item_t *item, | ||
2123 | xfs_buf_t *bp, | ||
2124 | xfs_buf_log_format_t *buf_f) | ||
2125 | { | ||
2126 | uint type; | ||
2127 | |||
2128 | /* | ||
2129 | * Filesystems are required to send in quota flags at mount time. | ||
2130 | */ | ||
2131 | if (mp->m_qflags == 0) { | ||
2132 | return; | ||
2133 | } | ||
2134 | |||
2135 | type = 0; | ||
2136 | if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF) | ||
2137 | type |= XFS_DQ_USER; | ||
2138 | if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF) | ||
2139 | type |= XFS_DQ_GROUP; | ||
2140 | /* | ||
2141 | * This type of quotas was turned off, so ignore this buffer | ||
2142 | */ | ||
2143 | if (log->l_quotaoffs_flag & type) | ||
2144 | return; | ||
2145 | |||
2146 | xlog_recover_do_reg_buffer(mp, item, bp, buf_f); | ||
2147 | } | ||
2148 | |||
2149 | /* | ||
2150 | * This routine replays a modification made to a buffer at runtime. | ||
2151 | * There are actually two types of buffer, regular and inode, which | ||
2152 | * are handled differently. Inode buffers are handled differently | ||
2153 | * in that we only recover a specific set of data from them, namely | ||
2154 | * the inode di_next_unlinked fields. This is because all other inode | ||
2155 | * data is actually logged via inode records and any data we replay | ||
2156 | * here which overlaps that may be stale. | ||
2157 | * | ||
2158 | * When meta-data buffers are freed at run time we log a buffer item | ||
2159 | * with the XFS_BLI_CANCEL bit set to indicate that previous copies | ||
2160 | * of the buffer in the log should not be replayed at recovery time. | ||
2161 | * This is so that if the blocks covered by the buffer are reused for | ||
2162 | * file data before we crash we don't end up replaying old, freed | ||
2163 | * meta-data into a user's file. | ||
2164 | * | ||
2165 | * To handle the cancellation of buffer log items, we make two passes | ||
2166 | * over the log during recovery. During the first we build a table of | ||
2167 | * those buffers which have been cancelled, and during the second we | ||
2168 | * only replay those buffers which do not have corresponding cancel | ||
2169 | * records in the table. See xlog_recover_do_buffer_pass[1,2] above | ||
2170 | * for more details on the implementation of the table of cancel records. | ||
2171 | */ | ||
2172 | STATIC int | ||
2173 | xlog_recover_do_buffer_trans( | ||
2174 | xlog_t *log, | ||
2175 | xlog_recover_item_t *item, | ||
2176 | int pass) | ||
2177 | { | ||
2178 | xfs_buf_log_format_t *buf_f; | ||
2179 | xfs_buf_log_format_v1_t *obuf_f; | ||
2180 | xfs_mount_t *mp; | ||
2181 | xfs_buf_t *bp; | ||
2182 | int error; | ||
2183 | int cancel; | ||
2184 | xfs_daddr_t blkno; | ||
2185 | int len; | ||
2186 | ushort flags; | ||
2187 | |||
2188 | buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr; | ||
2189 | |||
2190 | if (pass == XLOG_RECOVER_PASS1) { | ||
2191 | /* | ||
2192 | * In this pass we're only looking for buf items | ||
2193 | * with the XFS_BLI_CANCEL bit set. | ||
2194 | */ | ||
2195 | xlog_recover_do_buffer_pass1(log, buf_f); | ||
2196 | return 0; | ||
2197 | } else { | ||
2198 | /* | ||
2199 | * In this pass we want to recover all the buffers | ||
2200 | * which have not been cancelled and are not | ||
2201 | * cancellation buffers themselves. The routine | ||
2202 | * we call here will tell us whether or not to | ||
2203 | * continue with the replay of this buffer. | ||
2204 | */ | ||
2205 | cancel = xlog_recover_do_buffer_pass2(log, buf_f); | ||
2206 | if (cancel) { | ||
2207 | return 0; | ||
2208 | } | ||
2209 | } | ||
2210 | switch (buf_f->blf_type) { | ||
2211 | case XFS_LI_BUF: | ||
2212 | blkno = buf_f->blf_blkno; | ||
2213 | len = buf_f->blf_len; | ||
2214 | flags = buf_f->blf_flags; | ||
2215 | break; | ||
2216 | case XFS_LI_6_1_BUF: | ||
2217 | case XFS_LI_5_3_BUF: | ||
2218 | obuf_f = (xfs_buf_log_format_v1_t*)buf_f; | ||
2219 | blkno = obuf_f->blf_blkno; | ||
2220 | len = obuf_f->blf_len; | ||
2221 | flags = obuf_f->blf_flags; | ||
2222 | break; | ||
2223 | default: | ||
2224 | xfs_fs_cmn_err(CE_ALERT, log->l_mp, | ||
2225 | "xfs_log_recover: unknown buffer type 0x%x, dev %s", | ||
2226 | buf_f->blf_type, XFS_BUFTARG_NAME(log->l_targ)); | ||
2227 | XFS_ERROR_REPORT("xlog_recover_do_buffer_trans", | ||
2228 | XFS_ERRLEVEL_LOW, log->l_mp); | ||
2229 | return XFS_ERROR(EFSCORRUPTED); | ||
2230 | } | ||
2231 | |||
2232 | mp = log->l_mp; | ||
2233 | if (flags & XFS_BLI_INODE_BUF) { | ||
2234 | bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len, | ||
2235 | XFS_BUF_LOCK); | ||
2236 | } else { | ||
2237 | bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0); | ||
2238 | } | ||
2239 | if (XFS_BUF_ISERROR(bp)) { | ||
2240 | xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp, | ||
2241 | bp, blkno); | ||
2242 | error = XFS_BUF_GETERROR(bp); | ||
2243 | xfs_buf_relse(bp); | ||
2244 | return error; | ||
2245 | } | ||
2246 | |||
2247 | error = 0; | ||
2248 | if (flags & XFS_BLI_INODE_BUF) { | ||
2249 | error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); | ||
2250 | } else if (flags & (XFS_BLI_UDQUOT_BUF | XFS_BLI_GDQUOT_BUF)) { | ||
2251 | xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); | ||
2252 | } else { | ||
2253 | xlog_recover_do_reg_buffer(mp, item, bp, buf_f); | ||
2254 | } | ||
2255 | if (error) | ||
2256 | return XFS_ERROR(error); | ||
2257 | |||
2258 | /* | ||
2259 | * Perform delayed write on the buffer. Asynchronous writes will be | ||
2260 | * slower when taking into account all the buffers to be flushed. | ||
2261 | * | ||
2262 | * Also make sure that only inode buffers with good sizes stay in | ||
2263 | * the buffer cache. The kernel moves inodes in buffers of 1 block | ||
2264 | * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode | ||
2265 | * buffers in the log can be a different size if the log was generated | ||
2266 | * by an older kernel using unclustered inode buffers or a newer kernel | ||
2267 | * running with a different inode cluster size. Regardless, if the | ||
2268 | * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE) | ||
2269 | * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep | ||
2270 | * the buffer out of the buffer cache so that the buffer won't | ||
2271 | * overlap with future reads of those inodes. | ||
2272 | */ | ||
2273 | if (XFS_DINODE_MAGIC == | ||
2274 | INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) && | ||
2275 | (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize, | ||
2276 | (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) { | ||
2277 | XFS_BUF_STALE(bp); | ||
2278 | error = xfs_bwrite(mp, bp); | ||
2279 | } else { | ||
2280 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || | ||
2281 | XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); | ||
2282 | XFS_BUF_SET_FSPRIVATE(bp, mp); | ||
2283 | XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); | ||
2284 | xfs_bdwrite(mp, bp); | ||
2285 | } | ||
2286 | |||
2287 | return (error); | ||
2288 | } | ||
2289 | |||
2290 | STATIC int | ||
2291 | xlog_recover_do_inode_trans( | ||
2292 | xlog_t *log, | ||
2293 | xlog_recover_item_t *item, | ||
2294 | int pass) | ||
2295 | { | ||
2296 | xfs_inode_log_format_t *in_f; | ||
2297 | xfs_mount_t *mp; | ||
2298 | xfs_buf_t *bp; | ||
2299 | xfs_imap_t imap; | ||
2300 | xfs_dinode_t *dip; | ||
2301 | xfs_ino_t ino; | ||
2302 | int len; | ||
2303 | xfs_caddr_t src; | ||
2304 | xfs_caddr_t dest; | ||
2305 | int error; | ||
2306 | int attr_index; | ||
2307 | uint fields; | ||
2308 | xfs_dinode_core_t *dicp; | ||
2309 | |||
2310 | if (pass == XLOG_RECOVER_PASS1) { | ||
2311 | return 0; | ||
2312 | } | ||
2313 | |||
2314 | in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr; | ||
2315 | ino = in_f->ilf_ino; | ||
2316 | mp = log->l_mp; | ||
2317 | if (ITEM_TYPE(item) == XFS_LI_INODE) { | ||
2318 | imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno; | ||
2319 | imap.im_len = in_f->ilf_len; | ||
2320 | imap.im_boffset = in_f->ilf_boffset; | ||
2321 | } else { | ||
2322 | /* | ||
2323 | * It's an old inode format record. We don't know where | ||
2324 | * its cluster is located on disk, and we can't allow | ||
2325 | * xfs_imap() to figure it out because the inode btrees | ||
2326 | * are not ready to be used. Therefore do not pass the | ||
2327 | * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give | ||
2328 | * us only the single block in which the inode lives | ||
2329 | * rather than its cluster, so we must make sure to | ||
2330 | * invalidate the buffer when we write it out below. | ||
2331 | */ | ||
2332 | imap.im_blkno = 0; | ||
2333 | xfs_imap(log->l_mp, NULL, ino, &imap, 0); | ||
2334 | } | ||
2335 | |||
2336 | /* | ||
2337 | * Inode buffers can be freed, look out for it, | ||
2338 | * and do not replay the inode. | ||
2339 | */ | ||
2340 | if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) | ||
2341 | return 0; | ||
2342 | |||
2343 | bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len, | ||
2344 | XFS_BUF_LOCK); | ||
2345 | if (XFS_BUF_ISERROR(bp)) { | ||
2346 | xfs_ioerror_alert("xlog_recover_do..(read#2)", mp, | ||
2347 | bp, imap.im_blkno); | ||
2348 | error = XFS_BUF_GETERROR(bp); | ||
2349 | xfs_buf_relse(bp); | ||
2350 | return error; | ||
2351 | } | ||
