diff options
author | Artem Bityutskiy <Artem.Bityutskiy@nokia.com> | 2008-07-14 12:08:37 -0400 |
---|---|---|
committer | Artem Bityutskiy <Artem.Bityutskiy@nokia.com> | 2008-07-15 10:35:15 -0400 |
commit | 1e51764a3c2ac05a23a22b2a95ddee4d9bffb16d (patch) | |
tree | 919debdd48aef9eee9ff0e8f465ef2649325b993 /fs/ubifs/debug.c | |
parent | e56a99d5a42dcb91e622ae7a0289d8fb2ddabffb (diff) |
UBIFS: add new flash file system
This is a new flash file system. See
http://www.linux-mtd.infradead.org/doc/ubifs.html
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
Diffstat (limited to 'fs/ubifs/debug.c')
-rw-r--r-- | fs/ubifs/debug.c | 2289 |
1 files changed, 2289 insertions, 0 deletions
diff --git a/fs/ubifs/debug.c b/fs/ubifs/debug.c new file mode 100644 index 000000000000..4e3aaeba4eca --- /dev/null +++ b/fs/ubifs/debug.c | |||
@@ -0,0 +1,2289 @@ | |||
1 | /* | ||
2 | * This file is part of UBIFS. | ||
3 | * | ||
4 | * Copyright (C) 2006-2008 Nokia Corporation | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify it | ||
7 | * under the terms of the GNU General Public License version 2 as published by | ||
8 | * the Free Software Foundation. | ||
9 | * | ||
10 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | * more details. | ||
14 | * | ||
15 | * You should have received a copy of the GNU General Public License along with | ||
16 | * this program; if not, write to the Free Software Foundation, Inc., 51 | ||
17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | ||
18 | * | ||
19 | * Authors: Artem Bityutskiy (Битюцкий Артём) | ||
20 | * Adrian Hunter | ||
21 | */ | ||
22 | |||
23 | /* | ||
24 | * This file implements most of the debugging stuff which is compiled in only | ||
25 | * when it is enabled. But some debugging check functions are implemented in | ||
26 | * corresponding subsystem, just because they are closely related and utilize | ||
27 | * various local functions of those subsystems. | ||
28 | */ | ||
29 | |||
30 | #define UBIFS_DBG_PRESERVE_UBI | ||
31 | |||
32 | #include "ubifs.h" | ||
33 | #include <linux/module.h> | ||
34 | #include <linux/moduleparam.h> | ||
35 | |||
36 | #ifdef CONFIG_UBIFS_FS_DEBUG | ||
37 | |||
38 | DEFINE_SPINLOCK(dbg_lock); | ||
39 | |||
40 | static char dbg_key_buf0[128]; | ||
41 | static char dbg_key_buf1[128]; | ||
42 | |||
43 | unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; | ||
44 | unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; | ||
45 | unsigned int ubifs_tst_flags; | ||
46 | |||
47 | module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); | ||
48 | module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); | ||
49 | module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); | ||
50 | |||
51 | MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); | ||
52 | MODULE_PARM_DESC(debug_chks, "Debug check flags"); | ||
53 | MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); | ||
54 | |||
55 | static const char *get_key_fmt(int fmt) | ||
56 | { | ||
57 | switch (fmt) { | ||
58 | case UBIFS_SIMPLE_KEY_FMT: | ||
59 | return "simple"; | ||
60 | default: | ||
61 | return "unknown/invalid format"; | ||
62 | } | ||
63 | } | ||
64 | |||
65 | static const char *get_key_hash(int hash) | ||
66 | { | ||
67 | switch (hash) { | ||
68 | case UBIFS_KEY_HASH_R5: | ||
69 | return "R5"; | ||
70 | case UBIFS_KEY_HASH_TEST: | ||
71 | return "test"; | ||
72 | default: | ||
73 | return "unknown/invalid name hash"; | ||
74 | } | ||
75 | } | ||
76 | |||
77 | static const char *get_key_type(int type) | ||
78 | { | ||
79 | switch (type) { | ||
80 | case UBIFS_INO_KEY: | ||
81 | return "inode"; | ||
82 | case UBIFS_DENT_KEY: | ||
83 | return "direntry"; | ||
84 | case UBIFS_XENT_KEY: | ||
85 | return "xentry"; | ||
86 | case UBIFS_DATA_KEY: | ||
87 | return "data"; | ||
88 | case UBIFS_TRUN_KEY: | ||
89 | return "truncate"; | ||
90 | default: | ||
91 | return "unknown/invalid key"; | ||
92 | } | ||
93 | } | ||
94 | |||
95 | static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, | ||
96 | char *buffer) | ||
97 | { | ||
98 | char *p = buffer; | ||
99 | int type = key_type(c, key); | ||
100 | |||
101 | if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { | ||
102 | switch (type) { | ||
103 | case UBIFS_INO_KEY: | ||
104 | sprintf(p, "(%lu, %s)", key_inum(c, key), | ||
105 | get_key_type(type)); | ||
106 | break; | ||
107 | case UBIFS_DENT_KEY: | ||
108 | case UBIFS_XENT_KEY: | ||
109 | sprintf(p, "(%lu, %s, %#08x)", key_inum(c, key), | ||
110 | get_key_type(type), key_hash(c, key)); | ||
111 | break; | ||
112 | case UBIFS_DATA_KEY: | ||
113 | sprintf(p, "(%lu, %s, %u)", key_inum(c, key), | ||
114 | get_key_type(type), key_block(c, key)); | ||
115 | break; | ||
116 | case UBIFS_TRUN_KEY: | ||
117 | sprintf(p, "(%lu, %s)", | ||
118 | key_inum(c, key), get_key_type(type)); | ||
119 | break; | ||
120 | default: | ||
121 | sprintf(p, "(bad key type: %#08x, %#08x)", | ||
122 | key->u32[0], key->u32[1]); | ||
123 | } | ||
124 | } else | ||
125 | sprintf(p, "bad key format %d", c->key_fmt); | ||
126 | } | ||
127 | |||
128 | const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) | ||
129 | { | ||
130 | /* dbg_lock must be held */ | ||
131 | sprintf_key(c, key, dbg_key_buf0); | ||
132 | return dbg_key_buf0; | ||
133 | } | ||
134 | |||
135 | const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) | ||
136 | { | ||
137 | /* dbg_lock must be held */ | ||
138 | sprintf_key(c, key, dbg_key_buf1); | ||
139 | return dbg_key_buf1; | ||
140 | } | ||
141 | |||
142 | const char *dbg_ntype(int type) | ||
143 | { | ||
144 | switch (type) { | ||
145 | case UBIFS_PAD_NODE: | ||
146 | return "padding node"; | ||
147 | case UBIFS_SB_NODE: | ||
148 | return "superblock node"; | ||
149 | case UBIFS_MST_NODE: | ||
150 | return "master node"; | ||
151 | case UBIFS_REF_NODE: | ||
152 | return "reference node"; | ||
153 | case UBIFS_INO_NODE: | ||
154 | return "inode node"; | ||
155 | case UBIFS_DENT_NODE: | ||
156 | return "direntry node"; | ||
157 | case UBIFS_XENT_NODE: | ||
158 | return "xentry node"; | ||
159 | case UBIFS_DATA_NODE: | ||
160 | return "data node"; | ||
161 | case UBIFS_TRUN_NODE: | ||
162 | return "truncate node"; | ||
163 | case UBIFS_IDX_NODE: | ||
164 | return "indexing node"; | ||
165 | case UBIFS_CS_NODE: | ||
166 | return "commit start node"; | ||
167 | case UBIFS_ORPH_NODE: | ||
168 | return "orphan node"; | ||
169 | default: | ||
170 | return "unknown node"; | ||
171 | } | ||
172 | } | ||
173 | |||
174 | static const char *dbg_gtype(int type) | ||
175 | { | ||
176 | switch (type) { | ||
177 | case UBIFS_NO_NODE_GROUP: | ||
178 | return "no node group"; | ||
179 | case UBIFS_IN_NODE_GROUP: | ||
180 | return "in node group"; | ||
181 | case UBIFS_LAST_OF_NODE_GROUP: | ||
182 | return "last of node group"; | ||
183 | default: | ||
184 | return "unknown"; | ||
185 | } | ||
186 | } | ||
187 | |||
188 | const char *dbg_cstate(int cmt_state) | ||
189 | { | ||
190 | switch (cmt_state) { | ||
191 | case COMMIT_RESTING: | ||
192 | return "commit resting"; | ||
193 | case COMMIT_BACKGROUND: | ||
194 | return "background commit requested"; | ||
195 | case COMMIT_REQUIRED: | ||
196 | return "commit required"; | ||
197 | case COMMIT_RUNNING_BACKGROUND: | ||
198 | return "BACKGROUND commit running"; | ||
199 | case COMMIT_RUNNING_REQUIRED: | ||
200 | return "commit running and required"; | ||
201 | case COMMIT_BROKEN: | ||
202 | return "broken commit"; | ||
203 | default: | ||
204 | return "unknown commit state"; | ||
205 | } | ||
206 | } | ||
207 | |||
208 | static void dump_ch(const struct ubifs_ch *ch) | ||
209 | { | ||
210 | printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); | ||
211 | printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); | ||
212 | printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, | ||
213 | dbg_ntype(ch->node_type)); | ||
214 | printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, | ||
215 | dbg_gtype(ch->group_type)); | ||
216 | printk(KERN_DEBUG "\tsqnum %llu\n", | ||
217 | (unsigned long long)le64_to_cpu(ch->sqnum)); | ||
218 | printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); | ||
219 | } | ||
220 | |||
221 | void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) | ||
222 | { | ||
223 | const struct ubifs_inode *ui = ubifs_inode(inode); | ||
224 | |||
225 | printk(KERN_DEBUG "inode %lu\n", inode->i_ino); | ||
226 | printk(KERN_DEBUG "size %llu\n", | ||
227 | (unsigned long long)i_size_read(inode)); | ||
228 | printk(KERN_DEBUG "nlink %u\n", inode->i_nlink); | ||
229 | printk(KERN_DEBUG "uid %u\n", (unsigned int)inode->i_uid); | ||
230 | printk(KERN_DEBUG "gid %u\n", (unsigned int)inode->i_gid); | ||
231 | printk(KERN_DEBUG "atime %u.%u\n", | ||
232 | (unsigned int)inode->i_atime.tv_sec, | ||
233 | (unsigned int)inode->i_atime.tv_nsec); | ||
234 | printk(KERN_DEBUG "mtime %u.%u\n", | ||
235 | (unsigned int)inode->i_mtime.tv_sec, | ||
236 | (unsigned int)inode->i_mtime.tv_nsec); | ||
237 | printk(KERN_DEBUG "ctime %u.%u\n", | ||
238 | (unsigned int)inode->i_ctime.tv_sec, | ||
239 | (unsigned int)inode->i_ctime.tv_nsec); | ||
240 | printk(KERN_DEBUG "creat_sqnum %llu\n", ui->creat_sqnum); | ||
241 | printk(KERN_DEBUG "xattr_size %u\n", ui->xattr_size); | ||
242 | printk(KERN_DEBUG "xattr_cnt %u\n", ui->xattr_cnt); | ||
243 | printk(KERN_DEBUG "xattr_names %u\n", ui->xattr_names); | ||
244 | printk(KERN_DEBUG "dirty %u\n", ui->dirty); | ||
245 | printk(KERN_DEBUG "xattr %u\n", ui->xattr); | ||
246 | printk(KERN_DEBUG "flags %d\n", ui->flags); | ||
247 | printk(KERN_DEBUG "compr_type %d\n", ui->compr_type); | ||
248 | printk(KERN_DEBUG "data_len %d\n", ui->data_len); | ||
249 | } | ||
250 | |||
251 | void dbg_dump_node(const struct ubifs_info *c, const void *node) | ||
252 | { | ||
253 | int i, n; | ||
254 | union ubifs_key key; | ||
255 | const struct ubifs_ch *ch = node; | ||
256 | |||
257 | if (dbg_failure_mode) | ||
258 | return; | ||
259 | |||
260 | /* If the magic is incorrect, just hexdump the first bytes */ | ||
261 | if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { | ||
262 | printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); | ||
263 | print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, | ||
264 | (void *)node, UBIFS_CH_SZ, 1); | ||
265 | return; | ||
266 | } | ||
267 | |||
268 | spin_lock(&dbg_lock); | ||
269 | dump_ch(node); | ||
270 | |||
