aboutsummaryrefslogtreecommitdiffstats
path: root/fs/ubifs/lpt_commit.c
diff options
context:
space:
mode:
authorArtem Bityutskiy <Artem.Bityutskiy@nokia.com>2008-07-14 12:08:37 -0400
committerArtem Bityutskiy <Artem.Bityutskiy@nokia.com>2008-07-15 10:35:15 -0400
commit1e51764a3c2ac05a23a22b2a95ddee4d9bffb16d (patch)
tree919debdd48aef9eee9ff0e8f465ef2649325b993 /fs/ubifs/lpt_commit.c
parente56a99d5a42dcb91e622ae7a0289d8fb2ddabffb (diff)
UBIFS: add new flash file system
This is a new flash file system. See http://www.linux-mtd.infradead.org/doc/ubifs.html Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com> Signed-off-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
Diffstat (limited to 'fs/ubifs/lpt_commit.c')
-rw-r--r--fs/ubifs/lpt_commit.c1648
1 files changed, 1648 insertions, 0 deletions
diff --git a/fs/ubifs/lpt_commit.c b/fs/ubifs/lpt_commit.c
new file mode 100644
index 000000000000..5f0b83e20af6
--- /dev/null
+++ b/fs/ubifs/lpt_commit.c
@@ -0,0 +1,1648 @@
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements commit-related functionality of the LEB properties
25 * subsystem.
26 */
27
28#include <linux/crc16.h>
29#include "ubifs.h"
30
31/**
32 * first_dirty_cnode - find first dirty cnode.
33 * @c: UBIFS file-system description object
34 * @nnode: nnode at which to start
35 *
36 * This function returns the first dirty cnode or %NULL if there is not one.
37 */
38static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
39{
40 ubifs_assert(nnode);
41 while (1) {
42 int i, cont = 0;
43
44 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
45 struct ubifs_cnode *cnode;
46
47 cnode = nnode->nbranch[i].cnode;
48 if (cnode &&
49 test_bit(DIRTY_CNODE, &cnode->flags)) {
50 if (cnode->level == 0)
51 return cnode;
52 nnode = (struct ubifs_nnode *)cnode;
53 cont = 1;
54 break;
55 }
56 }
57 if (!cont)
58 return (struct ubifs_cnode *)nnode;
59 }
60}
61
62/**
63 * next_dirty_cnode - find next dirty cnode.
64 * @cnode: cnode from which to begin searching
65 *
66 * This function returns the next dirty cnode or %NULL if there is not one.
67 */
68static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
69{
70 struct ubifs_nnode *nnode;
71 int i;
72
73 ubifs_assert(cnode);
74 nnode = cnode->parent;
75 if (!nnode)
76 return NULL;
77 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
78 cnode = nnode->nbranch[i].cnode;
79 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
80 if (cnode->level == 0)
81 return cnode; /* cnode is a pnode */
82 /* cnode is a nnode */
83 return first_dirty_cnode((struct ubifs_nnode *)cnode);
84 }
85 }
86 return (struct ubifs_cnode *)nnode;
87}
88
89/**
90 * get_cnodes_to_commit - create list of dirty cnodes to commit.
91 * @c: UBIFS file-system description object
92 *
93 * This function returns the number of cnodes to commit.
94 */
95static int get_cnodes_to_commit(struct ubifs_info *c)
96{
97 struct ubifs_cnode *cnode, *cnext;
98 int cnt = 0;
99
100 if (!c->nroot)
101 return 0;
102
103 if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
104 return 0;
105
106 c->lpt_cnext = first_dirty_cnode(c->nroot);
107 cnode = c->lpt_cnext;
108 if (!cnode)
109 return 0;
110 cnt += 1;
111 while (1) {
112 ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
113 __set_bit(COW_ZNODE, &cnode->flags);
114 cnext = next_dirty_cnode(cnode);
115 if (!cnext) {
116 cnode->cnext = c->lpt_cnext;
117 break;
118 }
119 cnode->cnext = cnext;
120 cnode = cnext;
121 cnt += 1;
122 }
123 dbg_cmt("committing %d cnodes", cnt);
124 dbg_lp("committing %d cnodes", cnt);
125 ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
126 return cnt;
127}
128
129/**
130 * upd_ltab - update LPT LEB properties.
131 * @c: UBIFS file-system description object
132 * @lnum: LEB number
133 * @free: amount of free space
134 * @dirty: amount of dirty space to add
135 */
136static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
137{
138 dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 lnum, c->ltab[lnum - c->lpt_first].free,
140 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
141 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
142 c->ltab[lnum - c->lpt_first].free = free;
143 c->ltab[lnum - c->lpt_first].dirty += dirty;
144}
145
146/**
147 * alloc_lpt_leb - allocate an LPT LEB that is empty.
148 * @c: UBIFS file-system description object
149 * @lnum: LEB number is passed and returned here
150 *
151 * This function finds the next empty LEB in the ltab starting from @lnum. If a
152 * an empty LEB is found it is returned in @lnum and the function returns %0.
153 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
154 * never to run out of space.
155 */
156static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
157{
158 int i, n;
159
160 n = *lnum - c->lpt_first + 1;
161 for (i = n; i < c->lpt_lebs; i++) {
162 if (c->ltab[i].tgc || c->ltab[i].cmt)
163 continue;
164 if (c->ltab[i].free == c->leb_size) {
165 c->ltab[i].cmt = 1;
166 *lnum = i + c->lpt_first;
167 return 0;
168 }
169 }
170
171 for (i = 0; i < n; i++) {
172 if (c->ltab[i].tgc || c->ltab[i].cmt)
173 continue;
174 if (c->ltab[i].free == c->leb_size) {
175 c->ltab[i].cmt = 1;
176 *lnum = i + c->lpt_first;
177 return 0;
178 }
179 }
180 dbg_err("last LEB %d", *lnum);
181 dump_stack();
182 return -ENOSPC;
183}
184
185/**
186 * layout_cnodes - layout cnodes for commit.
187 * @c: UBIFS file-system description object
188 *
189 * This function returns %0 on success and a negative error code on failure.
