diff options
author | Dave Chinner <dchinner@redhat.com> | 2012-10-08 06:56:09 -0400 |
---|---|---|
committer | Ben Myers <bpm@sgi.com> | 2012-10-17 14:40:09 -0400 |
commit | 6d8b79cfca39399ef9115fb65dde85993455c9a3 (patch) | |
tree | c4702e765ee5b3d10f496c42148e317d7ee98ed8 /fs/xfs/xfs_icache.c | |
parent | c75921a72a7c4bb73a5e09a697a672722e5543f1 (diff) |
xfs: rename xfs_sync.[ch] to xfs_icache.[ch]
xfs_sync.c now only contains inode reclaim functions and inode cache
iteration functions. It is not related to sync operations anymore.
Rename to xfs_icache.c to reflect it's contents and prepare for
consolidation with the other inode cache file that exists
(xfs_iget.c).
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Diffstat (limited to 'fs/xfs/xfs_icache.c')
-rw-r--r-- | fs/xfs/xfs_icache.c | 715 |
1 files changed, 715 insertions, 0 deletions
diff --git a/fs/xfs/xfs_icache.c b/fs/xfs/xfs_icache.c new file mode 100644 index 000000000000..eba216f11d5e --- /dev/null +++ b/fs/xfs/xfs_icache.c | |||
@@ -0,0 +1,715 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | ||
3 | * All Rights Reserved. | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or | ||
6 | * modify it under the terms of the GNU General Public License as | ||
7 | * published by the Free Software Foundation. | ||
8 | * | ||
9 | * This program is distributed in the hope that it would be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write the Free Software Foundation, | ||
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
17 | */ | ||
18 | #include "xfs.h" | ||
19 | #include "xfs_fs.h" | ||
20 | #include "xfs_types.h" | ||
21 | #include "xfs_log.h" | ||
22 | #include "xfs_log_priv.h" | ||
23 | #include "xfs_inum.h" | ||
24 | #include "xfs_trans.h" | ||
25 | #include "xfs_trans_priv.h" | ||
26 | #include "xfs_sb.h" | ||
27 | #include "xfs_ag.h" | ||
28 | #include "xfs_mount.h" | ||
29 | #include "xfs_bmap_btree.h" | ||
30 | #include "xfs_inode.h" | ||
31 | #include "xfs_dinode.h" | ||
32 | #include "xfs_error.h" | ||
33 | #include "xfs_filestream.h" | ||
34 | #include "xfs_vnodeops.h" | ||
35 | #include "xfs_inode_item.h" | ||
36 | #include "xfs_quota.h" | ||
37 | #include "xfs_trace.h" | ||
38 | #include "xfs_fsops.h" | ||
39 | #include "xfs_icache.h" | ||
40 | |||
41 | #include <linux/kthread.h> | ||
42 | #include <linux/freezer.h> | ||
43 | |||
44 | /* | ||
45 | * The inode lookup is done in batches to keep the amount of lock traffic and | ||
46 | * radix tree lookups to a minimum. The batch size is a trade off between | ||
47 | * lookup reduction and stack usage. This is in the reclaim path, so we can't | ||
48 | * be too greedy. | ||
49 | */ | ||
50 | #define XFS_LOOKUP_BATCH 32 | ||
51 | |||
52 | STATIC int | ||
53 | xfs_inode_ag_walk_grab( | ||
54 | struct xfs_inode *ip) | ||
55 | { | ||
56 | struct inode *inode = VFS_I(ip); | ||
57 | |||
58 | ASSERT(rcu_read_lock_held()); | ||
59 | |||
60 | /* | ||
61 | * check for stale RCU freed inode | ||
62 | * | ||
63 | * If the inode has been reallocated, it doesn't matter if it's not in | ||
64 | * the AG we are walking - we are walking for writeback, so if it | ||
65 | * passes all the "valid inode" checks and is dirty, then we'll write | ||
66 | * it back anyway. If it has been reallocated and still being | ||