271 | switch (ch->node_type) { | ||
272 | case UBIFS_PAD_NODE: | ||
273 | { | ||
274 | const struct ubifs_pad_node *pad = node; | ||
275 | |||
276 | printk(KERN_DEBUG "\tpad_len %u\n", | ||
277 | le32_to_cpu(pad->pad_len)); | ||
278 | break; | ||
279 | } | ||
280 | case UBIFS_SB_NODE: | ||
281 | { | ||
282 | const struct ubifs_sb_node *sup = node; | ||
283 | unsigned int sup_flags = le32_to_cpu(sup->flags); | ||
284 | |||
285 | printk(KERN_DEBUG "\tkey_hash %d (%s)\n", | ||
286 | (int)sup->key_hash, get_key_hash(sup->key_hash)); | ||
287 | printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", | ||
288 | (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); | ||
289 | printk(KERN_DEBUG "\tflags %#x\n", sup_flags); | ||
290 | printk(KERN_DEBUG "\t big_lpt %u\n", | ||
291 | !!(sup_flags & UBIFS_FLG_BIGLPT)); | ||
292 | printk(KERN_DEBUG "\tmin_io_size %u\n", | ||
293 | le32_to_cpu(sup->min_io_size)); | ||
294 | printk(KERN_DEBUG "\tleb_size %u\n", | ||
295 | le32_to_cpu(sup->leb_size)); | ||
296 | printk(KERN_DEBUG "\tleb_cnt %u\n", | ||
297 | le32_to_cpu(sup->leb_cnt)); | ||
298 | printk(KERN_DEBUG "\tmax_leb_cnt %u\n", | ||
299 | le32_to_cpu(sup->max_leb_cnt)); | ||
300 | printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", | ||
301 | (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); | ||
302 | printk(KERN_DEBUG "\tlog_lebs %u\n", | ||
303 | le32_to_cpu(sup->log_lebs)); | ||
304 | printk(KERN_DEBUG "\tlpt_lebs %u\n", | ||
305 | le32_to_cpu(sup->lpt_lebs)); | ||
306 | printk(KERN_DEBUG "\torph_lebs %u\n", | ||
307 | le32_to_cpu(sup->orph_lebs)); | ||
308 | printk(KERN_DEBUG "\tjhead_cnt %u\n", | ||
309 | le32_to_cpu(sup->jhead_cnt)); | ||
310 | printk(KERN_DEBUG "\tfanout %u\n", | ||
311 | le32_to_cpu(sup->fanout)); | ||
312 | printk(KERN_DEBUG "\tlsave_cnt %u\n", | ||
313 | le32_to_cpu(sup->lsave_cnt)); | ||
314 | printk(KERN_DEBUG "\tdefault_compr %u\n", | ||
315 | (int)le16_to_cpu(sup->default_compr)); | ||
316 | printk(KERN_DEBUG "\trp_size %llu\n", | ||
317 | (unsigned long long)le64_to_cpu(sup->rp_size)); | ||
318 | printk(KERN_DEBUG "\trp_uid %u\n", | ||
319 | le32_to_cpu(sup->rp_uid)); | ||
320 | printk(KERN_DEBUG "\trp_gid %u\n", | ||
321 | le32_to_cpu(sup->rp_gid)); | ||
322 | printk(KERN_DEBUG "\tfmt_version %u\n", | ||
323 | le32_to_cpu(sup->fmt_version)); | ||
324 | printk(KERN_DEBUG "\ttime_gran %u\n", | ||
325 | le32_to_cpu(sup->time_gran)); | ||
326 | printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X" | ||
327 | "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n", | ||
328 | sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3], | ||
329 | sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7], | ||
330 | sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11], | ||
331 | sup->uuid[12], sup->uuid[13], sup->uuid[14], | ||
332 | sup->uuid[15]); | ||
333 | break; | ||
334 | } | ||
335 | case UBIFS_MST_NODE: | ||
336 | { | ||
337 | const struct ubifs_mst_node *mst = node; | ||
338 | |||
339 | printk(KERN_DEBUG "\thighest_inum %llu\n", | ||
340 | (unsigned long long)le64_to_cpu(mst->highest_inum)); | ||
341 | printk(KERN_DEBUG "\tcommit number %llu\n", | ||
342 | (unsigned long long)le64_to_cpu(mst->cmt_no)); | ||
343 | printk(KERN_DEBUG "\tflags %#x\n", | ||
344 | le32_to_cpu(mst->flags)); | ||
345 | printk(KERN_DEBUG "\tlog_lnum %u\n", | ||
346 | le32_to_cpu(mst->log_lnum)); | ||
347 | printk(KERN_DEBUG "\troot_lnum %u\n", | ||
348 | le32_to_cpu(mst->root_lnum)); | ||
349 | printk(KERN_DEBUG "\troot_offs %u\n", | ||
350 | le32_to_cpu(mst->root_offs)); | ||
351 | printk(KERN_DEBUG "\troot_len %u\n", | ||
352 | le32_to_cpu(mst->root_len)); | ||
353 | printk(KERN_DEBUG "\tgc_lnum %u\n", | ||
354 | le32_to_cpu(mst->gc_lnum)); | ||
355 | printk(KERN_DEBUG "\tihead_lnum %u\n", | ||
356 | le32_to_cpu(mst->ihead_lnum)); | ||
357 | printk(KERN_DEBUG "\tihead_offs %u\n", | ||
358 | le32_to_cpu(mst->ihead_offs)); | ||
359 | printk(KERN_DEBUG "\tindex_size %u\n", | ||
360 | le32_to_cpu(mst->index_size)); | ||
361 | printk(KERN_DEBUG "\tlpt_lnum %u\n", | ||
362 | le32_to_cpu(mst->lpt_lnum)); | ||
363 | printk(KERN_DEBUG "\tlpt_offs %u\n", | ||
364 | le32_to_cpu(mst->lpt_offs)); | ||
365 | printk(KERN_DEBUG "\tnhead_lnum %u\n", | ||
366 | le32_to_cpu(mst->nhead_lnum)); | ||
367 | printk(KERN_DEBUG "\tnhead_offs %u\n", | ||
368 | le32_to_cpu(mst->nhead_offs)); | ||
369 | printk(KERN_DEBUG "\tltab_lnum %u\n", | ||
370 | le32_to_cpu(mst->ltab_lnum)); | ||
371 | printk(KERN_DEBUG "\tltab_offs %u\n", | ||
372 | le32_to_cpu(mst->ltab_offs)); | ||
373 | printk(KERN_DEBUG "\tlsave_lnum %u\n", | ||
374 | le32_to_cpu(mst->lsave_lnum)); | ||
375 | printk(KERN_DEBUG "\tlsave_offs %u\n", | ||
376 | le32_to_cpu(mst->lsave_offs)); | ||
377 | printk(KERN_DEBUG "\tlscan_lnum %u\n", | ||
378 | le32_to_cpu(mst->lscan_lnum)); | ||
379 | printk(KERN_DEBUG "\tleb_cnt %u\n", | ||
380 | le32_to_cpu(mst->leb_cnt)); | ||
381 | printk(KERN_DEBUG "\tempty_lebs %u\n", | ||
382 | le32_to_cpu(mst->empty_lebs)); | ||
383 | printk(KERN_DEBUG "\tidx_lebs %u\n", | ||
384 | le32_to_cpu(mst->idx_lebs)); | ||
385 | printk(KERN_DEBUG "\ttotal_free %llu\n", | ||
386 | (unsigned long long)le64_to_cpu(mst->total_free)); | ||
387 | printk(KERN_DEBUG "\ttotal_dirty %llu\n", | ||
388 | (unsigned long long)le64_to_cpu(mst->total_dirty)); | ||
389 | printk(KERN_DEBUG "\ttotal_used %llu\n", | ||
390 | (unsigned long long)le64_to_cpu(mst->total_used)); | ||
391 | printk(KERN_DEBUG "\ttotal_dead %llu\n", | ||
392 | (unsigned long long)le64_to_cpu(mst->total_dead)); | ||
393 | printk(KERN_DEBUG "\ttotal_dark %llu\n", | ||
394 | (unsigned long long)le64_to_cpu(mst->total_dark)); | ||
395 | break; | ||
396 | } | ||
397 | case UBIFS_REF_NODE: | ||
398 | { | ||
399 | const struct ubifs_ref_node *ref = node; | ||
400 | |||
401 | printk(KERN_DEBUG "\tlnum %u\n", | ||
402 | le32_to_cpu(ref->lnum)); | ||
403 | printk(KERN_DEBUG "\toffs %u\n", | ||
404 | le32_to_cpu(ref->offs)); | ||
405 | printk(KERN_DEBUG "\tjhead %u\n", | ||
406 | le32_to_cpu(ref->jhead)); | ||
407 | break; | ||
408 | } | ||
409 | case UBIFS_INO_NODE: | ||
410 | { | ||
411 | const struct ubifs_ino_node *ino = node; | ||
412 | |||
413 | key_read(c, &ino->key, &key); | ||
414 | printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); | ||
415 | printk(KERN_DEBUG "\tcreat_sqnum %llu\n", | ||
416 | (unsigned long long)le64_to_cpu(ino->creat_sqnum)); | ||
417 | printk(KERN_DEBUG "\tsize %llu\n", | ||
418 | (unsigned long long)le64_to_cpu(ino->size)); | ||
419 | printk(KERN_DEBUG "\tnlink %u\n", | ||
420 | le32_to_cpu(ino->nlink)); | ||
421 | printk(KERN_DEBUG "\tatime %lld.%u\n", | ||
422 | (long long)le64_to_cpu(ino->atime_sec), | ||
423 | le32_to_cpu(ino->atime_nsec)); | ||
424 | printk(KERN_DEBUG "\tmtime %lld.%u\n", | ||
425 | (long long)le64_to_cpu(ino->mtime_sec), | ||
426 | le32_to_cpu(ino->mtime_nsec)); | ||
427 | printk(KERN_DEBUG "\tctime %lld.%u\n", | ||
428 | (long long)le64_to_cpu(ino->ctime_sec), | ||
429 | le32_to_cpu(ino->ctime_nsec)); | ||
430 | printk(KERN_DEBUG "\tuid %u\n", | ||
431 | le32_to_cpu(ino->uid)); | ||
432 | printk(KERN_DEBUG "\tgid %u\n", | ||
433 | le32_to_cpu(ino->gid)); | ||
434 | printk(KERN_DEBUG "\tmode %u\n", | ||
435 | le32_to_cpu(ino->mode)); | ||
436 | printk(KERN_DEBUG "\tflags %#x\n", | ||
437 | le32_to_cpu(ino->flags)); | ||
438 | printk(KERN_DEBUG "\txattr_cnt %u\n", | ||
439 | le32_to_cpu(ino->xattr_cnt)); | ||
440 | printk(KERN_DEBUG "\txattr_size %u\n", | ||
441 | le32_to_cpu(ino->xattr_size)); | ||
442 | printk(KERN_DEBUG "\txattr_names %u\n", | ||
443 | le32_to_cpu(ino->xattr_names)); | ||
444 | printk(KERN_DEBUG "\tcompr_type %#x\n", | ||
445 | (int)le16_to_cpu(ino->compr_type)); | ||
446 | printk(KERN_DEBUG "\tdata len %u\n", | ||
447 | le32_to_cpu(ino->data_len)); | ||
448 | break; | ||
449 | } | ||
450 | case UBIFS_DENT_NODE: | ||
451 | case UBIFS_XENT_NODE: | ||
452 | { | ||
453 | const struct ubifs_dent_node *dent = node; | ||
454 | int nlen = le16_to_cpu(dent->nlen); | ||
455 | |||
456 | key_read(c, &dent->key, &key); | ||
457 | printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); | ||
458 | printk(KERN_DEBUG "\tinum %llu\n", | ||
459 | (unsigned long long)le64_to_cpu(dent->inum)); | ||
460 | printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); | ||
461 | printk(KERN_DEBUG "\tnlen %d\n", nlen); | ||
462 | printk(KERN_DEBUG "\tname "); | ||
463 | |||
464 | if (nlen > UBIFS_MAX_NLEN) | ||
465 | printk(KERN_DEBUG "(bad name length, not printing, " | ||
466 | "bad or corrupted node)"); | ||
467 | else { | ||
468 | for (i = 0; i < nlen && dent->name[i]; i++) | ||
469 | printk("%c", dent->name[i]); | ||
470 | } | ||
471 | printk("\n"); | ||
472 | |||
473 | break; | ||
474 | } | ||
475 | case UBIFS_DATA_NODE: | ||
476 | { | ||
477 | const struct ubifs_data_node *dn = node; | ||
478 | int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; | ||
479 | |||
480 | key_read(c, &dn->key, &key); | ||
481 | printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); | ||
482 | printk(KERN_DEBUG "\tsize %u\n", | ||
483 | le32_to_cpu(dn->size)); | ||
484 | printk(KERN_DEBUG "\tcompr_typ %d\n", | ||
485 | (int)le16_to_cpu(dn->compr_type)); | ||
486 | printk(KERN_DEBUG "\tdata size %d\n", | ||
487 | dlen); | ||
488 | printk(KERN_DEBUG "\tdata:\n"); | ||
489 | print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, | ||
490 | (void *)&dn->data, dlen, 0); | ||
491 | break; | ||
492 | } | ||
493 | case UBIFS_TRUN_NODE: | ||
494 | { | ||
495 | const struct ubifs_trun_node *trun = node; | ||
496 | |||
497 | printk(KERN_DEBUG "\tinum %u\n", | ||
498 | le32_to_cpu(trun->inum)); | ||
499 | printk(KERN_DEBUG "\told_size %llu\n", | ||
500 | (unsigned long long)le64_to_cpu(trun->old_size)); | ||
501 | printk(KERN_DEBUG "\tnew_size %llu\n", | ||
502 | (unsigned long long)le64_to_cpu(trun->new_size)); | ||
503 | break; | ||
504 | } | ||
505 | case UBIFS_IDX_NODE: | ||
506 | { | ||
507 | const struct ubifs_idx_node *idx = node; | ||
508 | |||
509 | n = le16_to_cpu(idx->child_cnt); | ||
510 | printk(KERN_DEBUG "\tchild_cnt %d\n", n); | ||
511 | printk(KERN_DEBUG "\tlevel %d\n", | ||
512 | (int)le16_to_cpu(idx->level)); | ||
513 | printk(KERN_DEBUG "\tBranches:\n"); | ||
514 | |||
515 | for (i = 0; i < n && i < c->fanout - 1; i++) { | ||
516 | const struct ubifs_branch *br; | ||
517 | |||
518 | br = ubifs_idx_branch(c, idx, i); | ||