190 */
191static int layout_cnodes(struct ubifs_info *c)
192{
193 int lnum, offs, len, alen, done_lsave, done_ltab, err;
194 struct ubifs_cnode *cnode;
195
196 cnode = c->lpt_cnext;
197 if (!cnode)
198 return 0;
199 lnum = c->nhead_lnum;
200 offs = c->nhead_offs;
201 /* Try to place lsave and ltab nicely */
202 done_lsave = !c->big_lpt;
203 done_ltab = 0;
204 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
205 done_lsave = 1;
206 c->lsave_lnum = lnum;
207 c->lsave_offs = offs;
208 offs += c->lsave_sz;
209 }
210
211 if (offs + c->ltab_sz <= c->leb_size) {
212 done_ltab = 1;
213 c->ltab_lnum = lnum;
214 c->ltab_offs = offs;
215 offs += c->ltab_sz;
216 }
217
218 do {
219 if (cnode->level) {
220 len = c->nnode_sz;
221 c->dirty_nn_cnt -= 1;
222 } else {
223 len = c->pnode_sz;
224 c->dirty_pn_cnt -= 1;
225 }
226 while (offs + len > c->leb_size) {
227 alen = ALIGN(offs, c->min_io_size);
228 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
229 err = alloc_lpt_leb(c, &lnum);
230 if (err)
231 return err;
232 offs = 0;
233 ubifs_assert(lnum >= c->lpt_first &&
234 lnum <= c->lpt_last);
235 /* Try to place lsave and ltab nicely */
236 if (!done_lsave) {
237 done_lsave = 1;
238 c->lsave_lnum = lnum;
239 c->lsave_offs = offs;
240 offs += c->lsave_sz;
241 continue;
242 }
243 if (!done_ltab) {
244 done_ltab = 1;
245 c->ltab_lnum = lnum;
246 c->ltab_offs = offs;
247 offs += c->ltab_sz;
248 continue;
249 }
250 break;
251 }
252 if (cnode->parent) {
253 cnode->parent->nbranch[cnode->iip].lnum = lnum;
254 cnode->parent->nbranch[cnode->iip].offs = offs;
255 } else {
256 c->lpt_lnum = lnum;
257 c->lpt_offs = offs;
258 }
259 offs += len;
260 cnode = cnode->cnext;
261 } while (cnode && cnode != c->lpt_cnext);
262
263 /* Make sure to place LPT's save table */
264 if (!done_lsave) {
265 if (offs + c->lsave_sz > c->leb_size) {
266 alen = ALIGN(offs, c->min_io_size);
267 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
268 err = alloc_lpt_leb(c, &lnum);
269 if (err)
270 return err;
271 offs = 0;
272 ubifs_assert(lnum >= c->lpt_first &&
273 lnum <= c->lpt_last);
274 }
275 done_lsave = 1;
276 c->lsave_lnum = lnum;
277 c->lsave_offs = offs;
278 offs += c->lsave_sz;
279 }
280
281 /* Make sure to place LPT's own lprops table */
282 if (!done_ltab) {
283 if (offs + c->ltab_sz > c->leb_size) {
284 alen = ALIGN(offs, c->min_io_size);
285 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
286 err = alloc_lpt_leb(c, &lnum);
287 if (err)
288 return err;
289 offs = 0;
290 ubifs_assert(lnum >= c->lpt_first &&
291 lnum <= c->lpt_last);
292 }
293 done_ltab = 1;
294 c->ltab_lnum = lnum;
295 c->ltab_offs = offs;
296 offs += c->ltab_sz;
297 }
298
299 alen = ALIGN(offs, c->min_io_size);
300 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
301 return 0;
302}
303
304/**
305 * realloc_lpt_leb - allocate an LPT LEB that is empty.
306 * @c: UBIFS file-system description object
307 * @lnum: LEB number is passed and returned here
308 *
309 * This function duplicates exactly the results of the function alloc_lpt_leb.
310 * It is used during end commit to reallocate the same LEB numbers that were
311 * allocated by alloc_lpt_leb during start commit.
312 *
313 * This function finds the next LEB that was allocated by the alloc_lpt_leb
314 * function starting from @lnum. If a LEB is found it is returned in @lnum and
315 * the function returns %0. Otherwise the function returns -ENOSPC.
316 * Note however, that LPT is designed never to run out of space.
317 */
318static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
319{
320 int i, n;
321
322 n = *lnum - c->lpt_first + 1;
323 for (i = n; i < c->lpt_lebs; i++)
324 if (c->ltab[i].cmt) {
325 c->ltab[i].cmt = 0;
326 *lnum = i + c->lpt_first;
327 return 0;
328 }
329
330 for (i = 0; i < n; i++)
331 if (c->ltab[i].cmt) {
332 c->ltab[i].cmt = 0;
333 *lnum = i + c->lpt_first;
334 return 0;
335 }
336 dbg_err("last LEB %d", *lnum);
337 dump_stack();
338 return -ENOSPC;
339}
340
341/**
342 * write_cnodes - write cnodes for commit.
343 * @c: UBIFS file-system description object
344 *
345 * This function returns %0 on success and a negative error code on failure.
346 */
347static int write_cnodes(struct ubifs_info *c)
348{
349 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
350 struct ubifs_cnode *cnode;
351 void *buf = c->lpt_buf;
352
353 cnode = c->lpt_cnext;
354 if (!cnode)
355 return 0;
356 lnum = c->nhead_lnum;
357 offs = c->nhead_offs;
358 from = offs;
359 /* Ensure empty LEB is unmapped */
360 if (offs == 0) {
361 err = ubifs_leb_unmap(c, lnum);
362 if (err)
363 return err;
364 }
365 /* Try to place lsave and ltab nicely */
366 done_lsave = !c->big_lpt;
367 done_ltab = 0;
368 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
369 done_lsave = 1;
370 ubifs_pack_lsave(c, buf + offs, c->lsave);
371 offs += c->lsave_sz;
372 }
373
374 if (offs + c->ltab_sz <= c->leb_size) {
375 done_ltab = 1;
376 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
377 offs += c->ltab_sz;
378 }
379
380 /* Loop for each cnode */
381 do {
382 if (cnode->level)
383 len = c->nnode_sz;
384 else
385 len = c->pnode_sz;
386 while (offs + len > c->leb_size) {
387 wlen = offs - from;
388 if (wlen) {
389 alen = ALIGN(wlen, c->min_io_size);
390 memset(buf + offs, 0xff, alen - wlen);
391 err = ubifs_leb_write(c, lnum, buf + from, from,
392 alen, UBI_SHORTTERM);
393 if (err)
394 return err;
395 }
396 err = realloc_lpt_leb(c, &lnum);
397 if (err)
398 return err;
399 offs = 0;
400 from = 0;
401 ubifs_assert(lnum >= c->lpt_first &&
402 lnum <= c->lpt_last);
403 err = ubifs_leb_unmap(c, lnum);
404 if (err)
405 return err;
406 /* Try to place lsave and ltab nicely */
407 if (!done_lsave) {
408 done_lsave = 1;
409 ubifs_pack_lsave(c, buf + offs, c->lsave);
410 offs += c->lsave_sz;
411 continue;
412 }
413 if (!done_ltab) {
414 done_ltab = 1;
415 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
416 offs += c->ltab_sz;
417 continue;
418 }
419 break;
420 }
421 if (cnode->level)
422 ubifs_pack_nnode(c, buf + offs,
423 (struct ubifs_nnode *)cnode);
424 else
425 ubifs_pack_pnode(c, buf + offs,
426 (struct ubifs_pnode *)cnode);
427 /*
428 * The reason for the barriers is the same as in case of TNC.
