diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/reiserfs/stree.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/reiserfs/stree.c')
-rw-r--r-- | fs/reiserfs/stree.c | 2073 |
1 files changed, 2073 insertions, 0 deletions
diff --git a/fs/reiserfs/stree.c b/fs/reiserfs/stree.c new file mode 100644 index 000000000000..73ec5212178b --- /dev/null +++ b/fs/reiserfs/stree.c | |||
@@ -0,0 +1,2073 @@ | |||
1 | /* | ||
2 | * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | ||
3 | */ | ||
4 | |||
5 | /* | ||
6 | * Written by Anatoly P. Pinchuk pap@namesys.botik.ru | ||
7 | * Programm System Institute | ||
8 | * Pereslavl-Zalessky Russia | ||
9 | */ | ||
10 | |||
11 | /* | ||
12 | * This file contains functions dealing with S+tree | ||
13 | * | ||
14 | * B_IS_IN_TREE | ||
15 | * copy_item_head | ||
16 | * comp_short_keys | ||
17 | * comp_keys | ||
18 | * comp_short_le_keys | ||
19 | * le_key2cpu_key | ||
20 | * comp_le_keys | ||
21 | * bin_search | ||
22 | * get_lkey | ||
23 | * get_rkey | ||
24 | * key_in_buffer | ||
25 | * decrement_bcount | ||
26 | * decrement_counters_in_path | ||
27 | * reiserfs_check_path | ||
28 | * pathrelse_and_restore | ||
29 | * pathrelse | ||
30 | * search_by_key_reada | ||
31 | * search_by_key | ||
32 | * search_for_position_by_key | ||
33 | * comp_items | ||
34 | * prepare_for_direct_item | ||
35 | * prepare_for_direntry_item | ||
36 | * prepare_for_delete_or_cut | ||
37 | * calc_deleted_bytes_number | ||
38 | * init_tb_struct | ||
39 | * padd_item | ||
40 | * reiserfs_delete_item | ||
41 | * reiserfs_delete_solid_item | ||
42 | * reiserfs_delete_object | ||
43 | * maybe_indirect_to_direct | ||
44 | * indirect_to_direct_roll_back | ||
45 | * reiserfs_cut_from_item | ||
46 | * truncate_directory | ||
47 | * reiserfs_do_truncate | ||
48 | * reiserfs_paste_into_item | ||
49 | * reiserfs_insert_item | ||
50 | */ | ||
51 | |||
52 | #include <linux/config.h> | ||
53 | #include <linux/time.h> | ||
54 | #include <linux/string.h> | ||
55 | #include <linux/pagemap.h> | ||
56 | #include <linux/reiserfs_fs.h> | ||
57 | #include <linux/smp_lock.h> | ||
58 | #include <linux/buffer_head.h> | ||
59 | #include <linux/quotaops.h> | ||
60 | |||
61 | /* Does the buffer contain a disk block which is in the tree. */ | ||
62 | inline int B_IS_IN_TREE (const struct buffer_head * p_s_bh) | ||
63 | { | ||
64 | |||
65 | RFALSE( B_LEVEL (p_s_bh) > MAX_HEIGHT, | ||
66 | "PAP-1010: block (%b) has too big level (%z)", p_s_bh, p_s_bh); | ||
67 | |||
68 | return ( B_LEVEL (p_s_bh) != FREE_LEVEL ); | ||
69 | } | ||
70 | |||
71 | // | ||
72 | // to gets item head in le form | ||
73 | // | ||
74 | inline void copy_item_head(struct item_head * p_v_to, | ||
75 | const struct item_head * p_v_from) | ||
76 | { | ||
77 | memcpy (p_v_to, p_v_from, IH_SIZE); | ||
78 | } | ||
79 | |||
80 | |||
81 | /* k1 is pointer to on-disk structure which is stored in little-endian | ||
82 | form. k2 is pointer to cpu variable. For key of items of the same | ||
83 | object this returns 0. | ||
84 | Returns: -1 if key1 < key2 | ||
85 | 0 if key1 == key2 | ||
86 | 1 if key1 > key2 */ | ||
87 | inline int comp_short_keys (const struct reiserfs_key * le_key, | ||
88 | const struct cpu_key * cpu_key) | ||
89 | { | ||
90 | __u32 * p_s_le_u32, * p_s_cpu_u32; | ||
91 | int n_key_length = REISERFS_SHORT_KEY_LEN; | ||
92 | |||
93 | p_s_le_u32 = (__u32 *)le_key; | ||
94 | p_s_cpu_u32 = (__u32 *)&cpu_key->on_disk_key; | ||
95 | for( ; n_key_length--; ++p_s_le_u32, ++p_s_cpu_u32 ) { | ||
96 | if ( le32_to_cpu (*p_s_le_u32) < *p_s_cpu_u32 ) | ||
97 | return -1; | ||
98 | if ( le32_to_cpu (*p_s_le_u32) > *p_s_cpu_u32 ) | ||
99 | return 1; | ||
100 | } | ||
101 | |||
102 | return 0; | ||
103 | } | ||
104 | |||
105 | |||
106 | /* k1 is pointer to on-disk structure which is stored in little-endian | ||
107 | form. k2 is pointer to cpu variable. | ||
108 | Compare keys using all 4 key fields. | ||
109 | Returns: -1 if key1 < key2 0 | ||
110 | if key1 = key2 1 if key1 > key2 */ | ||
111 | static inline int comp_keys (const struct reiserfs_key * le_key, const struct cpu_key * cpu_key) | ||
112 | { | ||
113 | int retval; | ||
114 | |||
115 | retval = comp_short_keys (le_key, cpu_key); | ||
116 | if (retval) | ||