519 | key_read(c, &br->key, &key); | ||
520 | printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", | ||
521 | i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), | ||
522 | le32_to_cpu(br->len), DBGKEY(&key)); | ||
523 | } | ||
524 | break; | ||
525 | } | ||
526 | case UBIFS_CS_NODE: | ||
527 | break; | ||
528 | case UBIFS_ORPH_NODE: | ||
529 | { | ||
530 | const struct ubifs_orph_node *orph = node; | ||
531 | |||
532 | printk(KERN_DEBUG "\tcommit number %llu\n", | ||
533 | (unsigned long long) | ||
534 | le64_to_cpu(orph->cmt_no) & LLONG_MAX); | ||
535 | printk(KERN_DEBUG "\tlast node flag %llu\n", | ||
536 | (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); | ||
537 | n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; | ||
538 | printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); | ||
539 | for (i = 0; i < n; i++) | ||
540 | printk(KERN_DEBUG "\t ino %llu\n", | ||
541 | le64_to_cpu(orph->inos[i])); | ||
542 | break; | ||
543 | } | ||
544 | default: | ||
545 | printk(KERN_DEBUG "node type %d was not recognized\n", | ||
546 | (int)ch->node_type); | ||
547 | } | ||
548 | spin_unlock(&dbg_lock); | ||
549 | } | ||
550 | |||
551 | void dbg_dump_budget_req(const struct ubifs_budget_req *req) | ||
552 | { | ||
553 | spin_lock(&dbg_lock); | ||
554 | printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", | ||
555 | req->new_ino, req->dirtied_ino); | ||
556 | printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", | ||
557 | req->new_ino_d, req->dirtied_ino_d); | ||
558 | printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", | ||
559 | req->new_page, req->dirtied_page); | ||
560 | printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", | ||
561 | req->new_dent, req->mod_dent); | ||
562 | printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); | ||
563 | printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", | ||
564 | req->data_growth, req->dd_growth); | ||
565 | spin_unlock(&dbg_lock); | ||
566 | } | ||
567 | |||
568 | void dbg_dump_lstats(const struct ubifs_lp_stats *lst) | ||
569 | { | ||
570 | spin_lock(&dbg_lock); | ||
571 | printk(KERN_DEBUG "Lprops statistics: empty_lebs %d, idx_lebs %d\n", | ||
572 | lst->empty_lebs, lst->idx_lebs); | ||
573 | printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " | ||
574 | "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, | ||
575 | lst->total_dirty); | ||
576 | printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " | ||
577 | "total_dead %lld\n", lst->total_used, lst->total_dark, | ||
578 | lst->total_dead); | ||
579 | spin_unlock(&dbg_lock); | ||
580 | } | ||
581 | |||
582 | void dbg_dump_budg(struct ubifs_info *c) | ||
583 | { | ||
584 | int i; | ||
585 | struct rb_node *rb; | ||
586 | struct ubifs_bud *bud; | ||
587 | struct ubifs_gced_idx_leb *idx_gc; | ||
588 | |||
589 | spin_lock(&dbg_lock); | ||
590 | printk(KERN_DEBUG "Budgeting info: budg_data_growth %lld, " | ||
591 | "budg_dd_growth %lld, budg_idx_growth %lld\n", | ||
592 | c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); | ||
593 | printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " | ||
594 | "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, | ||
595 | c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, | ||
596 | c->freeable_cnt); | ||
597 | printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " | ||
598 | "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, | ||
599 | c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); | ||
600 | printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " | ||
601 | "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), | ||
602 | atomic_long_read(&c->dirty_zn_cnt), | ||
603 | atomic_long_read(&c->clean_zn_cnt)); | ||
604 | printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", | ||
605 | c->dark_wm, c->dead_wm, c->max_idx_node_sz); | ||
606 | printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", | ||
607 | c->gc_lnum, c->ihead_lnum); | ||
608 | for (i = 0; i < c->jhead_cnt; i++) | ||
609 | printk(KERN_DEBUG "\tjhead %d\t LEB %d\n", | ||
610 | c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum); | ||
611 | for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { | ||
612 | bud = rb_entry(rb, struct ubifs_bud, rb); | ||
613 | printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); | ||
614 | } | ||
615 | list_for_each_entry(bud, &c->old_buds, list) | ||
616 | printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); | ||
617 | list_for_each_entry(idx_gc, &c->idx_gc, list) | ||
618 | printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", | ||
619 | idx_gc->lnum, idx_gc->unmap); | ||
620 | printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); | ||
621 | spin_unlock(&dbg_lock); | ||
622 | } | ||
623 | |||
624 | void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) | ||
625 | { | ||
626 | printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), " | ||
627 | "flags %#x\n", lp->lnum, lp->free, lp->dirty, | ||
628 | c->leb_size - lp->free - lp->dirty, lp->flags); | ||
629 | } | ||
630 | |||
631 | void dbg_dump_lprops(struct ubifs_info *c) | ||
632 | { | ||
633 | int lnum, err; | ||
634 | struct ubifs_lprops lp; | ||
635 | struct ubifs_lp_stats lst; | ||
636 | |||
637 | printk(KERN_DEBUG "Dumping LEB properties\n"); | ||
638 | ubifs_get_lp_stats(c, &lst); | ||
639 | dbg_dump_lstats(&lst); | ||
640 | |||
641 | for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { | ||
642 | err = ubifs_read_one_lp(c, lnum, &lp); | ||
643 | if (err) | ||
644 | ubifs_err("cannot read lprops for LEB %d", lnum); | ||
645 | |||
646 | dbg_dump_lprop(c, &lp); | ||
647 | } | ||
648 | } | ||
649 | |||
650 | void dbg_dump_leb(const struct ubifs_info *c, int lnum) | ||
651 | { | ||
652 | struct ubifs_scan_leb *sleb; | ||
653 | struct ubifs_scan_node *snod; | ||
654 | |||
655 | if (dbg_failure_mode) | ||
656 | return; | ||
657 | |||
658 | printk(KERN_DEBUG "Dumping LEB %d\n", lnum); | ||
659 | |||
660 | sleb = ubifs_scan(c, lnum, 0, c->dbg_buf); | ||
661 | if (IS_ERR(sleb)) { | ||
662 | ubifs_err("scan error %d", (int)PTR_ERR(sleb)); | ||
663 | return; | ||
664 | } | ||
665 | |||
666 | printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, | ||
667 | sleb->nodes_cnt, sleb->endpt); | ||
668 | |||
669 | list_for_each_entry(snod, &sleb->nodes, list) { | ||
670 | cond_resched(); | ||
671 | printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, | ||
672 | snod->offs, snod->len); | ||
673 | dbg_dump_node(c, snod->node); | ||
674 | } | ||
675 | |||
676 | ubifs_scan_destroy(sleb); | ||
677 | return; | ||
678 | } | ||
679 | |||
680 | void dbg_dump_znode(const struct ubifs_info *c, | ||
681 | const struct ubifs_znode *znode) | ||
682 | { | ||
683 | int n; | ||
684 | const struct ubifs_zbranch *zbr; | ||
685 | |||
686 | spin_lock(&dbg_lock); | ||
687 | if (znode->parent) | ||
688 | zbr = &znode->parent->zbranch[znode->iip]; | ||
689 | else | ||
690 | zbr = &c->zroot; | ||
691 | |||
692 | printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" | ||
693 | " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, | ||
694 | zbr->len, znode->parent, znode->iip, znode->level, | ||
695 | znode->child_cnt, znode->flags); | ||
696 | |||
697 | if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { | ||
698 | spin_unlock(&dbg_lock); | ||
699 | return; | ||
700 | } | ||
701 | |||
702 | printk(KERN_DEBUG "zbranches:\n"); | ||
703 | for (n = 0; n < znode->child_cnt; n++) { | ||
704 | zbr = &znode->zbranch[n]; | ||
705 | if (znode->level > 0) | ||
706 | printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " | ||
707 | "%s\n", n, zbr->znode, zbr->lnum, | ||
708 | zbr->offs, zbr->len, | ||
709 | DBGKEY(&zbr->key)); | ||
710 | else | ||
711 | printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " | ||
712 | "%s\n", n, zbr->znode, zbr->lnum, | ||
713 | zbr->offs, zbr->len, | ||
714 | DBGKEY(&zbr->key)); | ||
715 | } | ||
716 | spin_unlock(&dbg_lock); | ||
717 | } | ||
718 | |||
719 | void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) | ||
720 | { | ||
721 | int i; | ||
722 | |||
723 | printk(KERN_DEBUG "Dumping heap cat %d (%d elements)\n", | ||
724 | cat, heap->cnt); | ||
725 | for (i = 0; i < heap->cnt; i++) { | ||
726 | struct ubifs_lprops *lprops = heap->arr[i]; | ||
727 | |||
728 | printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " | ||
729 | "flags %d\n", i, lprops->lnum, lprops->hpos, | ||
730 | lprops->free, lprops->dirty, lprops->flags); | ||
731 | } | ||
732 | } | ||
733 | |||
734 | void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, | ||
735 | struct ubifs_nnode *parent, int iip) | ||
736 | { | ||
737 | int i; | ||
738 | |||
739 | printk(KERN_DEBUG "Dumping pnode:\n"); | ||
740 | printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", | ||
741 | (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); | ||
742 | printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", | ||
743 | pnode->flags, iip, pnode->level, pnode->num); | ||
744 | for (i = 0; i < UBIFS_LPT_FANOUT; i++) { | ||
745 | struct ubifs_lprops *lp = &pnode->lprops[i]; | ||
746 | |||
747 | printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", | ||
748 | i, lp->free, lp->dirty, lp->flags, lp->lnum); | ||
749 | } | ||
750 | } | ||
751 | |||
752 | void dbg_dump_tnc(struct ubifs_info *c) | ||
753 | { | ||
754 | struct ubifs_znode *znode; | ||
755 | int level; | ||
756 | |||
757 | printk(KERN_DEBUG "\n"); | ||
758 | printk(KERN_DEBUG "Dumping the TNC tree\n"); | ||
759 | znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); | ||
760 | level = znode->level; | ||
761 | printk(KERN_DEBUG "== Level %d ==\n", level); | ||
762 | while (znode) { | ||
763 | if (level != znode->level) { | ||
764 | level = znode->level; | ||
765 | printk(KERN_DEBUG "== Level %d ==\n", level); | ||
766 | } | ||
767 | dbg_dump_znode(c, znode); | ||
768 | znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); | ||
769 | } | ||
770 | |||
771 | printk(KERN_DEBUG "\n"); | ||
772 | } | ||
773 | |||
774 | static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, | ||
775 | void *priv) | ||
776 | { | ||
777 | dbg_dump_znode(c, znode); | ||
778 | return 0; | ||
779 | } | ||
780 | |||
781 | /** | ||
782 | * dbg_dump_index - dump the on-flash index. | ||
783 | * @c: UBIFS file-system description object | ||
784 | * | ||
785 | * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' | ||
