aboutsummaryrefslogtreecommitdiffstats
path: root/fs/ubifs/super.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2009-02-05 08:33:31 -0500
committerIngo Molnar <mingo@elte.hu>2009-02-05 08:33:31 -0500
commit43769f10b4826376cbf4ce17af74a5b4e8dc4fcd (patch)
tree8a7f36985f9ef8e6771163c751eeefd22ee71693 /fs/ubifs/super.c
parentae7462b4f1fe1f36b5d562dbd5202a2eba01f072 (diff)
parenteda58a85ec3fc05855a26654d97a2b53f0e715b9 (diff)
Merge branches 'tracing/ftrace' and 'linus' into tracing/core
Diffstat (limited to 'fs/ubifs/super.c')
-rw-r--r--fs/ubifs/super.c195
1 files changed, 94 insertions, 101 deletions
diff --git a/fs/ubifs/super.c b/fs/ubifs/super.c
index 89556ee72518..1182b66a5491 100644
--- a/fs/ubifs/super.c
+++ b/fs/ubifs/super.c
@@ -397,6 +397,7 @@ static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
397 buf->f_namelen = UBIFS_MAX_NLEN; 397 buf->f_namelen = UBIFS_MAX_NLEN;
398 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 398 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
399 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 399 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
400 ubifs_assert(buf->f_bfree <= c->block_cnt);
400 return 0; 401 return 0;
401} 402}
402 403
@@ -432,33 +433,24 @@ static int ubifs_sync_fs(struct super_block *sb, int wait)
432 int i, err; 433 int i, err;
433 struct ubifs_info *c = sb->s_fs_info; 434 struct ubifs_info *c = sb->s_fs_info;
434 struct writeback_control wbc = { 435 struct writeback_control wbc = {
435 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 436 .sync_mode = WB_SYNC_ALL,
436 .range_start = 0, 437 .range_start = 0,
437 .range_end = LLONG_MAX, 438 .range_end = LLONG_MAX,
438 .nr_to_write = LONG_MAX, 439 .nr_to_write = LONG_MAX,
439 }; 440 };
440 441
441 /* 442 /*
442 * Note by akpm about WB_SYNC_NONE used above: zero @wait is just an 443 * Zero @wait is just an advisory thing to help the file system shove
443 * advisory thing to help the file system shove lots of data into the 444 * lots of data into the queues, and there will be the second
444 * queues. If some gets missed then it'll be picked up on the second
445 * '->sync_fs()' call, with non-zero @wait. 445 * '->sync_fs()' call, with non-zero @wait.
446 */ 446 */
447 if (!wait)
448 return 0;
447 449
448 if (sb->s_flags & MS_RDONLY) 450 if (sb->s_flags & MS_RDONLY)
449 return 0; 451 return 0;
450 452
451 /* 453 /*
452 * Synchronize write buffers, because 'ubifs_run_commit()' does not
453 * do this if it waits for an already running commit.
454 */
455 for (i = 0; i < c->jhead_cnt; i++) {
456 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
457 if (err)
458 return err;
459 }
460
461 /*
462 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and 454 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and
463 * pages, so synchronize them first, then commit the journal. Strictly 455 * pages, so synchronize them first, then commit the journal. Strictly
464 * speaking, it is not necessary to commit the journal here, 456 * speaking, it is not necessary to commit the journal here,
@@ -469,6 +461,16 @@ static int ubifs_sync_fs(struct super_block *sb, int wait)
469 */ 461 */
470 generic_sync_sb_inodes(sb, &wbc); 462 generic_sync_sb_inodes(sb, &wbc);
471 463
464 /*
465 * Synchronize write buffers, because 'ubifs_run_commit()' does not
466 * do this if it waits for an already running commit.
467 */
468 for (i = 0; i < c->jhead_cnt; i++) {
469 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
470 if (err)
471 return err;
472 }
473
472 err = ubifs_run_commit(c); 474 err = ubifs_run_commit(c);
473 if (err) 475 if (err)
474 return err; 476 return err;
@@ -572,15 +574,8 @@ static int init_constants_early(struct ubifs_info *c)
572 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 574 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
573 575
574 /* 576 /*
575 * Initialize dead and dark LEB space watermarks. 577 * Initialize dead and dark LEB space watermarks. See gc.c for comments
576 * 578 * about these values.
