aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_icache.c
diff options
context:
space:
mode:
authorDave Chinner <dchinner@redhat.com>2012-10-08 06:56:09 -0400
committerBen Myers <bpm@sgi.com>2012-10-17 14:40:09 -0400
commit6d8b79cfca39399ef9115fb65dde85993455c9a3 (patch)
treec4702e765ee5b3d10f496c42148e317d7ee98ed8 /fs/xfs/xfs_icache.c
parentc75921a72a7c4bb73a5e09a697a672722e5543f1 (diff)
xfs: rename xfs_sync.[ch] to xfs_icache.[ch]
xfs_sync.c now only contains inode reclaim functions and inode cache iteration functions. It is not related to sync operations anymore. Rename to xfs_icache.c to reflect it's contents and prepare for consolidation with the other inode cache file that exists (xfs_iget.c). Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Mark Tinguely <tinguely@sgi.com> Signed-off-by: Ben Myers <bpm@sgi.com>
Diffstat (limited to 'fs/xfs/xfs_icache.c')
-rw-r--r--fs/xfs/xfs_icache.c715
1 files changed, 715 insertions, 0 deletions
diff --git a/fs/xfs/xfs_icache.c b/fs/xfs/xfs_icache.c
new file mode 100644
index 000000000000..eba216f11d5e
--- /dev/null
+++ b/fs/xfs/xfs_icache.c
@@ -0,0 +1,715 @@
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_log.h"
22#include "xfs_log_priv.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_trans_priv.h"
26#include "xfs_sb.h"
27#include "xfs_ag.h"
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_inode.h"
31#include "xfs_dinode.h"
32#include "xfs_error.h"
33#include "xfs_filestream.h"
34#include "xfs_vnodeops.h"
35#include "xfs_inode_item.h"
36#include "xfs_quota.h"
37#include "xfs_trace.h"
38#include "xfs_fsops.h"
39#include "xfs_icache.h"
40
41#include <linux/kthread.h>
42#include <linux/freezer.h>
43
44/*
45 * The inode lookup is done in batches to keep the amount of lock traffic and
46 * radix tree lookups to a minimum. The batch size is a trade off between
47 * lookup reduction and stack usage. This is in the reclaim path, so we can't
48 * be too greedy.
49 */
50#define XFS_LOOKUP_BATCH 32
51
52STATIC int
53xfs_inode_ag_walk_grab(
54 struct xfs_inode *ip)
55{
56 struct inode *inode = VFS_I(ip);
57
58 ASSERT(rcu_read_lock_held());
59
60 /*
61 * check for stale RCU freed inode
62 *
63 * If the inode has been reallocated, it doesn't matter if it's not in
64 * the AG we are walking - we are walking for writeback, so if it
65 * passes all the "valid inode" checks and is dirty, then we'll write
66 * it back anyway. If it has been reallocated and still being
67 * initialised, the XFS_INEW check below will catch it.
68 */
69 spin_lock(&ip->i_flags_lock);
70 if (!ip->i_ino)
71 goto out_unlock_noent;
72
73 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
74 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
75 goto out_unlock_noent;
76 spin_unlock(&ip->i_flags_lock);
77
78 /* nothing to sync during shutdown */
79 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
80 return EFSCORRUPTED;
81
82 /* If we can't grab the inode, it must on it's way to reclaim. */
83 if (!igrab(inode))
84 return ENOENT;
85
86 if (is_bad_inode(inode)) {
87 IRELE(ip);
88 return ENOENT;
89 }
90
91 /* inode is valid */
92 return 0;
93
94out_unlock_noent:
95 spin_unlock(&ip->i_flags_lock);
96 return ENOENT;
97}
98
99STATIC int
100xfs_inode_ag_walk(
101 struct xfs_mount *mp,
102 struct xfs_perag *pag,
103 int (*execute)(struct xfs_inode *ip,
104 struct xfs_perag *pag, int flags),
105 int flags)
106{
107 uint32_t first_index;
108 int last_error = 0;
109 int skipped;
110 int done;
111 int nr_found;
112
113restart:
114 done = 0;
115 skipped = 0;
116 first_index = 0;
117 nr_found = 0;
118 do {
119 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
120 int error = 0;
121 int i;
122
123 rcu_read_lock();
124 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
125 (void **)batch, first_index,
126 XFS_LOOKUP_BATCH);
127 if (!nr_found) {
128 rcu_read_unlock();
129 break;
130 }
131
132 /*
133 * Grab the inodes before we drop the lock. if we found
134 * nothing, nr == 0 and the loop will be skipped.