117 | return retval; | ||
118 | if (le_key_k_offset (le_key_version(le_key), le_key) < cpu_key_k_offset (cpu_key)) | ||
119 | return -1; | ||
120 | if (le_key_k_offset (le_key_version(le_key), le_key) > cpu_key_k_offset (cpu_key)) | ||
121 | return 1; | ||
122 | |||
123 | if (cpu_key->key_length == 3) | ||
124 | return 0; | ||
125 | |||
126 | /* this part is needed only when tail conversion is in progress */ | ||
127 | if (le_key_k_type (le_key_version(le_key), le_key) < cpu_key_k_type (cpu_key)) | ||
128 | return -1; | ||
129 | |||
130 | if (le_key_k_type (le_key_version(le_key), le_key) > cpu_key_k_type (cpu_key)) | ||
131 | return 1; | ||
132 | |||
133 | return 0; | ||
134 | } | ||
135 | |||
136 | |||
137 | inline int comp_short_le_keys (const struct reiserfs_key * key1, const struct reiserfs_key * key2) | ||
138 | { | ||
139 | __u32 * p_s_1_u32, * p_s_2_u32; | ||
140 | int n_key_length = REISERFS_SHORT_KEY_LEN; | ||
141 | |||
142 | p_s_1_u32 = (__u32 *)key1; | ||
143 | p_s_2_u32 = (__u32 *)key2; | ||
144 | for( ; n_key_length--; ++p_s_1_u32, ++p_s_2_u32 ) { | ||
145 | if ( le32_to_cpu (*p_s_1_u32) < le32_to_cpu (*p_s_2_u32) ) | ||
146 | return -1; | ||
147 | if ( le32_to_cpu (*p_s_1_u32) > le32_to_cpu (*p_s_2_u32) ) | ||
148 | return 1; | ||
149 | } | ||
150 | return 0; | ||
151 | } | ||
152 | |||
153 | inline void le_key2cpu_key (struct cpu_key * to, const struct reiserfs_key * from) | ||
154 | { | ||
155 | to->on_disk_key.k_dir_id = le32_to_cpu (from->k_dir_id); | ||
156 | to->on_disk_key.k_objectid = le32_to_cpu (from->k_objectid); | ||
157 | |||
158 | // find out version of the key | ||
159 | to->version = le_key_version (from); | ||
160 | if (to->version == KEY_FORMAT_3_5) { | ||
161 | to->on_disk_key.u.k_offset_v1.k_offset = le32_to_cpu (from->u.k_offset_v1.k_offset); | ||
162 | to->on_disk_key.u.k_offset_v1.k_uniqueness = le32_to_cpu (from->u.k_offset_v1.k_uniqueness); | ||
163 | } else { | ||
164 | to->on_disk_key.u.k_offset_v2.k_offset = offset_v2_k_offset(&from->u.k_offset_v2); | ||
165 | to->on_disk_key.u.k_offset_v2.k_type = offset_v2_k_type(&from->u.k_offset_v2); | ||
166 | } | ||
167 | } | ||
168 | |||
169 | |||
170 | |||
171 | // this does not say which one is bigger, it only returns 1 if keys | ||
172 | // are not equal, 0 otherwise | ||
173 | inline int comp_le_keys (const struct reiserfs_key * k1, const struct reiserfs_key * k2) | ||
174 | { | ||
175 | return memcmp (k1, k2, sizeof (struct reiserfs_key)); | ||
176 | } | ||
177 | |||
178 | /************************************************************************** | ||
179 | * Binary search toolkit function * | ||
180 | * Search for an item in the array by the item key * | ||
181 | * Returns: 1 if found, 0 if not found; * | ||
182 | * *p_n_pos = number of the searched element if found, else the * | ||
183 | * number of the first element that is larger than p_v_key. * | ||
184 | **************************************************************************/ | ||
185 | /* For those not familiar with binary search: n_lbound is the leftmost item that it | ||
186 | could be, n_rbound the rightmost item that it could be. We examine the item | ||
187 | halfway between n_lbound and n_rbound, and that tells us either that we can increase | ||
188 | n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that | ||
189 | there are no possible items, and we have not found it. With each examination we | ||
190 | cut the number of possible items it could be by one more than half rounded down, | ||
191 | or we find it. */ | ||
192 | static inline int bin_search ( | ||
193 | const void * p_v_key, /* Key to search for. */ | ||
194 | const void * p_v_base,/* First item in the array. */ | ||
195 | int p_n_num, /* Number of items in the array. */ | ||
196 | int p_n_width, /* Item size in the array. | ||
197 | searched. Lest the reader be | ||
198 | confused, note that this is crafted | ||
199 | as a general function, and when it | ||
200 | is applied specifically to the array | ||
201 | of item headers in a node, p_n_width | ||
202 | is actually the item header size not | ||
203 | the item size. */ | ||
204 | int * p_n_pos /* Number of the searched for element. */ | ||
205 | ) { | ||
206 | int n_rbound, n_lbound, n_j; | ||