577 * Dead space is the space which cannot be used. Its watermark is
578 * equivalent to min. I/O unit or minimum node size if it is greater
579 * then min. I/O unit.
580 *
581 * Dark space is the space which might be used, or might not, depending
582 * on which node should be written to the LEB. Its watermark is
583 * equivalent to maximum UBIFS node size.
584 */ 579 */
585 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 580 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
586 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 581 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
@@ -741,12 +736,12 @@ static void init_constants_master(struct ubifs_info *c)
741 * take_gc_lnum - reserve GC LEB. 736 * take_gc_lnum - reserve GC LEB.
742 * @c: UBIFS file-system description object 737 * @c: UBIFS file-system description object
743 * 738 *
744 * This function ensures that the LEB reserved for garbage collection is 739 * This function ensures that the LEB reserved for garbage collection is marked
745 * unmapped and is marked as "taken" in lprops. We also have to set free space 740 * as "taken" in lprops. We also have to set free space to LEB size and dirty
746 * to LEB size and dirty space to zero, because lprops may contain out-of-date 741 * space to zero, because lprops may contain out-of-date information if the
747 * information if the file-system was un-mounted before it has been committed. 742 * file-system was un-mounted before it has been committed. This function
748 * This function returns zero in case of success and a negative error code in 743 * returns zero in case of success and a negative error code in case of
749 * case of failure. 744 * failure.
750 */ 745 */
751static int take_gc_lnum(struct ubifs_info *c) 746static int take_gc_lnum(struct ubifs_info *c)
752{ 747{
@@ -757,10 +752,6 @@ static int take_gc_lnum(struct ubifs_info *c)
757 return -EINVAL; 752 return -EINVAL;
758 } 753 }
759 754
760 err = ubifs_leb_unmap(c, c->gc_lnum);
761 if (err)
762 return err;
763
764 /* And we have to tell lprops that this LEB is taken */ 755 /* And we have to tell lprops that this LEB is taken */
765 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 756 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
766 LPROPS_TAKEN, 0, 0); 757 LPROPS_TAKEN, 0, 0);
@@ -966,13 +957,16 @@ static int ubifs_parse_options(struct ubifs_info *c, char *options,
966 957
967 token = match_token(p, tokens, args); 958 token = match_token(p, tokens, args);
968 switch (token) { 959 switch (token) {
960 /*
961 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
962 * We accepte them in order to be backware-compatible. But this
963 * should be removed at some point.
964 */
969 case Opt_fast_unmount: 965 case Opt_fast_unmount:
970 c->mount_opts.unmount_mode = 2; 966 c->mount_opts.unmount_mode = 2;
971 c->fast_unmount = 1;
972 break; 967 break;
973 case Opt_norm_unmount: 968 case Opt_norm_unmount:
974 c->mount_opts.unmount_mode = 1; 969 c->mount_opts.unmount_mode = 1;
975 c->fast_unmount = 0;
976 break; 970 break;
977 case Opt_bulk_read: 971 case Opt_bulk_read:
978 c->mount_opts.bulk_read = 2; 972 c->mount_opts.bulk_read = 2;
@@ -1094,12 +1088,7 @@ static int check_free_space(struct ubifs_info *c)
1094 ubifs_err("insufficient free space to mount in read/write mode"); 1088 ubifs_err("insufficient free space to mount in read/write mode");
1095 dbg_dump_budg(c); 1089 dbg_dump_budg(c);
1096 dbg_dump_lprops(c); 1090 dbg_dump_lprops(c);
1097 /* 1091 return -ENOSPC;
1098 * We return %-EINVAL instead of %-ENOSPC because it seems to
1099 * be the closest error code mentioned in the mount function
1100 * documentation.