135 */
136 for (i = 0; i < nr_found; i++) {
137 struct xfs_inode *ip = batch[i];
138
139 if (done || xfs_inode_ag_walk_grab(ip))
140 batch[i] = NULL;
141
142 /*
143 * Update the index for the next lookup. Catch
144 * overflows into the next AG range which can occur if
145 * we have inodes in the last block of the AG and we
146 * are currently pointing to the last inode.
147 *
148 * Because we may see inodes that are from the wrong AG
149 * due to RCU freeing and reallocation, only update the
150 * index if it lies in this AG. It was a race that lead
151 * us to see this inode, so another lookup from the
152 * same index will not find it again.
153 */
154 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
155 continue;
156 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
157 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
158 done = 1;
159 }
160
161 /* unlock now we've grabbed the inodes. */
162 rcu_read_unlock();
163
164 for (i = 0; i < nr_found; i++) {
165 if (!batch[i])
166 continue;
167 error = execute(batch[i], pag, flags);
168 IRELE(batch[i]);
169 if (error == EAGAIN) {
170 skipped++;
171 continue;
172 }
173 if (error && last_error != EFSCORRUPTED)
174 last_error = error;
175 }
176
177 /* bail out if the filesystem is corrupted. */
178 if (error == EFSCORRUPTED)
179 break;
180
181 cond_resched();
182
183 } while (nr_found && !done);
184
185 if (skipped) {
186 delay(1);
187 goto restart;
188 }
189 return last_error;
190}
191
192int
193xfs_inode_ag_iterator(
194 struct xfs_mount *mp,
195 int (*execute)(struct xfs_inode *ip,
196 struct xfs_perag *pag, int flags),
197 int flags)
198{
199 struct xfs_perag *pag;
200 int error = 0;
201 int last_error = 0;
202 xfs_agnumber_t ag;
203
204 ag = 0;
205 while ((pag = xfs_perag_get(mp, ag))) {
206 ag = pag->pag_agno + 1;
207 error = xfs_inode_ag_walk(mp, pag, execute, flags);
208 xfs_perag_put(pag);
209 if (error) {
210 last_error = error;
211 if (error == EFSCORRUPTED)
212 break;
213 }
214 }
215 return XFS_ERROR(last_error);
216}
217
218/*
219 * Queue a new inode reclaim pass if there are reclaimable inodes and there
220 * isn't a reclaim pass already in progress. By default it runs every 5s based
221 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
222 * tunable, but that can be done if this method proves to be ineffective or too
223 * aggressive.
224 */
225static void
226xfs_reclaim_work_queue(
227 struct xfs_mount *mp)
228{
229
230 rcu_read_lock();
231 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
232 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
233 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
234 }
235 rcu_read_unlock();
236}
237
238/*
239 * This is a fast pass over the inode cache to try to get reclaim moving on as
240 * many inodes as possible in a short period of time. It kicks itself every few
241 * seconds, as well as being kicked by the inode cache shrinker when memory
242 * goes low. It scans as quickly as possible avoiding locked inodes or those
243 * already being flushed, and once done schedules a future pass.
244 */
245void
246xfs_reclaim_worker(
247 struct work_struct *work)
248{
249 struct xfs_mount *mp = container_of(to_delayed_work(work),
250 struct xfs_mount, m_reclaim_work);
251
252 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
253 xfs_reclaim_work_queue(mp);
254}
255
256void
257__xfs_inode_set_reclaim_tag(
258 struct xfs_perag *pag,
259 struct xfs_inode *ip)
260{
261 radix_tree_tag_set(&pag->pag_ici_root,
262 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
263 XFS_ICI_RECLAIM_TAG);
264
265 if (!pag->pag_ici_reclaimable) {
266 /* propagate the reclaim tag up into the perag radix tree */
267 spin_lock(&ip->i_mount->m_perag_lock);
268 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
269 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
270 XFS_ICI_RECLAIM_TAG);
271 spin_unlock(&ip->i_mount->m_perag_lock);
272
273 /* schedule periodic background inode reclaim */
274 xfs_reclaim_work_queue(ip->i_mount);
275
276 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
277 -1, _RET_IP_);
278 }
279 pag->pag_ici_reclaimable++;
280}
281
282/*
283 * We set the inode flag atomically with the radix tree tag.
284 * Once we get tag lookups on the radix tree, this inode flag
285 * can go away.