786 | * which dumps only in-memory znodes and does not read znodes which from flash. | ||
787 | */ | ||
788 | void dbg_dump_index(struct ubifs_info *c) | ||
789 | { | ||
790 | dbg_walk_index(c, NULL, dump_znode, NULL); | ||
791 | } | ||
792 | |||
793 | /** | ||
794 | * dbg_check_synced_i_size - check synchronized inode size. | ||
795 | * @inode: inode to check | ||
796 | * | ||
797 | * If inode is clean, synchronized inode size has to be equivalent to current | ||
798 | * inode size. This function has to be called only for locked inodes (@i_mutex | ||
799 | * has to be locked). Returns %0 if synchronized inode size if correct, and | ||
800 | * %-EINVAL if not. | ||
801 | */ | ||
802 | int dbg_check_synced_i_size(struct inode *inode) | ||
803 | { | ||
804 | int err = 0; | ||
805 | struct ubifs_inode *ui = ubifs_inode(inode); | ||
806 | |||
807 | if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) | ||
808 | return 0; | ||
809 | if (!S_ISREG(inode->i_mode)) | ||
810 | return 0; | ||
811 | |||
812 | mutex_lock(&ui->ui_mutex); | ||
813 | spin_lock(&ui->ui_lock); | ||
814 | if (ui->ui_size != ui->synced_i_size && !ui->dirty) { | ||
815 | ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " | ||
816 | "is clean", ui->ui_size, ui->synced_i_size); | ||
817 | ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, | ||
818 | inode->i_mode, i_size_read(inode)); | ||
819 | dbg_dump_stack(); | ||
820 | err = -EINVAL; | ||
821 | } | ||
822 | spin_unlock(&ui->ui_lock); | ||
823 | mutex_unlock(&ui->ui_mutex); | ||
824 | return err; | ||
825 | } | ||
826 | |||
827 | /* | ||
828 | * dbg_check_dir - check directory inode size and link count. | ||
829 | * @c: UBIFS file-system description object | ||
830 | * @dir: the directory to calculate size for | ||
831 | * @size: the result is returned here | ||
832 | * | ||
833 | * This function makes sure that directory size and link count are correct. | ||
834 | * Returns zero in case of success and a negative error code in case of | ||
835 | * failure. | ||
836 | * | ||
837 | * Note, it is good idea to make sure the @dir->i_mutex is locked before | ||
838 | * calling this function. | ||
839 | */ | ||
840 | int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) | ||
841 | { | ||
842 | unsigned int nlink = 2; | ||
843 | union ubifs_key key; | ||
844 | struct ubifs_dent_node *dent, *pdent = NULL; | ||
845 | struct qstr nm = { .name = NULL }; | ||
846 | loff_t size = UBIFS_INO_NODE_SZ; | ||
847 | |||
848 | if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) | ||
849 | return 0; | ||
850 | |||
851 | if (!S_ISDIR(dir->i_mode)) | ||
852 | return 0; | ||
853 | |||
854 | lowest_dent_key(c, &key, dir->i_ino); | ||
855 | while (1) { | ||
856 | int err; | ||
857 | |||
858 | dent = ubifs_tnc_next_ent(c, &key, &nm); | ||
859 | if (IS_ERR(dent)) { | ||
860 | err = PTR_ERR(dent); | ||
861 | if (err == -ENOENT) | ||
862 | break; | ||
863 | return err; | ||
864 | } | ||
865 | |||
866 | nm.name = dent->name; | ||
867 | nm.len = le16_to_cpu(dent->nlen); | ||
868 | size += CALC_DENT_SIZE(nm.len); | ||
869 | if (dent->type == UBIFS_ITYPE_DIR) | ||
870 | nlink += 1; | ||
871 | kfree(pdent); | ||
872 | pdent = dent; | ||
873 | key_read(c, &dent->key, &key); | ||
874 | } | ||
875 | kfree(pdent); | ||
876 | |||
877 | if (i_size_read(dir) != size) { | ||
878 | ubifs_err("directory inode %lu has size %llu, " | ||
879 | "but calculated size is %llu", dir->i_ino, | ||
880 | (unsigned long long)i_size_read(dir), | ||
881 | (unsigned long long)size); | ||
882 | dump_stack(); | ||
883 | return -EINVAL; | ||
884 | } | ||
885 | if (dir->i_nlink != nlink) { | ||
886 | ubifs_err("directory inode %lu has nlink %u, but calculated " | ||
887 | "nlink is %u", dir->i_ino, dir->i_nlink, nlink); | ||
888 | dump_stack(); | ||
889 | return -EINVAL; | ||
890 | } | ||
891 | |||
892 | return 0; | ||
893 | } | ||
894 | |||
895 | /** | ||
896 | * dbg_check_key_order - make sure that colliding keys are properly ordered. | ||
897 | * @c: UBIFS file-system description object | ||
898 | * @zbr1: first zbranch | ||
899 | * @zbr2: following zbranch | ||
900 | * | ||
901 | * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of | ||
902 | * names of the direntries/xentries which are referred by the keys. This | ||
903 | * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes | ||
904 | * sure the name of direntry/xentry referred by @zbr1 is less than | ||
905 | * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, | ||
906 | * and a negative error code in case of failure. | ||
907 | */ | ||
908 | static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, | ||
909 | struct ubifs_zbranch *zbr2) | ||
910 | { | ||
911 | int err, nlen1, nlen2, cmp; | ||
912 | struct ubifs_dent_node *dent1, *dent2; | ||
913 | union ubifs_key key; | ||
914 | |||
915 | ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); | ||
916 | dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); | ||
917 | if (!dent1) | ||
918 | return -ENOMEM; | ||
919 | dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); | ||
920 | if (!dent2) { | ||
921 | err = -ENOMEM; | ||
922 | goto out_free; | ||
923 | } | ||
924 | |||
925 | err = ubifs_tnc_read_node(c, zbr1, dent1); | ||
926 | if (err) | ||
927 | goto out_free; | ||
928 | err = ubifs_validate_entry(c, dent1); | ||
929 | if (err) | ||
930 | goto out_free; | ||
931 | |||
932 | err = ubifs_tnc_read_node(c, zbr2, dent2); | ||
933 | if (err) | ||
934 | goto out_free; | ||
935 | err = ubifs_validate_entry(c, dent2); | ||
936 | if (err) | ||
937 | goto out_free; | ||
938 | |||
939 | /* Make sure node keys are the same as in zbranch */ | ||
940 | err = 1; | ||
941 | key_read(c, &dent1->key, &key); | ||
942 | if (keys_cmp(c, &zbr1->key, &key)) { | ||
943 | dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, | ||
944 | zbr1->offs, DBGKEY(&key)); | ||
945 | dbg_err("but it should have key %s according to tnc", | ||
946 | DBGKEY(&zbr1->key)); | ||
947 | dbg_dump_node(c, dent1); | ||
948 | goto out_free; | ||
949 | } | ||
950 | |||
951 | key_read(c, &dent2->key, &key); | ||
952 | if (keys_cmp(c, &zbr2->key, &key)) { | ||
953 | dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, | ||
954 | zbr1->offs, DBGKEY(&key)); | ||
955 | dbg_err("but it should have key %s according to tnc", | ||
956 | DBGKEY(&zbr2->key)); | ||
957 | dbg_dump_node(c, dent2); | ||
958 | goto out_free; | ||
959 | } | ||
960 | |||
961 | nlen1 = le16_to_cpu(dent1->nlen); | ||
962 | nlen2 = le16_to_cpu(dent2->nlen); | ||
963 | |||
964 | cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); | ||
965 | if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { | ||
966 | err = 0; | ||
967 | goto out_free; | ||
968 | } | ||
969 | if (cmp == 0 && nlen1 == nlen2) | ||
970 | dbg_err("2 xent/dent nodes with the same name"); | ||
971 | else | ||
972 | dbg_err("bad order of colliding key %s", | ||
973 | DBGKEY(&key)); | ||
974 | |||
975 | dbg_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); | ||
976 | dbg_dump_node(c, dent1); | ||
977 | dbg_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); | ||
978 | dbg_dump_node(c, dent2); | ||
979 | |||
980 | out_free: | ||
981 | kfree(dent2); | ||
982 | kfree(dent1); | ||
983 | return err; | ||
984 | } | ||
985 | |||
986 | /** | ||
987 | * dbg_check_znode - check if znode is all right. | ||
988 | * @c: UBIFS file-system description object | ||
989 | * @zbr: zbranch which points to this znode | ||
990 | * | ||
991 | * This function makes sure that znode referred to by @zbr is all right. | ||
992 | * Returns zero if it is, and %-EINVAL if it is not. | ||
993 | */ | ||
994 | static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) | ||
995 | { | ||
996 | struct ubifs_znode *znode = zbr->znode; | ||
997 | struct ubifs_znode *zp = znode->parent; | ||
998 | int n, err, cmp; | ||
999 | |||
1000 | if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { | ||
1001 | err = 1; | ||
1002 | goto out; | ||
1003 | } | ||
1004 | if (znode->level < 0) { | ||
1005 | err = 2; | ||
1006 | goto out; | ||
1007 | } | ||
1008 | if (znode->iip < 0 || znode->iip >= c->fanout) { | ||
1009 | err = 3; | ||
1010 | goto out; | ||
1011 | } | ||
1012 | |||
1013 | if (zbr->len == 0) | ||
1014 | /* Only dirty zbranch may have no on-flash nodes */ | ||
1015 | if (!ubifs_zn_dirty(znode)) { | ||
1016 | err = 4; | ||
1017 | goto out; | ||
1018 | } | ||
1019 | |||
1020 | if (ubifs_zn_dirty(znode)) { | ||
1021 | /* | ||
1022 | * If znode is dirty, its parent has to be dirty as well. The | ||
1023 | * order of the operation is important, so we have to have | ||
1024 | * memory barriers. | ||
1025 | */ | ||
1026 | smp_mb(); | ||
1027 | if (zp && !ubifs_zn_dirty(zp)) { | ||
1028 | /* | ||
1029 | * The dirty flag is atomic and is cleared outside the | ||
1030 | * TNC mutex, so znode's dirty flag may now have | ||
1031 | * been cleared. The child is always cleared before the | ||
1032 | * parent, so we just need to check again. | ||
1033 | */ | ||
1034 | smp_mb(); | ||
1035 | if (ubifs_zn_dirty(znode)) { | ||
1036 | err = 5; | ||
1037 | goto out; | ||
1038 | } | ||
1039 | } | ||
1040 | } | ||
1041 | |||
1042 | if (zp) { | ||
1043 | const union ubifs_key *min, *max; | ||
1044 | |||
1045 | if (znode->level != zp->level - 1) { | ||
1046 | err = 6; | ||
1047 | goto out; | ||
1048 | } | ||
1049 | |||
1050 | /* Make sure the 'parent' pointer in our znode is correct */ | ||
1051 | err = ubifs_search_zbranch(c, zp, &zbr->key, &n); | ||
1052 | if (!err) { | ||
1053 | /* This zbranch does not exist in the parent */ | ||
1054 | err = 7; | ||
1055 | goto out; | ||
1056 | } | ||
1057 | |||
1058 | if (znode->iip >= zp->child_cnt) { | ||
1059 | err = 8; | ||
1060 | goto out; | ||
1061 | } | ||
1062 | |||
1063 | if (znode->iip != n) { | ||
1064 | /* This may happen only in case of collisions */ | ||
1065 | if (keys_cmp(c, &zp->zbranch[n].key, | ||
1066 | &zp->zbranch[znode->iip].key)) { | ||
1067 | err = 9; | ||
1068 | goto out; | ||
1069 | } | ||
1070 | n = znode->iip; | ||
1071 | } | ||
1072 | |||
1073 | /* | ||
1074 | * Make sure that the first key in our znode is greater than or | ||
1075 | * equal to the key in the pointing zbranch. | ||
1076 | */ | ||
1077 | min = &zbr->key; | ||
1078 | cmp = keys_cmp(c, min, &znode->zbranch[0].key); | ||
1079 | if (cmp == 1) { | ||
1080 | err = 10; | ||
1081 | goto out; | ||
1082 | } | ||