2352 | error = 0; | ||
2353 | ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); | ||
2354 | dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset); | ||
2355 | |||
2356 | /* | ||
2357 | * Make sure the place we're flushing out to really looks | ||
2358 | * like an inode! | ||
2359 | */ | ||
2360 | if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) { | ||
2361 | xfs_buf_relse(bp); | ||
2362 | xfs_fs_cmn_err(CE_ALERT, mp, | ||
2363 | "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld", | ||
2364 | dip, bp, ino); | ||
2365 | XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)", | ||
2366 | XFS_ERRLEVEL_LOW, mp); | ||
2367 | return XFS_ERROR(EFSCORRUPTED); | ||
2368 | } | ||
2369 | dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr); | ||
2370 | if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { | ||
2371 | xfs_buf_relse(bp); | ||
2372 | xfs_fs_cmn_err(CE_ALERT, mp, | ||
2373 | "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld", | ||
2374 | item, ino); | ||
2375 | XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)", | ||
2376 | XFS_ERRLEVEL_LOW, mp); | ||
2377 | return XFS_ERROR(EFSCORRUPTED); | ||
2378 | } | ||
2379 | |||
2380 | /* Skip replay when the on disk inode is newer than the log one */ | ||
2381 | if (dicp->di_flushiter < | ||
2382 | INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) { | ||
2383 | /* | ||
2384 | * Deal with the wrap case, DI_MAX_FLUSH is less | ||
2385 | * than smaller numbers | ||
2386 | */ | ||
2387 | if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT) | ||
2388 | == DI_MAX_FLUSH) && | ||
2389 | (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) { | ||
2390 | /* do nothing */ | ||
2391 | } else { | ||
2392 | xfs_buf_relse(bp); | ||
2393 | return 0; | ||
2394 | } | ||
2395 | } | ||
2396 | /* Take the opportunity to reset the flush iteration count */ | ||
2397 | dicp->di_flushiter = 0; | ||
2398 | |||
2399 | if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) { | ||
2400 | if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && | ||
2401 | (dicp->di_format != XFS_DINODE_FMT_BTREE)) { | ||
2402 | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)", | ||
2403 | XFS_ERRLEVEL_LOW, mp, dicp); | ||
2404 | xfs_buf_relse(bp); | ||
2405 | xfs_fs_cmn_err(CE_ALERT, mp, | ||
2406 | "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", | ||
2407 | item, dip, bp, ino); | ||
2408 | return XFS_ERROR(EFSCORRUPTED); | ||
2409 | } | ||
2410 | } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) { | ||
2411 | if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && | ||
2412 | (dicp->di_format != XFS_DINODE_FMT_BTREE) && | ||
2413 | (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { | ||
2414 | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)", | ||
2415 | XFS_ERRLEVEL_LOW, mp, dicp); | ||
2416 | xfs_buf_relse(bp); | ||
2417 | xfs_fs_cmn_err(CE_ALERT, mp, | ||
2418 | "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", | ||
2419 | item, dip, bp, ino); | ||
2420 | return XFS_ERROR(EFSCORRUPTED); | ||
2421 | } | ||
2422 | } | ||
2423 | if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ | ||
2424 | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)", | ||
2425 | XFS_ERRLEVEL_LOW, mp, dicp); | ||
2426 | xfs_buf_relse(bp); | ||
2427 | xfs_fs_cmn_err(CE_ALERT, mp, | ||
2428 | "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", | ||
2429 | item, dip, bp, ino, | ||
2430 | dicp->di_nextents + dicp->di_anextents, | ||
2431 | dicp->di_nblocks); | ||
2432 | return XFS_ERROR(EFSCORRUPTED); | ||
2433 | } | ||
2434 | if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { | ||
2435 | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)", | ||
2436 | XFS_ERRLEVEL_LOW, mp, dicp); | ||
2437 | xfs_buf_relse(bp); | ||
2438 | xfs_fs_cmn_err(CE_ALERT, mp, | ||
2439 | "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x", | ||
2440 | item, dip, bp, ino, dicp->di_forkoff); | ||
2441 | return XFS_ERROR(EFSCORRUPTED); | ||
2442 | } | ||
2443 | if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) { | ||
2444 | XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)", | ||
2445 | XFS_ERRLEVEL_LOW, mp, dicp); | ||
2446 | xfs_buf_relse(bp); | ||
2447 | xfs_fs_cmn_err(CE_ALERT, mp, | ||
2448 | "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p", | ||
2449 | item->ri_buf[1].i_len, item); | ||
2450 | return XFS_ERROR(EFSCORRUPTED); | ||
2451 | } | ||
2452 | |||
2453 | /* The core is in in-core format */ | ||
2454 | xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core, | ||
2455 | (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1); | ||
2456 | |||
2457 | /* the rest is in on-disk format */ | ||
2458 | if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) { | ||
2459 | memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t), | ||
2460 | item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t), | ||
2461 | item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t)); | ||
2462 | } | ||
2463 | |||
2464 | fields = in_f->ilf_fields; | ||
2465 | switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { | ||
2466 | case XFS_ILOG_DEV: | ||
2467 | INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev); | ||
2468 | |||
2469 | break; | ||
2470 | case XFS_ILOG_UUID: | ||
2471 | dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid; | ||
2472 | break; | ||
2473 | } | ||
2474 | |||
2475 | if (in_f->ilf_size == 2) | ||
2476 | goto write_inode_buffer; | ||
2477 | len = item->ri_buf[2].i_len; | ||
2478 | src = item->ri_buf[2].i_addr; | ||
2479 | ASSERT(in_f->ilf_size <= 4); | ||
2480 | ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); | ||
2481 | ASSERT(!(fields & XFS_ILOG_DFORK) || | ||
2482 | (len == in_f->ilf_dsize)); | ||
2483 | |||
2484 | switch (fields & XFS_ILOG_DFORK) { | ||
2485 | case XFS_ILOG_DDATA: | ||
2486 | case XFS_ILOG_DEXT: | ||
2487 | memcpy(&dip->di_u, src, len); | ||
2488 | break; | ||
2489 | |||
2490 | case XFS_ILOG_DBROOT: | ||
2491 | xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, | ||
2492 | &(dip->di_u.di_bmbt), | ||
2493 | XFS_DFORK_DSIZE(dip, mp)); | ||
2494 | break; | ||
2495 | |||
2496 | default: | ||
2497 | /* | ||
2498 | * There are no data fork flags set. | ||
2499 | */ | ||
2500 | ASSERT((fields & XFS_ILOG_DFORK) == 0); | ||
2501 | break; | ||
2502 | } | ||
2503 | |||
2504 | /* | ||
2505 | * If we logged any attribute data, recover it. There may or | ||
2506 | * may not have been any other non-core data logged in this | ||
2507 | * transaction. | ||
2508 | */ | ||
2509 | if (in_f->ilf_fields & XFS_ILOG_AFORK) { | ||
2510 | if (in_f->ilf_fields & XFS_ILOG_DFORK) { | ||
2511 | attr_index = 3; | ||
2512 | } else { | ||
2513 | attr_index = 2; | ||
2514 | } | ||
2515 | len = item->ri_buf[attr_index].i_len; | ||
2516 | src = item->ri_buf[attr_index].i_addr; | ||
2517 | ASSERT(len == in_f->ilf_asize); | ||
2518 | |||
2519 | switch (in_f->ilf_fields & XFS_ILOG_AFORK) { | ||
2520 | case XFS_ILOG_ADATA: | ||
2521 | case XFS_ILOG_AEXT: | ||
2522 | dest = XFS_DFORK_APTR(dip); | ||
2523 | ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); | ||
2524 | memcpy(dest, src, len); | ||
2525 | break; | ||
2526 | |||
2527 | case XFS_ILOG_ABROOT: | ||
2528 | dest = XFS_DFORK_APTR(dip); | ||
2529 | xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len, | ||
2530 | (xfs_bmdr_block_t*)dest, | ||
2531 | XFS_DFORK_ASIZE(dip, mp)); | ||
2532 | break; | ||
2533 | |||
2534 | default: | ||
2535 | xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag"); | ||
2536 | ASSERT(0); | ||
2537 | xfs_buf_relse(bp); | ||
2538 | return XFS_ERROR(EIO); | ||
2539 | } | ||
2540 | } | ||
2541 | |||
2542 | write_inode_buffer: | ||
2543 | if (ITEM_TYPE(item) == XFS_LI_INODE) { | ||
2544 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || | ||
2545 | XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); | ||
2546 | XFS_BUF_SET_FSPRIVATE(bp, mp); | ||
2547 | XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); | ||
2548 | xfs_bdwrite(mp, bp); | ||
2549 | } else { | ||
2550 | XFS_BUF_STALE(bp); | ||
2551 | error = xfs_bwrite(mp, bp); | ||
2552 | } | ||
2553 | |||
2554 | return (error); | ||
2555 | } | ||
2556 | |||
2557 | /* | ||
2558 | * Recover QUOTAOFF records. We simply make a note of it in the xlog_t | ||
2559 | * structure, so that we know not to do any dquot item or dquot buffer recovery, | ||
2560 | * of that type. | ||
2561 | */ | ||
2562 | STATIC int | ||
2563 | xlog_recover_do_quotaoff_trans( | ||
2564 | xlog_t *log, | ||
2565 | xlog_recover_item_t *item, | ||
2566 | int pass) | ||
2567 | { | ||
2568 | xfs_qoff_logformat_t *qoff_f; | ||
2569 | |||
2570 | if (pass == XLOG_RECOVER_PASS2) { | ||
2571 | return (0); | ||
2572 | } | ||
2573 | |||
2574 | qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr; | ||
2575 | ASSERT(qoff_f); | ||
2576 | |||
2577 | /* | ||
2578 | * The logitem format's flag tells us if this was user quotaoff, | ||
2579 | * group quotaoff or both. | ||
2580 | */ | ||
2581 | if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) | ||
2582 | log->l_quotaoffs_flag |= XFS_DQ_USER; | ||
2583 | if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) | ||
2584 | log->l_quotaoffs_flag |= XFS_DQ_GROUP; | ||
2585 | |||
2586 | return (0); | ||
2587 | } | ||
2588 | |||