207 | |||
208 | for ( n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0))/2; n_lbound <= n_rbound; n_j = (n_rbound + n_lbound)/2 ) | ||
209 | switch( comp_keys((struct reiserfs_key *)((char * )p_v_base + n_j * p_n_width), (struct cpu_key *)p_v_key) ) { | ||
210 | case -1: n_lbound = n_j + 1; continue; | ||
211 | case 1: n_rbound = n_j - 1; continue; | ||
212 | case 0: *p_n_pos = n_j; return ITEM_FOUND; /* Key found in the array. */ | ||
213 | } | ||
214 | |||
215 | /* bin_search did not find given key, it returns position of key, | ||
216 | that is minimal and greater than the given one. */ | ||
217 | *p_n_pos = n_lbound; | ||
218 | return ITEM_NOT_FOUND; | ||
219 | } | ||
220 | |||
221 | #ifdef CONFIG_REISERFS_CHECK | ||
222 | extern struct tree_balance * cur_tb; | ||
223 | #endif | ||
224 | |||
225 | |||
226 | |||
227 | /* Minimal possible key. It is never in the tree. */ | ||
228 | const struct reiserfs_key MIN_KEY = {0, 0, {{0, 0},}}; | ||
229 | |||
230 | /* Maximal possible key. It is never in the tree. */ | ||
231 | const struct reiserfs_key MAX_KEY = {0xffffffff, 0xffffffff, {{0xffffffff, 0xffffffff},}}; | ||
232 | |||
233 | |||
234 | /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom | ||
235 | of the path, and going upwards. We must check the path's validity at each step. If the key is not in | ||
236 | the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this | ||
237 | case we return a special key, either MIN_KEY or MAX_KEY. */ | ||
238 | static inline const struct reiserfs_key * get_lkey ( | ||
239 | const struct path * p_s_chk_path, | ||
240 | const struct super_block * p_s_sb | ||
241 | ) { | ||
242 | int n_position, n_path_offset = p_s_chk_path->path_length; | ||
243 | struct buffer_head * p_s_parent; | ||
244 | |||
245 | RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET, | ||
246 | "PAP-5010: invalid offset in the path"); | ||
247 | |||
248 | /* While not higher in path than first element. */ | ||
249 | while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) { | ||
250 | |||
251 | RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)), | ||
252 | "PAP-5020: parent is not uptodate"); | ||
253 | |||
254 | /* Parent at the path is not in the tree now. */ | ||
255 | if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) ) | ||
256 | return &MAX_KEY; | ||
257 | /* Check whether position in the parent is correct. */ | ||
258 | if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) ) | ||
259 | return &MAX_KEY; | ||
260 | /* Check whether parent at the path really points to the child. */ | ||
261 | if ( B_N_CHILD_NUM(p_s_parent, n_position) != | ||
262 | PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr ) | ||
263 | return &MAX_KEY; | ||
264 | /* Return delimiting key if position in the parent is not equal to zero. */ | ||
265 | if ( n_position ) | ||
266 | return B_N_PDELIM_KEY(p_s_parent, n_position - 1); | ||
267 | } | ||
268 | /* Return MIN_KEY if we are in the root of the buffer tree. */ | ||
269 | if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | ||
270 | SB_ROOT_BLOCK (p_s_sb) ) | ||
271 | return &MIN_KEY; | ||
272 | return &MAX_KEY; | ||
273 | } | ||
274 | |||
275 | |||
276 | /* Get delimiting key of the buffer at the path and its right neighbor. */ | ||
277 | inline const struct reiserfs_key * get_rkey ( | ||
278 | const struct path * p_s_chk_path, | ||
279 | const struct super_block * p_s_sb | ||
280 | ) { | ||
281 | int n_position, | ||
282 | n_path_offset = p_s_chk_path->path_length; | ||
283 | struct buffer_head * p_s_parent; | ||
284 | |||
285 | RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET, | ||
286 | "PAP-5030: invalid offset in the path"); | ||
287 | |||
288 | while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) { | ||
289 | |||
290 | RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)), | ||
291 | "PAP-5040: parent is not uptodate"); | ||
292 | |||
293 | /* Parent at the path is not in the tree now. */ | ||
294 | if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) ) | ||
295 | return &MIN_KEY; | ||
296 | /* Check whether position in the parent is correct. */ | ||
297 | if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) ) | ||
298 | return &MIN_KEY; | ||