67 | * initialised, the XFS_INEW check below will catch it. | ||
68 | */ | ||
69 | spin_lock(&ip->i_flags_lock); | ||
70 | if (!ip->i_ino) | ||
71 | goto out_unlock_noent; | ||
72 | |||
73 | /* avoid new or reclaimable inodes. Leave for reclaim code to flush */ | ||
74 | if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) | ||
75 | goto out_unlock_noent; | ||
76 | spin_unlock(&ip->i_flags_lock); | ||
77 | |||
78 | /* nothing to sync during shutdown */ | ||
79 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | ||
80 | return EFSCORRUPTED; | ||
81 | |||
82 | /* If we can't grab the inode, it must on it's way to reclaim. */ | ||
83 | if (!igrab(inode)) | ||
84 | return ENOENT; | ||
85 | |||
86 | if (is_bad_inode(inode)) { | ||
87 | IRELE(ip); | ||
88 | return ENOENT; | ||
89 | } | ||
90 | |||
91 | /* inode is valid */ | ||
92 | return 0; | ||
93 | |||
94 | out_unlock_noent: | ||
95 | spin_unlock(&ip->i_flags_lock); | ||
96 | return ENOENT; | ||
97 | } | ||
98 | |||
99 | STATIC int | ||
100 | xfs_inode_ag_walk( | ||
101 | struct xfs_mount *mp, | ||
102 | struct xfs_perag *pag, | ||
103 | int (*execute)(struct xfs_inode *ip, | ||
104 | struct xfs_perag *pag, int flags), | ||
105 | int flags) | ||
106 | { | ||
107 | uint32_t first_index; | ||
108 | int last_error = 0; | ||
109 | int skipped; | ||
110 | int done; | ||
111 | int nr_found; | ||
112 | |||
113 | restart: | ||
114 | done = 0; | ||
115 | skipped = 0; | ||
116 | first_index = 0; | ||
117 | nr_found = 0; | ||
118 | do { | ||
119 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | ||
120 | int error = 0; | ||
121 | int i; | ||
122 | |||
123 | rcu_read_lock(); | ||
124 | nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, | ||
125 | (void **)batch, first_index, | ||
126 | XFS_LOOKUP_BATCH); | ||
127 | if (!nr_found) { | ||
128 | rcu_read_unlock(); | ||
129 | break; | ||
130 | } | ||
131 | |||
132 | /* | ||
133 | * Grab the inodes before we drop the lock. if we found | ||
134 | * nothing, nr == 0 and the loop will be skipped. | ||
135 | */ | ||
136 | for (i = 0; i < nr_found; i++) { | ||
137 | struct xfs_inode *ip = batch[i]; | ||
138 | |||
139 | if (done || xfs_inode_ag_walk_grab(ip)) | ||
140 | batch[i] = NULL; | ||
141 | |||
142 | /* | ||
143 | * Update the index for the next lookup. Catch | ||
144 | * overflows into the next AG range which can occur if | ||
145 | * we have inodes in the last block of the AG and we | ||
146 | * are currently pointing to the last inode. | ||
147 | * | ||
148 | * Because we may see inodes that are from the wrong AG | ||
149 | * due to RCU freeing and reallocation, only update the | ||
150 | * index if it lies in this AG. It was a race that lead | ||
151 | * us to see this inode, so another lookup from the | ||
152 | * same index will not find it again. | ||
153 | */ | ||
154 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) | ||
155 | continue; | ||
156 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | ||
157 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | ||
158 | done = 1; | ||
159 | } | ||
160 | |||
161 | /* unlock now we've grabbed the inodes. */ | ||
162 | rcu_read_unlock(); | ||
163 | |||
164 | for (i = 0; i < nr_found; i++) { | ||
165 | if (!batch[i]) | ||
166 | continue; | ||
167 | error = execute(batch[i], pag, flags); | ||
168 | IRELE(batch[i]); | ||