286 */
287void
288xfs_inode_set_reclaim_tag(
289 xfs_inode_t *ip)
290{
291 struct xfs_mount *mp = ip->i_mount;
292 struct xfs_perag *pag;
293
294 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
295 spin_lock(&pag->pag_ici_lock);
296 spin_lock(&ip->i_flags_lock);
297 __xfs_inode_set_reclaim_tag(pag, ip);
298 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
299 spin_unlock(&ip->i_flags_lock);
300 spin_unlock(&pag->pag_ici_lock);
301 xfs_perag_put(pag);
302}
303
304STATIC void
305__xfs_inode_clear_reclaim(
306 xfs_perag_t *pag,
307 xfs_inode_t *ip)
308{
309 pag->pag_ici_reclaimable--;
310 if (!pag->pag_ici_reclaimable) {
311 /* clear the reclaim tag from the perag radix tree */
312 spin_lock(&ip->i_mount->m_perag_lock);
313 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
314 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
315 XFS_ICI_RECLAIM_TAG);
316 spin_unlock(&ip->i_mount->m_perag_lock);
317 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
318 -1, _RET_IP_);
319 }
320}
321
322void
323__xfs_inode_clear_reclaim_tag(
324 xfs_mount_t *mp,
325 xfs_perag_t *pag,
326 xfs_inode_t *ip)
327{
328 radix_tree_tag_clear(&pag->pag_ici_root,
329 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
330 __xfs_inode_clear_reclaim(pag, ip);
331}
332
333/*
334 * Grab the inode for reclaim exclusively.
335 * Return 0 if we grabbed it, non-zero otherwise.
336 */
337STATIC int
338xfs_reclaim_inode_grab(
339 struct xfs_inode *ip,
340 int flags)
341{
342 ASSERT(rcu_read_lock_held());
343
344 /* quick check for stale RCU freed inode */
345 if (!ip->i_ino)
346 return 1;
347
348 /*
349 * If we are asked for non-blocking operation, do unlocked checks to
350 * see if the inode already is being flushed or in reclaim to avoid
351 * lock traffic.
352 */
353 if ((flags & SYNC_TRYLOCK) &&
354 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
355 return 1;
356
357 /*
358 * The radix tree lock here protects a thread in xfs_iget from racing
359 * with us starting reclaim on the inode. Once we have the
360 * XFS_IRECLAIM flag set it will not touch us.
361 *
362 * Due to RCU lookup, we may find inodes that have been freed and only
363 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
364 * aren't candidates for reclaim at all, so we must check the
365 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
366 */
367 spin_lock(&ip->i_flags_lock);
368 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
369 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
370 /* not a reclaim candidate. */
371 spin_unlock(&ip->i_flags_lock);
372 return 1;
373 }
374 __xfs_iflags_set(ip, XFS_IRECLAIM);
375 spin_unlock(&ip->i_flags_lock);
376 return 0;
377}
378
379/*
380 * Inodes in different states need to be treated differently. The following
381 * table lists the inode states and the reclaim actions necessary:
382 *
383 * inode state iflush ret required action
384 * --------------- ---------- ---------------
385 * bad - reclaim
386 * shutdown EIO unpin and reclaim
387 * clean, unpinned 0 reclaim
388 * stale, unpinned 0 reclaim
389 * clean, pinned(*) 0 requeue
390 * stale, pinned EAGAIN requeue
391 * dirty, async - requeue
392 * dirty, sync 0 reclaim
393 *
394 * (*) dgc: I don't think the clean, pinned state is possible but it gets
395 * handled anyway given the order of checks implemented.
396 *
397 * Also, because we get the flush lock first, we know that any inode that has
398 * been flushed delwri has had the flush completed by the time we check that
399 * the inode is clean.
400 *
401 * Note that because the inode is flushed delayed write by AIL pushing, the
402 * flush lock may already be held here and waiting on it can result in very
403 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
404 * the caller should push the AIL first before trying to reclaim inodes to
405 * minimise the amount of time spent waiting. For background relaim, we only
406 * bother to reclaim clean inodes anyway.