1101 */
1102 return -EINVAL;
1103 } 1092 }
1104 return 0; 1093 return 0;
1105} 1094}
@@ -1286,10 +1275,19 @@ static int mount_ubifs(struct ubifs_info *c)
1286 if (err) 1275 if (err)
1287 goto out_orphans; 1276 goto out_orphans;
1288 err = ubifs_rcvry_gc_commit(c); 1277 err = ubifs_rcvry_gc_commit(c);
1289 } else 1278 } else {
1290 err = take_gc_lnum(c); 1279 err = take_gc_lnum(c);
1291 if (err) 1280 if (err)
1292 goto out_orphans; 1281 goto out_orphans;
1282
1283 /*
1284 * GC LEB may contain garbage if there was an unclean
1285 * reboot, and it should be un-mapped.
1286 */
1287 err = ubifs_leb_unmap(c, c->gc_lnum);
1288 if (err)
1289 return err;
1290 }
1293 1291
1294 err = dbg_check_lprops(c); 1292 err = dbg_check_lprops(c);
1295 if (err) 1293 if (err)
@@ -1298,6 +1296,16 @@ static int mount_ubifs(struct ubifs_info *c)
1298 err = ubifs_recover_size(c); 1296 err = ubifs_recover_size(c);
1299 if (err) 1297 if (err)
1300 goto out_orphans; 1298 goto out_orphans;
1299 } else {
1300 /*
1301 * Even if we mount read-only, we have to set space in GC LEB
1302 * to proper value because this affects UBIFS free space
1303 * reporting. We do not want to have a situation when
1304 * re-mounting from R/O to R/W changes amount of free space.
1305 */
1306 err = take_gc_lnum(c);
1307 if (err)
1308 goto out_orphans;
1301 } 1309 }
1302 1310
1303 spin_lock(&ubifs_infos_lock); 1311 spin_lock(&ubifs_infos_lock);
@@ -1310,14 +1318,17 @@ static int mount_ubifs(struct ubifs_info *c)
1310 else { 1318 else {
1311 c->need_recovery = 0; 1319 c->need_recovery = 0;
1312 ubifs_msg("recovery completed"); 1320 ubifs_msg("recovery completed");
1321 /* GC LEB has to be empty and taken at this point */
1322 ubifs_assert(c->lst.taken_empty_lebs == 1);
1313 } 1323 }
1314 } 1324 } else
1325 ubifs_assert(c->lst.taken_empty_lebs == 1);
1315 1326
1316 err = dbg_debugfs_init_fs(c); 1327 err = dbg_check_filesystem(c);
1317 if (err) 1328 if (err)
1318 goto out_infos; 1329 goto out_infos;
1319 1330
1320 err = dbg_check_filesystem(c); 1331 err = dbg_debugfs_init_fs(c);
1321 if (err) 1332 if (err)
1322 goto out_infos; 1333 goto out_infos;
1323 1334
@@ -1351,7 +1362,6 @@ static int mount_ubifs(struct ubifs_info *c)
1351 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7], 1362 c->uuid[4], c->uuid[5], c->uuid[6], c->uuid[7],
1352 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11], 1363 c->uuid[8], c->uuid[9], c->uuid[10], c->uuid[11],
1353 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]); 1364 c->uuid[12], c->uuid[13], c->uuid[14], c->uuid[15]);
1354 dbg_msg("fast unmount: %d", c->fast_unmount);
1355 dbg_msg("big_lpt %d", c->big_lpt); 1365 dbg_msg("big_lpt %d", c->big_lpt);
1356 dbg_msg("log LEBs: %d (%d - %d)", 1366 dbg_msg("log LEBs: %d (%d - %d)",
1357 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1367 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
@@ -1475,10 +1485,8 @@ static int ubifs_remount_rw(struct ubifs_info *c)
1475{ 1485{
1476 int err, lnum; 1486 int err, lnum;
1477 1487
1478 if (c->ro_media)