169 | if (error == EAGAIN) { | ||
170 | skipped++; | ||
171 | continue; | ||
172 | } | ||
173 | if (error && last_error != EFSCORRUPTED) | ||
174 | last_error = error; | ||
175 | } | ||
176 | |||
177 | /* bail out if the filesystem is corrupted. */ | ||
178 | if (error == EFSCORRUPTED) | ||
179 | break; | ||
180 | |||
181 | cond_resched(); | ||
182 | |||
183 | } while (nr_found && !done); | ||
184 | |||
185 | if (skipped) { | ||
186 | delay(1); | ||
187 | goto restart; | ||
188 | } | ||
189 | return last_error; | ||
190 | } | ||
191 | |||
192 | int | ||
193 | xfs_inode_ag_iterator( | ||
194 | struct xfs_mount *mp, | ||
195 | int (*execute)(struct xfs_inode *ip, | ||
196 | struct xfs_perag *pag, int flags), | ||
197 | int flags) | ||
198 | { | ||
199 | struct xfs_perag *pag; | ||
200 | int error = 0; | ||
201 | int last_error = 0; | ||
202 | xfs_agnumber_t ag; | ||
203 | |||
204 | ag = 0; | ||
205 | while ((pag = xfs_perag_get(mp, ag))) { | ||
206 | ag = pag->pag_agno + 1; | ||
207 | error = xfs_inode_ag_walk(mp, pag, execute, flags); | ||
208 | xfs_perag_put(pag); | ||
209 | if (error) { | ||
210 | last_error = error; | ||
211 | if (error == EFSCORRUPTED) | ||
212 | break; | ||
213 | } | ||
214 | } | ||
215 | return XFS_ERROR(last_error); | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * Queue a new inode reclaim pass if there are reclaimable inodes and there | ||
220 | * isn't a reclaim pass already in progress. By default it runs every 5s based | ||
221 | * on the xfs periodic sync default of 30s. Perhaps this should have it's own | ||
222 | * tunable, but that can be done if this method proves to be ineffective or too | ||
223 | * aggressive. | ||
224 | */ | ||
225 | static void | ||
226 | xfs_reclaim_work_queue( | ||
227 | struct xfs_mount *mp) | ||
228 | { | ||
229 | |||
230 | rcu_read_lock(); | ||
231 | if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { | ||
232 | queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work, | ||
233 | msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); | ||
234 | } | ||
235 | rcu_read_unlock(); | ||
236 | } | ||
237 | |||
238 | /* | ||
239 | * This is a fast pass over the inode cache to try to get reclaim moving on as | ||
240 | * many inodes as possible in a short period of time. It kicks itself every few | ||
241 | * seconds, as well as being kicked by the inode cache shrinker when memory | ||
242 | * goes low. It scans as quickly as possible avoiding locked inodes or those | ||
243 | * already being flushed, and once done schedules a future pass. | ||
244 | */ | ||
245 | void | ||
246 | xfs_reclaim_worker( | ||
247 | struct work_struct *work) | ||
248 | { | ||
249 | struct xfs_mount *mp = container_of(to_delayed_work(work), | ||
250 | struct xfs_mount, m_reclaim_work); | ||
251 | |||
252 | xfs_reclaim_inodes(mp, SYNC_TRYLOCK); | ||
253 | xfs_reclaim_work_queue(mp); | ||
254 | } | ||
255 | |||
256 | void | ||
257 | __xfs_inode_set_reclaim_tag( | ||
258 | struct xfs_perag *pag, | ||
259 | struct xfs_inode *ip) | ||
260 | { | ||
261 | radix_tree_tag_set(&pag->pag_ici_root, | ||
262 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), | ||
263 | XFS_ICI_RECLAIM_TAG); | ||
264 | |||
265 | if (!pag->pag_ici_reclaimable) { | ||
266 | /* propagate the reclaim tag up into the perag radix tree */ | ||