2589 | /* | ||
2590 | * Recover a dquot record | ||
2591 | */ | ||
2592 | STATIC int | ||
2593 | xlog_recover_do_dquot_trans( | ||
2594 | xlog_t *log, | ||
2595 | xlog_recover_item_t *item, | ||
2596 | int pass) | ||
2597 | { | ||
2598 | xfs_mount_t *mp; | ||
2599 | xfs_buf_t *bp; | ||
2600 | struct xfs_disk_dquot *ddq, *recddq; | ||
2601 | int error; | ||
2602 | xfs_dq_logformat_t *dq_f; | ||
2603 | uint type; | ||
2604 | |||
2605 | if (pass == XLOG_RECOVER_PASS1) { | ||
2606 | return 0; | ||
2607 | } | ||
2608 | mp = log->l_mp; | ||
2609 | |||
2610 | /* | ||
2611 | * Filesystems are required to send in quota flags at mount time. | ||
2612 | */ | ||
2613 | if (mp->m_qflags == 0) | ||
2614 | return (0); | ||
2615 | |||
2616 | recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr; | ||
2617 | ASSERT(recddq); | ||
2618 | /* | ||
2619 | * This type of quotas was turned off, so ignore this record. | ||
2620 | */ | ||
2621 | type = INT_GET(recddq->d_flags, ARCH_CONVERT) & | ||
2622 | (XFS_DQ_USER | XFS_DQ_GROUP); | ||
2623 | ASSERT(type); | ||
2624 | if (log->l_quotaoffs_flag & type) | ||
2625 | return (0); | ||
2626 | |||
2627 | /* | ||
2628 | * At this point we know that quota was _not_ turned off. | ||
2629 | * Since the mount flags are not indicating to us otherwise, this | ||
2630 | * must mean that quota is on, and the dquot needs to be replayed. | ||
2631 | * Remember that we may not have fully recovered the superblock yet, | ||
2632 | * so we can't do the usual trick of looking at the SB quota bits. | ||
2633 | * | ||
2634 | * The other possibility, of course, is that the quota subsystem was | ||
2635 | * removed since the last mount - ENOSYS. | ||
2636 | */ | ||
2637 | dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr; | ||
2638 | ASSERT(dq_f); | ||
2639 | if ((error = xfs_qm_dqcheck(recddq, | ||
2640 | dq_f->qlf_id, | ||
2641 | 0, XFS_QMOPT_DOWARN, | ||
2642 | "xlog_recover_do_dquot_trans (log copy)"))) { | ||
2643 | return XFS_ERROR(EIO); | ||
2644 | } | ||
2645 | ASSERT(dq_f->qlf_len == 1); | ||
2646 | |||
2647 | error = xfs_read_buf(mp, mp->m_ddev_targp, | ||
2648 | dq_f->qlf_blkno, | ||
2649 | XFS_FSB_TO_BB(mp, dq_f->qlf_len), | ||
2650 | 0, &bp); | ||
2651 | if (error) { | ||
2652 | xfs_ioerror_alert("xlog_recover_do..(read#3)", mp, | ||
2653 | bp, dq_f->qlf_blkno); | ||
2654 | return error; | ||
2655 | } | ||
2656 | ASSERT(bp); | ||
2657 | ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); | ||
2658 | |||
2659 | /* | ||
2660 | * At least the magic num portion should be on disk because this | ||
2661 | * was among a chunk of dquots created earlier, and we did some | ||
2662 | * minimal initialization then. | ||
2663 | */ | ||
2664 | if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, | ||
2665 | "xlog_recover_do_dquot_trans")) { | ||
2666 | xfs_buf_relse(bp); | ||
2667 | return XFS_ERROR(EIO); | ||
2668 | } | ||
2669 | |||
2670 | memcpy(ddq, recddq, item->ri_buf[1].i_len); | ||
2671 | |||
2672 | ASSERT(dq_f->qlf_size == 2); | ||
2673 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL || | ||
2674 | XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp); | ||
2675 | XFS_BUF_SET_FSPRIVATE(bp, mp); | ||
2676 | XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone); | ||
2677 | xfs_bdwrite(mp, bp); | ||
2678 | |||
2679 | return (0); | ||
2680 | } | ||
2681 | |||
2682 | /* | ||
2683 | * This routine is called to create an in-core extent free intent | ||
2684 | * item from the efi format structure which was logged on disk. | ||
2685 | * It allocates an in-core efi, copies the extents from the format | ||
2686 | * structure into it, and adds the efi to the AIL with the given | ||
2687 | * LSN. | ||
2688 | */ | ||
2689 | STATIC void | ||
2690 | xlog_recover_do_efi_trans( | ||
2691 | xlog_t *log, | ||
2692 | xlog_recover_item_t *item, | ||
2693 | xfs_lsn_t lsn, | ||
2694 | int pass) | ||
2695 | { | ||
2696 | xfs_mount_t *mp; | ||
2697 | xfs_efi_log_item_t *efip; | ||
2698 | xfs_efi_log_format_t *efi_formatp; | ||
2699 | SPLDECL(s); | ||
2700 | |||
2701 | if (pass == XLOG_RECOVER_PASS1) { | ||
2702 | return; | ||
2703 | } | ||
2704 | |||
2705 | efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr; | ||
2706 | ASSERT(item->ri_buf[0].i_len == | ||
2707 | (sizeof(xfs_efi_log_format_t) + | ||
2708 | ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t)))); | ||
2709 | |||
2710 | mp = log->l_mp; | ||
2711 | efip = xfs_efi_init(mp, efi_formatp->efi_nextents); | ||
2712 | memcpy((char *)&(efip->efi_format), (char *)efi_formatp, | ||
2713 | sizeof(xfs_efi_log_format_t) + | ||
2714 | ((efi_formatp->efi_nextents - 1) * sizeof(xfs_extent_t))); | ||
2715 | efip->efi_next_extent = efi_formatp->efi_nextents; | ||
2716 | efip->efi_flags |= XFS_EFI_COMMITTED; | ||
2717 | |||
2718 | AIL_LOCK(mp,s); | ||
2719 | /* | ||
2720 | * xfs_trans_update_ail() drops the AIL lock. | ||
2721 | */ | ||
2722 | xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s); | ||
2723 | } | ||
2724 | |||
2725 | |||
2726 | /* | ||
2727 | * This routine is called when an efd format structure is found in | ||
2728 | * a committed transaction in the log. It's purpose is to cancel | ||
2729 | * the corresponding efi if it was still in the log. To do this | ||
2730 | * it searches the AIL for the efi with an id equal to that in the | ||
2731 | * efd format structure. If we find it, we remove the efi from the | ||
2732 | * AIL and free it. | ||
2733 | */ | ||
2734 | STATIC void | ||
2735 | xlog_recover_do_efd_trans( | ||
2736 | xlog_t *log, | ||
2737 | xlog_recover_item_t *item, | ||
2738 | int pass) | ||
2739 | { | ||
2740 | xfs_mount_t *mp; | ||
2741 | xfs_efd_log_format_t *efd_formatp; | ||
2742 | xfs_efi_log_item_t *efip = NULL; | ||
2743 | xfs_log_item_t *lip; | ||
2744 | int gen; | ||
2745 | int nexts; | ||
2746 | __uint64_t efi_id; | ||
2747 | SPLDECL(s); | ||
2748 | |||
2749 | if (pass == XLOG_RECOVER_PASS1) { | ||
2750 | return; | ||
2751 | } | ||
2752 | |||
2753 | efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr; | ||
2754 | ASSERT(item->ri_buf[0].i_len == | ||
2755 | (sizeof(xfs_efd_log_format_t) + | ||
2756 | ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_t)))); | ||
2757 | efi_id = efd_formatp->efd_efi_id; | ||
2758 | |||
2759 | /* | ||
2760 | * Search for the efi with the id in the efd format structure | ||
2761 | * in the AIL. | ||
2762 | */ | ||
2763 | mp = log->l_mp; | ||
2764 | AIL_LOCK(mp,s); | ||
2765 | lip = xfs_trans_first_ail(mp, &gen); | ||
2766 | while (lip != NULL) { | ||
2767 | if (lip->li_type == XFS_LI_EFI) { | ||
2768 | efip = (xfs_efi_log_item_t *)lip; | ||
2769 | if (efip->efi_format.efi_id == efi_id) { | ||
2770 | /* | ||
2771 | * xfs_trans_delete_ail() drops the | ||
2772 | * AIL lock. | ||
2773 | */ | ||
2774 | xfs_trans_delete_ail(mp, lip, s); | ||
2775 | break; | ||
2776 | } | ||
2777 | } | ||
2778 | lip = xfs_trans_next_ail(mp, lip, &gen, NULL); | ||
2779 | } | ||
2780 | if (lip == NULL) { | ||
2781 | AIL_UNLOCK(mp, s); | ||
2782 | } | ||
2783 | |||
2784 | /* | ||
2785 | * If we found it, then free it up. If it wasn't there, it | ||
2786 | * must have been overwritten in the log. Oh well. | ||
2787 | */ | ||
2788 | if (lip != NULL) { | ||
2789 | nexts = efip->efi_format.efi_nextents; | ||
2790 | if (nexts > XFS_EFI_MAX_FAST_EXTENTS) { | ||
2791 | kmem_free(lip, sizeof(xfs_efi_log_item_t) + | ||
2792 | ((nexts - 1) * sizeof(xfs_extent_t))); | ||
2793 | } else { | ||
2794 | kmem_zone_free(xfs_efi_zone, efip); | ||
2795 | } | ||
2796 | } | ||
2797 | } | ||
2798 | |||
2799 | /* | ||
2800 | * Perform the transaction | ||
2801 | * | ||
2802 | * If the transaction modifies a buffer or inode, do it now. Otherwise, | ||
2803 | * EFIs and EFDs get queued up by adding entries into the AIL for them. | ||
2804 | */ | ||
2805 | STATIC int | ||
2806 | xlog_recover_do_trans( | ||
2807 | xlog_t *log, | ||
2808 | xlog_recover_t *trans, | ||
2809 | int pass) | ||
2810 | { | ||
2811 | int error = 0; | ||
2812 | xlog_recover_item_t *item, *first_item; | ||
2813 | |||
2814 | if ((error = xlog_recover_reorder_trans(log, trans))) | ||
2815 | return error; | ||
2816 | first_item = item = trans->r_itemq; | ||
2817 | do { | ||
2818 | /* | ||
2819 | * we don't need to worry about the block number being | ||
2820 | * truncated in > 1 TB buffers because in user-land, | ||
2821 | * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so | ||
2822 | * the blkno's will get through the user-mode buffer | ||
2823 | * cache properly. The only bad case is o32 kernels | ||
2824 | * where xfs_daddr_t is 32-bits but mount will warn us | ||
2825 | * off a > 1 TB filesystem before we get here. | ||
2826 | */ | ||
2827 | if ((ITEM_TYPE(item) == XFS_LI_BUF) || | ||
2828 | (ITEM_TYPE(item) == XFS_LI_6_1_BUF) || | ||
2829 | (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) { | ||
2830 | if ((error = xlog_recover_do_buffer_trans(log, item, | ||
2831 | pass))) | ||
2832 | break; | ||
2833 | } else if ((ITEM_TYPE(item) == XFS_LI_INODE) || | ||
2834 | (ITEM_TYPE(item) == XFS_LI_6_1_INODE) || | ||
2835 | (ITEM_TYPE(item) == XFS_LI_5_3_INODE)) { | ||
2836 | if ((error = xlog_recover_do_inode_trans(log, item, | ||
2837 | pass))) | ||
2838 | break; | ||
2839 | } else if (ITEM_TYPE(item) == XFS_LI_EFI) { | ||