1479 return -EINVAL;
1480
1481 mutex_lock(&c->umount_mutex); 1488 mutex_lock(&c->umount_mutex);
1489 dbg_save_space_info(c);
1482 c->remounting_rw = 1; 1490 c->remounting_rw = 1;
1483 c->always_chk_crc = 1; 1491 c->always_chk_crc = 1;
1484 1492
@@ -1514,6 +1522,12 @@ static int ubifs_remount_rw(struct ubifs_info *c)
1514 err = ubifs_recover_inl_heads(c, c->sbuf); 1522 err = ubifs_recover_inl_heads(c, c->sbuf);
1515 if (err) 1523 if (err)
1516 goto out; 1524 goto out;
1525 } else {
1526 /* A readonly mount is not allowed to have orphans */
1527 ubifs_assert(c->tot_orphans == 0);
1528 err = ubifs_clear_orphans(c);
1529 if (err)
1530 goto out;
1517 } 1531 }
1518 1532
1519 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1533 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
@@ -1569,7 +1583,7 @@ static int ubifs_remount_rw(struct ubifs_info *c)
1569 if (c->need_recovery) 1583 if (c->need_recovery)
1570 err = ubifs_rcvry_gc_commit(c); 1584 err = ubifs_rcvry_gc_commit(c);
1571 else 1585 else
1572 err = take_gc_lnum(c); 1586 err = ubifs_leb_unmap(c, c->gc_lnum);
1573 if (err) 1587 if (err)
1574 goto out; 1588 goto out;
1575 1589
@@ -1582,8 +1596,9 @@ static int ubifs_remount_rw(struct ubifs_info *c)
1582 c->vfs_sb->s_flags &= ~MS_RDONLY; 1596 c->vfs_sb->s_flags &= ~MS_RDONLY;
1583 c->remounting_rw = 0; 1597 c->remounting_rw = 0;
1584 c->always_chk_crc = 0; 1598 c->always_chk_crc = 0;
1599 err = dbg_check_space_info(c);
1585 mutex_unlock(&c->umount_mutex); 1600 mutex_unlock(&c->umount_mutex);
1586 return 0; 1601 return err;
1587 1602
1588out: 1603out:
1589 vfree(c->orph_buf); 1604 vfree(c->orph_buf);
@@ -1603,43 +1618,18 @@ out:
1603} 1618}
1604 1619
1605/** 1620/**
1606 * commit_on_unmount - commit the journal when un-mounting.
1607 * @c: UBIFS file-system description object
1608 *
1609 * This function is called during un-mounting and re-mounting, and it commits
1610 * the journal unless the "fast unmount" mode is enabled.
1611 */
1612static void commit_on_unmount(struct ubifs_info *c)
1613{
1614 struct super_block *sb = c->vfs_sb;
1615 long long bud_bytes;
1616
1617 /*
1618 * This function is called before the background thread is stopped, so
1619 * we may race with ongoing commit, which means we have to take
1620 * @c->bud_lock to access @c->bud_bytes.
1621 */
1622 spin_lock(&c->buds_lock);
1623 bud_bytes = c->bud_bytes;
1624 spin_unlock(&c->buds_lock);
1625
1626 if (!c->fast_unmount && !(sb->s_flags & MS_RDONLY) && bud_bytes)
1627 ubifs_run_commit(c);
1628}
1629
1630/**
1631 * ubifs_remount_ro - re-mount in read-only mode. 1621 * ubifs_remount_ro - re-mount in read-only mode.
1632 * @c: UBIFS file-system description object 1622 * @c: UBIFS file-system description object
1633 * 1623 *
1634 * We rely on VFS to have stopped writing. Possibly the background thread could 1624 * We assume VFS has stopped writing. Possibly the background thread could be
1635 * be running a commit, however kthread_stop will wait in that case. 1625 * running a commit, however kthread_stop will wait in that case.
