aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_btree.c
diff options
context:
space:
mode:
authorDave Chinner <dchinner@redhat.com>2014-07-14 17:08:24 -0400
committerDave Chinner <david@fromorbit.com>2014-07-14 17:08:24 -0400
commitcf11da9c5d374962913ca5ba0ce0886b58286224 (patch)
tree88480a47229aa9a3244beca6cae49e0ae00df37b /fs/xfs/xfs_btree.c
parentaa182e64f16fc29a4984c2d79191b161888bbd9b (diff)
xfs: refine the allocation stack switch
The allocation stack switch at xfs_bmapi_allocate() has served it's purpose, but is no longer a sufficient solution to the stack usage problem we have in the XFS allocation path. Whilst the kernel stack size is now 16k, that is not a valid reason for undoing all our "keep stack usage down" modifications. What it does allow us to do is have the freedom to refine and perfect the modifications knowing that if we get it wrong it won't blow up in our faces - we have a safety net now. This is important because we still have the issue of older kernels having smaller stacks and that they are still supported and are demonstrating a wide range of different stack overflows. Red Hat has several open bugs for allocation based stack overflows from directory modifications and direct IO block allocation and these problems still need to be solved. If we can solve them upstream, then distro's won't need to bake their own unique solutions. To that end, I've observed that every allocation based stack overflow report has had a specific characteristic - it has happened during or directly after a bmap btree block split. That event requires a new block to be allocated to the tree, and so we effectively stack one allocation stack on top of another, and that's when we get into trouble. A further observation is that bmap btree block splits are much rarer than writeback allocation - over a range of different workloads I've observed the ratio of bmap btree inserts to splits ranges from 100:1 (xfstests run) to 10000:1 (local VM image server with sparse files that range in the hundreds of thousands to millions of extents). Either way, bmap btree split events are much, much rarer than allocation events. Finally, we have to move the kswapd state to the allocation workqueue work when allocation is done on behalf of kswapd. This is proving to cause significant perturbation in performance under memory pressure and appears to be generating allocation deadlock warnings under some workloads, so avoiding the use of a workqueue for the majority of kswapd writeback allocation will minimise the impact of such behaviour. Hence it makes sense to move the stack switch to xfs_btree_split() and only do it for bmap btree splits. Stack switches during allocation will be much rarer, so there won't be significant performacne overhead caused by switching stacks. The worse case stack from all allocation paths will be split, not just writeback. And the majority of memory allocations will be done in the correct context (e.g. kswapd) without causing additional latency, and so we simplify the memory reclaim interactions between processes, workqueues and kswapd. The worst stack I've been able to generate with this patch in place is 5600 bytes deep. It's very revealing because we exit XFS at: 37) 1768 64 kmem_cache_alloc+0x13b/0x170 about 1800 bytes of stack consumed, and the remaining 3800 bytes (and 36 functions) is memory reclaim, swap and the IO stack. And this occurs in the inode allocation from an open(O_CREAT) syscall, not writeback. The amount of stack being used is much less than I've previously be able to generate - fs_mark testing has been able to generate stack usage of around 7k without too much trouble; with this patch it's only just getting to 5.5k. This is primarily because the metadata allocation paths (e.g. directory blocks) are no longer causing double splits on the same stack, and hence now stack tracing is showing swapping being the worst stack consumer rather than XFS. Performance of fs_mark inode create workloads is unchanged. Performance of fs_mark async fsync workloads is consistently good with context switches reduced by around 150,000/s (30%). Performance of dbench, streaming IO and postmark is unchanged. Allocation deadlock warnings have not been seen on the workloads that generated them since adding this patch. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
Diffstat (limited to 'fs/xfs/xfs_btree.c')
-rw-r--r--fs/xfs/xfs_btree.c82
1 files changed, 81 insertions, 1 deletions
diff --git a/fs/xfs/xfs_btree.c b/fs/xfs/xfs_btree.c
index bf810c6baf2b..cf893bc1e373 100644
--- a/fs/xfs/xfs_btree.c
+++ b/fs/xfs/xfs_btree.c
@@ -33,6 +33,7 @@
33#include "xfs_error.h" 33#include "xfs_error.h"
34#include "xfs_trace.h" 34#include "xfs_trace.h"
35#include "xfs_cksum.h" 35#include "xfs_cksum.h"
36#include "xfs_alloc.h"
36 37
37/* 38/*
38 * Cursor allocation zone. 39 * Cursor allocation zone.