2840 | xlog_recover_do_efi_trans(log, item, trans->r_lsn, | ||
2841 | pass); | ||
2842 | } else if (ITEM_TYPE(item) == XFS_LI_EFD) { | ||
2843 | xlog_recover_do_efd_trans(log, item, pass); | ||
2844 | } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) { | ||
2845 | if ((error = xlog_recover_do_dquot_trans(log, item, | ||
2846 | pass))) | ||
2847 | break; | ||
2848 | } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) { | ||
2849 | if ((error = xlog_recover_do_quotaoff_trans(log, item, | ||
2850 | pass))) | ||
2851 | break; | ||
2852 | } else { | ||
2853 | xlog_warn("XFS: xlog_recover_do_trans"); | ||
2854 | ASSERT(0); | ||
2855 | error = XFS_ERROR(EIO); | ||
2856 | break; | ||
2857 | } | ||
2858 | item = item->ri_next; | ||
2859 | } while (first_item != item); | ||
2860 | |||
2861 | return error; | ||
2862 | } | ||
2863 | |||
2864 | /* | ||
2865 | * Free up any resources allocated by the transaction | ||
2866 | * | ||
2867 | * Remember that EFIs, EFDs, and IUNLINKs are handled later. | ||
2868 | */ | ||
2869 | STATIC void | ||
2870 | xlog_recover_free_trans( | ||
2871 | xlog_recover_t *trans) | ||
2872 | { | ||
2873 | xlog_recover_item_t *first_item, *item, *free_item; | ||
2874 | int i; | ||
2875 | |||
2876 | item = first_item = trans->r_itemq; | ||
2877 | do { | ||
2878 | free_item = item; | ||
2879 | item = item->ri_next; | ||
2880 | /* Free the regions in the item. */ | ||
2881 | for (i = 0; i < free_item->ri_cnt; i++) { | ||
2882 | kmem_free(free_item->ri_buf[i].i_addr, | ||
2883 | free_item->ri_buf[i].i_len); | ||
2884 | } | ||
2885 | /* Free the item itself */ | ||
2886 | kmem_free(free_item->ri_buf, | ||
2887 | (free_item->ri_total * sizeof(xfs_log_iovec_t))); | ||
2888 | kmem_free(free_item, sizeof(xlog_recover_item_t)); | ||
2889 | } while (first_item != item); | ||
2890 | /* Free the transaction recover structure */ | ||
2891 | kmem_free(trans, sizeof(xlog_recover_t)); | ||
2892 | } | ||
2893 | |||
2894 | STATIC int | ||
2895 | xlog_recover_commit_trans( | ||
2896 | xlog_t *log, | ||
2897 | xlog_recover_t **q, | ||
2898 | xlog_recover_t *trans, | ||
2899 | int pass) | ||
2900 | { | ||
2901 | int error; | ||
2902 | |||
2903 | if ((error = xlog_recover_unlink_tid(q, trans))) | ||
2904 | return error; | ||
2905 | if ((error = xlog_recover_do_trans(log, trans, pass))) | ||
2906 | return error; | ||
2907 | xlog_recover_free_trans(trans); /* no error */ | ||
2908 | return 0; | ||
2909 | } | ||
2910 | |||
2911 | STATIC int | ||
2912 | xlog_recover_unmount_trans( | ||
2913 | xlog_recover_t *trans) | ||
2914 | { | ||
2915 | /* Do nothing now */ | ||
2916 | xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR"); | ||
2917 | return 0; | ||
2918 | } | ||
2919 | |||
2920 | /* | ||
2921 | * There are two valid states of the r_state field. 0 indicates that the | ||
2922 | * transaction structure is in a normal state. We have either seen the | ||
2923 | * start of the transaction or the last operation we added was not a partial | ||
2924 | * operation. If the last operation we added to the transaction was a | ||
2925 | * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. | ||
2926 | * | ||
2927 | * NOTE: skip LRs with 0 data length. | ||
2928 | */ | ||
2929 | STATIC int | ||
2930 | xlog_recover_process_data( | ||
2931 | xlog_t *log, | ||
2932 | xlog_recover_t *rhash[], | ||
2933 | xlog_rec_header_t *rhead, | ||
2934 | xfs_caddr_t dp, | ||
2935 | int pass) | ||
2936 | { | ||
2937 | xfs_caddr_t lp; | ||
2938 | int num_logops; | ||
2939 | xlog_op_header_t *ohead; | ||
2940 | xlog_recover_t *trans; | ||
2941 | xlog_tid_t tid; | ||
2942 | int error; | ||
2943 | unsigned long hash; | ||
2944 | uint flags; | ||
2945 | |||
2946 | lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT); | ||
2947 | num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT); | ||
2948 | |||
2949 | /* check the log format matches our own - else we can't recover */ | ||
2950 | if (xlog_header_check_recover(log->l_mp, rhead)) | ||
2951 | return (XFS_ERROR(EIO)); | ||
2952 | |||
2953 | while ((dp < lp) && num_logops) { | ||
2954 | ASSERT(dp + sizeof(xlog_op_header_t) <= lp); | ||
2955 | ohead = (xlog_op_header_t *)dp; | ||
2956 | dp += sizeof(xlog_op_header_t); | ||
2957 | if (ohead->oh_clientid != XFS_TRANSACTION && | ||
2958 | ohead->oh_clientid != XFS_LOG) { | ||
2959 | xlog_warn( | ||
2960 | "XFS: xlog_recover_process_data: bad clientid"); | ||
2961 | ASSERT(0); | ||
2962 | return (XFS_ERROR(EIO)); | ||
2963 | } | ||
2964 | tid = INT_GET(ohead->oh_tid, ARCH_CONVERT); | ||
2965 | hash = XLOG_RHASH(tid); | ||
2966 | trans = xlog_recover_find_tid(rhash[hash], tid); | ||
2967 | if (trans == NULL) { /* not found; add new tid */ | ||
2968 | if (ohead->oh_flags & XLOG_START_TRANS) | ||
2969 | xlog_recover_new_tid(&rhash[hash], tid, | ||
2970 | INT_GET(rhead->h_lsn, ARCH_CONVERT)); | ||
2971 | } else { | ||
2972 | ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp); | ||
2973 | flags = ohead->oh_flags & ~XLOG_END_TRANS; | ||
2974 | if (flags & XLOG_WAS_CONT_TRANS) | ||
2975 | flags &= ~XLOG_CONTINUE_TRANS; | ||
2976 | switch (flags) { | ||
2977 | case XLOG_COMMIT_TRANS: | ||
2978 | error = xlog_recover_commit_trans(log, | ||
2979 | &rhash[hash], trans, pass); | ||
2980 | break; | ||
2981 | case XLOG_UNMOUNT_TRANS: | ||
2982 | error = xlog_recover_unmount_trans(trans); | ||
2983 | break; | ||
2984 | case XLOG_WAS_CONT_TRANS: | ||
2985 | error = xlog_recover_add_to_cont_trans(trans, | ||
2986 | dp, INT_GET(ohead->oh_len, | ||
2987 | ARCH_CONVERT)); | ||
2988 | break; | ||
2989 | case XLOG_START_TRANS: | ||
2990 | xlog_warn( | ||
2991 | "XFS: xlog_recover_process_data: bad transaction"); | ||
2992 | ASSERT(0); | ||
2993 | error = XFS_ERROR(EIO); | ||
2994 | break; | ||
2995 | case 0: | ||
2996 | case XLOG_CONTINUE_TRANS: | ||
2997 | error = xlog_recover_add_to_trans(trans, | ||
2998 | dp, INT_GET(ohead->oh_len, | ||
2999 | ARCH_CONVERT)); | ||
3000 | break; | ||
3001 | default: | ||
3002 | xlog_warn( | ||
3003 | "XFS: xlog_recover_process_data: bad flag"); | ||
3004 | ASSERT(0); | ||
3005 | error = XFS_ERROR(EIO); | ||
3006 | break; | ||
3007 | } | ||
3008 | if (error) | ||
3009 | return error; | ||
3010 | } | ||
3011 | dp += INT_GET(ohead->oh_len, ARCH_CONVERT); | ||
3012 | num_logops--; | ||
3013 | } | ||
3014 | return 0; | ||
3015 | } | ||
3016 | |||
3017 | /* | ||
3018 | * Process an extent free intent item that was recovered from | ||
3019 | * the log. We need to free the extents that it describes. | ||
3020 | */ | ||
3021 | STATIC void | ||
3022 | xlog_recover_process_efi( | ||
3023 | xfs_mount_t *mp, | ||
3024 | xfs_efi_log_item_t *efip) | ||
3025 | { | ||
3026 | xfs_efd_log_item_t *efdp; | ||
3027 | xfs_trans_t *tp; | ||
3028 | int i; | ||
3029 | xfs_extent_t *extp; | ||
3030 | xfs_fsblock_t startblock_fsb; | ||
3031 | |||
3032 | ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED)); | ||
3033 | |||
3034 | /* | ||
3035 | * First check the validity of the extents described by the | ||
3036 | * EFI. If any are bad, then assume that all are bad and | ||
3037 | * just toss the EFI. | ||
3038 | */ | ||
3039 | for (i = 0; i < efip->efi_format.efi_nextents; i++) { | ||
3040 | extp = &(efip->efi_format.efi_extents[i]); | ||
3041 | startblock_fsb = XFS_BB_TO_FSB(mp, | ||
3042 | XFS_FSB_TO_DADDR(mp, extp->ext_start)); | ||
3043 | if ((startblock_fsb == 0) || | ||
3044 | (extp->ext_len == 0) || | ||
3045 | (startblock_fsb >= mp->m_sb.sb_dblocks) || | ||
3046 | (extp->ext_len >= mp->m_sb.sb_agblocks)) { | ||
3047 | /* | ||
3048 | * This will pull the EFI from the AIL and | ||
3049 | * free the memory associated with it. | ||
3050 | */ | ||
3051 | xfs_efi_release(efip, efip->efi_format.efi_nextents); | ||
3052 | return; | ||
3053 | } | ||
3054 | } | ||
3055 | |||
3056 | tp = xfs_trans_alloc(mp, 0); | ||
3057 | xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0); | ||
3058 | efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); | ||
3059 | |||
3060 | for (i = 0; i < efip->efi_format.efi_nextents; i++) { | ||
3061 | extp = &(efip->efi_format.efi_extents[i]); | ||
3062 | xfs_free_extent(tp, extp->ext_start, extp->ext_len); | ||
3063 | xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, | ||
3064 | extp->ext_len); | ||
3065 | } | ||
3066 | |||
3067 | efip->efi_flags |= XFS_EFI_RECOVERED; | ||
3068 | xfs_trans_commit(tp, 0, NULL); | ||
3069 | } | ||
3070 | |||
3071 | /* | ||
3072 | * Verify that once we've encountered something other than an EFI | ||
3073 | * in the AIL that there are no more EFIs in the AIL. | ||
3074 | */ | ||
3075 | #if defined(DEBUG) | ||
3076 | STATIC void | ||
3077 | xlog_recover_check_ail( | ||
3078 | xfs_mount_t *mp, | ||
3079 | xfs_log_item_t *lip, | ||
3080 | int gen) | ||
3081 | { | ||
3082 | int orig_gen = gen; | ||
3083 | |||
3084 | do { | ||
3085 | ASSERT(lip->li_type != XFS_LI_EFI); | ||
3086 | lip = xfs_trans_next_ail(mp, lip, &gen, NULL); | ||
3087 | /* | ||
3088 | * The check will be bogus if we restart from the | ||
3089 | * beginning of the AIL, so ASSERT that we don't. | ||
3090 | * We never should since we're holding the AIL lock | ||
3091 | * the entire time. | ||
3092 | */ | ||
3093 | ASSERT(gen == orig_gen); | ||
3094 | } while (lip != NULL); | ||
3095 | } | ||
3096 | #endif /* DEBUG */ | ||
3097 | |||