429 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
430 * 'dirty_cow_pnode()' are the functions for which this is
431 * important.
432 */
433 clear_bit(DIRTY_CNODE, &cnode->flags);
434 smp_mb__before_clear_bit();
435 clear_bit(COW_ZNODE, &cnode->flags);
436 smp_mb__after_clear_bit();
437 offs += len;
438 cnode = cnode->cnext;
439 } while (cnode && cnode != c->lpt_cnext);
440
441 /* Make sure to place LPT's save table */
442 if (!done_lsave) {
443 if (offs + c->lsave_sz > c->leb_size) {
444 wlen = offs - from;
445 alen = ALIGN(wlen, c->min_io_size);
446 memset(buf + offs, 0xff, alen - wlen);
447 err = ubifs_leb_write(c, lnum, buf + from, from, alen,
448 UBI_SHORTTERM);
449 if (err)
450 return err;
451 err = realloc_lpt_leb(c, &lnum);
452 if (err)
453 return err;
454 offs = 0;
455 ubifs_assert(lnum >= c->lpt_first &&
456 lnum <= c->lpt_last);
457 err = ubifs_leb_unmap(c, lnum);
458 if (err)
459 return err;
460 }
461 done_lsave = 1;
462 ubifs_pack_lsave(c, buf + offs, c->lsave);
463 offs += c->lsave_sz;
464 }
465
466 /* Make sure to place LPT's own lprops table */
467 if (!done_ltab) {
468 if (offs + c->ltab_sz > c->leb_size) {
469 wlen = offs - from;
470 alen = ALIGN(wlen, c->min_io_size);
471 memset(buf + offs, 0xff, alen - wlen);
472 err = ubifs_leb_write(c, lnum, buf + from, from, alen,
473 UBI_SHORTTERM);
474 if (err)
475 return err;
476 err = realloc_lpt_leb(c, &lnum);
477 if (err)
478 return err;
479 offs = 0;
480 ubifs_assert(lnum >= c->lpt_first &&
481 lnum <= c->lpt_last);
482 err = ubifs_leb_unmap(c, lnum);
483 if (err)
484 return err;
485 }
486 done_ltab = 1;
487 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
488 offs += c->ltab_sz;
489 }
490
491 /* Write remaining data in buffer */
492 wlen = offs - from;
493 alen = ALIGN(wlen, c->min_io_size);
494 memset(buf + offs, 0xff, alen - wlen);
495 err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
496 if (err)
497 return err;
498 c->nhead_lnum = lnum;
499 c->nhead_offs = ALIGN(offs, c->min_io_size);
500
501 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
502 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
503 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
504 if (c->big_lpt)
505 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
506 return 0;
507}
508
509/**
510 * next_pnode - find next pnode.
511 * @c: UBIFS file-system description object
512 * @pnode: pnode
513 *
514 * This function returns the next pnode or %NULL if there are no more pnodes.
515 */
516static struct ubifs_pnode *next_pnode(struct ubifs_info *c,
517 struct ubifs_pnode *pnode)
518{
519 struct ubifs_nnode *nnode;
520 int iip;
521
522 /* Try to go right */
523 nnode = pnode->parent;
524 iip = pnode->iip + 1;
525 if (iip < UBIFS_LPT_FANOUT) {
526 /* We assume here that LEB zero is never an LPT LEB */
527 if (nnode->nbranch[iip].lnum)
528 return ubifs_get_pnode(c, nnode, iip);
529 else
530 return NULL;
531 }
532
533 /* Go up while can't go right */
534 do {
535 iip = nnode->iip + 1;
536 nnode = nnode->parent;
537 if (!nnode)
538 return NULL;
539 /* We assume here that LEB zero is never an LPT LEB */
540 } while (iip >= UBIFS_LPT_FANOUT || !nnode->nbranch[iip].lnum);
541
542 /* Go right */
543 nnode = ubifs_get_nnode(c, nnode, iip);
544 if (IS_ERR(nnode))
545 return (void *)nnode;
546
547 /* Go down to level 1 */
548 while (nnode->level > 1) {
549 nnode = ubifs_get_nnode(c, nnode, 0);
550 if (IS_ERR(nnode))
551 return (void *)nnode;
552 }
553
554 return ubifs_get_pnode(c, nnode, 0);
555}
556
557/**
558 * pnode_lookup - lookup a pnode in the LPT.
559 * @c: UBIFS file-system description object
560 * @i: pnode number (0 to main_lebs - 1)
561 *
562 * This function returns a pointer to the pnode on success or a negative
563 * error code on failure.
564 */
565static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
566{
567 int err, h, iip, shft;
568 struct ubifs_nnode *nnode;
569
570 if (!c->nroot) {
571 err = ubifs_read_nnode(c, NULL, 0);
572 if (err)
573 return ERR_PTR(err);
574 }
575 i <<= UBIFS_LPT_FANOUT_SHIFT;
576 nnode = c->nroot;
577 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
578 for (h = 1; h < c->lpt_hght; h++) {
579 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
580 shft -= UBIFS_LPT_FANOUT_SHIFT;
581 nnode = ubifs_get_nnode(c, nnode, iip);
582 if (IS_ERR(nnode))
583 return ERR_PTR(PTR_ERR(nnode));
584 }
585 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
586 return ubifs_get_pnode(c, nnode, iip);
587}
588
589/**
590 * add_pnode_dirt - add dirty space to LPT LEB properties.