299 | /* Check whether parent at the path really points to the child. */ | ||
300 | if ( B_N_CHILD_NUM(p_s_parent, n_position) != | ||
301 | PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr ) | ||
302 | return &MIN_KEY; | ||
303 | /* Return delimiting key if position in the parent is not the last one. */ | ||
304 | if ( n_position != B_NR_ITEMS(p_s_parent) ) | ||
305 | return B_N_PDELIM_KEY(p_s_parent, n_position); | ||
306 | } | ||
307 | /* Return MAX_KEY if we are in the root of the buffer tree. */ | ||
308 | if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | ||
309 | SB_ROOT_BLOCK (p_s_sb) ) | ||
310 | return &MAX_KEY; | ||
311 | return &MIN_KEY; | ||
312 | } | ||
313 | |||
314 | |||
315 | /* Check whether a key is contained in the tree rooted from a buffer at a path. */ | ||
316 | /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in | ||
317 | the path. These delimiting keys are stored at least one level above that buffer in the tree. If the | ||
318 | buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in | ||
319 | this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */ | ||
320 | static inline int key_in_buffer ( | ||
321 | struct path * p_s_chk_path, /* Path which should be checked. */ | ||
322 | const struct cpu_key * p_s_key, /* Key which should be checked. */ | ||
323 | struct super_block * p_s_sb /* Super block pointer. */ | ||
324 | ) { | ||
325 | |||
326 | RFALSE( ! p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET || | ||
327 | p_s_chk_path->path_length > MAX_HEIGHT, | ||
328 | "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", | ||
329 | p_s_key, p_s_chk_path->path_length); | ||
330 | RFALSE( !PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev, | ||
331 | "PAP-5060: device must not be NODEV"); | ||
332 | |||
333 | if ( comp_keys(get_lkey(p_s_chk_path, p_s_sb), p_s_key) == 1 ) | ||
334 | /* left delimiting key is bigger, that the key we look for */ | ||
335 | return 0; | ||
336 | // if ( comp_keys(p_s_key, get_rkey(p_s_chk_path, p_s_sb)) != -1 ) | ||
337 | if ( comp_keys(get_rkey(p_s_chk_path, p_s_sb), p_s_key) != 1 ) | ||
338 | /* p_s_key must be less than right delimitiing key */ | ||
339 | return 0; | ||
340 | return 1; | ||
341 | } | ||
342 | |||
343 | |||
344 | inline void decrement_bcount( | ||
345 | struct buffer_head * p_s_bh | ||
346 | ) { | ||
347 | if ( p_s_bh ) { | ||
348 | if ( atomic_read (&(p_s_bh->b_count)) ) { | ||
349 | put_bh(p_s_bh) ; | ||
350 | return; | ||
351 | } | ||
352 | reiserfs_panic(NULL, "PAP-5070: decrement_bcount: trying to free free buffer %b", p_s_bh); | ||
353 | } | ||
354 | } | ||
355 | |||
356 | |||
357 | /* Decrement b_count field of the all buffers in the path. */ | ||
358 | void decrement_counters_in_path ( | ||
359 | struct path * p_s_search_path | ||
360 | ) { | ||
361 | int n_path_offset = p_s_search_path->path_length; | ||
362 | |||
363 | RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET || | ||
364 | n_path_offset > EXTENDED_MAX_HEIGHT - 1, | ||
365 | "PAP-5080: invalid path offset of %d", n_path_offset); | ||
366 | |||
367 | while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) { | ||
368 | struct buffer_head * bh; | ||
369 | |||
370 | bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--); | ||
371 | decrement_bcount (bh); | ||
372 | } | ||
373 | p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | ||
374 | } | ||
375 | |||
376 | |||
377 | int reiserfs_check_path(struct path *p) { | ||
378 | RFALSE( p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, | ||
379 | "path not properly relsed") ; | ||
380 | return 0 ; | ||
381 | } | ||
382 | |||
383 | |||
384 | /* Release all buffers in the path. Restore dirty bits clean | ||
385 | ** when preparing the buffer for the log | ||
386 | ** | ||
387 | ** only called from fix_nodes() | ||
388 | */ | ||
389 | void pathrelse_and_restore ( | ||
390 | struct super_block *s, | ||
391 | struct path * p_s_search_path | ||
392 | ) { | ||
393 | int n_path_offset = p_s_search_path->path_length; | ||
394 | |||
395 | RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, | ||
396 | "clm-4000: invalid path offset"); | ||
397 | |||
398 | while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) { | ||