1636 */ 1626 */
1637static void ubifs_remount_ro(struct ubifs_info *c) 1627static void ubifs_remount_ro(struct ubifs_info *c)
1638{ 1628{
1639 int i, err; 1629 int i, err;
1640 1630
1641 ubifs_assert(!c->need_recovery); 1631 ubifs_assert(!c->need_recovery);
1642 commit_on_unmount(c); 1632 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
1643 1633
1644 mutex_lock(&c->umount_mutex); 1634 mutex_lock(&c->umount_mutex);
1645 if (c->bgt) { 1635 if (c->bgt) {
@@ -1647,27 +1637,29 @@ static void ubifs_remount_ro(struct ubifs_info *c)
1647 c->bgt = NULL; 1637 c->bgt = NULL;
1648 } 1638 }
1649 1639
1640 dbg_save_space_info(c);
1641
1650 for (i = 0; i < c->jhead_cnt; i++) { 1642 for (i = 0; i < c->jhead_cnt; i++) {
1651 ubifs_wbuf_sync(&c->jheads[i].wbuf); 1643 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1652 del_timer_sync(&c->jheads[i].wbuf.timer); 1644 del_timer_sync(&c->jheads[i].wbuf.timer);
1653 } 1645 }
1654 1646
1655 if (!c->ro_media) { 1647 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1656 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1648 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1657 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1649 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1658 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1650 err = ubifs_write_master(c);
1659 err = ubifs_write_master(c); 1651 if (err)
1660 if (err) 1652 ubifs_ro_mode(c, err);
1661 ubifs_ro_mode(c, err);
1662 }
1663 1653
1664 ubifs_destroy_idx_gc(c);
1665 free_wbufs(c); 1654 free_wbufs(c);
1666 vfree(c->orph_buf); 1655 vfree(c->orph_buf);
1667 c->orph_buf = NULL; 1656 c->orph_buf = NULL;
1668 vfree(c->ileb_buf); 1657 vfree(c->ileb_buf);
1669 c->ileb_buf = NULL; 1658 c->ileb_buf = NULL;
1670 ubifs_lpt_free(c, 1); 1659 ubifs_lpt_free(c, 1);
1660 err = dbg_check_space_info(c);
1661 if (err)
1662 ubifs_ro_mode(c, err);
1671 mutex_unlock(&c->umount_mutex); 1663 mutex_unlock(&c->umount_mutex);
1672} 1664}
1673 1665
@@ -1760,11 +1752,20 @@ static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1760 } 1752 }
1761 1753
1762 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) { 1754 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
1755 if (c->ro_media) {
1756 ubifs_msg("cannot re-mount due to prior errors");
1757 return -EROFS;
1758 }
1763 err = ubifs_remount_rw(c); 1759 err = ubifs_remount_rw(c);
1764 if (err) 1760 if (err)
1765 return err; 1761 return err;
1766 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) 1762 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
1763 if (c->ro_media) {
1764 ubifs_msg("cannot re-mount due to prior errors");
1765 return -EROFS;
1766 }
1767 ubifs_remount_ro(c); 1767 ubifs_remount_ro(c);
1768 }
1768 1769
1769 if (c->bulk_read == 1) 1770 if (c->bulk_read == 1)
1770 bu_init(c); 1771 bu_init(c);
@@ -1774,10 +1775,11 @@ static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1774 c->bu.buf = NULL; 1775 c->bu.buf = NULL;
1775 } 1776 }
1776 1777
1778 ubifs_assert(c->lst.taken_empty_lebs == 1);
1777 return 0; 1779 return 0;
1778} 1780}
1779 1781
1780struct super_operations ubifs_super_operations = { 1782const struct super_operations ubifs_super_operations = {
1781 .alloc_inode = ubifs_alloc_inode, 1783 .alloc_inode = ubifs_alloc_inode,
1782 .destroy_inode = ubifs_destroy_inode, 1784 .destroy_inode = ubifs_destroy_inode,
1783 .put_super = ubifs_put_super, 1785 .put_super = ubifs_put_super,
@@ -2044,15 +2046,6 @@ out_close:
2044 2046
2045static void ubifs_kill_sb(struct super_block *sb) 2047static void ubifs_kill_sb(struct super_block *sb)
2046{ 2048{
2047 struct ubifs_info *c = sb->s_fs_info;
2048
2049 /*
2050 * We do 'commit_on_unmount()' here instead of 'ubifs_put_super()'
2051 * in order to be outside BKL.
2052 */
2053 if (sb->s_root)
2054 commit_on_unmount(c);
2055 /* The un-mount routine is actually done in put_super() */
2056 generic_shutdown_super(sb); 2049 generic_shutdown_super(sb);
2057} 2050}
2058 2051