591 * @c: UBIFS file-system description object
592 * @pnode: pnode for which to add dirt
593 */
594static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
595{
596 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
597 c->pnode_sz);
598}
599
600/**
601 * do_make_pnode_dirty - mark a pnode dirty.
602 * @c: UBIFS file-system description object
603 * @pnode: pnode to mark dirty
604 */
605static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
606{
607 /* Assumes cnext list is empty i.e. not called during commit */
608 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
609 struct ubifs_nnode *nnode;
610
611 c->dirty_pn_cnt += 1;
612 add_pnode_dirt(c, pnode);
613 /* Mark parent and ancestors dirty too */
614 nnode = pnode->parent;
615 while (nnode) {
616 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
617 c->dirty_nn_cnt += 1;
618 ubifs_add_nnode_dirt(c, nnode);
619 nnode = nnode->parent;
620 } else
621 break;
622 }
623 }
624}
625
626/**
627 * make_tree_dirty - mark the entire LEB properties tree dirty.
628 * @c: UBIFS file-system description object
629 *
630 * This function is used by the "small" LPT model to cause the entire LEB
631 * properties tree to be written. The "small" LPT model does not use LPT
632 * garbage collection because it is more efficient to write the entire tree
633 * (because it is small).
634 *
635 * This function returns %0 on success and a negative error code on failure.
636 */
637static int make_tree_dirty(struct ubifs_info *c)
638{
639 struct ubifs_pnode *pnode;
640
641 pnode = pnode_lookup(c, 0);
642 while (pnode) {
643 do_make_pnode_dirty(c, pnode);
644 pnode = next_pnode(c, pnode);
645 if (IS_ERR(pnode))
646 return PTR_ERR(pnode);
647 }
648 return 0;
649}
650
651/**
652 * need_write_all - determine if the LPT area is running out of free space.
653 * @c: UBIFS file-system description object
654 *
655 * This function returns %1 if the LPT area is running out of free space and %0
656 * if it is not.
657 */
658static int need_write_all(struct ubifs_info *c)
659{
660 long long free = 0;
661 int i;
662
663 for (i = 0; i < c->lpt_lebs; i++) {
664 if (i + c->lpt_first == c->nhead_lnum)
665 free += c->leb_size - c->nhead_offs;
666 else if (c->ltab[i].free == c->leb_size)
667 free += c->leb_size;
668 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
669 free += c->leb_size;
670 }
671 /* Less than twice the size left */
672 if (free <= c->lpt_sz * 2)
673 return 1;
674 return 0;
675}
676
677/**
678 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
679 * @c: UBIFS file-system description object
680 *
681 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
682 * free space and so may be reused as soon as the next commit is completed.
683 * This function is called during start commit to mark LPT LEBs for trivial GC.
684 */
685static void lpt_tgc_start(struct ubifs_info *c)
686{
687 int i;
688
689 for (i = 0; i < c->lpt_lebs; i++) {
690 if (i + c->lpt_first == c->nhead_lnum)
691 continue;
692 if (c->ltab[i].dirty > 0 &&
693 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
694 c->ltab[i].tgc = 1;
695 c->ltab[i].free = c->leb_size;
696 c->ltab[i].dirty = 0;
697 dbg_lp("LEB %d", i + c->lpt_first);
698 }
699 }
700}
701
702/**
703 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
704 * @c: UBIFS file-system description object
705 *
706 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
707 * free space and so may be reused as soon as the next commit is completed.
708 * This function is called after the commit is completed (master node has been
709 * written) and unmaps LPT LEBs that were marked for trivial GC.
710 */
711static int lpt_tgc_end(struct ubifs_info *c)
712{
713 int i, err;
714
715 for (i = 0; i < c->lpt_lebs; i++)
716 if (c->ltab[i].tgc) {
717 err = ubifs_leb_unmap(c, i + c->lpt_first);
718 if (err)
719 return err;
720 c->ltab[i].tgc = 0;
721 dbg_lp("LEB %d", i + c->lpt_first);
722 }
723 return 0;
724}
725
726/**
727 * populate_lsave - fill the lsave array with important LEB numbers.
728 * @c: the UBIFS file-system description object
729 *
730 * This function is only called for the "big" model. It records a small number
731 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
732 * most important to least important): empty, freeable, freeable index, dirty
733 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
734 * their pnodes into memory. That will stop us from having to scan the LPT
735 * straight away. For the "small" model we assume that scanning the LPT is no
736 * big deal.
737 */
738static void populate_lsave(struct ubifs_info *c)
739{
740 struct ubifs_lprops *lprops;
741 struct ubifs_lpt_heap *heap;
742 int i, cnt = 0;
743
744 ubifs_assert(c->big_lpt);
745 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
746 c->lpt_drty_flgs |= LSAVE_DIRTY;
747 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
748 }
749 list_for_each_entry(lprops, &c->empty_list, list) {
750 c->lsave[cnt++] = lprops->lnum;
751 if (cnt >= c->lsave_cnt)
752 return;
753 }
754 list_for_each_entry(lprops, &c->freeable_list, list) {
755 c->lsave[cnt++] = lprops->lnum;
756 if (cnt >= c->lsave_cnt)
757 return;
758 }
759 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
760 c->lsave[cnt++] = lprops->lnum;
761 if (cnt >= c->lsave_cnt)
762 return;
763 }
764 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
765 for (i = 0; i < heap->cnt; i++) {
766 c->lsave[cnt++] = heap->arr[i]->lnum;
767 if (cnt >= c->lsave_cnt)
768 return;
769 }
770 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
771 for (i = 0; i < heap->cnt; i++) {
772 c->lsave[cnt++] = heap->arr[i]->lnum;
773 if (cnt >= c->lsave_cnt)
774 return;
775 }
776 heap = &c->lpt_heap[LPROPS_FREE - 1];
777 for (i = 0; i < heap->cnt; i++) {
778 c->lsave[cnt++] = heap->arr[i]->lnum;
779 if (cnt >= c->lsave_cnt)
780 return;
781 }
782 /* Fill it up completely */
783 while (cnt < c->lsave_cnt)
784 c->lsave[cnt++] = c->main_first;
785}
786
787/**
788 * nnode_lookup - lookup a nnode in the LPT.
789 * @c: UBIFS file-system description object
790 * @i: nnode number
791 *
792 * This function returns a pointer to the nnode on success or a negative
793 * error code on failure.