407 *
408 * Hence the order of actions after gaining the locks should be:
409 * bad => reclaim
410 * shutdown => unpin and reclaim
411 * pinned, async => requeue
412 * pinned, sync => unpin
413 * stale => reclaim
414 * clean => reclaim
415 * dirty, async => requeue
416 * dirty, sync => flush, wait and reclaim
417 */
418STATIC int
419xfs_reclaim_inode(
420 struct xfs_inode *ip,
421 struct xfs_perag *pag,
422 int sync_mode)
423{
424 struct xfs_buf *bp = NULL;
425 int error;
426
427restart:
428 error = 0;
429 xfs_ilock(ip, XFS_ILOCK_EXCL);
430 if (!xfs_iflock_nowait(ip)) {
431 if (!(sync_mode & SYNC_WAIT))
432 goto out;
433 xfs_iflock(ip);
434 }
435
436 if (is_bad_inode(VFS_I(ip)))
437 goto reclaim;
438 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
439 xfs_iunpin_wait(ip);
440 xfs_iflush_abort(ip, false);
441 goto reclaim;
442 }
443 if (xfs_ipincount(ip)) {
444 if (!(sync_mode & SYNC_WAIT))
445 goto out_ifunlock;
446 xfs_iunpin_wait(ip);
447 }
448 if (xfs_iflags_test(ip, XFS_ISTALE))
449 goto reclaim;
450 if (xfs_inode_clean(ip))
451 goto reclaim;
452
453 /*
454 * Never flush out dirty data during non-blocking reclaim, as it would
455 * just contend with AIL pushing trying to do the same job.
456 */
457 if (!(sync_mode & SYNC_WAIT))
458 goto out_ifunlock;
459
460 /*
461 * Now we have an inode that needs flushing.
462 *
463 * Note that xfs_iflush will never block on the inode buffer lock, as
464 * xfs_ifree_cluster() can lock the inode buffer before it locks the
465 * ip->i_lock, and we are doing the exact opposite here. As a result,
466 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
467 * result in an ABBA deadlock with xfs_ifree_cluster().
468 *
469 * As xfs_ifree_cluser() must gather all inodes that are active in the
470 * cache to mark them stale, if we hit this case we don't actually want
471 * to do IO here - we want the inode marked stale so we can simply
472 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
473 * inode, back off and try again. Hopefully the next pass through will
474 * see the stale flag set on the inode.
475 */
476 error = xfs_iflush(ip, &bp);
477 if (error == EAGAIN) {
478 xfs_iunlock(ip, XFS_ILOCK_EXCL);
479 /* backoff longer than in xfs_ifree_cluster */
480 delay(2);
481 goto restart;
482 }
483
484 if (!error) {
485 error = xfs_bwrite(bp);
486 xfs_buf_relse(bp);
487 }
488
489 xfs_iflock(ip);
490reclaim:
491 xfs_ifunlock(ip);
492 xfs_iunlock(ip, XFS_ILOCK_EXCL);
493
494 XFS_STATS_INC(xs_ig_reclaims);
495 /*
496 * Remove the inode from the per-AG radix tree.
497 *
498 * Because radix_tree_delete won't complain even if the item was never
499 * added to the tree assert that it's been there before to catch
500 * problems with the inode life time early on.
501 */
502 spin_lock(&pag->pag_ici_lock);
503 if (!radix_tree_delete(&pag->pag_ici_root,
504 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
505 ASSERT(0);
506 __xfs_inode_clear_reclaim(pag, ip);
507 spin_unlock(&pag->pag_ici_lock);
508
509 /*
510 * Here we do an (almost) spurious inode lock in order to coordinate
511 * with inode cache radix tree lookups. This is because the lookup
512 * can reference the inodes in the cache without taking references.
513 *
514 * We make that OK here by ensuring that we wait until the inode is
515 * unlocked after the lookup before we go ahead and free it.
516 */
517 xfs_ilock(ip, XFS_ILOCK_EXCL);
518 xfs_qm_dqdetach(ip);
519 xfs_iunlock(ip, XFS_ILOCK_EXCL);
520
521 xfs_inode_free(ip);
522 return error;
523
524out_ifunlock:
525 xfs_ifunlock(ip);
526out:
527 xfs_iflags_clear(ip, XFS_IRECLAIM);
528 xfs_iunlock(ip, XFS_ILOCK_EXCL);
529 /*
530 * We could return EAGAIN here to make reclaim rescan the inode tree in
531 * a short while. However, this just burns CPU time scanning the tree
532 * waiting for IO to complete and the reclaim work never goes back to
533 * the idle state. Instead, return 0 to let the next scheduled
534 * background reclaim attempt to reclaim the inode again.
535 */
536 return 0;
537}
538
539/*
540 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
541 * corrupted, we still want to try to reclaim all the inodes. If we don't,
542 * then a shut down during filesystem unmount reclaim walk leak all the
543 * unreclaimed inodes.