@@ -2323,7 +2324,7 @@ error1:
2323 * record (to be inserted into parent). 2324 * record (to be inserted into parent).
2324 */ 2325 */
2325STATIC int /* error */ 2326STATIC int /* error */
2326xfs_btree_split( 2327__xfs_btree_split(
2327 struct xfs_btree_cur *cur, 2328 struct xfs_btree_cur *cur,
2328 int level, 2329 int level,
2329 union xfs_btree_ptr *ptrp, 2330 union xfs_btree_ptr *ptrp,
@@ -2503,6 +2504,85 @@ error0:
2503 return error; 2504 return error;
2504} 2505}
2505 2506
2507struct xfs_btree_split_args {
2508 struct xfs_btree_cur *cur;
2509 int level;
2510 union xfs_btree_ptr *ptrp;
2511 union xfs_btree_key *key;
2512 struct xfs_btree_cur **curp;
2513 int *stat; /* success/failure */
2514 int result;
2515 bool kswapd; /* allocation in kswapd context */
2516 struct completion *done;
2517 struct work_struct work;
2518};
2519
2520/*
2521 * Stack switching interfaces for allocation
2522 */
2523static void
2524xfs_btree_split_worker(
2525 struct work_struct *work)
2526{
2527 struct xfs_btree_split_args *args = container_of(work,
2528 struct xfs_btree_split_args, work);
2529 unsigned long pflags;
2530 unsigned long new_pflags = PF_FSTRANS;
2531
2532 /*
2533 * we are in a transaction context here, but may also be doing work
2534 * in kswapd context, and hence we may need to inherit that state
2535 * temporarily to ensure that we don't block waiting for memory reclaim
2536 * in any way.
2537 */
2538 if (args->kswapd)
2539 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2540
2541 current_set_flags_nested(&pflags, new_pflags);
2542
2543 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2544 args->key, args->curp, args->stat);
2545 complete(args->done);
2546
2547 current_restore_flags_nested(&pflags, new_pflags);
2548}
2549
2550/*
2551 * BMBT split requests often come in with little stack to work on. Push
2552 * them off to a worker thread so there is lots of stack to use. For the other
2553 * btree types, just call directly to avoid the context switch overhead here.
2554 */
2555STATIC int /* error */
2556xfs_btree_split(
2557 struct xfs_btree_cur *cur,
2558 int level,
2559 union xfs_btree_ptr *ptrp,
2560 union xfs_btree_key *key,
2561 struct xfs_btree_cur **curp,
2562 int *stat) /* success/failure */
2563{
2564 struct xfs_btree_split_args args;
2565 DECLARE_COMPLETION_ONSTACK(done);
2566
2567 if (cur->bc_btnum != XFS_BTNUM_BMAP)
2568 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2569
2570 args.cur = cur;
2571 args.level = level;
2572 args.ptrp = ptrp;
2573 args.key = key;
2574 args.curp = curp;
2575 args.stat = stat;
2576 args.done = &done;
2577 args.kswapd = current_is_kswapd();
2578 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2579 queue_work(xfs_alloc_wq, &args.work);
2580 wait_for_completion(&done);
2581 destroy_work_on_stack(&args.work);
2582 return args.result;
2583}
2584
2585
2506/* 2586/*
2507 * Copy the old inode root contents into a real block and make the 2587 * Copy the old inode root contents into a real block and make the
2508 * broot point to it. 2588 * broot point to it.