399 | reiserfs_restore_prepared_buffer(s, PATH_OFFSET_PBUFFER(p_s_search_path, | ||
400 | n_path_offset)); | ||
401 | brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--)); | ||
402 | } | ||
403 | p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | ||
404 | } | ||
405 | |||
406 | /* Release all buffers in the path. */ | ||
407 | void pathrelse ( | ||
408 | struct path * p_s_search_path | ||
409 | ) { | ||
410 | int n_path_offset = p_s_search_path->path_length; | ||
411 | |||
412 | RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, | ||
413 | "PAP-5090: invalid path offset"); | ||
414 | |||
415 | while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) | ||
416 | brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--)); | ||
417 | |||
418 | p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | ||
419 | } | ||
420 | |||
421 | |||
422 | |||
423 | static int is_leaf (char * buf, int blocksize, struct buffer_head * bh) | ||
424 | { | ||
425 | struct block_head * blkh; | ||
426 | struct item_head * ih; | ||
427 | int used_space; | ||
428 | int prev_location; | ||
429 | int i; | ||
430 | int nr; | ||
431 | |||
432 | blkh = (struct block_head *)buf; | ||
433 | if ( blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { | ||
434 | reiserfs_warning (NULL, "is_leaf: this should be caught earlier"); | ||
435 | return 0; | ||
436 | } | ||
437 | |||
438 | nr = blkh_nr_item(blkh); | ||
439 | if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { | ||
440 | /* item number is too big or too small */ | ||
441 | reiserfs_warning (NULL, "is_leaf: nr_item seems wrong: %z", bh); | ||
442 | return 0; | ||
443 | } | ||
444 | ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; | ||
445 | used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location (ih)); | ||
446 | if (used_space != blocksize - blkh_free_space(blkh)) { | ||
447 | /* free space does not match to calculated amount of use space */ | ||
448 | reiserfs_warning (NULL, "is_leaf: free space seems wrong: %z", bh); | ||
449 | return 0; | ||
450 | } | ||
451 | |||
452 | // FIXME: it is_leaf will hit performance too much - we may have | ||
453 | // return 1 here | ||
454 | |||
455 | /* check tables of item heads */ | ||
456 | ih = (struct item_head *)(buf + BLKH_SIZE); | ||
457 | prev_location = blocksize; | ||
458 | for (i = 0; i < nr; i ++, ih ++) { | ||
459 | if ( le_ih_k_type(ih) == TYPE_ANY) { | ||
460 | reiserfs_warning (NULL, "is_leaf: wrong item type for item %h",ih); | ||
461 | return 0; | ||
462 | } | ||
463 | if (ih_location (ih) >= blocksize || ih_location (ih) < IH_SIZE * nr) { | ||
464 | reiserfs_warning (NULL, "is_leaf: item location seems wrong: %h", ih); | ||
465 | return 0; | ||
466 | } | ||
467 | if (ih_item_len (ih) < 1 || ih_item_len (ih) > MAX_ITEM_LEN (blocksize)) { | ||
468 | reiserfs_warning (NULL, "is_leaf: item length seems wrong: %h", ih); | ||
469 | return 0; | ||
470 | } | ||
471 | if (prev_location - ih_location (ih) != ih_item_len (ih)) { | ||
472 | reiserfs_warning (NULL, "is_leaf: item location seems wrong (second one): %h", ih); | ||
473 | return 0; | ||
474 | } | ||
475 | prev_location = ih_location (ih); | ||
476 | } | ||
477 | |||
478 | // one may imagine much more checks | ||
479 | return 1; | ||
480 | } | ||
481 | |||
482 | |||
483 | /* returns 1 if buf looks like an internal node, 0 otherwise */ | ||
484 | static int is_internal (char * buf, int blocksize, struct buffer_head * bh) | ||
485 | { | ||
486 | struct block_head * blkh; | ||
487 | int nr; | ||
488 | int used_space; | ||
489 | |||
490 | blkh = (struct block_head *)buf; | ||
491 | nr = blkh_level(blkh); | ||
492 | if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { | ||
493 | /* this level is not possible for internal nodes */ | ||
494 | reiserfs_warning (NULL, "is_internal: this should be caught earlier"); | ||
495 | return 0; | ||
496 | } | ||
497 | |||
498 | nr = blkh_nr_item(blkh); | ||
499 | if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { | ||
500 | /* for internal which is not root we might check min number of keys */ | ||
501 | reiserfs_warning (NULL, "is_internal: number of key seems wrong: %z", bh); | ||
502 | return 0; | ||
503 | } | ||
504 | |||
505 | used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); | ||