1083 | |||
1084 | if (n + 1 < zp->child_cnt) { | ||
1085 | max = &zp->zbranch[n + 1].key; | ||
1086 | |||
1087 | /* | ||
1088 | * Make sure the last key in our znode is less or | ||
1089 | * equivalent than the the key in zbranch which goes | ||
1090 | * after our pointing zbranch. | ||
1091 | */ | ||
1092 | cmp = keys_cmp(c, max, | ||
1093 | &znode->zbranch[znode->child_cnt - 1].key); | ||
1094 | if (cmp == -1) { | ||
1095 | err = 11; | ||
1096 | goto out; | ||
1097 | } | ||
1098 | } | ||
1099 | } else { | ||
1100 | /* This may only be root znode */ | ||
1101 | if (zbr != &c->zroot) { | ||
1102 | err = 12; | ||
1103 | goto out; | ||
1104 | } | ||
1105 | } | ||
1106 | |||
1107 | /* | ||
1108 | * Make sure that next key is greater or equivalent then the previous | ||
1109 | * one. | ||
1110 | */ | ||
1111 | for (n = 1; n < znode->child_cnt; n++) { | ||
1112 | cmp = keys_cmp(c, &znode->zbranch[n - 1].key, | ||
1113 | &znode->zbranch[n].key); | ||
1114 | if (cmp > 0) { | ||
1115 | err = 13; | ||
1116 | goto out; | ||
1117 | } | ||
1118 | if (cmp == 0) { | ||
1119 | /* This can only be keys with colliding hash */ | ||
1120 | if (!is_hash_key(c, &znode->zbranch[n].key)) { | ||
1121 | err = 14; | ||
1122 | goto out; | ||
1123 | } | ||
1124 | |||
1125 | if (znode->level != 0 || c->replaying) | ||
1126 | continue; | ||
1127 | |||
1128 | /* | ||
1129 | * Colliding keys should follow binary order of | ||
1130 | * corresponding xentry/dentry names. | ||
1131 | */ | ||
1132 | err = dbg_check_key_order(c, &znode->zbranch[n - 1], | ||
1133 | &znode->zbranch[n]); | ||
1134 | if (err < 0) | ||
1135 | return err; | ||
1136 | if (err) { | ||
1137 | err = 15; | ||
1138 | goto out; | ||
1139 | } | ||
1140 | } | ||
1141 | } | ||
1142 | |||
1143 | for (n = 0; n < znode->child_cnt; n++) { | ||
1144 | if (!znode->zbranch[n].znode && | ||
1145 | (znode->zbranch[n].lnum == 0 || | ||
1146 | znode->zbranch[n].len == 0)) { | ||
1147 | err = 16; | ||
1148 | goto out; | ||
1149 | } | ||
1150 | |||
1151 | if (znode->zbranch[n].lnum != 0 && | ||
1152 | znode->zbranch[n].len == 0) { | ||
1153 | err = 17; | ||
1154 | goto out; | ||
1155 | } | ||
1156 | |||
1157 | if (znode->zbranch[n].lnum == 0 && | ||
1158 | znode->zbranch[n].len != 0) { | ||
1159 | err = 18; | ||
1160 | goto out; | ||
1161 | } | ||
1162 | |||
1163 | if (znode->zbranch[n].lnum == 0 && | ||
1164 | znode->zbranch[n].offs != 0) { | ||
1165 | err = 19; | ||
1166 | goto out; | ||
1167 | } | ||
1168 | |||
1169 | if (znode->level != 0 && znode->zbranch[n].znode) | ||
1170 | if (znode->zbranch[n].znode->parent != znode) { | ||
1171 | err = 20; | ||
1172 | goto out; | ||
1173 | } | ||
1174 | } | ||
1175 | |||
1176 | return 0; | ||
1177 | |||
1178 | out: | ||
1179 | ubifs_err("failed, error %d", err); | ||
1180 | ubifs_msg("dump of the znode"); | ||
1181 | dbg_dump_znode(c, znode); | ||
1182 | if (zp) { | ||
1183 | ubifs_msg("dump of the parent znode"); | ||
1184 | dbg_dump_znode(c, zp); | ||
1185 | } | ||
1186 | dump_stack(); | ||
1187 | return -EINVAL; | ||
1188 | } | ||
1189 | |||
1190 | /** | ||
1191 | * dbg_check_tnc - check TNC tree. | ||
1192 | * @c: UBIFS file-system description object | ||
1193 | * @extra: do extra checks that are possible at start commit | ||
1194 | * | ||
1195 | * This function traverses whole TNC tree and checks every znode. Returns zero | ||
1196 | * if everything is all right and %-EINVAL if something is wrong with TNC. | ||
1197 | */ | ||
1198 | int dbg_check_tnc(struct ubifs_info *c, int extra) | ||
1199 | { | ||
1200 | struct ubifs_znode *znode; | ||
1201 | long clean_cnt = 0, dirty_cnt = 0; | ||
1202 | int err, last; | ||
1203 | |||
1204 | if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) | ||
1205 | return 0; | ||
1206 | |||
1207 | ubifs_assert(mutex_is_locked(&c->tnc_mutex)); | ||
1208 | if (!c->zroot.znode) | ||
1209 | return 0; | ||
1210 | |||
1211 | znode = ubifs_tnc_postorder_first(c->zroot.znode); | ||
1212 | while (1) { | ||
1213 | struct ubifs_znode *prev; | ||
1214 | struct ubifs_zbranch *zbr; | ||
1215 | |||
1216 | if (!znode->parent) | ||
1217 | zbr = &c->zroot; | ||
1218 | else | ||
1219 | zbr = &znode->parent->zbranch[znode->iip]; | ||
1220 | |||
1221 | err = dbg_check_znode(c, zbr); | ||
1222 | if (err) | ||
1223 | return err; | ||
1224 | |||
1225 | if (extra) { | ||
1226 | if (ubifs_zn_dirty(znode)) | ||
1227 | dirty_cnt += 1; | ||
1228 | else | ||
1229 | clean_cnt += 1; | ||
1230 | } | ||
1231 | |||
1232 | prev = znode; | ||
1233 | znode = ubifs_tnc_postorder_next(znode); | ||
1234 | if (!znode) | ||
1235 | break; | ||
1236 | |||
1237 | /* | ||
1238 | * If the last key of this znode is equivalent to the first key | ||
1239 | * of the next znode (collision), then check order of the keys. | ||
1240 | */ | ||
1241 | last = prev->child_cnt - 1; | ||
1242 | if (prev->level == 0 && znode->level == 0 && !c->replaying && | ||
1243 | !keys_cmp(c, &prev->zbranch[last].key, | ||
1244 | &znode->zbranch[0].key)) { | ||
1245 | err = dbg_check_key_order(c, &prev->zbranch[last], | ||
1246 | &znode->zbranch[0]); | ||
1247 | if (err < 0) | ||
1248 | return err; | ||
1249 | if (err) { | ||
1250 | ubifs_msg("first znode"); | ||
1251 | dbg_dump_znode(c, prev); | ||
1252 | ubifs_msg("second znode"); | ||
1253 | dbg_dump_znode(c, znode); | ||
1254 | return -EINVAL; | ||
1255 | } | ||
1256 | } | ||
1257 | } | ||
1258 | |||
1259 | if (extra) { | ||
1260 | if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { | ||
1261 | ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", | ||
1262 | atomic_long_read(&c->clean_zn_cnt), | ||
1263 | clean_cnt); | ||
1264 | return -EINVAL; | ||
1265 | } | ||
1266 | if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { | ||
1267 | ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", | ||
1268 | atomic_long_read(&c->dirty_zn_cnt), | ||
1269 | dirty_cnt); | ||
1270 | return -EINVAL; | ||
1271 | } | ||
1272 | } | ||
1273 | |||
1274 | return 0; | ||
1275 | } | ||
1276 | |||
1277 | /** | ||
1278 | * dbg_walk_index - walk the on-flash index. | ||
1279 | * @c: UBIFS file-system description object | ||
1280 | * @leaf_cb: called for each leaf node | ||
1281 | * @znode_cb: called for each indexing node | ||
1282 | * @priv: private date which is passed to callbacks | ||
1283 | * | ||
1284 | * This function walks the UBIFS index and calls the @leaf_cb for each leaf | ||
1285 | * node and @znode_cb for each indexing node. Returns zero in case of success | ||
1286 | * and a negative error code in case of failure. | ||
1287 | * | ||
1288 | * It would be better if this function removed every znode it pulled to into | ||
1289 | * the TNC, so that the behavior more closely matched the non-debugging | ||
1290 | * behavior. | ||
1291 | */ | ||
1292 | int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, | ||
1293 | dbg_znode_callback znode_cb, void *priv) | ||
1294 | { | ||
1295 | int err; | ||
1296 | struct ubifs_zbranch *zbr; | ||
1297 | struct ubifs_znode *znode, *child; | ||
1298 | |||
1299 | mutex_lock(&c->tnc_mutex); | ||
1300 | /* If the root indexing node is not in TNC - pull it */ | ||
1301 | if (!c->zroot.znode) { | ||
1302 | c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); | ||
1303 | if (IS_ERR(c->zroot.znode)) { | ||
1304 | err = PTR_ERR(c->zroot.znode); | ||
1305 | c->zroot.znode = NULL; | ||
1306 | goto out_unlock; | ||
1307 | } | ||
1308 | } | ||
1309 | |||
1310 | /* | ||
1311 | * We are going to traverse the indexing tree in the postorder manner. | ||
1312 | * Go down and find the leftmost indexing node where we are going to | ||
1313 | * start from. | ||
1314 | */ | ||
1315 | znode = c->zroot.znode; | ||
1316 | while (znode->level > 0) { | ||
1317 | zbr = &znode->zbranch[0]; | ||
1318 | child = zbr->znode; | ||
1319 | if (!child) { | ||
1320 | child = ubifs_load_znode(c, zbr, znode, 0); | ||
1321 | if (IS_ERR(child)) { | ||
1322 | err = PTR_ERR(child); | ||
1323 | goto out_unlock; | ||
1324 | } | ||
1325 | zbr->znode = child; | ||
1326 | } | ||
1327 | |||
1328 | znode = child; | ||
1329 | } | ||
1330 | |||
1331 | /* Iterate over all indexing nodes */ | ||
1332 | while (1) { | ||
1333 | int idx; | ||
1334 | |||
1335 | cond_resched(); | ||
1336 | |||
1337 | if (znode_cb) { | ||
1338 | err = znode_cb(c, znode, priv); | ||
1339 | if (err) { | ||
1340 | ubifs_err("znode checking function returned " | ||
1341 | "error %d", err); | ||
1342 | dbg_dump_znode(c, znode); | ||
1343 | goto out_dump; | ||
1344 | } | ||
1345 | } | ||
1346 | if (leaf_cb && znode->level == 0) { | ||
1347 | for (idx = 0; idx < znode->child_cnt; idx++) { | ||
1348 | zbr = &znode->zbranch[idx]; | ||
1349 | err = leaf_cb(c, zbr, priv); | ||
1350 | if (err) { | ||
1351 | ubifs_err("leaf checking function " | ||
1352 | "returned error %d, for leaf " | ||
1353 | "at LEB %d:%d", | ||
1354 | err, zbr->lnum, zbr->offs); | ||
1355 | goto out_dump; | ||
1356 | } | ||
1357 | } | ||
1358 | } | ||
1359 | |||
1360 | if (!znode->parent) | ||
1361 | break; | ||
1362 | |||
1363 | idx = znode->iip + 1; | ||
1364 | znode = znode->parent; | ||
1365 | if (idx < znode->child_cnt) { | ||
1366 | /* Switch to the next index in the parent */ | ||
1367 | zbr = &znode->zbranch[idx]; | ||
1368 | child = zbr->znode; | ||
1369 | if (!child) { | ||
1370 | child = ubifs_load_znode(c, zbr, znode, idx); | ||
1371 | if (IS_ERR(child)) { | ||
1372 | err = PTR_ERR(child); | ||
1373 | goto out_unlock; | ||
1374 | } | ||
1375 | zbr->znode = child; | ||
1376 | } | ||
1377 | znode = child; | ||
1378 | } else | ||
1379 | /* | ||
1380 | * This is the last child, switch to the parent and | ||
1381 | * continue. | ||
1382 | */ | ||
1383 | continue; | ||
1384 | |||
1385 | /* Go to the lowest leftmost znode in the new sub-tree */ | ||
1386 | while (znode->level > 0) { | ||
1387 | zbr = &znode->zbranch[0]; | ||
1388 | child = zbr->znode; | ||
1389 | if (!child) { | ||
1390 | child = ubifs_load_znode(c, zbr, znode, 0); | ||
1391 | if (IS_ERR(child)) { | ||
1392 | err = PTR_ERR(child); | ||
1393 | goto out_unlock; | ||
1394 | } | ||
1395 | zbr->znode = child; | ||
1396 | } | ||
1397 | znode = child; | ||
1398 | } | ||
1399 | } | ||
1400 | |||
1401 | mutex_unlock(&c->tnc_mutex); | ||
1402 | return 0; | ||
1403 | |||
1404 | out_dump: | ||
1405 | if (znode->parent) | ||
1406 | zbr = &znode->parent->zbranch[znode->iip]; | ||
1407 | else | ||
1408 | zbr = &c->zroot; | ||