267 | spin_lock(&ip->i_mount->m_perag_lock); | ||
268 | radix_tree_tag_set(&ip->i_mount->m_perag_tree, | ||
269 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | ||
270 | XFS_ICI_RECLAIM_TAG); | ||
271 | spin_unlock(&ip->i_mount->m_perag_lock); | ||
272 | |||
273 | /* schedule periodic background inode reclaim */ | ||
274 | xfs_reclaim_work_queue(ip->i_mount); | ||
275 | |||
276 | trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, | ||
277 | -1, _RET_IP_); | ||
278 | } | ||
279 | pag->pag_ici_reclaimable++; | ||
280 | } | ||
281 | |||
282 | /* | ||
283 | * We set the inode flag atomically with the radix tree tag. | ||
284 | * Once we get tag lookups on the radix tree, this inode flag | ||
285 | * can go away. | ||
286 | */ | ||
287 | void | ||
288 | xfs_inode_set_reclaim_tag( | ||
289 | xfs_inode_t *ip) | ||
290 | { | ||
291 | struct xfs_mount *mp = ip->i_mount; | ||
292 | struct xfs_perag *pag; | ||
293 | |||
294 | pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | ||
295 | spin_lock(&pag->pag_ici_lock); | ||
296 | spin_lock(&ip->i_flags_lock); | ||
297 | __xfs_inode_set_reclaim_tag(pag, ip); | ||
298 | __xfs_iflags_set(ip, XFS_IRECLAIMABLE); | ||
299 | spin_unlock(&ip->i_flags_lock); | ||
300 | spin_unlock(&pag->pag_ici_lock); | ||
301 | xfs_perag_put(pag); | ||
302 | } | ||
303 | |||
304 | STATIC void | ||
305 | __xfs_inode_clear_reclaim( | ||
306 | xfs_perag_t *pag, | ||
307 | xfs_inode_t *ip) | ||
308 | { | ||
309 | pag->pag_ici_reclaimable--; | ||
310 | if (!pag->pag_ici_reclaimable) { | ||
311 | /* clear the reclaim tag from the perag radix tree */ | ||
312 | spin_lock(&ip->i_mount->m_perag_lock); | ||
313 | radix_tree_tag_clear(&ip->i_mount->m_perag_tree, | ||
314 | XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), | ||
315 | XFS_ICI_RECLAIM_TAG); | ||
316 | spin_unlock(&ip->i_mount->m_perag_lock); | ||
317 | trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, | ||
318 | -1, _RET_IP_); | ||
319 | } | ||
320 | } | ||
321 | |||
322 | void | ||
323 | __xfs_inode_clear_reclaim_tag( | ||
324 | xfs_mount_t *mp, | ||
325 | xfs_perag_t *pag, | ||
326 | xfs_inode_t *ip) | ||
327 | { | ||
328 | radix_tree_tag_clear(&pag->pag_ici_root, | ||
329 | XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); | ||
330 | __xfs_inode_clear_reclaim(pag, ip); | ||
331 | } | ||
332 | |||
333 | /* | ||
334 | * Grab the inode for reclaim exclusively. | ||
335 | * Return 0 if we grabbed it, non-zero otherwise. | ||
336 | */ | ||
337 | STATIC int | ||
338 | xfs_reclaim_inode_grab( | ||
339 | struct xfs_inode *ip, | ||
340 | int flags) | ||
341 | { | ||
342 | ASSERT(rcu_read_lock_held()); | ||
343 | |||
344 | /* quick check for stale RCU freed inode */ | ||
345 | if (!ip->i_ino) | ||
346 | return 1; | ||
347 | |||
348 | /* | ||
349 | * If we are asked for non-blocking operation, do unlocked checks to | ||
350 | * see if the inode already is being flushed or in reclaim to avoid | ||
351 | * lock traffic. | ||
352 | */ | ||
353 | if ((flags & SYNC_TRYLOCK) && | ||
354 | __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM)) | ||
355 | return 1; | ||
356 | |||
357 | /* | ||
358 | * The radix tree lock here protects a thread in xfs_iget from racing | ||
359 | * with us starting reclaim on the inode. Once we have the | ||
360 | * XFS_IRECLAIM flag set it will not touch us. | ||