794 */
795static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
796{
797 int err, iip;
798 struct ubifs_nnode *nnode;
799
800 if (!c->nroot) {
801 err = ubifs_read_nnode(c, NULL, 0);
802 if (err)
803 return ERR_PTR(err);
804 }
805 nnode = c->nroot;
806 while (1) {
807 iip = i & (UBIFS_LPT_FANOUT - 1);
808 i >>= UBIFS_LPT_FANOUT_SHIFT;
809 if (!i)
810 break;
811 nnode = ubifs_get_nnode(c, nnode, iip);
812 if (IS_ERR(nnode))
813 return nnode;
814 }
815 return nnode;
816}
817
818/**
819 * make_nnode_dirty - find a nnode and, if found, make it dirty.
820 * @c: UBIFS file-system description object
821 * @node_num: nnode number of nnode to make dirty
822 * @lnum: LEB number where nnode was written
823 * @offs: offset where nnode was written
824 *
825 * This function is used by LPT garbage collection. LPT garbage collection is
826 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
827 * simply involves marking all the nodes in the LEB being garbage-collected as
828 * dirty. The dirty nodes are written next commit, after which the LEB is free
829 * to be reused.
830 *
831 * This function returns %0 on success and a negative error code on failure.
832 */
833static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
834 int offs)
835{
836 struct ubifs_nnode *nnode;
837
838 nnode = nnode_lookup(c, node_num);
839 if (IS_ERR(nnode))
840 return PTR_ERR(nnode);
841 if (nnode->parent) {
842 struct ubifs_nbranch *branch;
843
844 branch = &nnode->parent->nbranch[nnode->iip];
845 if (branch->lnum != lnum || branch->offs != offs)
846 return 0; /* nnode is obsolete */
847 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
848 return 0; /* nnode is obsolete */
849 /* Assumes cnext list is empty i.e. not called during commit */
850 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
851 c->dirty_nn_cnt += 1;
852 ubifs_add_nnode_dirt(c, nnode);
853 /* Mark parent and ancestors dirty too */
854 nnode = nnode->parent;
855 while (nnode) {
856 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
857 c->dirty_nn_cnt += 1;
858 ubifs_add_nnode_dirt(c, nnode);
859 nnode = nnode->parent;
860 } else
861 break;
862 }
863 }
864 return 0;
865}
866
867/**
868 * make_pnode_dirty - find a pnode and, if found, make it dirty.
869 * @c: UBIFS file-system description object
870 * @node_num: pnode number of pnode to make dirty
871 * @lnum: LEB number where pnode was written
872 * @offs: offset where pnode was written
873 *
874 * This function is used by LPT garbage collection. LPT garbage collection is
875 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
876 * simply involves marking all the nodes in the LEB being garbage-collected as
877 * dirty. The dirty nodes are written next commit, after which the LEB is free
878 * to be reused.
879 *
880 * This function returns %0 on success and a negative error code on failure.
881 */
882static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
883 int offs)
884{
885 struct ubifs_pnode *pnode;
886 struct ubifs_nbranch *branch;
887
888 pnode = pnode_lookup(c, node_num);
889 if (IS_ERR(pnode))
890 return PTR_ERR(pnode);
891 branch = &pnode->parent->nbranch[pnode->iip];
892 if (branch->lnum != lnum || branch->offs != offs)
893 return 0;
894 do_make_pnode_dirty(c, pnode);
895 return 0;
896}
897
898/**
899 * make_ltab_dirty - make ltab node dirty.
900 * @c: UBIFS file-system description object
901 * @lnum: LEB number where ltab was written
902 * @offs: offset where ltab was written
903 *
904 * This function is used by LPT garbage collection. LPT garbage collection is
905 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
906 * simply involves marking all the nodes in the LEB being garbage-collected as
907 * dirty. The dirty nodes are written next commit, after which the LEB is free
908 * to be reused.
909 *
910 * This function returns %0 on success and a negative error code on failure.
911 */
912static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
913{
914 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
915 return 0; /* This ltab node is obsolete */
916 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
917 c->lpt_drty_flgs |= LTAB_DIRTY;
918 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
919 }
920 return 0;
921}
922
923/**
924 * make_lsave_dirty - make lsave node dirty.
925 * @c: UBIFS file-system description object
926 * @lnum: LEB number where lsave was written
927 * @offs: offset where lsave was written
928 *
929 * This function is used by LPT garbage collection. LPT garbage collection is
930 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
931 * simply involves marking all the nodes in the LEB being garbage-collected as
932 * dirty. The dirty nodes are written next commit, after which the LEB is free
933 * to be reused.
934 *
935 * This function returns %0 on success and a negative error code on failure.
936 */
937static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
938{
939 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
940 return 0; /* This lsave node is obsolete */
941 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
942 c->lpt_drty_flgs |= LSAVE_DIRTY;
943 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
944 }
945 return 0;
946}
947
948/**
949 * make_node_dirty - make node dirty.
950 * @c: UBIFS file-system description object
951 * @node_type: LPT node type
952 * @node_num: node number
953 * @lnum: LEB number where node was written
954 * @offs: offset where node was written
955 *
956 * This function is used by LPT garbage collection. LPT garbage collection is
957 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
958 * simply involves marking all the nodes in the LEB being garbage-collected as
959 * dirty. The dirty nodes are written next commit, after which the LEB is free
960 * to be reused.
961 *
962 * This function returns %0 on success and a negative error code on failure.
963 */
964static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
965 int lnum, int offs)
966{
967 switch (node_type) {
968 case UBIFS_LPT_NNODE:
969 return make_nnode_dirty(c, node_num, lnum, offs);
970 case UBIFS_LPT_PNODE:
971 return make_pnode_dirty(c, node_num, lnum, offs);
972 case UBIFS_LPT_LTAB:
973 return make_ltab_dirty(c, lnum, offs);
974 case UBIFS_LPT_LSAVE:
975 return make_lsave_dirty(c, lnum, offs);
976 }
977 return -EINVAL;
978}
979
980/**
981 * get_lpt_node_len - return the length of a node based on its type.
982 * @c: UBIFS file-system description object
983 * @node_type: LPT node type
984 */
985static int get_lpt_node_len(struct ubifs_info *c, int node_type)
986{
987 switch (node_type) {
988 case UBIFS_LPT_NNODE:
989 return c->nnode_sz;
990 case UBIFS_LPT_PNODE:
991 return c->pnode_sz;
992 case UBIFS_LPT_LTAB:
993 return c->ltab_sz;
994 case UBIFS_LPT_LSAVE:
995 return c->lsave_sz;
996 }
997 return 0;
998}
999
1000/**
1001 * get_pad_len - return the length of padding in a buffer.