506 | if (used_space != blocksize - blkh_free_space(blkh)) { | ||
507 | reiserfs_warning (NULL, "is_internal: free space seems wrong: %z", bh); | ||
508 | return 0; | ||
509 | } | ||
510 | |||
511 | // one may imagine much more checks | ||
512 | return 1; | ||
513 | } | ||
514 | |||
515 | |||
516 | // make sure that bh contains formatted node of reiserfs tree of | ||
517 | // 'level'-th level | ||
518 | static int is_tree_node (struct buffer_head * bh, int level) | ||
519 | { | ||
520 | if (B_LEVEL (bh) != level) { | ||
521 | reiserfs_warning (NULL, "is_tree_node: node level %d does not match to the expected one %d", | ||
522 | B_LEVEL (bh), level); | ||
523 | return 0; | ||
524 | } | ||
525 | if (level == DISK_LEAF_NODE_LEVEL) | ||
526 | return is_leaf (bh->b_data, bh->b_size, bh); | ||
527 | |||
528 | return is_internal (bh->b_data, bh->b_size, bh); | ||
529 | } | ||
530 | |||
531 | |||
532 | |||
533 | #define SEARCH_BY_KEY_READA 16 | ||
534 | |||
535 | /* The function is NOT SCHEDULE-SAFE! */ | ||
536 | static void search_by_key_reada (struct super_block * s, | ||
537 | struct buffer_head **bh, | ||
538 | unsigned long *b, int num) | ||
539 | { | ||
540 | int i,j; | ||
541 | |||
542 | for (i = 0 ; i < num ; i++) { | ||
543 | bh[i] = sb_getblk (s, b[i]); | ||
544 | } | ||
545 | for (j = 0 ; j < i ; j++) { | ||
546 | /* | ||
547 | * note, this needs attention if we are getting rid of the BKL | ||
548 | * you have to make sure the prepared bit isn't set on this buffer | ||
549 | */ | ||
550 | if (!buffer_uptodate(bh[j])) | ||
551 | ll_rw_block(READA, 1, bh + j); | ||
552 | brelse(bh[j]); | ||
553 | } | ||
554 | } | ||
555 | |||
556 | /************************************************************************** | ||
557 | * Algorithm SearchByKey * | ||
558 | * look for item in the Disk S+Tree by its key * | ||
559 | * Input: p_s_sb - super block * | ||
560 | * p_s_key - pointer to the key to search * | ||
561 | * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR * | ||
562 | * p_s_search_path - path from the root to the needed leaf * | ||
563 | **************************************************************************/ | ||
564 | |||
565 | /* This function fills up the path from the root to the leaf as it | ||
566 | descends the tree looking for the key. It uses reiserfs_bread to | ||
567 | try to find buffers in the cache given their block number. If it | ||
568 | does not find them in the cache it reads them from disk. For each | ||
569 | node search_by_key finds using reiserfs_bread it then uses | ||
570 | bin_search to look through that node. bin_search will find the | ||
571 | position of the block_number of the next node if it is looking | ||
572 | through an internal node. If it is looking through a leaf node | ||
573 | bin_search will find the position of the item which has key either | ||
574 | equal to given key, or which is the maximal key less than the given | ||
575 | key. search_by_key returns a path that must be checked for the | ||
576 | correctness of the top of the path but need not be checked for the | ||
577 | correctness of the bottom of the path */ | ||
578 | /* The function is NOT SCHEDULE-SAFE! */ | ||
579 | int search_by_key (struct super_block * p_s_sb, | ||
580 | const struct cpu_key * p_s_key, /* Key to search. */ | ||
581 | struct path * p_s_search_path, /* This structure was | ||
582 | allocated and initialized | ||
583 | by the calling | ||
584 | function. It is filled up | ||
585 | by this function. */ | ||
586 | int n_stop_level /* How far down the tree to search. To | ||
587 | stop at leaf level - set to | ||
588 | DISK_LEAF_NODE_LEVEL */ | ||
589 | ) { | ||
590 | int n_block_number; | ||
591 | int expected_level; | ||
592 | struct buffer_head * p_s_bh; | ||
593 | struct path_element * p_s_last_element; | ||
594 | int n_node_level, n_retval; | ||
595 | int right_neighbor_of_leaf_node; | ||
596 | int fs_gen; | ||
597 | struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; | ||
598 | unsigned long reada_blocks[SEARCH_BY_KEY_READA]; | ||
599 | int reada_count = 0; | ||
600 | |||
601 | #ifdef CONFIG_REISERFS_CHECK | ||
602 | int n_repeat_counter = 0; | ||
603 | #endif | ||
604 | |||