361 | * | ||
362 | * Due to RCU lookup, we may find inodes that have been freed and only | ||
363 | * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that | ||
364 | * aren't candidates for reclaim at all, so we must check the | ||
365 | * XFS_IRECLAIMABLE is set first before proceeding to reclaim. | ||
366 | */ | ||
367 | spin_lock(&ip->i_flags_lock); | ||
368 | if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || | ||
369 | __xfs_iflags_test(ip, XFS_IRECLAIM)) { | ||
370 | /* not a reclaim candidate. */ | ||
371 | spin_unlock(&ip->i_flags_lock); | ||
372 | return 1; | ||
373 | } | ||
374 | __xfs_iflags_set(ip, XFS_IRECLAIM); | ||
375 | spin_unlock(&ip->i_flags_lock); | ||
376 | return 0; | ||
377 | } | ||
378 | |||
379 | /* | ||
380 | * Inodes in different states need to be treated differently. The following | ||
381 | * table lists the inode states and the reclaim actions necessary: | ||
382 | * | ||
383 | * inode state iflush ret required action | ||
384 | * --------------- ---------- --------------- | ||
385 | * bad - reclaim | ||
386 | * shutdown EIO unpin and reclaim | ||
387 | * clean, unpinned 0 reclaim | ||
388 | * stale, unpinned 0 reclaim | ||
389 | * clean, pinned(*) 0 requeue | ||
390 | * stale, pinned EAGAIN requeue | ||
391 | * dirty, async - requeue | ||
392 | * dirty, sync 0 reclaim | ||
393 | * | ||
394 | * (*) dgc: I don't think the clean, pinned state is possible but it gets | ||
395 | * handled anyway given the order of checks implemented. | ||
396 | * | ||
397 | * Also, because we get the flush lock first, we know that any inode that has | ||
398 | * been flushed delwri has had the flush completed by the time we check that | ||
399 | * the inode is clean. | ||
400 | * | ||
401 | * Note that because the inode is flushed delayed write by AIL pushing, the | ||
402 | * flush lock may already be held here and waiting on it can result in very | ||
403 | * long latencies. Hence for sync reclaims, where we wait on the flush lock, | ||
404 | * the caller should push the AIL first before trying to reclaim inodes to | ||
405 | * minimise the amount of time spent waiting. For background relaim, we only | ||
406 | * bother to reclaim clean inodes anyway. | ||
407 | * | ||
408 | * Hence the order of actions after gaining the locks should be: | ||
409 | * bad => reclaim | ||
410 | * shutdown => unpin and reclaim | ||
411 | * pinned, async => requeue | ||
412 | * pinned, sync => unpin | ||
413 | * stale => reclaim | ||
414 | * clean => reclaim | ||
415 | * dirty, async => requeue | ||
416 | * dirty, sync => flush, wait and reclaim | ||
417 | */ | ||
418 | STATIC int | ||
419 | xfs_reclaim_inode( | ||
420 | struct xfs_inode *ip, | ||
421 | struct xfs_perag *pag, | ||
422 | int sync_mode) | ||
423 | { | ||
424 | struct xfs_buf *bp = NULL; | ||
425 | int error; | ||
426 | |||
427 | restart: | ||
428 | error = 0; | ||
429 | xfs_ilock(ip, XFS_ILOCK_EXCL); | ||
430 | if (!xfs_iflock_nowait(ip)) { | ||
431 | if (!(sync_mode & SYNC_WAIT)) | ||
432 | goto out; | ||
433 | xfs_iflock(ip); | ||
434 | } | ||
435 | |||
436 | if (is_bad_inode(VFS_I(ip))) | ||
437 | goto reclaim; | ||
438 | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { | ||
439 | xfs_iunpin_wait(ip); | ||
440 | xfs_iflush_abort(ip, false); | ||
441 | goto reclaim; | ||