1409 | ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); | ||
1410 | dbg_dump_znode(c, znode); | ||
1411 | out_unlock: | ||
1412 | mutex_unlock(&c->tnc_mutex); | ||
1413 | return err; | ||
1414 | } | ||
1415 | |||
1416 | /** | ||
1417 | * add_size - add znode size to partially calculated index size. | ||
1418 | * @c: UBIFS file-system description object | ||
1419 | * @znode: znode to add size for | ||
1420 | * @priv: partially calculated index size | ||
1421 | * | ||
1422 | * This is a helper function for 'dbg_check_idx_size()' which is called for | ||
1423 | * every indexing node and adds its size to the 'long long' variable pointed to | ||
1424 | * by @priv. | ||
1425 | */ | ||
1426 | static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) | ||
1427 | { | ||
1428 | long long *idx_size = priv; | ||
1429 | int add; | ||
1430 | |||
1431 | add = ubifs_idx_node_sz(c, znode->child_cnt); | ||
1432 | add = ALIGN(add, 8); | ||
1433 | *idx_size += add; | ||
1434 | return 0; | ||
1435 | } | ||
1436 | |||
1437 | /** | ||
1438 | * dbg_check_idx_size - check index size. | ||
1439 | * @c: UBIFS file-system description object | ||
1440 | * @idx_size: size to check | ||
1441 | * | ||
1442 | * This function walks the UBIFS index, calculates its size and checks that the | ||
1443 | * size is equivalent to @idx_size. Returns zero in case of success and a | ||
1444 | * negative error code in case of failure. | ||
1445 | */ | ||
1446 | int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) | ||
1447 | { | ||
1448 | int err; | ||
1449 | long long calc = 0; | ||
1450 | |||
1451 | if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) | ||
1452 | return 0; | ||
1453 | |||
1454 | err = dbg_walk_index(c, NULL, add_size, &calc); | ||
1455 | if (err) { | ||
1456 | ubifs_err("error %d while walking the index", err); | ||
1457 | return err; | ||
1458 | } | ||
1459 | |||
1460 | if (calc != idx_size) { | ||
1461 | ubifs_err("index size check failed: calculated size is %lld, " | ||
1462 | "should be %lld", calc, idx_size); | ||
1463 | dump_stack(); | ||
1464 | return -EINVAL; | ||
1465 | } | ||
1466 | |||
1467 | return 0; | ||
1468 | } | ||
1469 | |||
1470 | /** | ||
1471 | * struct fsck_inode - information about an inode used when checking the file-system. | ||
1472 | * @rb: link in the RB-tree of inodes | ||
1473 | * @inum: inode number | ||
1474 | * @mode: inode type, permissions, etc | ||
1475 | * @nlink: inode link count | ||
1476 | * @xattr_cnt: count of extended attributes | ||
1477 | * @references: how many directory/xattr entries refer this inode (calculated | ||
1478 | * while walking the index) | ||
1479 | * @calc_cnt: for directory inode count of child directories | ||
1480 | * @size: inode size (read from on-flash inode) | ||
1481 | * @xattr_sz: summary size of all extended attributes (read from on-flash | ||
1482 | * inode) | ||
1483 | * @calc_sz: for directories calculated directory size | ||
1484 | * @calc_xcnt: count of extended attributes | ||
1485 | * @calc_xsz: calculated summary size of all extended attributes | ||
1486 | * @xattr_nms: sum of lengths of all extended attribute names belonging to this | ||
1487 | * inode (read from on-flash inode) | ||
1488 | * @calc_xnms: calculated sum of lengths of all extended attribute names | ||
1489 | */ | ||
1490 | struct fsck_inode { | ||
1491 | struct rb_node rb; | ||
1492 | ino_t inum; | ||
1493 | umode_t mode; | ||
1494 | unsigned int nlink; | ||
1495 | unsigned int xattr_cnt; | ||
1496 | int references; | ||
1497 | int calc_cnt; | ||
1498 | long long size; | ||
1499 | unsigned int xattr_sz; | ||
1500 | long long calc_sz; | ||
1501 | long long calc_xcnt; | ||
1502 | long long calc_xsz; | ||
1503 | unsigned int xattr_nms; | ||
1504 | long long calc_xnms; | ||
1505 | }; | ||
1506 | |||
1507 | /** | ||
1508 | * struct fsck_data - private FS checking information. | ||
1509 | * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) | ||
1510 | */ | ||
1511 | struct fsck_data { | ||
1512 | struct rb_root inodes; | ||
1513 | }; | ||
1514 | |||
1515 | /** | ||
1516 | * add_inode - add inode information to RB-tree of inodes. | ||
1517 | * @c: UBIFS file-system description object | ||
1518 | * @fsckd: FS checking information | ||
1519 | * @ino: raw UBIFS inode to add | ||
1520 | * | ||
1521 | * This is a helper function for 'check_leaf()' which adds information about | ||
1522 | * inode @ino to the RB-tree of inodes. Returns inode information pointer in | ||
1523 | * case of success and a negative error code in case of failure. | ||
1524 | */ | ||
1525 | static struct fsck_inode *add_inode(struct ubifs_info *c, | ||
1526 | struct fsck_data *fsckd, | ||
1527 | struct ubifs_ino_node *ino) | ||
1528 | { | ||
1529 | struct rb_node **p, *parent = NULL; | ||
1530 | struct fsck_inode *fscki; | ||
1531 | ino_t inum = key_inum_flash(c, &ino->key); | ||
1532 | |||
1533 | p = &fsckd->inodes.rb_node; | ||
1534 | while (*p) { | ||
1535 | parent = *p; | ||
1536 | fscki = rb_entry(parent, struct fsck_inode, rb); | ||
1537 | if (inum < fscki->inum) | ||
1538 | p = &(*p)->rb_left; | ||
1539 | else if (inum > fscki->inum) | ||
1540 | p = &(*p)->rb_right; | ||
1541 | else | ||
1542 | return fscki; | ||
1543 | } | ||
1544 | |||
1545 | if (inum > c->highest_inum) { | ||
1546 | ubifs_err("too high inode number, max. is %lu", | ||
1547 | c->highest_inum); | ||
1548 | return ERR_PTR(-EINVAL); | ||
1549 | } | ||
1550 | |||
1551 | fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); | ||
1552 | if (!fscki) | ||
1553 | return ERR_PTR(-ENOMEM); | ||
1554 | |||
1555 | fscki->inum = inum; | ||
1556 | fscki->nlink = le32_to_cpu(ino->nlink); | ||
1557 | fscki->size = le64_to_cpu(ino->size); | ||
1558 | fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); | ||
1559 | fscki->xattr_sz = le32_to_cpu(ino->xattr_size); | ||
1560 | fscki->xattr_nms = le32_to_cpu(ino->xattr_names); | ||
1561 | fscki->mode = le32_to_cpu(ino->mode); | ||
1562 | if (S_ISDIR(fscki->mode)) { | ||
1563 | fscki->calc_sz = UBIFS_INO_NODE_SZ; | ||
1564 | fscki->calc_cnt = 2; | ||
1565 | } | ||
1566 | rb_link_node(&fscki->rb, parent, p); | ||
1567 | rb_insert_color(&fscki->rb, &fsckd->inodes); | ||
1568 | return fscki; | ||
1569 | } | ||
1570 | |||
1571 | /** | ||
1572 | * search_inode - search inode in the RB-tree of inodes. | ||
1573 | * @fsckd: FS checking information | ||
1574 | * @inum: inode number to search | ||
1575 | * | ||
1576 | * This is a helper function for 'check_leaf()' which searches inode @inum in | ||
1577 | * the RB-tree of inodes and returns an inode information pointer or %NULL if | ||
1578 | * the inode was not found. | ||
1579 | */ | ||
1580 | static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) | ||
1581 | { | ||
1582 | struct rb_node *p; | ||
1583 | struct fsck_inode *fscki; | ||
1584 | |||
1585 | p = fsckd->inodes.rb_node; | ||
1586 | while (p) { | ||
1587 | fscki = rb_entry(p, struct fsck_inode, rb); | ||
1588 | if (inum < fscki->inum) | ||
1589 | p = p->rb_left; | ||
1590 | else if (inum > fscki->inum) | ||
1591 | p = p->rb_right; | ||
1592 | else | ||
1593 | return fscki; | ||
1594 | } | ||
1595 | return NULL; | ||
1596 | } | ||
1597 | |||
1598 | /** | ||
1599 | * read_add_inode - read inode node and add it to RB-tree of inodes. | ||
1600 | * @c: UBIFS file-system description object | ||
1601 | * @fsckd: FS checking information | ||
1602 | * @inum: inode number to read | ||
1603 | * | ||
1604 | * This is a helper function for 'check_leaf()' which finds inode node @inum in | ||
1605 | * the index, reads it, and adds it to the RB-tree of inodes. Returns inode | ||
1606 | * information pointer in case of success and a negative error code in case of | ||
1607 | * failure. | ||
1608 | */ | ||
1609 | static struct fsck_inode *read_add_inode(struct ubifs_info *c, | ||
1610 | struct fsck_data *fsckd, ino_t inum) | ||
1611 | { | ||
1612 | int n, err; | ||
1613 | union ubifs_key key; | ||
1614 | struct ubifs_znode *znode; | ||
1615 | struct ubifs_zbranch *zbr; | ||
1616 | struct ubifs_ino_node *ino; | ||
1617 | struct fsck_inode *fscki; | ||
1618 | |||
1619 | fscki = search_inode(fsckd, inum); | ||
1620 | if (fscki) | ||
1621 | return fscki; | ||
1622 | |||
1623 | ino_key_init(c, &key, inum); | ||
1624 | err = ubifs_lookup_level0(c, &key, &znode, &n); | ||
1625 | if (!err) { | ||
1626 | ubifs_err("inode %lu not found in index", inum); | ||
1627 | return ERR_PTR(-ENOENT); | ||
1628 | } else if (err < 0) { | ||
1629 | ubifs_err("error %d while looking up inode %lu", err, inum); | ||
1630 | return ERR_PTR(err); | ||
1631 | } | ||
1632 | |||
1633 | zbr = &znode->zbranch[n]; | ||
1634 | if (zbr->len < UBIFS_INO_NODE_SZ) { | ||
1635 | ubifs_err("bad node %lu node length %d", inum, zbr->len); | ||
1636 | return ERR_PTR(-EINVAL); | ||
1637 | } | ||
1638 | |||
1639 | ino = kmalloc(zbr->len, GFP_NOFS); | ||
1640 | if (!ino) | ||
1641 | return ERR_PTR(-ENOMEM); | ||
1642 | |||
1643 | err = ubifs_tnc_read_node(c, zbr, ino); | ||
1644 | if (err) { | ||
1645 | ubifs_err("cannot read inode node at LEB %d:%d, error %d", | ||
1646 | zbr->lnum, zbr->offs, err); | ||
1647 | kfree(ino); | ||
1648 | return ERR_PTR(err); | ||
1649 | } | ||
1650 | |||
1651 | fscki = add_inode(c, fsckd, ino); | ||
1652 | kfree(ino); | ||
1653 | if (IS_ERR(fscki)) { | ||
1654 | ubifs_err("error %ld while adding inode %lu node", | ||
1655 | PTR_ERR(fscki), inum); | ||
1656 | return fscki; | ||
1657 | } | ||
1658 | |||
1659 | return fscki; | ||
1660 | } | ||
1661 | |||
1662 | /** | ||
1663 | * check_leaf - check leaf node. | ||
1664 | * @c: UBIFS file-system description object | ||
1665 | * @zbr: zbranch of the leaf node to check | ||
1666 | * @priv: FS checking information | ||
1667 | * | ||
1668 | * This is a helper function for 'dbg_check_filesystem()' which is called for | ||
1669 | * every single leaf node while walking the indexing tree. It checks that the | ||
1670 | * leaf node referred from the indexing tree exists, has correct CRC, and does | ||
1671 | * some other basic validation. This function is also responsible for building | ||
1672 | * an RB-tree of inodes - it adds all inodes into the RB-tree. It also | ||
1673 | * calculates reference count, size, etc for each inode in order to later | ||
1674 | * compare them to the information stored inside the inodes and detect possible | ||
1675 | * inconsistencies. Returns zero in case of success and a negative error code | ||