605 | PROC_INFO_INC( p_s_sb, search_by_key ); | ||
606 | |||
607 | /* As we add each node to a path we increase its count. This means that | ||
608 | we must be careful to release all nodes in a path before we either | ||
609 | discard the path struct or re-use the path struct, as we do here. */ | ||
610 | |||
611 | decrement_counters_in_path(p_s_search_path); | ||
612 | |||
613 | right_neighbor_of_leaf_node = 0; | ||
614 | |||
615 | /* With each iteration of this loop we search through the items in the | ||
616 | current node, and calculate the next current node(next path element) | ||
617 | for the next iteration of this loop.. */ | ||
618 | n_block_number = SB_ROOT_BLOCK (p_s_sb); | ||
619 | expected_level = -1; | ||
620 | while ( 1 ) { | ||
621 | |||
622 | #ifdef CONFIG_REISERFS_CHECK | ||
623 | if ( !(++n_repeat_counter % 50000) ) | ||
624 | reiserfs_warning (p_s_sb, "PAP-5100: search_by_key: %s:" | ||
625 | "there were %d iterations of while loop " | ||
626 | "looking for key %K", | ||
627 | current->comm, n_repeat_counter, p_s_key); | ||
628 | #endif | ||
629 | |||
630 | /* prep path to have another element added to it. */ | ||
631 | p_s_last_element = PATH_OFFSET_PELEMENT(p_s_search_path, ++p_s_search_path->path_length); | ||
632 | fs_gen = get_generation (p_s_sb); | ||
633 | |||
634 | /* Read the next tree node, and set the last element in the path to | ||
635 | have a pointer to it. */ | ||
636 | if ((p_s_bh = p_s_last_element->pe_buffer = | ||
637 | sb_getblk(p_s_sb, n_block_number)) ) { | ||
638 | if (!buffer_uptodate(p_s_bh) && reada_count > 1) { | ||
639 | search_by_key_reada (p_s_sb, reada_bh, | ||
640 | reada_blocks, reada_count); | ||
641 | } | ||
642 | ll_rw_block(READ, 1, &p_s_bh); | ||
643 | wait_on_buffer(p_s_bh); | ||
644 | if (!buffer_uptodate(p_s_bh)) | ||
645 | goto io_error; | ||
646 | } else { | ||
647 | io_error: | ||
648 | p_s_search_path->path_length --; | ||
649 | pathrelse(p_s_search_path); | ||
650 | return IO_ERROR; | ||
651 | } | ||
652 | reada_count = 0; | ||
653 | if (expected_level == -1) | ||
654 | expected_level = SB_TREE_HEIGHT (p_s_sb); | ||
655 | expected_level --; | ||
656 | |||
657 | /* It is possible that schedule occurred. We must check whether the key | ||
658 | to search is still in the tree rooted from the current buffer. If | ||
659 | not then repeat search from the root. */ | ||
660 | if ( fs_changed (fs_gen, p_s_sb) && | ||
661 | (!B_IS_IN_TREE (p_s_bh) || | ||
662 | B_LEVEL(p_s_bh) != expected_level || | ||
663 | !key_in_buffer(p_s_search_path, p_s_key, p_s_sb))) { | ||
664 | PROC_INFO_INC( p_s_sb, search_by_key_fs_changed ); | ||
665 | PROC_INFO_INC( p_s_sb, search_by_key_restarted ); | ||
666 | PROC_INFO_INC( p_s_sb, sbk_restarted[ expected_level - 1 ] ); | ||
667 | decrement_counters_in_path(p_s_search_path); | ||
668 | |||
669 | /* Get the root block number so that we can repeat the search | ||
670 | starting from the root. */ | ||
671 | n_block_number = SB_ROOT_BLOCK (p_s_sb); | ||
672 | expected_level = -1; | ||
673 | right_neighbor_of_leaf_node = 0; | ||
674 | |||
675 | /* repeat search from the root */ | ||
676 | continue; | ||
677 | } | ||
678 | |||
679 | /* only check that the key is in the buffer if p_s_key is not | ||
680 | equal to the MAX_KEY. Latter case is only possible in | ||
681 | "finish_unfinished()" processing during mount. */ | ||
682 | RFALSE( comp_keys( &MAX_KEY, p_s_key ) && | ||
683 | ! key_in_buffer(p_s_search_path, p_s_key, p_s_sb), | ||
684 | "PAP-5130: key is not in the buffer"); | ||
685 | #ifdef CONFIG_REISERFS_CHECK | ||
686 | if ( cur_tb ) { | ||
687 | print_cur_tb ("5140"); | ||
688 | reiserfs_panic(p_s_sb, "PAP-5140: search_by_key: schedule occurred in do_balance!"); | ||
689 | } | ||
690 | #endif | ||
691 | |||
692 | // make sure, that the node contents look like a node of | ||
693 | // certain level | ||
694 | if (!is_tree_node (p_s_bh, expected_level)) { | ||
695 | reiserfs_warning (p_s_sb, "vs-5150: search_by_key: " | ||
696 | "invalid format found in block %ld. Fsck?", | ||
697 | p_s_bh->b_blocknr); | ||
698 | pathrelse (p_s_search_path); | ||
699 | return IO_ERROR; | ||
700 | } | ||
701 | |||
702 | /* ok, we have acquired next formatted node in the tree */ | ||
703 | n_node_level = B_LEVEL (p_s_bh); | ||