442 | } | ||
443 | if (xfs_ipincount(ip)) { | ||
444 | if (!(sync_mode & SYNC_WAIT)) | ||
445 | goto out_ifunlock; | ||
446 | xfs_iunpin_wait(ip); | ||
447 | } | ||
448 | if (xfs_iflags_test(ip, XFS_ISTALE)) | ||
449 | goto reclaim; | ||
450 | if (xfs_inode_clean(ip)) | ||
451 | goto reclaim; | ||
452 | |||
453 | /* | ||
454 | * Never flush out dirty data during non-blocking reclaim, as it would | ||
455 | * just contend with AIL pushing trying to do the same job. | ||
456 | */ | ||
457 | if (!(sync_mode & SYNC_WAIT)) | ||
458 | goto out_ifunlock; | ||
459 | |||
460 | /* | ||
461 | * Now we have an inode that needs flushing. | ||
462 | * | ||
463 | * Note that xfs_iflush will never block on the inode buffer lock, as | ||
464 | * xfs_ifree_cluster() can lock the inode buffer before it locks the | ||
465 | * ip->i_lock, and we are doing the exact opposite here. As a result, | ||
466 | * doing a blocking xfs_imap_to_bp() to get the cluster buffer would | ||
467 | * result in an ABBA deadlock with xfs_ifree_cluster(). | ||
468 | * | ||
469 | * As xfs_ifree_cluser() must gather all inodes that are active in the | ||
470 | * cache to mark them stale, if we hit this case we don't actually want | ||
471 | * to do IO here - we want the inode marked stale so we can simply | ||
472 | * reclaim it. Hence if we get an EAGAIN error here, just unlock the | ||
473 | * inode, back off and try again. Hopefully the next pass through will | ||
474 | * see the stale flag set on the inode. | ||
475 | */ | ||
476 | error = xfs_iflush(ip, &bp); | ||
477 | if (error == EAGAIN) { | ||
478 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
479 | /* backoff longer than in xfs_ifree_cluster */ | ||
480 | delay(2); | ||
481 | goto restart; | ||
482 | } | ||
483 | |||
484 | if (!error) { | ||
485 | error = xfs_bwrite(bp); | ||
486 | xfs_buf_relse(bp); | ||
487 | } | ||
488 | |||
489 | xfs_iflock(ip); | ||
490 | reclaim: | ||
491 | xfs_ifunlock(ip); | ||
492 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
493 | |||
494 | XFS_STATS_INC(xs_ig_reclaims); | ||
495 | /* | ||
496 | * Remove the inode from the per-AG radix tree. | ||
497 | * | ||
498 | * Because radix_tree_delete won't complain even if the item was never | ||
499 | * added to the tree assert that it's been there before to catch | ||
500 | * problems with the inode life time early on. | ||
501 | */ | ||
502 | spin_lock(&pag->pag_ici_lock); | ||
503 | if (!radix_tree_delete(&pag->pag_ici_root, | ||
504 | XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) | ||
505 | ASSERT(0); | ||
506 | __xfs_inode_clear_reclaim(pag, ip); | ||
507 | spin_unlock(&pag->pag_ici_lock); | ||
508 | |||
509 | /* | ||
510 | * Here we do an (almost) spurious inode lock in order to coordinate | ||
511 | * with inode cache radix tree lookups. This is because the lookup | ||
512 | * can reference the inodes in the cache without taking references. | ||
513 | * | ||
514 | * We make that OK here by ensuring that we wait until the inode is | ||
515 | * unlocked after the lookup before we go ahead and free it. | ||
516 | */ | ||
517 | xfs_ilock(ip, XFS_ILOCK_EXCL); | ||
518 | xfs_qm_dqdetach(ip); | ||
519 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
520 | |||
521 | xfs_inode_free(ip); | ||
522 | return error; | ||
523 | |||
524 | out_ifunlock: | ||