1002 * @c: UBIFS file-system description object
1003 * @buf: buffer
1004 * @len: length of buffer
1005 */
1006static int get_pad_len(struct ubifs_info *c, uint8_t *buf, int len)
1007{
1008 int offs, pad_len;
1009
1010 if (c->min_io_size == 1)
1011 return 0;
1012 offs = c->leb_size - len;
1013 pad_len = ALIGN(offs, c->min_io_size) - offs;
1014 return pad_len;
1015}
1016
1017/**
1018 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1019 * @c: UBIFS file-system description object
1020 * @buf: buffer
1021 * @node_num: node number is returned here
1022 */
1023static int get_lpt_node_type(struct ubifs_info *c, uint8_t *buf, int *node_num)
1024{
1025 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1026 int pos = 0, node_type;
1027
1028 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1029 *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1030 return node_type;
1031}
1032
1033/**
1034 * is_a_node - determine if a buffer contains a node.
1035 * @c: UBIFS file-system description object
1036 * @buf: buffer
1037 * @len: length of buffer
1038 *
1039 * This function returns %1 if the buffer contains a node or %0 if it does not.
1040 */
1041static int is_a_node(struct ubifs_info *c, uint8_t *buf, int len)
1042{
1043 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1044 int pos = 0, node_type, node_len;
1045 uint16_t crc, calc_crc;
1046
1047 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1048 if (node_type == UBIFS_LPT_NOT_A_NODE)
1049 return 0;
1050 node_len = get_lpt_node_len(c, node_type);
1051 if (!node_len || node_len > len)
1052 return 0;
1053 pos = 0;
1054 addr = buf;
1055 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1056 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1057 node_len - UBIFS_LPT_CRC_BYTES);
1058 if (crc != calc_crc)
1059 return 0;
1060 return 1;
1061}
1062
1063
1064/**
1065 * lpt_gc_lnum - garbage collect a LPT LEB.
1066 * @c: UBIFS file-system description object
1067 * @lnum: LEB number to garbage collect
1068 *
1069 * LPT garbage collection is used only for the "big" LPT model
1070 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1071 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1072 * next commit, after which the LEB is free to be reused.
1073 *
1074 * This function returns %0 on success and a negative error code on failure.
1075 */
1076static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1077{
1078 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1079 void *buf = c->lpt_buf;
1080
1081 dbg_lp("LEB %d", lnum);
1082 err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1083 if (err) {
1084 ubifs_err("cannot read LEB %d, error %d", lnum, err);
1085 return err;
1086 }
1087 while (1) {
1088 if (!is_a_node(c, buf, len)) {
1089 int pad_len;
1090
1091 pad_len = get_pad_len(c, buf, len);
1092 if (pad_len) {
1093 buf += pad_len;
1094 len -= pad_len;
1095 continue;
1096 }
1097 return 0;
1098 }
1099 node_type = get_lpt_node_type(c, buf, &node_num);
1100 node_len = get_lpt_node_len(c, node_type);
1101 offs = c->leb_size - len;
1102 ubifs_assert(node_len != 0);
1103 mutex_lock(&c->lp_mutex);
1104 err = make_node_dirty(c, node_type, node_num, lnum, offs);
1105 mutex_unlock(&c->lp_mutex);
1106 if (err)
1107 return err;
1108 buf += node_len;
1109 len -= node_len;
1110 }
1111 return 0;
1112}
1113
1114/**
1115 * lpt_gc - LPT garbage collection.
1116 * @c: UBIFS file-system description object
1117 *
1118 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1119 * Returns %0 on success and a negative error code on failure.
1120 */
1121static int lpt_gc(struct ubifs_info *c)
1122{
1123 int i, lnum = -1, dirty = 0;
1124
1125 mutex_lock(&c->lp_mutex);
1126 for (i = 0; i < c->lpt_lebs; i++) {
1127 ubifs_assert(!c->ltab[i].tgc);
1128 if (i + c->lpt_first == c->nhead_lnum ||
1129 c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1130 continue;
1131 if (c->ltab[i].dirty > dirty) {
1132 dirty = c->ltab[i].dirty;
1133 lnum = i + c->lpt_first;
1134 }
1135 }
1136 mutex_unlock(&c->lp_mutex);
1137 if (lnum == -1)
1138 return -ENOSPC;
1139 return lpt_gc_lnum(c, lnum);
1140}
1141
1142/**
1143 * ubifs_lpt_start_commit - UBIFS commit starts.
1144 * @c: the UBIFS file-system description object
1145 *
1146 * This function has to be called when UBIFS starts the commit operation.
1147 * This function "freezes" all currently dirty LEB properties and does not
1148 * change them anymore. Further changes are saved and tracked separately
1149 * because they are not part of this commit. This function returns zero in case
1150 * of success and a negative error code in case of failure.
1151 */
1152int ubifs_lpt_start_commit(struct ubifs_info *c)
1153{
1154 int err, cnt;
1155
1156 dbg_lp("");
1157
1158 mutex_lock(&c->lp_mutex);
1159 err = dbg_check_ltab(c);
1160 if (err)
1161 goto out;
1162
1163 if (c->check_lpt_free) {
1164 /*
1165 * We ensure there is enough free space in
1166 * ubifs_lpt_post_commit() by marking nodes dirty. That
1167 * information is lost when we unmount, so we also need
1168 * to check free space once after mounting also.