3098 | /* | ||
3099 | * When this is called, all of the EFIs which did not have | ||
3100 | * corresponding EFDs should be in the AIL. What we do now | ||
3101 | * is free the extents associated with each one. | ||
3102 | * | ||
3103 | * Since we process the EFIs in normal transactions, they | ||
3104 | * will be removed at some point after the commit. This prevents | ||
3105 | * us from just walking down the list processing each one. | ||
3106 | * We'll use a flag in the EFI to skip those that we've already | ||
3107 | * processed and use the AIL iteration mechanism's generation | ||
3108 | * count to try to speed this up at least a bit. | ||
3109 | * | ||
3110 | * When we start, we know that the EFIs are the only things in | ||
3111 | * the AIL. As we process them, however, other items are added | ||
3112 | * to the AIL. Since everything added to the AIL must come after | ||
3113 | * everything already in the AIL, we stop processing as soon as | ||
3114 | * we see something other than an EFI in the AIL. | ||
3115 | */ | ||
3116 | STATIC void | ||
3117 | xlog_recover_process_efis( | ||
3118 | xlog_t *log) | ||
3119 | { | ||
3120 | xfs_log_item_t *lip; | ||
3121 | xfs_efi_log_item_t *efip; | ||
3122 | int gen; | ||
3123 | xfs_mount_t *mp; | ||
3124 | SPLDECL(s); | ||
3125 | |||
3126 | mp = log->l_mp; | ||
3127 | AIL_LOCK(mp,s); | ||
3128 | |||
3129 | lip = xfs_trans_first_ail(mp, &gen); | ||
3130 | while (lip != NULL) { | ||
3131 | /* | ||
3132 | * We're done when we see something other than an EFI. | ||
3133 | */ | ||
3134 | if (lip->li_type != XFS_LI_EFI) { | ||
3135 | xlog_recover_check_ail(mp, lip, gen); | ||
3136 | break; | ||
3137 | } | ||
3138 | |||
3139 | /* | ||
3140 | * Skip EFIs that we've already processed. | ||
3141 | */ | ||
3142 | efip = (xfs_efi_log_item_t *)lip; | ||
3143 | if (efip->efi_flags & XFS_EFI_RECOVERED) { | ||
3144 | lip = xfs_trans_next_ail(mp, lip, &gen, NULL); | ||
3145 | continue; | ||
3146 | } | ||
3147 | |||
3148 | AIL_UNLOCK(mp, s); | ||
3149 | xlog_recover_process_efi(mp, efip); | ||
3150 | AIL_LOCK(mp,s); | ||
3151 | lip = xfs_trans_next_ail(mp, lip, &gen, NULL); | ||
3152 | } | ||
3153 | AIL_UNLOCK(mp, s); | ||
3154 | } | ||
3155 | |||
3156 | /* | ||
3157 | * This routine performs a transaction to null out a bad inode pointer | ||
3158 | * in an agi unlinked inode hash bucket. | ||
3159 | */ | ||
3160 | STATIC void | ||
3161 | xlog_recover_clear_agi_bucket( | ||
3162 | xfs_mount_t *mp, | ||
3163 | xfs_agnumber_t agno, | ||
3164 | int bucket) | ||
3165 | { | ||
3166 | xfs_trans_t *tp; | ||
3167 | xfs_agi_t *agi; | ||
3168 | xfs_buf_t *agibp; | ||
3169 | int offset; | ||
3170 | int error; | ||
3171 | |||
3172 | tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); | ||
3173 | xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0); | ||
3174 | |||
3175 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, | ||
3176 | XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), | ||
3177 | XFS_FSS_TO_BB(mp, 1), 0, &agibp); | ||
3178 | if (error) { | ||
3179 | xfs_trans_cancel(tp, XFS_TRANS_ABORT); | ||
3180 | return; | ||
3181 | } | ||
3182 | |||
3183 | agi = XFS_BUF_TO_AGI(agibp); | ||
3184 | if (INT_GET(agi->agi_magicnum, ARCH_CONVERT) != XFS_AGI_MAGIC) { | ||
3185 | xfs_trans_cancel(tp, XFS_TRANS_ABORT); | ||
3186 | return; | ||
3187 | } | ||
3188 | ASSERT(INT_GET(agi->agi_magicnum, ARCH_CONVERT) == XFS_AGI_MAGIC); | ||
3189 | |||
3190 | INT_SET(agi->agi_unlinked[bucket], ARCH_CONVERT, NULLAGINO); | ||
3191 | offset = offsetof(xfs_agi_t, agi_unlinked) + | ||
3192 | (sizeof(xfs_agino_t) * bucket); | ||
3193 | xfs_trans_log_buf(tp, agibp, offset, | ||
3194 | (offset + sizeof(xfs_agino_t) - 1)); | ||
3195 | |||
3196 | (void) xfs_trans_commit(tp, 0, NULL); | ||
3197 | } | ||
3198 | |||
3199 | /* | ||
3200 | * xlog_iunlink_recover | ||
3201 | * | ||
3202 | * This is called during recovery to process any inodes which | ||
3203 | * we unlinked but not freed when the system crashed. These | ||
3204 | * inodes will be on the lists in the AGI blocks. What we do | ||
3205 | * here is scan all the AGIs and fully truncate and free any | ||
3206 | * inodes found on the lists. Each inode is removed from the | ||
3207 | * lists when it has been fully truncated and is freed. The | ||
3208 | * freeing of the inode and its removal from the list must be | ||
3209 | * atomic. | ||
3210 | */ | ||
3211 | void | ||
3212 | xlog_recover_process_iunlinks( | ||
3213 | xlog_t *log) | ||
3214 | { | ||
3215 | xfs_mount_t *mp; | ||
3216 | xfs_agnumber_t agno; | ||
3217 | xfs_agi_t *agi; | ||
3218 | xfs_buf_t *agibp; | ||
3219 | xfs_buf_t *ibp; | ||
3220 | xfs_dinode_t *dip; | ||
3221 | xfs_inode_t *ip; | ||
3222 | xfs_agino_t agino; | ||
3223 | xfs_ino_t ino; | ||
3224 | int bucket; | ||
3225 | int error; | ||
3226 | uint mp_dmevmask; | ||
3227 | |||
3228 | mp = log->l_mp; | ||
3229 | |||
3230 | /* | ||
3231 | * Prevent any DMAPI event from being sent while in this function. | ||
3232 | */ | ||
3233 | mp_dmevmask = mp->m_dmevmask; | ||
3234 | mp->m_dmevmask = 0; | ||
3235 | |||
3236 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { | ||
3237 | /* | ||
3238 | * Find the agi for this ag. | ||
3239 | */ | ||
3240 | agibp = xfs_buf_read(mp->m_ddev_targp, | ||
3241 | XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), | ||
3242 | XFS_FSS_TO_BB(mp, 1), 0); | ||
3243 | if (XFS_BUF_ISERROR(agibp)) { | ||
3244 | xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)", | ||
3245 | log->l_mp, agibp, | ||
3246 | XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp))); | ||
3247 | } | ||
3248 | agi = XFS_BUF_TO_AGI(agibp); | ||
3249 | ASSERT(XFS_AGI_MAGIC == | ||
3250 | INT_GET(agi->agi_magicnum, ARCH_CONVERT)); | ||
3251 | |||
3252 | for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { | ||
3253 | |||
3254 | agino = INT_GET(agi->agi_unlinked[bucket], ARCH_CONVERT); | ||
3255 | while (agino != NULLAGINO) { | ||
3256 | |||
3257 | /* | ||
3258 | * Release the agi buffer so that it can | ||
3259 | * be acquired in the normal course of the | ||
3260 | * transaction to truncate and free the inode. | ||
3261 | */ | ||
3262 | xfs_buf_relse(agibp); | ||
3263 | |||
3264 | ino = XFS_AGINO_TO_INO(mp, agno, agino); | ||
3265 | error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0); | ||
3266 | ASSERT(error || (ip != NULL)); | ||
3267 | |||
3268 | if (!error) { | ||
3269 | /* | ||
3270 | * Get the on disk inode to find the | ||
3271 | * next inode in the bucket. | ||
3272 | */ | ||
3273 | error = xfs_itobp(mp, NULL, ip, &dip, | ||
3274 | &ibp, 0); | ||
3275 | ASSERT(error || (dip != NULL)); | ||
3276 | } | ||
3277 | |||
3278 | if (!error) { | ||
3279 | ASSERT(ip->i_d.di_nlink == 0); | ||
3280 | |||
3281 | /* setup for the next pass */ | ||
3282 | agino = INT_GET(dip->di_next_unlinked, | ||
3283 | ARCH_CONVERT); | ||
3284 | xfs_buf_relse(ibp); | ||
3285 | /* | ||
3286 | * Prevent any DMAPI event from | ||
3287 | * being sent when the | ||
3288 | * reference on the inode is | ||
3289 | * dropped. | ||
3290 | */ | ||
3291 | ip->i_d.di_dmevmask = 0; | ||
3292 | |||
3293 | /* | ||
3294 | * If this is a new inode, handle | ||
3295 | * it specially. Otherwise, | ||
3296 | * just drop our reference to the | ||
3297 | * inode. If there are no | ||
3298 | * other references, this will | ||
3299 | * send the inode to | ||
3300 | * xfs_inactive() which will | ||
3301 | * truncate the file and free | ||
3302 | * the inode. | ||
3303 | */ | ||
3304 | if (ip->i_d.di_mode == 0) | ||
3305 | xfs_iput_new(ip, 0); | ||
3306 | else | ||
3307 | VN_RELE(XFS_ITOV(ip)); | ||
3308 | } else { | ||
3309 | /* | ||
3310 | * We can't read in the inode | ||
3311 | * this bucket points to, or | ||
3312 | * this inode is messed up. Just | ||
3313 | * ditch this bucket of inodes. We | ||
3314 | * will lose some inodes and space, | ||
3315 | * but at least we won't hang. Call | ||
3316 | * xlog_recover_clear_agi_bucket() | ||
3317 | * to perform a transaction to clear | ||
3318 | * the inode pointer in the bucket. | ||
3319 | */ | ||
3320 | xlog_recover_clear_agi_bucket(mp, agno, | ||
3321 | bucket); | ||
3322 | |||
3323 | agino = NULLAGINO; | ||
3324 | } | ||
3325 | |||
3326 | /* | ||
3327 | * Reacquire the agibuffer and continue around | ||
3328 | * the loop. | ||
3329 | */ | ||
3330 | agibp = xfs_buf_read(mp->m_ddev_targp, | ||
3331 | XFS_AG_DADDR(mp, agno, | ||
3332 | XFS_AGI_DADDR(mp)), | ||
3333 | XFS_FSS_TO_BB(mp, 1), 0); | ||
3334 | if (XFS_BUF_ISERROR(agibp)) { | ||
3335 | xfs_ioerror_alert( | ||
3336 | "xlog_recover_process_iunlinks(#2)", | ||
3337 | log->l_mp, agibp, | ||
3338 | XFS_AG_DADDR(mp, agno, | ||
3339 | XFS_AGI_DADDR(mp))); | ||
3340 | } | ||
3341 | agi = XFS_BUF_TO_AGI(agibp); | ||
3342 | ASSERT(XFS_AGI_MAGIC == INT_GET( | ||
3343 | agi->agi_magicnum, ARCH_CONVERT)); | ||
3344 | } | ||
3345 | } | ||
3346 | |||
3347 | /* | ||
3348 | * Release the buffer for the current agi so we can | ||
3349 | * go on to the next one. | ||
3350 | */ | ||
3351 | xfs_buf_relse(agibp); | ||
3352 | } | ||
3353 | |||
3354 | mp->m_dmevmask = mp_dmevmask; | ||
3355 | } | ||
3356 | |||
3357 | |||
3358 | #ifdef DEBUG | ||
3359 | STATIC void | ||
3360 | xlog_pack_data_checksum( | ||
3361 | xlog_t *log, | ||
3362 | xlog_in_core_t *iclog, | ||