544 */
545int
546xfs_reclaim_inodes_ag(
547 struct xfs_mount *mp,
548 int flags,
549 int *nr_to_scan)
550{
551 struct xfs_perag *pag;
552 int error = 0;
553 int last_error = 0;
554 xfs_agnumber_t ag;
555 int trylock = flags & SYNC_TRYLOCK;
556 int skipped;
557
558restart:
559 ag = 0;
560 skipped = 0;
561 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
562 unsigned long first_index = 0;
563 int done = 0;
564 int nr_found = 0;
565
566 ag = pag->pag_agno + 1;
567
568 if (trylock) {
569 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
570 skipped++;
571 xfs_perag_put(pag);
572 continue;
573 }
574 first_index = pag->pag_ici_reclaim_cursor;
575 } else
576 mutex_lock(&pag->pag_ici_reclaim_lock);
577
578 do {
579 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
580 int i;
581
582 rcu_read_lock();
583 nr_found = radix_tree_gang_lookup_tag(
584 &pag->pag_ici_root,
585 (void **)batch, first_index,
586 XFS_LOOKUP_BATCH,
587 XFS_ICI_RECLAIM_TAG);
588 if (!nr_found) {
589 done = 1;
590 rcu_read_unlock();
591 break;
592 }
593
594 /*
595 * Grab the inodes before we drop the lock. if we found
596 * nothing, nr == 0 and the loop will be skipped.
597 */
598 for (i = 0; i < nr_found; i++) {
599 struct xfs_inode *ip = batch[i];
600
601 if (done || xfs_reclaim_inode_grab(ip, flags))
602 batch[i] = NULL;
603
604 /*
605 * Update the index for the next lookup. Catch
606 * overflows into the next AG range which can
607 * occur if we have inodes in the last block of
608 * the AG and we are currently pointing to the
609 * last inode.
610 *
611 * Because we may see inodes that are from the
612 * wrong AG due to RCU freeing and
613 * reallocation, only update the index if it
614 * lies in this AG. It was a race that lead us
615 * to see this inode, so another lookup from
616 * the same index will not find it again.
617 */
618 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
619 pag->pag_agno)
620 continue;
621 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
622 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
623 done = 1;
624 }
625
626 /* unlock now we've grabbed the inodes. */
627 rcu_read_unlock();
628
629 for (i = 0; i < nr_found; i++) {
630 if (!batch[i])
631 continue;
632 error = xfs_reclaim_inode(batch[i], pag, flags);
633 if (error && last_error != EFSCORRUPTED)
634 last_error = error;
635 }
636
637 *nr_to_scan -= XFS_LOOKUP_BATCH;
638
639 cond_resched();
640
641 } while (nr_found && !done && *nr_to_scan > 0);
642
643 if (trylock && !done)
644 pag->pag_ici_reclaim_cursor = first_index;
645 else
646 pag->pag_ici_reclaim_cursor = 0;
647 mutex_unlock(&pag->pag_ici_reclaim_lock);
648 xfs_perag_put(pag);
649 }
650
651 /*
652 * if we skipped any AG, and we still have scan count remaining, do
653 * another pass this time using blocking reclaim semantics (i.e
654 * waiting on the reclaim locks and ignoring the reclaim cursors). This
655 * ensure that when we get more reclaimers than AGs we block rather
656 * than spin trying to execute reclaim.
657 */
658 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
659 trylock = 0;
660 goto restart;
661 }
662 return XFS_ERROR(last_error);
663}
664
665int
666xfs_reclaim_inodes(
667 xfs_mount_t *mp,
668 int mode)
669{
670 int nr_to_scan = INT_MAX;
671
672 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
673}
674
675/*
676 * Scan a certain number of inodes for reclaim.
677 *
678 * When called we make sure that there is a background (fast) inode reclaim in
679 * progress, while we will throttle the speed of reclaim via doing synchronous
680 * reclaim of inodes. That means if we come across dirty inodes, we wait for
681 * them to be cleaned, which we hope will not be very long due to the
682 * background walker having already kicked the IO off on those dirty inodes.
683 */
684void
685xfs_reclaim_inodes_nr(
686 struct xfs_mount *mp,
687 int nr_to_scan)
688{
689 /* kick background reclaimer and push the AIL */
690 xfs_reclaim_work_queue(mp);
691 xfs_ail_push_all(mp->m_ail);
692
693 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
694}
695
696/*
697 * Return the number of reclaimable inodes in the filesystem for
698 * the shrinker to determine how much to reclaim.
699 */
700int
701xfs_reclaim_inodes_count(
702 struct xfs_mount *mp)
703{
704 struct xfs_perag *pag;
705 xfs_agnumber_t ag = 0;
706 int reclaimable = 0;
707
708 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
709 ag = pag->pag_agno + 1;
710 reclaimable += pag->pag_ici_reclaimable;
711 xfs_perag_put(pag);
712 }
713 return reclaimable;
714}
715