525 | xfs_ifunlock(ip); | ||
526 | out: | ||
527 | xfs_iflags_clear(ip, XFS_IRECLAIM); | ||
528 | xfs_iunlock(ip, XFS_ILOCK_EXCL); | ||
529 | /* | ||
530 | * We could return EAGAIN here to make reclaim rescan the inode tree in | ||
531 | * a short while. However, this just burns CPU time scanning the tree | ||
532 | * waiting for IO to complete and the reclaim work never goes back to | ||
533 | * the idle state. Instead, return 0 to let the next scheduled | ||
534 | * background reclaim attempt to reclaim the inode again. | ||
535 | */ | ||
536 | return 0; | ||
537 | } | ||
538 | |||
539 | /* | ||
540 | * Walk the AGs and reclaim the inodes in them. Even if the filesystem is | ||
541 | * corrupted, we still want to try to reclaim all the inodes. If we don't, | ||
542 | * then a shut down during filesystem unmount reclaim walk leak all the | ||
543 | * unreclaimed inodes. | ||
544 | */ | ||
545 | int | ||
546 | xfs_reclaim_inodes_ag( | ||
547 | struct xfs_mount *mp, | ||
548 | int flags, | ||
549 | int *nr_to_scan) | ||
550 | { | ||
551 | struct xfs_perag *pag; | ||
552 | int error = 0; | ||
553 | int last_error = 0; | ||
554 | xfs_agnumber_t ag; | ||
555 | int trylock = flags & SYNC_TRYLOCK; | ||
556 | int skipped; | ||
557 | |||
558 | restart: | ||
559 | ag = 0; | ||
560 | skipped = 0; | ||
561 | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | ||
562 | unsigned long first_index = 0; | ||
563 | int done = 0; | ||
564 | int nr_found = 0; | ||
565 | |||
566 | ag = pag->pag_agno + 1; | ||
567 | |||
568 | if (trylock) { | ||
569 | if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { | ||
570 | skipped++; | ||
571 | xfs_perag_put(pag); | ||
572 | continue; | ||
573 | } | ||
574 | first_index = pag->pag_ici_reclaim_cursor; | ||
575 | } else | ||
576 | mutex_lock(&pag->pag_ici_reclaim_lock); | ||
577 | |||
578 | do { | ||
579 | struct xfs_inode *batch[XFS_LOOKUP_BATCH]; | ||
580 | int i; | ||
581 | |||
582 | rcu_read_lock(); | ||
583 | nr_found = radix_tree_gang_lookup_tag( | ||
584 | &pag->pag_ici_root, | ||
585 | (void **)batch, first_index, | ||
586 | XFS_LOOKUP_BATCH, | ||
587 | XFS_ICI_RECLAIM_TAG); | ||
588 | if (!nr_found) { | ||
589 | done = 1; | ||
590 | rcu_read_unlock(); | ||
591 | break; | ||
592 | } | ||
593 | |||
594 | /* | ||
595 | * Grab the inodes before we drop the lock. if we found | ||
596 | * nothing, nr == 0 and the loop will be skipped. | ||
597 | */ | ||
598 | for (i = 0; i < nr_found; i++) { | ||
599 | struct xfs_inode *ip = batch[i]; | ||
600 | |||
601 | if (done || xfs_reclaim_inode_grab(ip, flags)) | ||
602 | batch[i] = NULL; | ||
603 | |||
604 | /* | ||
605 | * Update the index for the next lookup. Catch | ||
606 | * overflows into the next AG range which can | ||
607 | * occur if we have inodes in the last block of | ||
608 | * the AG and we are currently pointing to the | ||
609 | * last inode. | ||
610 | * | ||
611 | * Because we may see inodes that are from the | ||
612 | * wrong AG due to RCU freeing and | ||
613 | * reallocation, only update the index if it | ||
614 | * lies in this AG. It was a race that lead us | ||
615 | * to see this inode, so another lookup from | ||
616 | * the same index will not find it again. | ||
617 | */ | ||
618 | if (XFS_INO_TO_AGNO(mp, ip->i_ino) != | ||
619 | pag->pag_agno) | ||