3363 | int size) | ||
3364 | { | ||
3365 | int i; | ||
3366 | uint *up; | ||
3367 | uint chksum = 0; | ||
3368 | |||
3369 | up = (uint *)iclog->ic_datap; | ||
3370 | /* divide length by 4 to get # words */ | ||
3371 | for (i = 0; i < (size >> 2); i++) { | ||
3372 | chksum ^= INT_GET(*up, ARCH_CONVERT); | ||
3373 | up++; | ||
3374 | } | ||
3375 | INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum); | ||
3376 | } | ||
3377 | #else | ||
3378 | #define xlog_pack_data_checksum(log, iclog, size) | ||
3379 | #endif | ||
3380 | |||
3381 | /* | ||
3382 | * Stamp cycle number in every block | ||
3383 | */ | ||
3384 | void | ||
3385 | xlog_pack_data( | ||
3386 | xlog_t *log, | ||
3387 | xlog_in_core_t *iclog, | ||
3388 | int roundoff) | ||
3389 | { | ||
3390 | int i, j, k; | ||
3391 | int size = iclog->ic_offset + roundoff; | ||
3392 | uint cycle_lsn; | ||
3393 | xfs_caddr_t dp; | ||
3394 | xlog_in_core_2_t *xhdr; | ||
3395 | |||
3396 | xlog_pack_data_checksum(log, iclog, size); | ||
3397 | |||
3398 | cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); | ||
3399 | |||
3400 | dp = iclog->ic_datap; | ||
3401 | for (i = 0; i < BTOBB(size) && | ||
3402 | i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { | ||
3403 | iclog->ic_header.h_cycle_data[i] = *(uint *)dp; | ||
3404 | *(uint *)dp = cycle_lsn; | ||
3405 | dp += BBSIZE; | ||
3406 | } | ||
3407 | |||
3408 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { | ||
3409 | xhdr = (xlog_in_core_2_t *)&iclog->ic_header; | ||
3410 | for ( ; i < BTOBB(size); i++) { | ||
3411 | j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); | ||
3412 | k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); | ||
3413 | xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp; | ||
3414 | *(uint *)dp = cycle_lsn; | ||
3415 | dp += BBSIZE; | ||
3416 | } | ||
3417 | |||
3418 | for (i = 1; i < log->l_iclog_heads; i++) { | ||
3419 | xhdr[i].hic_xheader.xh_cycle = cycle_lsn; | ||
3420 | } | ||
3421 | } | ||
3422 | } | ||
3423 | |||
3424 | #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) | ||
3425 | STATIC void | ||
3426 | xlog_unpack_data_checksum( | ||
3427 | xlog_rec_header_t *rhead, | ||
3428 | xfs_caddr_t dp, | ||
3429 | xlog_t *log) | ||
3430 | { | ||
3431 | uint *up = (uint *)dp; | ||
3432 | uint chksum = 0; | ||
3433 | int i; | ||
3434 | |||
3435 | /* divide length by 4 to get # words */ | ||
3436 | for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) { | ||
3437 | chksum ^= INT_GET(*up, ARCH_CONVERT); | ||
3438 | up++; | ||
3439 | } | ||
3440 | if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) { | ||
3441 | if (rhead->h_chksum || | ||
3442 | ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) { | ||
3443 | cmn_err(CE_DEBUG, | ||
3444 | "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)", | ||
3445 | INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum); | ||
3446 | cmn_err(CE_DEBUG, | ||
3447 | "XFS: Disregard message if filesystem was created with non-DEBUG kernel"); | ||
3448 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { | ||
3449 | cmn_err(CE_DEBUG, | ||
3450 | "XFS: LogR this is a LogV2 filesystem"); | ||
3451 | } | ||
3452 | log->l_flags |= XLOG_CHKSUM_MISMATCH; | ||
3453 | } | ||
3454 | } | ||
3455 | } | ||
3456 | #else | ||
3457 | #define xlog_unpack_data_checksum(rhead, dp, log) | ||
3458 | #endif | ||
3459 | |||
3460 | STATIC void | ||
3461 | xlog_unpack_data( | ||
3462 | xlog_rec_header_t *rhead, | ||
3463 | xfs_caddr_t dp, | ||
3464 | xlog_t *log) | ||
3465 | { | ||
3466 | int i, j, k; | ||
3467 | xlog_in_core_2_t *xhdr; | ||
3468 | |||
3469 | for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) && | ||
3470 | i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { | ||
3471 | *(uint *)dp = *(uint *)&rhead->h_cycle_data[i]; | ||
3472 | dp += BBSIZE; | ||
3473 | } | ||
3474 | |||
3475 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { | ||
3476 | xhdr = (xlog_in_core_2_t *)rhead; | ||
3477 | for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) { | ||
3478 | j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); | ||
3479 | k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); | ||
3480 | *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; | ||
3481 | dp += BBSIZE; | ||
3482 | } | ||
3483 | } | ||
3484 | |||
3485 | xlog_unpack_data_checksum(rhead, dp, log); | ||
3486 | } | ||
3487 | |||
3488 | STATIC int | ||
3489 | xlog_valid_rec_header( | ||
3490 | xlog_t *log, | ||
3491 | xlog_rec_header_t *rhead, | ||
3492 | xfs_daddr_t blkno) | ||
3493 | { | ||
3494 | int hlen; | ||
3495 | |||
3496 | if (unlikely( | ||
3497 | (INT_GET(rhead->h_magicno, ARCH_CONVERT) != | ||
3498 | XLOG_HEADER_MAGIC_NUM))) { | ||
3499 | XFS_ERROR_REPORT("xlog_valid_rec_header(1)", | ||
3500 | XFS_ERRLEVEL_LOW, log->l_mp); | ||
3501 | return XFS_ERROR(EFSCORRUPTED); | ||
3502 | } | ||
3503 | if (unlikely( | ||
3504 | (!rhead->h_version || | ||
3505 | (INT_GET(rhead->h_version, ARCH_CONVERT) & | ||
3506 | (~XLOG_VERSION_OKBITS)) != 0))) { | ||
3507 | xlog_warn("XFS: %s: unrecognised log version (%d).", | ||
3508 | __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT)); | ||
3509 | return XFS_ERROR(EIO); | ||
3510 | } | ||
3511 | |||
3512 | /* LR body must have data or it wouldn't have been written */ | ||
3513 | hlen = INT_GET(rhead->h_len, ARCH_CONVERT); | ||
3514 | if (unlikely( hlen <= 0 || hlen > INT_MAX )) { | ||
3515 | XFS_ERROR_REPORT("xlog_valid_rec_header(2)", | ||
3516 | XFS_ERRLEVEL_LOW, log->l_mp); | ||
3517 | return XFS_ERROR(EFSCORRUPTED); | ||
3518 | } | ||
3519 | if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { | ||
3520 | XFS_ERROR_REPORT("xlog_valid_rec_header(3)", | ||
3521 | XFS_ERRLEVEL_LOW, log->l_mp); | ||
3522 | return XFS_ERROR(EFSCORRUPTED); | ||
3523 | } | ||
3524 | return 0; | ||
3525 | } | ||
3526 | |||
3527 | /* | ||
3528 | * Read the log from tail to head and process the log records found. | ||
3529 | * Handle the two cases where the tail and head are in the same cycle | ||
3530 | * and where the active portion of the log wraps around the end of | ||
3531 | * the physical log separately. The pass parameter is passed through | ||
3532 | * to the routines called to process the data and is not looked at | ||
3533 | * here. | ||
3534 | */ | ||
3535 | STATIC int | ||
3536 | xlog_do_recovery_pass( | ||
3537 | xlog_t *log, | ||
3538 | xfs_daddr_t head_blk, | ||
3539 | xfs_daddr_t tail_blk, | ||
3540 | int pass) | ||
3541 | { | ||
3542 | xlog_rec_header_t *rhead; | ||
3543 | xfs_daddr_t blk_no; | ||
3544 | xfs_caddr_t bufaddr, offset; | ||
3545 | xfs_buf_t *hbp, *dbp; | ||
3546 | int error = 0, h_size; | ||
3547 | int bblks, split_bblks; | ||
3548 | int hblks, split_hblks, wrapped_hblks; | ||
3549 | xlog_recover_t *rhash[XLOG_RHASH_SIZE]; | ||
3550 | |||
3551 | ASSERT(head_blk != tail_blk); | ||
3552 | |||
3553 | /* | ||
3554 | * Read the header of the tail block and get the iclog buffer size from | ||
3555 | * h_size. Use this to tell how many sectors make up the log header. | ||
3556 | */ | ||
3557 | if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) { | ||
3558 | /* | ||
3559 | * When using variable length iclogs, read first sector of | ||
3560 | * iclog header and extract the header size from it. Get a | ||
3561 | * new hbp that is the correct size. | ||
3562 | */ | ||
3563 | hbp = xlog_get_bp(log, 1); | ||
3564 | if (!hbp) | ||
3565 | return ENOMEM; | ||
3566 | if ((error = xlog_bread(log, tail_blk, 1, hbp))) | ||
3567 | goto bread_err1; | ||
3568 | offset = xlog_align(log, tail_blk, 1, hbp); | ||
3569 | rhead = (xlog_rec_header_t *)offset; | ||
3570 | error = xlog_valid_rec_header(log, rhead, tail_blk); | ||
3571 | if (error) | ||
3572 | goto bread_err1; | ||
3573 | h_size = INT_GET(rhead->h_size, ARCH_CONVERT); | ||
3574 | if ((INT_GET(rhead->h_version, ARCH_CONVERT) | ||
3575 | & XLOG_VERSION_2) && | ||
3576 | (h_size > XLOG_HEADER_CYCLE_SIZE)) { | ||
3577 | hblks = h_size / XLOG_HEADER_CYCLE_SIZE; | ||
3578 | if (h_size % XLOG_HEADER_CYCLE_SIZE) | ||
3579 | hblks++; | ||
3580 | xlog_put_bp(hbp); | ||
3581 | hbp = xlog_get_bp(log, hblks); | ||
3582 | } else { | ||
3583 | hblks = 1; | ||
3584 | } | ||
3585 | } else { | ||
3586 | ASSERT(log->l_sectbb_log == 0); | ||
3587 | hblks = 1; | ||
3588 | hbp = xlog_get_bp(log, 1); | ||
3589 | h_size = XLOG_BIG_RECORD_BSIZE; | ||
3590 | } | ||
3591 | |||
3592 | if (!hbp) | ||
3593 | return ENOMEM; | ||
3594 | dbp = xlog_get_bp(log, BTOBB(h_size)); | ||
3595 | if (!dbp) { | ||
3596 | xlog_put_bp(hbp); | ||
3597 | return ENOMEM; | ||
3598 | } | ||
3599 | |||
3600 | memset(rhash, 0, sizeof(rhash)); | ||
3601 | if (tail_blk <= head_blk) { | ||
3602 | for (blk_no = tail_blk; blk_no < head_blk; ) { | ||
3603 | if ((error = xlog_bread(log, blk_no, hblks, hbp))) | ||
3604 | goto bread_err2; | ||
3605 | offset = xlog_align(log, blk_no, hblks, hbp); | ||
3606 | rhead = (xlog_rec_header_t *)offset; | ||
3607 | error = xlog_valid_rec_header(log, rhead, blk_no); | ||
3608 | if (error) | ||
3609 | goto bread_err2; | ||
3610 | |||
3611 | /* blocks in data section */ | ||
3612 | bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); | ||
3613 | error = xlog_bread(log, blk_no + hblks, bblks, dbp); | ||
3614 | if (error) | ||
3615 | goto bread_err2; | ||