1676 | * in case of failure. | ||
1677 | */ | ||
1678 | static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, | ||
1679 | void *priv) | ||
1680 | { | ||
1681 | ino_t inum; | ||
1682 | void *node; | ||
1683 | struct ubifs_ch *ch; | ||
1684 | int err, type = key_type(c, &zbr->key); | ||
1685 | struct fsck_inode *fscki; | ||
1686 | |||
1687 | if (zbr->len < UBIFS_CH_SZ) { | ||
1688 | ubifs_err("bad leaf length %d (LEB %d:%d)", | ||
1689 | zbr->len, zbr->lnum, zbr->offs); | ||
1690 | return -EINVAL; | ||
1691 | } | ||
1692 | |||
1693 | node = kmalloc(zbr->len, GFP_NOFS); | ||
1694 | if (!node) | ||
1695 | return -ENOMEM; | ||
1696 | |||
1697 | err = ubifs_tnc_read_node(c, zbr, node); | ||
1698 | if (err) { | ||
1699 | ubifs_err("cannot read leaf node at LEB %d:%d, error %d", | ||
1700 | zbr->lnum, zbr->offs, err); | ||
1701 | goto out_free; | ||
1702 | } | ||
1703 | |||
1704 | /* If this is an inode node, add it to RB-tree of inodes */ | ||
1705 | if (type == UBIFS_INO_KEY) { | ||
1706 | fscki = add_inode(c, priv, node); | ||
1707 | if (IS_ERR(fscki)) { | ||
1708 | err = PTR_ERR(fscki); | ||
1709 | ubifs_err("error %d while adding inode node", err); | ||
1710 | goto out_dump; | ||
1711 | } | ||
1712 | goto out; | ||
1713 | } | ||
1714 | |||
1715 | if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && | ||
1716 | type != UBIFS_DATA_KEY) { | ||
1717 | ubifs_err("unexpected node type %d at LEB %d:%d", | ||
1718 | type, zbr->lnum, zbr->offs); | ||
1719 | err = -EINVAL; | ||
1720 | goto out_free; | ||
1721 | } | ||
1722 | |||
1723 | ch = node; | ||
1724 | if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { | ||
1725 | ubifs_err("too high sequence number, max. is %llu", | ||
1726 | c->max_sqnum); | ||
1727 | err = -EINVAL; | ||
1728 | goto out_dump; | ||
1729 | } | ||
1730 | |||
1731 | if (type == UBIFS_DATA_KEY) { | ||
1732 | long long blk_offs; | ||
1733 | struct ubifs_data_node *dn = node; | ||
1734 | |||
1735 | /* | ||
1736 | * Search the inode node this data node belongs to and insert | ||
1737 | * it to the RB-tree of inodes. | ||
1738 | */ | ||
1739 | inum = key_inum_flash(c, &dn->key); | ||
1740 | fscki = read_add_inode(c, priv, inum); | ||
1741 | if (IS_ERR(fscki)) { | ||
1742 | err = PTR_ERR(fscki); | ||
1743 | ubifs_err("error %d while processing data node and " | ||
1744 | "trying to find inode node %lu", err, inum); | ||
1745 | goto out_dump; | ||
1746 | } | ||
1747 | |||
1748 | /* Make sure the data node is within inode size */ | ||
1749 | blk_offs = key_block_flash(c, &dn->key); | ||
1750 | blk_offs <<= UBIFS_BLOCK_SHIFT; | ||
1751 | blk_offs += le32_to_cpu(dn->size); | ||
1752 | if (blk_offs > fscki->size) { | ||
1753 | ubifs_err("data node at LEB %d:%d is not within inode " | ||
1754 | "size %lld", zbr->lnum, zbr->offs, | ||
1755 | fscki->size); | ||
1756 | err = -EINVAL; | ||
1757 | goto out_dump; | ||
1758 | } | ||
1759 | } else { | ||
1760 | int nlen; | ||
1761 | struct ubifs_dent_node *dent = node; | ||
1762 | struct fsck_inode *fscki1; | ||
1763 | |||
1764 | err = ubifs_validate_entry(c, dent); | ||
1765 | if (err) | ||
1766 | goto out_dump; | ||
1767 | |||
1768 | /* | ||
1769 | * Search the inode node this entry refers to and the parent | ||
1770 | * inode node and insert them to the RB-tree of inodes. | ||
1771 | */ | ||
1772 | inum = le64_to_cpu(dent->inum); | ||
1773 | fscki = read_add_inode(c, priv, inum); | ||
1774 | if (IS_ERR(fscki)) { | ||
1775 | err = PTR_ERR(fscki); | ||
1776 | ubifs_err("error %d while processing entry node and " | ||
1777 | "trying to find inode node %lu", err, inum); | ||
1778 | goto out_dump; | ||
1779 | } | ||
1780 | |||
1781 | /* Count how many direntries or xentries refers this inode */ | ||
1782 | fscki->references += 1; | ||
1783 | |||
1784 | inum = key_inum_flash(c, &dent->key); | ||
1785 | fscki1 = read_add_inode(c, priv, inum); | ||
1786 | if (IS_ERR(fscki1)) { | ||
1787 | err = PTR_ERR(fscki); | ||
1788 | ubifs_err("error %d while processing entry node and " | ||
1789 | "trying to find parent inode node %lu", | ||
1790 | err, inum); | ||
1791 | goto out_dump; | ||
1792 | } | ||
1793 | |||
1794 | nlen = le16_to_cpu(dent->nlen); | ||
1795 | if (type == UBIFS_XENT_KEY) { | ||
1796 | fscki1->calc_xcnt += 1; | ||
1797 | fscki1->calc_xsz += CALC_DENT_SIZE(nlen); | ||
1798 | fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); | ||
1799 | fscki1->calc_xnms += nlen; | ||
1800 | } else { | ||
1801 | fscki1->calc_sz += CALC_DENT_SIZE(nlen); | ||
1802 | if (dent->type == UBIFS_ITYPE_DIR) | ||
1803 | fscki1->calc_cnt += 1; | ||
1804 | } | ||
1805 | } | ||
1806 | |||
1807 | out: | ||
1808 | kfree(node); | ||
1809 | return 0; | ||
1810 | |||
1811 | out_dump: | ||
1812 | ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); | ||
1813 | dbg_dump_node(c, node); | ||
1814 | out_free: | ||
1815 | kfree(node); | ||
1816 | return err; | ||
1817 | } | ||
1818 | |||
1819 | /** | ||
1820 | * free_inodes - free RB-tree of inodes. | ||
1821 | * @fsckd: FS checking information | ||
1822 | */ | ||
1823 | static void free_inodes(struct fsck_data *fsckd) | ||
1824 | { | ||
1825 | struct rb_node *this = fsckd->inodes.rb_node; | ||
1826 | struct fsck_inode *fscki; | ||
1827 | |||
1828 | while (this) { | ||
1829 | if (this->rb_left) | ||
1830 | this = this->rb_left; | ||
1831 | else if (this->rb_right) | ||
1832 | this = this->rb_right; | ||
1833 | else { | ||
1834 | fscki = rb_entry(this, struct fsck_inode, rb); | ||
1835 | this = rb_parent(this); | ||
1836 | if (this) { | ||
1837 | if (this->rb_left == &fscki->rb) | ||
1838 | this->rb_left = NULL; | ||
1839 | else | ||
1840 | this->rb_right = NULL; | ||
1841 | } | ||
1842 | kfree(fscki); | ||
1843 | } | ||
1844 | } | ||
1845 | } | ||
1846 | |||
1847 | /** | ||
1848 | * check_inodes - checks all inodes. | ||
1849 | * @c: UBIFS file-system description object | ||
1850 | * @fsckd: FS checking information | ||
1851 | * | ||
1852 | * This is a helper function for 'dbg_check_filesystem()' which walks the | ||
1853 | * RB-tree of inodes after the index scan has been finished, and checks that | ||
1854 | * inode nlink, size, etc are correct. Returns zero if inodes are fine, | ||
1855 | * %-EINVAL if not, and a negative error code in case of failure. | ||
1856 | */ | ||
1857 | static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) | ||
1858 | { | ||
1859 | int n, err; | ||
1860 | union ubifs_key key; | ||
1861 | struct ubifs_znode *znode; | ||
1862 | struct ubifs_zbranch *zbr; | ||
1863 | struct ubifs_ino_node *ino; | ||
1864 | struct fsck_inode *fscki; | ||
1865 | struct rb_node *this = rb_first(&fsckd->inodes); | ||
1866 | |||
1867 | while (this) { | ||
1868 | fscki = rb_entry(this, struct fsck_inode, rb); | ||
1869 | this = rb_next(this); | ||
1870 | |||
1871 | if (S_ISDIR(fscki->mode)) { | ||
1872 | /* | ||
1873 | * Directories have to have exactly one reference (they | ||
1874 | * cannot have hardlinks), although root inode is an | ||
1875 | * exception. | ||
1876 | */ | ||
1877 | if (fscki->inum != UBIFS_ROOT_INO && | ||
1878 | fscki->references != 1) { | ||
1879 | ubifs_err("directory inode %lu has %d " | ||
1880 | "direntries which refer it, but " | ||
1881 | "should be 1", fscki->inum, | ||
1882 | fscki->references); | ||
1883 | goto out_dump; | ||
1884 | } | ||
1885 | if (fscki->inum == UBIFS_ROOT_INO && | ||
1886 | fscki->references != 0) { | ||
1887 | ubifs_err("root inode %lu has non-zero (%d) " | ||
1888 | "direntries which refer it", | ||
1889 | fscki->inum, fscki->references); | ||
1890 | goto out_dump; | ||
1891 | } | ||
1892 | if (fscki->calc_sz != fscki->size) { | ||
1893 | ubifs_err("directory inode %lu size is %lld, " | ||
1894 | "but calculated size is %lld", | ||
1895 | fscki->inum, fscki->size, | ||
1896 | fscki->calc_sz); | ||
1897 | goto out_dump; | ||
1898 | } | ||
1899 | if (fscki->calc_cnt != fscki->nlink) { | ||
1900 | ubifs_err("directory inode %lu nlink is %d, " | ||
1901 | "but calculated nlink is %d", | ||
1902 | fscki->inum, fscki->nlink, | ||
1903 | fscki->calc_cnt); | ||
1904 | goto out_dump; | ||
1905 | } | ||
1906 | } else { | ||
1907 | if (fscki->references != fscki->nlink) { | ||
1908 | ubifs_err("inode %lu nlink is %d, but " | ||
1909 | "calculated nlink is %d", fscki->inum, | ||
1910 | fscki->nlink, fscki->references); | ||
1911 | goto out_dump; | ||
1912 | } | ||
1913 | } | ||
1914 | if (fscki->xattr_sz != fscki->calc_xsz) { | ||
1915 | ubifs_err("inode %lu has xattr size %u, but " | ||
1916 | "calculated size is %lld", | ||
1917 | fscki->inum, fscki->xattr_sz, | ||
1918 | fscki->calc_xsz); | ||
1919 | goto out_dump; | ||
1920 | } | ||
1921 | if (fscki->xattr_cnt != fscki->calc_xcnt) { | ||
1922 | ubifs_err("inode %lu has %u xattrs, but " | ||
1923 | "calculated count is %lld", fscki->inum, | ||
1924 | fscki->xattr_cnt, fscki->calc_xcnt); | ||
1925 | goto out_dump; | ||
1926 | } | ||
1927 | if (fscki->xattr_nms != fscki->calc_xnms) { | ||
1928 | ubifs_err("inode %lu has xattr names' size %u, but " | ||
1929 | "calculated names' size is %lld", | ||
1930 | fscki->inum, fscki->xattr_nms, | ||
1931 | fscki->calc_xnms); | ||
1932 | goto out_dump; | ||
1933 | } | ||
1934 | } | ||
1935 | |||
1936 | return 0; | ||
1937 | |||
1938 | out_dump: | ||
1939 | /* Read the bad inode and dump it */ | ||
1940 | ino_key_init(c, &key, fscki->inum); | ||
1941 | err = ubifs_lookup_level0(c, &key, &znode, &n); | ||
1942 | if (!err) { | ||
1943 | ubifs_err("inode %lu not found in index", fscki->inum); | ||
1944 | return -ENOENT; | ||
1945 | } else if (err < 0) { | ||
1946 | ubifs_err("error %d while looking up inode %lu", | ||
1947 | err, fscki->inum); | ||
1948 | return err; | ||
1949 | } | ||
1950 | |||
1951 | zbr = &znode->zbranch[n]; | ||
1952 | ino = kmalloc(zbr->len, GFP_NOFS); | ||
1953 | if (!ino) | ||
1954 | return -ENOMEM; | ||
1955 | |||
1956 | err = ubifs_tnc_read_node(c, zbr, ino); | ||
1957 | if (err) { | ||
1958 | ubifs_err("cannot read inode node at LEB %d:%d, error %d", | ||
1959 | zbr->lnum, zbr->offs, err); | ||
1960 | kfree(ino); | ||
1961 | return err; | ||
1962 | } | ||
1963 | |||
1964 | ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", | ||
1965 | fscki->inum, zbr->lnum, zbr->offs); | ||
1966 | dbg_dump_node(c, ino); | ||
1967 | kfree(ino); | ||
1968 | return -EINVAL; | ||
1969 | } | ||
1970 | |||
1971 | /** | ||
1972 | * dbg_check_filesystem - check the file-system. | ||