620 | continue; | ||
621 | first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | ||
622 | if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | ||
623 | done = 1; | ||
624 | } | ||
625 | |||
626 | /* unlock now we've grabbed the inodes. */ | ||
627 | rcu_read_unlock(); | ||
628 | |||
629 | for (i = 0; i < nr_found; i++) { | ||
630 | if (!batch[i]) | ||
631 | continue; | ||
632 | error = xfs_reclaim_inode(batch[i], pag, flags); | ||
633 | if (error && last_error != EFSCORRUPTED) | ||
634 | last_error = error; | ||
635 | } | ||
636 | |||
637 | *nr_to_scan -= XFS_LOOKUP_BATCH; | ||
638 | |||
639 | cond_resched(); | ||
640 | |||
641 | } while (nr_found && !done && *nr_to_scan > 0); | ||
642 | |||
643 | if (trylock && !done) | ||
644 | pag->pag_ici_reclaim_cursor = first_index; | ||
645 | else | ||
646 | pag->pag_ici_reclaim_cursor = 0; | ||
647 | mutex_unlock(&pag->pag_ici_reclaim_lock); | ||
648 | xfs_perag_put(pag); | ||
649 | } | ||
650 | |||
651 | /* | ||
652 | * if we skipped any AG, and we still have scan count remaining, do | ||
653 | * another pass this time using blocking reclaim semantics (i.e | ||
654 | * waiting on the reclaim locks and ignoring the reclaim cursors). This | ||
655 | * ensure that when we get more reclaimers than AGs we block rather | ||
656 | * than spin trying to execute reclaim. | ||
657 | */ | ||
658 | if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { | ||
659 | trylock = 0; | ||
660 | goto restart; | ||
661 | } | ||
662 | return XFS_ERROR(last_error); | ||
663 | } | ||
664 | |||
665 | int | ||
666 | xfs_reclaim_inodes( | ||
667 | xfs_mount_t *mp, | ||
668 | int mode) | ||
669 | { | ||
670 | int nr_to_scan = INT_MAX; | ||
671 | |||
672 | return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); | ||
673 | } | ||
674 | |||
675 | /* | ||
676 | * Scan a certain number of inodes for reclaim. | ||
677 | * | ||
678 | * When called we make sure that there is a background (fast) inode reclaim in | ||
679 | * progress, while we will throttle the speed of reclaim via doing synchronous | ||
680 | * reclaim of inodes. That means if we come across dirty inodes, we wait for | ||
681 | * them to be cleaned, which we hope will not be very long due to the | ||
682 | * background walker having already kicked the IO off on those dirty inodes. | ||
683 | */ | ||
684 | void | ||
685 | xfs_reclaim_inodes_nr( | ||
686 | struct xfs_mount *mp, | ||
687 | int nr_to_scan) | ||
688 | { | ||
689 | /* kick background reclaimer and push the AIL */ | ||
690 | xfs_reclaim_work_queue(mp); | ||
691 | xfs_ail_push_all(mp->m_ail); | ||
692 | |||
693 | xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); | ||
694 | } | ||
695 | |||
696 | /* | ||
697 | * Return the number of reclaimable inodes in the filesystem for | ||
698 | * the shrinker to determine how much to reclaim. | ||
699 | */ | ||
700 | int | ||
701 | xfs_reclaim_inodes_count( | ||
702 | struct xfs_mount *mp) | ||
703 | { | ||
704 | struct xfs_perag *pag; | ||
705 | xfs_agnumber_t ag = 0; | ||
706 | int reclaimable = 0; | ||
707 | |||
708 | while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { | ||
709 | ag = pag->pag_agno + 1; | ||
710 | reclaimable += pag->pag_ici_reclaimable; | ||
711 | xfs_perag_put(pag); | ||
712 | } | ||
713 | return reclaimable; | ||
714 | } | ||
715 | |||