1169 */
1170 c->check_lpt_free = 0;
1171 while (need_write_all(c)) {
1172 mutex_unlock(&c->lp_mutex);
1173 err = lpt_gc(c);
1174 if (err)
1175 return err;
1176 mutex_lock(&c->lp_mutex);
1177 }
1178 }
1179
1180 lpt_tgc_start(c);
1181
1182 if (!c->dirty_pn_cnt) {
1183 dbg_cmt("no cnodes to commit");
1184 err = 0;
1185 goto out;
1186 }
1187
1188 if (!c->big_lpt && need_write_all(c)) {
1189 /* If needed, write everything */
1190 err = make_tree_dirty(c);
1191 if (err)
1192 goto out;
1193 lpt_tgc_start(c);
1194 }
1195
1196 if (c->big_lpt)
1197 populate_lsave(c);
1198
1199 cnt = get_cnodes_to_commit(c);
1200 ubifs_assert(cnt != 0);
1201
1202 err = layout_cnodes(c);
1203 if (err)
1204 goto out;
1205
1206 /* Copy the LPT's own lprops for end commit to write */
1207 memcpy(c->ltab_cmt, c->ltab,
1208 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1209 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1210
1211out:
1212 mutex_unlock(&c->lp_mutex);
1213 return err;
1214}
1215
1216/**
1217 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1218 * @c: UBIFS file-system description object
1219 */
1220static void free_obsolete_cnodes(struct ubifs_info *c)
1221{
1222 struct ubifs_cnode *cnode, *cnext;
1223
1224 cnext = c->lpt_cnext;
1225 if (!cnext)
1226 return;
1227 do {
1228 cnode = cnext;
1229 cnext = cnode->cnext;
1230 if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1231 kfree(cnode);
1232 else
1233 cnode->cnext = NULL;
1234 } while (cnext != c->lpt_cnext);
1235 c->lpt_cnext = NULL;
1236}
1237
1238/**
1239 * ubifs_lpt_end_commit - finish the commit operation.
1240 * @c: the UBIFS file-system description object
1241 *
1242 * This function has to be called when the commit operation finishes. It
1243 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1244 * the media. Returns zero in case of success and a negative error code in case
1245 * of failure.
1246 */
1247int ubifs_lpt_end_commit(struct ubifs_info *c)
1248{
1249 int err;
1250
1251 dbg_lp("");
1252
1253 if (!c->lpt_cnext)
1254 return 0;
1255
1256 err = write_cnodes(c);
1257 if (err)
1258 return err;
1259
1260 mutex_lock(&c->lp_mutex);
1261 free_obsolete_cnodes(c);
1262 mutex_unlock(&c->lp_mutex);
1263
1264 return 0;
1265}
1266
1267/**
1268 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1269 * @c: UBIFS file-system description object
1270 *
1271 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1272 * commit for the "big" LPT model.
1273 */
1274int ubifs_lpt_post_commit(struct ubifs_info *c)
1275{
1276 int err;
1277
1278 mutex_lock(&c->lp_mutex);
1279 err = lpt_tgc_end(c);
1280 if (err)
1281 goto out;
1282 if (c->big_lpt)
1283 while (need_write_all(c)) {
1284 mutex_unlock(&c->lp_mutex);
1285 err = lpt_gc(c);
1286 if (err)
1287 return err;
1288 mutex_lock(&c->lp_mutex);
1289 }
1290out:
1291 mutex_unlock(&c->lp_mutex);
1292 return err;
1293}
1294
1295/**
1296 * first_nnode - find the first nnode in memory.
1297 * @c: UBIFS file-system description object
1298 * @hght: height of tree where nnode found is returned here
1299 *
1300 * This function returns a pointer to the nnode found or %NULL if no nnode is
1301 * found. This function is a helper to 'ubifs_lpt_free()'.
1302 */
1303static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1304{
1305 struct ubifs_nnode *nnode;
1306 int h, i, found;
1307
1308 nnode = c->nroot;
1309 *hght = 0;
1310 if (!nnode)
1311 return NULL;
1312 for (h = 1; h < c->lpt_hght; h++) {
1313 found = 0;
1314 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1315 if (nnode->nbranch[i].nnode) {
1316 found = 1;
1317 nnode = nnode->nbranch[i].nnode;
1318 *hght = h;
1319 break;
1320 }
1321 }
1322 if (!found)
1323 break;
1324 }
1325 return nnode;
1326}
1327
1328/**
1329 * next_nnode - find the next nnode in memory.
1330 * @c: UBIFS file-system description object
1331 * @nnode: nnode from which to start.
1332 * @hght: height of tree where nnode is, is passed and returned here
1333 *
1334 * This function returns a pointer to the nnode found or %NULL if no nnode is
1335 * found. This function is a helper to 'ubifs_lpt_free()'.
1336 */
1337static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1338 struct ubifs_nnode *nnode, int *hght)
1339{
1340 struct ubifs_nnode *parent;
1341 int iip, h, i, found;
1342
1343 parent = nnode->parent;
1344 if (!parent)
1345 return NULL;
1346 if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1347 *hght -= 1;
1348 return parent;
1349 }
1350 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1351 nnode = parent->nbranch[iip].nnode;
1352 if (nnode)
1353 break;
1354 }
1355 if (!nnode) {
1356 *hght -= 1;
1357 return parent;
1358 }
1359 for (h = *hght + 1; h < c->lpt_hght; h++) {
1360 found = 0;
1361 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1362 if (nnode->nbranch[i].nnode) {
1363 found = 1;
1364 nnode = nnode->nbranch[i].nnode;
1365 *hght = h;
1366 break;
1367 }
1368 }
1369 if (!found)
1370 break;
1371 }
1372 return nnode;
1373}
1374
1375/**
1376 * ubifs_lpt_free - free resources owned by the LPT.
1377 * @c: UBIFS file-system description object
1378 * @wr_only: free only resources used for writing
1379 */
1380void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1381{
1382 struct ubifs_nnode *nnode;
1383 int i, hght;
1384
1385 /* Free write-only things first */
1386
1387 free_obsolete_cnodes(c); /* Leftover from a failed commit */
1388
1389 vfree(c->ltab_cmt);
1390 c->ltab_cmt = NULL;
1391 vfree(c->lpt_buf);
1392 c->lpt_buf = NULL;
1393 kfree(c->lsave);
1394 c->lsave = NULL;
1395
1396 if (wr_only)
1397 return;
1398
1399 /* Now free the rest */
1400
1401 nnode = first_nnode(c, &hght);
1402 while (nnode) {
1403 for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1404 kfree(nnode->nbranch[i].nnode);
1405 nnode = next_nnode(c, nnode, &hght);
1406 }
1407 for (i = 0; i < LPROPS_HEAP_CNT; i++)
1408 kfree(c->lpt_heap[i].arr);
1409 kfree(c->dirty_idx.arr);
1410 kfree(c->nroot);
1411 vfree(c->ltab);
1412 kfree(c->lpt_nod_buf);
1413}
1414
1415#ifdef CONFIG_UBIFS_FS_DEBUG
1416
1417/**
1418 * dbg_is_all_ff - determine if a buffer contains only 0xff bytes.