1973 | * @c: UBIFS file-system description object | ||
1974 | * | ||
1975 | * This function checks the file system, namely: | ||
1976 | * o makes sure that all leaf nodes exist and their CRCs are correct; | ||
1977 | * o makes sure inode nlink, size, xattr size/count are correct (for all | ||
1978 | * inodes). | ||
1979 | * | ||
1980 | * The function reads whole indexing tree and all nodes, so it is pretty | ||
1981 | * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if | ||
1982 | * not, and a negative error code in case of failure. | ||
1983 | */ | ||
1984 | int dbg_check_filesystem(struct ubifs_info *c) | ||
1985 | { | ||
1986 | int err; | ||
1987 | struct fsck_data fsckd; | ||
1988 | |||
1989 | if (!(ubifs_chk_flags & UBIFS_CHK_FS)) | ||
1990 | return 0; | ||
1991 | |||
1992 | fsckd.inodes = RB_ROOT; | ||
1993 | err = dbg_walk_index(c, check_leaf, NULL, &fsckd); | ||
1994 | if (err) | ||
1995 | goto out_free; | ||
1996 | |||
1997 | err = check_inodes(c, &fsckd); | ||
1998 | if (err) | ||
1999 | goto out_free; | ||
2000 | |||
2001 | free_inodes(&fsckd); | ||
2002 | return 0; | ||
2003 | |||
2004 | out_free: | ||
2005 | ubifs_err("file-system check failed with error %d", err); | ||
2006 | dump_stack(); | ||
2007 | free_inodes(&fsckd); | ||
2008 | return err; | ||
2009 | } | ||
2010 | |||
2011 | static int invocation_cnt; | ||
2012 | |||
2013 | int dbg_force_in_the_gaps(void) | ||
2014 | { | ||
2015 | if (!dbg_force_in_the_gaps_enabled) | ||
2016 | return 0; | ||
2017 | /* Force in-the-gaps every 8th commit */ | ||
2018 | return !((invocation_cnt++) & 0x7); | ||
2019 | } | ||
2020 | |||
2021 | /* Failure mode for recovery testing */ | ||
2022 | |||
2023 | #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) | ||
2024 | |||
2025 | struct failure_mode_info { | ||
2026 | struct list_head list; | ||
2027 | struct ubifs_info *c; | ||
2028 | }; | ||
2029 | |||
2030 | static LIST_HEAD(fmi_list); | ||
2031 | static DEFINE_SPINLOCK(fmi_lock); | ||
2032 | |||
2033 | static unsigned int next; | ||
2034 | |||
2035 | static int simple_rand(void) | ||
2036 | { | ||
2037 | if (next == 0) | ||
2038 | next = current->pid; | ||
2039 | next = next * 1103515245 + 12345; | ||
2040 | return (next >> 16) & 32767; | ||
2041 | } | ||
2042 | |||
2043 | void dbg_failure_mode_registration(struct ubifs_info *c) | ||
2044 | { | ||
2045 | struct failure_mode_info *fmi; | ||
2046 | |||
2047 | fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); | ||
2048 | if (!fmi) { | ||
2049 | dbg_err("Failed to register failure mode - no memory"); | ||
2050 | return; | ||
2051 | } | ||
2052 | fmi->c = c; | ||
2053 | spin_lock(&fmi_lock); | ||
2054 | list_add_tail(&fmi->list, &fmi_list); | ||
2055 | spin_unlock(&fmi_lock); | ||
2056 | } | ||
2057 | |||
2058 | void dbg_failure_mode_deregistration(struct ubifs_info *c) | ||
2059 | { | ||
2060 | struct failure_mode_info *fmi, *tmp; | ||
2061 | |||
2062 | spin_lock(&fmi_lock); | ||
2063 | list_for_each_entry_safe(fmi, tmp, &fmi_list, list) | ||
2064 | if (fmi->c == c) { | ||
2065 | list_del(&fmi->list); | ||
2066 | kfree(fmi); | ||
2067 | } | ||
2068 | spin_unlock(&fmi_lock); | ||
2069 | } | ||
2070 | |||
2071 | static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) | ||
2072 | { | ||
2073 | struct failure_mode_info *fmi; | ||
2074 | |||
2075 | spin_lock(&fmi_lock); | ||
2076 | list_for_each_entry(fmi, &fmi_list, list) | ||
2077 | if (fmi->c->ubi == desc) { | ||
2078 | struct ubifs_info *c = fmi->c; | ||
2079 | |||
2080 | spin_unlock(&fmi_lock); | ||
2081 | return c; | ||
2082 | } | ||
2083 | spin_unlock(&fmi_lock); | ||
2084 | return NULL; | ||
2085 | } | ||
2086 | |||
2087 | static int in_failure_mode(struct ubi_volume_desc *desc) | ||
2088 | { | ||
2089 | struct ubifs_info *c = dbg_find_info(desc); | ||
2090 | |||
2091 | if (c && dbg_failure_mode) | ||
2092 | return c->failure_mode; | ||
2093 | return 0; | ||
2094 | } | ||
2095 | |||
2096 | static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) | ||
2097 | { | ||
2098 | struct ubifs_info *c = dbg_find_info(desc); | ||
2099 | |||
2100 | if (!c || !dbg_failure_mode) | ||
2101 | return 0; | ||
2102 | if (c->failure_mode) | ||
2103 | return 1; | ||
2104 | if (!c->fail_cnt) { | ||
2105 | /* First call - decide delay to failure */ | ||
2106 | if (chance(1, 2)) { | ||
2107 | unsigned int delay = 1 << (simple_rand() >> 11); | ||
2108 | |||
2109 | if (chance(1, 2)) { | ||
2110 | c->fail_delay = 1; | ||
2111 | c->fail_timeout = jiffies + | ||
2112 | msecs_to_jiffies(delay); | ||
2113 | dbg_rcvry("failing after %ums", delay); | ||
2114 | } else { | ||
2115 | c->fail_delay = 2; | ||
2116 | c->fail_cnt_max = delay; | ||
2117 | dbg_rcvry("failing after %u calls", delay); | ||
2118 | } | ||
2119 | } | ||
2120 | c->fail_cnt += 1; | ||
2121 | } | ||
2122 | /* Determine if failure delay has expired */ | ||
2123 | if (c->fail_delay == 1) { | ||
2124 | if (time_before(jiffies, c->fail_timeout)) | ||
2125 | return 0; | ||
2126 | } else if (c->fail_delay == 2) | ||
2127 | if (c->fail_cnt++ < c->fail_cnt_max) | ||
2128 | return 0; | ||
2129 | if (lnum == UBIFS_SB_LNUM) { | ||
2130 | if (write) { | ||
2131 | if (chance(1, 2)) | ||
2132 | return 0; | ||
2133 | } else if (chance(19, 20)) | ||
2134 | return 0; | ||
2135 | dbg_rcvry("failing in super block LEB %d", lnum); | ||
2136 | } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { | ||
2137 | if (chance(19, 20)) | ||
2138 | return 0; | ||
2139 | dbg_rcvry("failing in master LEB %d", lnum); | ||
2140 | } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { | ||
2141 | if (write) { | ||
2142 | if (chance(99, 100)) | ||
2143 | return 0; | ||
2144 | } else if (chance(399, 400)) | ||
2145 | return 0; | ||
2146 | dbg_rcvry("failing in log LEB %d", lnum); | ||
2147 | } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { | ||
2148 | if (write) { | ||
2149 | if (chance(7, 8)) | ||
2150 | return 0; | ||
2151 | } else if (chance(19, 20)) | ||
2152 | return 0; | ||
2153 | dbg_rcvry("failing in LPT LEB %d", lnum); | ||
2154 | } else if (lnum >= c->orph_first && lnum <= c->orph_last) { | ||
2155 | if (write) { | ||
2156 | if (chance(1, 2)) | ||
2157 | return 0; | ||
2158 | } else if (chance(9, 10)) | ||
2159 | return 0; | ||
2160 | dbg_rcvry("failing in orphan LEB %d", lnum); | ||
2161 | } else if (lnum == c->ihead_lnum) { | ||
2162 | if (chance(99, 100)) | ||
2163 | return 0; | ||
2164 | dbg_rcvry("failing in index head LEB %d", lnum); | ||
2165 | } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { | ||
2166 | if (chance(9, 10)) | ||
2167 | return 0; | ||
2168 | dbg_rcvry("failing in GC head LEB %d", lnum); | ||
2169 | } else if (write && !RB_EMPTY_ROOT(&c->buds) && | ||
2170 | !ubifs_search_bud(c, lnum)) { | ||
2171 | if (chance(19, 20)) | ||
2172 | return 0; | ||
2173 | dbg_rcvry("failing in non-bud LEB %d", lnum); | ||
2174 | } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || | ||
2175 | c->cmt_state == COMMIT_RUNNING_REQUIRED) { | ||
2176 | if (chance(999, 1000)) | ||
2177 | return 0; | ||
2178 | dbg_rcvry("failing in bud LEB %d commit running", lnum); | ||
2179 | } else { | ||
2180 | if (chance(9999, 10000)) | ||
2181 | return 0; | ||
2182 | dbg_rcvry("failing in bud LEB %d commit not running", lnum); | ||
2183 | } | ||
2184 | ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); | ||
2185 | c->failure_mode = 1; | ||
2186 | dump_stack(); | ||
2187 | return 1; | ||
2188 | } | ||
2189 | |||
2190 | static void cut_data(const void *buf, int len) | ||
2191 | { | ||
2192 | int flen, i; | ||
2193 | unsigned char *p = (void *)buf; | ||
2194 | |||
2195 | flen = (len * (long long)simple_rand()) >> 15; | ||
2196 | for (i = flen; i < len; i++) | ||
2197 | p[i] = 0xff; | ||
2198 | } | ||
2199 | |||
2200 | int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, | ||
2201 | int len, int check) | ||
2202 | { | ||
2203 | if (in_failure_mode(desc)) | ||
2204 | return -EIO; | ||
2205 | return ubi_leb_read(desc, lnum, buf, offset, len, check); | ||
2206 | } | ||
2207 | |||
2208 | int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, | ||
2209 | int offset, int len, int dtype) | ||
2210 | { | ||
2211 | int err; | ||
2212 | |||
2213 | if (in_failure_mode(desc)) | ||
2214 | return -EIO; | ||
2215 | if (do_fail(desc, lnum, 1)) | ||
2216 | cut_data(buf, len); | ||
2217 | err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); | ||
2218 | if (err) | ||
2219 | return err; | ||
2220 | if (in_failure_mode(desc)) | ||
2221 | return -EIO; | ||
2222 | return 0; | ||
2223 | } | ||
2224 | |||
2225 | int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, | ||
2226 | int len, int dtype) | ||
2227 | { | ||
2228 | int err; | ||
2229 | |||
2230 | if (do_fail(desc, lnum, 1)) | ||
2231 | return -EIO; | ||
2232 | err = ubi_leb_change(desc, lnum, buf, len, dtype); | ||
2233 | if (err) | ||
2234 | return err; | ||
2235 | if (do_fail(desc, lnum, 1)) | ||
2236 | return -EIO; | ||
2237 | return 0; | ||
2238 | } | ||
2239 | |||
2240 | int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) | ||
2241 | { | ||
2242 | int err; | ||
2243 | |||
2244 | if (do_fail(desc, lnum, 0)) | ||
2245 | return -EIO; | ||
2246 | err = ubi_leb_erase(desc, lnum); | ||
2247 | if (err) | ||
2248 | return err; | ||
2249 | if (do_fail(desc, lnum, 0)) | ||
2250 | return -EIO; | ||
2251 | return 0; | ||
2252 | } | ||
2253 | |||
2254 | int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) | ||
2255 | { | ||
2256 | int err; | ||
2257 | |||
2258 | if (do_fail(desc, lnum, 0)) | ||
2259 | return -EIO; | ||
2260 | err = ubi_leb_unmap(desc, lnum); | ||
2261 | if (err) | ||
2262 | return err; | ||
2263 | if (do_fail(desc, lnum, 0)) | ||
2264 | return -EIO; | ||
2265 | return 0; | ||
2266 | } | ||
2267 | |||
2268 | int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) | ||
2269 | { | ||
2270 | if (in_failure_mode(desc)) | ||
2271 | return -EIO; | ||
2272 | return ubi_is_mapped(desc, lnum); | ||
2273 | } | ||
2274 | |||
2275 | int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) | ||
2276 | { | ||
2277 | int err; | ||
2278 | |||
2279 | if (do_fail(desc, lnum, 0)) | ||
2280 | return -EIO; | ||
2281 | err = ubi_leb_map(desc, lnum, dtype); | ||
2282 | if (err) | ||
2283 | return err; | ||
2284 | if (do_fail(desc, lnum, 0)) | ||
2285 | return -EIO; | ||
2286 | return 0; | ||
2287 | } | ||
2288 | |||
2289 | #endif /* CONFIG_UBIFS_FS_DEBUG */ | ||