3616 | offset = xlog_align(log, blk_no + hblks, bblks, dbp); | ||
3617 | xlog_unpack_data(rhead, offset, log); | ||
3618 | if ((error = xlog_recover_process_data(log, | ||
3619 | rhash, rhead, offset, pass))) | ||
3620 | goto bread_err2; | ||
3621 | blk_no += bblks + hblks; | ||
3622 | } | ||
3623 | } else { | ||
3624 | /* | ||
3625 | * Perform recovery around the end of the physical log. | ||
3626 | * When the head is not on the same cycle number as the tail, | ||
3627 | * we can't do a sequential recovery as above. | ||
3628 | */ | ||
3629 | blk_no = tail_blk; | ||
3630 | while (blk_no < log->l_logBBsize) { | ||
3631 | /* | ||
3632 | * Check for header wrapping around physical end-of-log | ||
3633 | */ | ||
3634 | offset = NULL; | ||
3635 | split_hblks = 0; | ||
3636 | wrapped_hblks = 0; | ||
3637 | if (blk_no + hblks <= log->l_logBBsize) { | ||
3638 | /* Read header in one read */ | ||
3639 | error = xlog_bread(log, blk_no, hblks, hbp); | ||
3640 | if (error) | ||
3641 | goto bread_err2; | ||
3642 | offset = xlog_align(log, blk_no, hblks, hbp); | ||
3643 | } else { | ||
3644 | /* This LR is split across physical log end */ | ||
3645 | if (blk_no != log->l_logBBsize) { | ||
3646 | /* some data before physical log end */ | ||
3647 | ASSERT(blk_no <= INT_MAX); | ||
3648 | split_hblks = log->l_logBBsize - (int)blk_no; | ||
3649 | ASSERT(split_hblks > 0); | ||
3650 | if ((error = xlog_bread(log, blk_no, | ||
3651 | split_hblks, hbp))) | ||
3652 | goto bread_err2; | ||
3653 | offset = xlog_align(log, blk_no, | ||
3654 | split_hblks, hbp); | ||
3655 | } | ||
3656 | /* | ||
3657 | * Note: this black magic still works with | ||
3658 | * large sector sizes (non-512) only because: | ||
3659 | * - we increased the buffer size originally | ||
3660 | * by 1 sector giving us enough extra space | ||
3661 | * for the second read; | ||
3662 | * - the log start is guaranteed to be sector | ||
3663 | * aligned; | ||
3664 | * - we read the log end (LR header start) | ||
3665 | * _first_, then the log start (LR header end) | ||
3666 | * - order is important. | ||
3667 | */ | ||
3668 | bufaddr = XFS_BUF_PTR(hbp); | ||
3669 | XFS_BUF_SET_PTR(hbp, | ||
3670 | bufaddr + BBTOB(split_hblks), | ||
3671 | BBTOB(hblks - split_hblks)); | ||
3672 | wrapped_hblks = hblks - split_hblks; | ||
3673 | error = xlog_bread(log, 0, wrapped_hblks, hbp); | ||
3674 | if (error) | ||
3675 | goto bread_err2; | ||
3676 | XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks)); | ||
3677 | if (!offset) | ||
3678 | offset = xlog_align(log, 0, | ||
3679 | wrapped_hblks, hbp); | ||
3680 | } | ||
3681 | rhead = (xlog_rec_header_t *)offset; | ||
3682 | error = xlog_valid_rec_header(log, rhead, | ||
3683 | split_hblks ? blk_no : 0); | ||
3684 | if (error) | ||
3685 | goto bread_err2; | ||
3686 | |||
3687 | bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); | ||
3688 | blk_no += hblks; | ||
3689 | |||
3690 | /* Read in data for log record */ | ||
3691 | if (blk_no + bblks <= log->l_logBBsize) { | ||
3692 | error = xlog_bread(log, blk_no, bblks, dbp); | ||
3693 | if (error) | ||
3694 | goto bread_err2; | ||
3695 | offset = xlog_align(log, blk_no, bblks, dbp); | ||
3696 | } else { | ||
3697 | /* This log record is split across the | ||
3698 | * physical end of log */ | ||
3699 | offset = NULL; | ||
3700 | split_bblks = 0; | ||
3701 | if (blk_no != log->l_logBBsize) { | ||
3702 | /* some data is before the physical | ||
3703 | * end of log */ | ||
3704 | ASSERT(!wrapped_hblks); | ||
3705 | ASSERT(blk_no <= INT_MAX); | ||
3706 | split_bblks = | ||
3707 | log->l_logBBsize - (int)blk_no; | ||
3708 | ASSERT(split_bblks > 0); | ||
3709 | if ((error = xlog_bread(log, blk_no, | ||
3710 | split_bblks, dbp))) | ||
3711 | goto bread_err2; | ||
3712 | offset = xlog_align(log, blk_no, | ||
3713 | split_bblks, dbp); | ||
3714 | } | ||
3715 | /* | ||
3716 | * Note: this black magic still works with | ||
3717 | * large sector sizes (non-512) only because: | ||
3718 | * - we increased the buffer size originally | ||
3719 | * by 1 sector giving us enough extra space | ||
3720 | * for the second read; | ||
3721 | * - the log start is guaranteed to be sector | ||
3722 | * aligned; | ||
3723 | * - we read the log end (LR header start) | ||
3724 | * _first_, then the log start (LR header end) | ||
3725 | * - order is important. | ||
3726 | */ | ||
3727 | bufaddr = XFS_BUF_PTR(dbp); | ||
3728 | XFS_BUF_SET_PTR(dbp, | ||
3729 | bufaddr + BBTOB(split_bblks), | ||
3730 | BBTOB(bblks - split_bblks)); | ||
3731 | if ((error = xlog_bread(log, wrapped_hblks, | ||
3732 | bblks - split_bblks, dbp))) | ||
3733 | goto bread_err2; | ||
3734 | XFS_BUF_SET_PTR(dbp, bufaddr, h_size); | ||
3735 | if (!offset) | ||
3736 | offset = xlog_align(log, wrapped_hblks, | ||
3737 | bblks - split_bblks, dbp); | ||
3738 | } | ||
3739 | xlog_unpack_data(rhead, offset, log); | ||
3740 | if ((error = xlog_recover_process_data(log, rhash, | ||
3741 | rhead, offset, pass))) | ||
3742 | goto bread_err2; | ||
3743 | blk_no += bblks; | ||
3744 | } | ||
3745 | |||
3746 | ASSERT(blk_no >= log->l_logBBsize); | ||
3747 | blk_no -= log->l_logBBsize; | ||
3748 | |||
3749 | /* read first part of physical log */ | ||
3750 | while (blk_no < head_blk) { | ||
3751 | if ((error = xlog_bread(log, blk_no, hblks, hbp))) | ||
3752 | goto bread_err2; | ||
3753 | offset = xlog_align(log, blk_no, hblks, hbp); | ||
3754 | rhead = (xlog_rec_header_t *)offset; | ||
3755 | error = xlog_valid_rec_header(log, rhead, blk_no); | ||
3756 | if (error) | ||
3757 | goto bread_err2; | ||
3758 | bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); | ||
3759 | if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp))) | ||
3760 | goto bread_err2; | ||
3761 | offset = xlog_align(log, blk_no+hblks, bblks, dbp); | ||
3762 | xlog_unpack_data(rhead, offset, log); | ||
3763 | if ((error = xlog_recover_process_data(log, rhash, | ||
3764 | rhead, offset, pass))) | ||
3765 | goto bread_err2; | ||
3766 | blk_no += bblks + hblks; | ||
3767 | } | ||
3768 | } | ||
3769 | |||
3770 | bread_err2: | ||
3771 | xlog_put_bp(dbp); | ||
3772 | bread_err1: | ||
3773 | xlog_put_bp(hbp); | ||
3774 | return error; | ||
3775 | } | ||
3776 | |||
3777 | /* | ||
3778 | * Do the recovery of the log. We actually do this in two phases. | ||
3779 | * The two passes are necessary in order to implement the function | ||
3780 | * of cancelling a record written into the log. The first pass | ||
3781 | * determines those things which have been cancelled, and the | ||
3782 | * second pass replays log items normally except for those which | ||
3783 | * have been cancelled. The handling of the replay and cancellations | ||
3784 | * takes place in the log item type specific routines. | ||
3785 | * | ||
3786 | * The table of items which have cancel records in the log is allocated | ||
3787 | * and freed at this level, since only here do we know when all of | ||
3788 | * the log recovery has been completed. | ||
3789 | */ | ||
3790 | STATIC int | ||
3791 | xlog_do_log_recovery( | ||
3792 | xlog_t *log, | ||
3793 | xfs_daddr_t head_blk, | ||
3794 | xfs_daddr_t tail_blk) | ||
3795 | { | ||
3796 | int error; | ||
3797 | |||
3798 | ASSERT(head_blk != tail_blk); | ||
3799 | |||
3800 | /* | ||
3801 | * First do a pass to find all of the cancelled buf log items. | ||
3802 | * Store them in the buf_cancel_table for use in the second pass. | ||
3803 | */ | ||
3804 | log->l_buf_cancel_table = | ||
3805 | (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE * | ||
3806 | sizeof(xfs_buf_cancel_t*), | ||
3807 | KM_SLEEP); | ||
3808 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, | ||
3809 | XLOG_RECOVER_PASS1); | ||
3810 | if (error != 0) { | ||
3811 | kmem_free(log->l_buf_cancel_table, | ||
3812 | XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); | ||
3813 | log->l_buf_cancel_table = NULL; | ||
3814 | return error; | ||
3815 | } | ||
3816 | /* | ||
3817 | * Then do a second pass to actually recover the items in the log. | ||
3818 | * When it is complete free the table of buf cancel items. | ||
3819 | */ | ||
3820 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, | ||
3821 | XLOG_RECOVER_PASS2); | ||
3822 | #ifdef DEBUG | ||
3823 | { | ||
3824 | int i; | ||
3825 | |||
3826 | for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) | ||
3827 | ASSERT(log->l_buf_cancel_table[i] == NULL); | ||
3828 | } | ||
3829 | #endif /* DEBUG */ | ||
3830 | |||
3831 | kmem_free(log->l_buf_cancel_table, | ||
3832 | XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*)); | ||
3833 | log->l_buf_cancel_table = NULL; | ||
3834 | |||
3835 | return error; | ||
3836 | } | ||
3837 | |||
3838 | /* | ||
3839 | * Do the actual recovery | ||
3840 | */ | ||
3841 | STATIC int | ||
3842 | xlog_do_recover( | ||
3843 | xlog_t *log, | ||
3844 | xfs_daddr_t head_blk, | ||
3845 | xfs_daddr_t tail_blk) | ||
3846 | { | ||
3847 | int error; | ||
3848 | xfs_buf_t *bp; | ||
3849 | xfs_sb_t *sbp; | ||
3850 | |||
3851 | /* | ||
3852 | * First replay the images in the log. | ||
3853 | */ | ||
3854 | error = xlog_do_log_recovery(log, head_blk, tail_blk); | ||
3855 | if (error) { | ||
3856 | return error; | ||
3857 | } | ||
3858 | |||
3859 | XFS_bflush(log->l_mp->m_ddev_targp); | ||
3860 | |||
3861 | /* | ||