1419 * @buf: buffer
1420 * @len: buffer length
1421 */
1422static int dbg_is_all_ff(uint8_t *buf, int len)
1423{
1424 int i;
1425
1426 for (i = 0; i < len; i++)
1427 if (buf[i] != 0xff)
1428 return 0;
1429 return 1;
1430}
1431
1432/**
1433 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1434 * @c: the UBIFS file-system description object
1435 * @lnum: LEB number where nnode was written
1436 * @offs: offset where nnode was written
1437 */
1438static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1439{
1440 struct ubifs_nnode *nnode;
1441 int hght;
1442
1443 /* Entire tree is in memory so first_nnode / next_nnode are ok */
1444 nnode = first_nnode(c, &hght);
1445 for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1446 struct ubifs_nbranch *branch;
1447
1448 cond_resched();
1449 if (nnode->parent) {
1450 branch = &nnode->parent->nbranch[nnode->iip];
1451 if (branch->lnum != lnum || branch->offs != offs)
1452 continue;
1453 if (test_bit(DIRTY_CNODE, &nnode->flags))
1454 return 1;
1455 return 0;
1456 } else {
1457 if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1458 continue;
1459 if (test_bit(DIRTY_CNODE, &nnode->flags))
1460 return 1;
1461 return 0;
1462 }
1463 }
1464 return 1;
1465}
1466
1467/**
1468 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1469 * @c: the UBIFS file-system description object
1470 * @lnum: LEB number where pnode was written
1471 * @offs: offset where pnode was written
1472 */
1473static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1474{
1475 int i, cnt;
1476
1477 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1478 for (i = 0; i < cnt; i++) {
1479 struct ubifs_pnode *pnode;
1480 struct ubifs_nbranch *branch;
1481
1482 cond_resched();
1483 pnode = pnode_lookup(c, i);
1484 if (IS_ERR(pnode))
1485 return PTR_ERR(pnode);
1486 branch = &pnode->parent->nbranch[pnode->iip];
1487 if (branch->lnum != lnum || branch->offs != offs)
1488 continue;
1489 if (test_bit(DIRTY_CNODE, &pnode->flags))
1490 return 1;
1491 return 0;
1492 }
1493 return 1;
1494}
1495
1496/**
1497 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1498 * @c: the UBIFS file-system description object
1499 * @lnum: LEB number where ltab node was written
1500 * @offs: offset where ltab node was written
1501 */
1502static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1503{
1504 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1505 return 1;
1506 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1507}
1508
1509/**
1510 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1511 * @c: the UBIFS file-system description object
1512 * @lnum: LEB number where lsave node was written
1513 * @offs: offset where lsave node was written
1514 */
1515static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1516{
1517 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1518 return 1;
1519 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1520}
1521
1522/**
1523 * dbg_is_node_dirty - determine if a node is dirty.
1524 * @c: the UBIFS file-system description object
1525 * @node_type: node type
1526 * @lnum: LEB number where node was written
1527 * @offs: offset where node was written
1528 */
1529static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1530 int offs)
1531{
1532 switch (node_type) {
1533 case UBIFS_LPT_NNODE:
1534 return dbg_is_nnode_dirty(c, lnum, offs);
1535 case UBIFS_LPT_PNODE:
1536 return dbg_is_pnode_dirty(c, lnum, offs);
1537 case UBIFS_LPT_LTAB:
1538 return dbg_is_ltab_dirty(c, lnum, offs);
1539 case UBIFS_LPT_LSAVE:
1540 return dbg_is_lsave_dirty(c, lnum, offs);
1541 }
1542 return 1;
1543}
1544
1545/**
1546 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1547 * @c: the UBIFS file-system description object
1548 * @lnum: LEB number where node was written
1549 * @offs: offset where node was written
1550 *
1551 * This function returns %0 on success and a negative error code on failure.
1552 */
1553static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1554{
1555 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1556 int ret;
1557 void *buf = c->dbg_buf;
1558
1559 dbg_lp("LEB %d", lnum);
1560 err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1561 if (err) {
1562 dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1563 return err;
1564 }
1565 while (1) {
1566 if (!is_a_node(c, buf, len)) {
1567 int i, pad_len;
1568
1569 pad_len = get_pad_len(c, buf, len);
1570 if (pad_len) {
1571 buf += pad_len;
1572 len -= pad_len;
1573 dirty += pad_len;
1574 continue;
1575 }
1576 if (!dbg_is_all_ff(buf, len)) {
1577 dbg_msg("invalid empty space in LEB %d at %d",
1578 lnum, c->leb_size - len);
1579 err = -EINVAL;
1580 }
1581 i = lnum - c->lpt_first;
1582 if (len != c->ltab[i].free) {
1583 dbg_msg("invalid free space in LEB %d "
1584 "(free %d, expected %d)",
1585 lnum, len, c->ltab[i].free);
1586 err = -EINVAL;
1587 }
1588 if (dirty != c->ltab[i].dirty) {
1589 dbg_msg("invalid dirty space in LEB %d "
1590 "(dirty %d, expected %d)",
1591 lnum, dirty, c->ltab[i].dirty);
1592 err = -EINVAL;
1593 }
1594 return err;
1595 }
1596 node_type = get_lpt_node_type(c, buf, &node_num);
1597 node_len = get_lpt_node_len(c, node_type);
1598 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1599 if (ret == 1)
1600 dirty += node_len;
1601 buf += node_len;
1602 len -= node_len;
1603 }
1604}
1605
1606/**
1607 * dbg_check_ltab - check the free and dirty space in the ltab.
1608 * @c: the UBIFS file-system description object
1609 *
1610 * This function returns %0 on success and a negative error code on failure.
1611 */
1612int dbg_check_ltab(struct ubifs_info *c)
1613{
1614 int lnum, err, i, cnt;
1615
1616 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1617 return 0;
1618
1619 /* Bring the entire tree into memory */
1620 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1621 for (i = 0; i < cnt; i++) {
1622 struct ubifs_pnode *pnode;
1623
1624 pnode = pnode_lookup(c, i);
1625 if (IS_ERR(pnode))
1626 return PTR_ERR(pnode);
1627 cond_resched();
1628 }
1629
1630 /* Check nodes */
1631 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1632 if (err)
1633 return err;
1634
1635 /* Check each LEB */
1636 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1637 err = dbg_check_ltab_lnum(c, lnum);
1638 if (err) {
1639 dbg_err("failed at LEB %d", lnum);
1640 return err;
1641 }
1642 }
1643
1644 dbg_lp("succeeded");
1645 return 0;
1646}
1647
1648#endif /* CONFIG_UBIFS_FS_DEBUG */