3862 | * If IO errors happened during recovery, bail out. | ||
3863 | */ | ||
3864 | if (XFS_FORCED_SHUTDOWN(log->l_mp)) { | ||
3865 | return (EIO); | ||
3866 | } | ||
3867 | |||
3868 | /* | ||
3869 | * We now update the tail_lsn since much of the recovery has completed | ||
3870 | * and there may be space available to use. If there were no extent | ||
3871 | * or iunlinks, we can free up the entire log and set the tail_lsn to | ||
3872 | * be the last_sync_lsn. This was set in xlog_find_tail to be the | ||
3873 | * lsn of the last known good LR on disk. If there are extent frees | ||
3874 | * or iunlinks they will have some entries in the AIL; so we look at | ||
3875 | * the AIL to determine how to set the tail_lsn. | ||
3876 | */ | ||
3877 | xlog_assign_tail_lsn(log->l_mp); | ||
3878 | |||
3879 | /* | ||
3880 | * Now that we've finished replaying all buffer and inode | ||
3881 | * updates, re-read in the superblock. | ||
3882 | */ | ||
3883 | bp = xfs_getsb(log->l_mp, 0); | ||
3884 | XFS_BUF_UNDONE(bp); | ||
3885 | XFS_BUF_READ(bp); | ||
3886 | xfsbdstrat(log->l_mp, bp); | ||
3887 | if ((error = xfs_iowait(bp))) { | ||
3888 | xfs_ioerror_alert("xlog_do_recover", | ||
3889 | log->l_mp, bp, XFS_BUF_ADDR(bp)); | ||
3890 | ASSERT(0); | ||
3891 | xfs_buf_relse(bp); | ||
3892 | return error; | ||
3893 | } | ||
3894 | |||
3895 | /* Convert superblock from on-disk format */ | ||
3896 | sbp = &log->l_mp->m_sb; | ||
3897 | xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS); | ||
3898 | ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); | ||
3899 | ASSERT(XFS_SB_GOOD_VERSION(sbp)); | ||
3900 | xfs_buf_relse(bp); | ||
3901 | |||
3902 | xlog_recover_check_summary(log); | ||
3903 | |||
3904 | /* Normal transactions can now occur */ | ||
3905 | log->l_flags &= ~XLOG_ACTIVE_RECOVERY; | ||
3906 | return 0; | ||
3907 | } | ||
3908 | |||
3909 | /* | ||
3910 | * Perform recovery and re-initialize some log variables in xlog_find_tail. | ||
3911 | * | ||
3912 | * Return error or zero. | ||
3913 | */ | ||
3914 | int | ||
3915 | xlog_recover( | ||
3916 | xlog_t *log, | ||
3917 | int readonly) | ||
3918 | { | ||
3919 | xfs_daddr_t head_blk, tail_blk; | ||
3920 | int error; | ||
3921 | |||
3922 | /* find the tail of the log */ | ||
3923 | if ((error = xlog_find_tail(log, &head_blk, &tail_blk, readonly))) | ||
3924 | return error; | ||
3925 | |||
3926 | if (tail_blk != head_blk) { | ||
3927 | /* There used to be a comment here: | ||
3928 | * | ||
3929 | * disallow recovery on read-only mounts. note -- mount | ||
3930 | * checks for ENOSPC and turns it into an intelligent | ||
3931 | * error message. | ||
3932 | * ...but this is no longer true. Now, unless you specify | ||
3933 | * NORECOVERY (in which case this function would never be | ||
3934 | * called), we just go ahead and recover. We do this all | ||
3935 | * under the vfs layer, so we can get away with it unless | ||
3936 | * the device itself is read-only, in which case we fail. | ||
3937 | */ | ||
3938 | if ((error = xfs_dev_is_read_only(log->l_mp, | ||
3939 | "recovery required"))) { | ||
3940 | return error; | ||
3941 | } | ||
3942 | |||
3943 | cmn_err(CE_NOTE, | ||
3944 | "Starting XFS recovery on filesystem: %s (dev: %s)", | ||
3945 | log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ)); | ||
3946 | |||
3947 | error = xlog_do_recover(log, head_blk, tail_blk); | ||
3948 | log->l_flags |= XLOG_RECOVERY_NEEDED; | ||
3949 | } | ||
3950 | return error; | ||
3951 | } | ||
3952 | |||
3953 | /* | ||
3954 | * In the first part of recovery we replay inodes and buffers and build | ||
3955 | * up the list of extent free items which need to be processed. Here | ||
3956 | * we process the extent free items and clean up the on disk unlinked | ||
3957 | * inode lists. This is separated from the first part of recovery so | ||
3958 | * that the root and real-time bitmap inodes can be read in from disk in | ||
3959 | * between the two stages. This is necessary so that we can free space | ||
3960 | * in the real-time portion of the file system. | ||
3961 | */ | ||
3962 | int | ||
3963 | xlog_recover_finish( | ||
3964 | xlog_t *log, | ||
3965 | int mfsi_flags) | ||
3966 | { | ||
3967 | /* | ||
3968 | * Now we're ready to do the transactions needed for the | ||
3969 | * rest of recovery. Start with completing all the extent | ||
3970 | * free intent records and then process the unlinked inode | ||
3971 | * lists. At this point, we essentially run in normal mode | ||
3972 | * except that we're still performing recovery actions | ||
3973 | * rather than accepting new requests. | ||
3974 | */ | ||
3975 | if (log->l_flags & XLOG_RECOVERY_NEEDED) { | ||
3976 | xlog_recover_process_efis(log); | ||
3977 | /* | ||
3978 | * Sync the log to get all the EFIs out of the AIL. | ||
3979 | * This isn't absolutely necessary, but it helps in | ||
3980 | * case the unlink transactions would have problems | ||
3981 | * pushing the EFIs out of the way. | ||
3982 | */ | ||
3983 | xfs_log_force(log->l_mp, (xfs_lsn_t)0, | ||
3984 | (XFS_LOG_FORCE | XFS_LOG_SYNC)); | ||
3985 | |||
3986 | if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) { | ||
3987 | xlog_recover_process_iunlinks(log); | ||
3988 | } | ||
3989 | |||
3990 | xlog_recover_check_summary(log); | ||
3991 | |||
3992 | cmn_err(CE_NOTE, | ||
3993 | "Ending XFS recovery on filesystem: %s (dev: %s)", | ||
3994 | log->l_mp->m_fsname, XFS_BUFTARG_NAME(log->l_targ)); | ||
3995 | log->l_flags &= ~XLOG_RECOVERY_NEEDED; | ||
3996 | } else { | ||
3997 | cmn_err(CE_DEBUG, | ||
3998 | "!Ending clean XFS mount for filesystem: %s", | ||
3999 | log->l_mp->m_fsname); | ||
4000 | } | ||
4001 | return 0; | ||
4002 | } | ||
4003 | |||
4004 | |||
4005 | #if defined(DEBUG) | ||
4006 | /* | ||
4007 | * Read all of the agf and agi counters and check that they | ||
4008 | * are consistent with the superblock counters. | ||
4009 | */ | ||
4010 | void | ||
4011 | xlog_recover_check_summary( | ||
4012 | xlog_t *log) | ||
4013 | { | ||
4014 | xfs_mount_t *mp; | ||
4015 | xfs_agf_t *agfp; | ||
4016 | xfs_agi_t *agip; | ||
4017 | xfs_buf_t *agfbp; | ||
4018 | xfs_buf_t *agibp; | ||
4019 | xfs_daddr_t agfdaddr; | ||
4020 | xfs_daddr_t agidaddr; | ||
4021 | xfs_buf_t *sbbp; | ||
4022 | #ifdef XFS_LOUD_RECOVERY | ||
4023 | xfs_sb_t *sbp; | ||
4024 | #endif | ||
4025 | xfs_agnumber_t agno; | ||
4026 | __uint64_t freeblks; | ||
4027 | __uint64_t itotal; | ||
4028 | __uint64_t ifree; | ||
4029 | |||
4030 | mp = log->l_mp; | ||
4031 | |||
4032 | freeblks = 0LL; | ||
4033 | itotal = 0LL; | ||
4034 | ifree = 0LL; | ||
4035 | for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { | ||
4036 | agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)); | ||
4037 | agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr, | ||
4038 | XFS_FSS_TO_BB(mp, 1), 0); | ||
4039 | if (XFS_BUF_ISERROR(agfbp)) { | ||
4040 | xfs_ioerror_alert("xlog_recover_check_summary(agf)", | ||
4041 | mp, agfbp, agfdaddr); | ||
4042 | } | ||
4043 | agfp = XFS_BUF_TO_AGF(agfbp); | ||
4044 | ASSERT(XFS_AGF_MAGIC == | ||
4045 | INT_GET(agfp->agf_magicnum, ARCH_CONVERT)); | ||
4046 | ASSERT(XFS_AGF_GOOD_VERSION( | ||
4047 | INT_GET(agfp->agf_versionnum, ARCH_CONVERT))); | ||
4048 | ASSERT(INT_GET(agfp->agf_seqno, ARCH_CONVERT) == agno); | ||
4049 | |||
4050 | freeblks += INT_GET(agfp->agf_freeblks, ARCH_CONVERT) + | ||
4051 | INT_GET(agfp->agf_flcount, ARCH_CONVERT); | ||
4052 | xfs_buf_relse(agfbp); | ||
4053 | |||
4054 | agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)); | ||
4055 | agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr, | ||
4056 | XFS_FSS_TO_BB(mp, 1), 0); | ||
4057 | if (XFS_BUF_ISERROR(agibp)) { | ||
4058 | xfs_ioerror_alert("xlog_recover_check_summary(agi)", | ||
4059 | mp, agibp, agidaddr); | ||
4060 | } | ||
4061 | agip = XFS_BUF_TO_AGI(agibp); | ||
4062 | ASSERT(XFS_AGI_MAGIC == | ||
4063 | INT_GET(agip->agi_magicnum, ARCH_CONVERT)); | ||
4064 | ASSERT(XFS_AGI_GOOD_VERSION( | ||
4065 | INT_GET(agip->agi_versionnum, ARCH_CONVERT))); | ||
4066 | ASSERT(INT_GET(agip->agi_seqno, ARCH_CONVERT) == agno); | ||
4067 | |||
4068 | itotal += INT_GET(agip->agi_count, ARCH_CONVERT); | ||
4069 | ifree += INT_GET(agip->agi_freecount, ARCH_CONVERT); | ||
4070 | xfs_buf_relse(agibp); | ||
4071 | } | ||
4072 | |||
4073 | sbbp = xfs_getsb(mp, 0); | ||
4074 | #ifdef XFS_LOUD_RECOVERY | ||
4075 | sbp = &mp->m_sb; | ||
4076 | xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS); | ||
4077 | cmn_err(CE_NOTE, | ||
4078 | "xlog_recover_check_summary: sb_icount %Lu itotal %Lu", | ||
4079 | sbp->sb_icount, itotal); | ||
4080 | cmn_err(CE_NOTE, | ||
4081 | "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu", | ||
4082 | sbp->sb_ifree, ifree); | ||
4083 | cmn_err(CE_NOTE, | ||
4084 | "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu", | ||
4085 | sbp->sb_fdblocks, freeblks); | ||
4086 | #if 0 | ||
4087 | /* | ||
4088 | * This is turned off until I account for the allocation | ||
4089 | * btree blocks which live in free space. | ||
4090 | */ | ||
4091 | ASSERT(sbp->sb_icount == itotal); | ||
4092 | ASSERT(sbp->sb_ifree == ifree); | ||
4093 | ASSERT(sbp->sb_fdblocks == freeblks); | ||
4094 | #endif | ||
4095 | #endif | ||
4096 | xfs_buf_relse(sbbp); | ||
4097 | } | ||
4098 | #endif /* DEBUG */ | ||