704 | |||
705 | PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level - 1 ); | ||
706 | |||
707 | RFALSE( n_node_level < n_stop_level, | ||
708 | "vs-5152: tree level (%d) is less than stop level (%d)", | ||
709 | n_node_level, n_stop_level); | ||
710 | |||
711 | n_retval = bin_search( p_s_key, B_N_PITEM_HEAD(p_s_bh, 0), | ||
712 | B_NR_ITEMS(p_s_bh), | ||
713 | ( n_node_level == DISK_LEAF_NODE_LEVEL ) ? IH_SIZE : KEY_SIZE, | ||
714 | &(p_s_last_element->pe_position)); | ||
715 | if (n_node_level == n_stop_level) { | ||
716 | return n_retval; | ||
717 | } | ||
718 | |||
719 | /* we are not in the stop level */ | ||
720 | if (n_retval == ITEM_FOUND) | ||
721 | /* item has been found, so we choose the pointer which is to the right of the found one */ | ||
722 | p_s_last_element->pe_position++; | ||
723 | |||
724 | /* if item was not found we choose the position which is to | ||
725 | the left of the found item. This requires no code, | ||
726 | bin_search did it already.*/ | ||
727 | |||
728 | /* So we have chosen a position in the current node which is | ||
729 | an internal node. Now we calculate child block number by | ||
730 | position in the node. */ | ||
731 | n_block_number = B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position); | ||
732 | |||
733 | /* if we are going to read leaf nodes, try for read ahead as well */ | ||
734 | if ((p_s_search_path->reada & PATH_READA) && | ||
735 | n_node_level == DISK_LEAF_NODE_LEVEL + 1) | ||
736 | { | ||
737 | int pos = p_s_last_element->pe_position; | ||
738 | int limit = B_NR_ITEMS(p_s_bh); | ||
739 | struct reiserfs_key *le_key; | ||
740 | |||
741 | if (p_s_search_path->reada & PATH_READA_BACK) | ||
742 | limit = 0; | ||
743 | while(reada_count < SEARCH_BY_KEY_READA) { | ||
744 | if (pos == limit) | ||
745 | break; | ||
746 | reada_blocks[reada_count++] = B_N_CHILD_NUM(p_s_bh, pos); | ||
747 | if (p_s_search_path->reada & PATH_READA_BACK) | ||
748 | pos--; | ||
749 | else | ||
750 | pos++; | ||
751 | |||
752 | /* | ||
753 | * check to make sure we're in the same object | ||
754 | */ | ||
755 | le_key = B_N_PDELIM_KEY(p_s_bh, pos); | ||
756 | if (le32_to_cpu(le_key->k_objectid) != | ||
757 | p_s_key->on_disk_key.k_objectid) | ||
758 | { | ||
759 | break; | ||
760 | } | ||
761 | } | ||
762 | } | ||
763 | } | ||
764 | } | ||
765 | |||
766 | |||
767 | /* Form the path to an item and position in this item which contains | ||
768 | file byte defined by p_s_key. If there is no such item | ||
769 | corresponding to the key, we point the path to the item with | ||
770 | maximal key less than p_s_key, and *p_n_pos_in_item is set to one | ||
771 | past the last entry/byte in the item. If searching for entry in a | ||
772 | directory item, and it is not found, *p_n_pos_in_item is set to one | ||
773 | entry more than the entry with maximal key which is less than the | ||
774 | sought key. | ||
775 | |||
776 | Note that if there is no entry in this same node which is one more, | ||
777 | then we point to an imaginary entry. for direct items, the | ||
778 | position is in units of bytes, for indirect items the position is | ||
779 | in units of blocknr entries, for directory items the position is in | ||
780 | units of directory entries. */ | ||
781 | |||
782 | /* The function is NOT SCHEDULE-SAFE! */ | ||
783 | int search_for_position_by_key (struct super_block * p_s_sb, /* Pointer to the super block. */ | ||
784 | const struct cpu_key * p_cpu_key, /* Key to search (cpu variable) */ | ||
785 | struct path * p_s_search_path /* Filled up by this function. */ | ||
786 | ) { | ||
787 | struct item_head * p_le_ih; /* pointer to on-disk structure */ | ||
788 | int n_blk_size; | ||
789 | loff_t item_offset, offset; | ||
790 | struct reiserfs_dir_entry de; | ||
791 | int retval; | ||
792 | |||
793 | /* If searching for directory entry. */ | ||
794 | if ( is_direntry_cpu_key (p_cpu_key) ) | ||
795 | return search_by_entry_key (p_s_sb, p_cpu_key, p_s_search_path, &de); | ||
796 | |||
797 | /* If not searching for directory entry. */ | ||
798 | |||
799 | /* If item is found. */ | ||
800 | retval = search_item (p_s_sb, p_cpu_key, p_s_search_path); | ||
801 | if (retval == IO_ERROR) | ||
802 | return retval; | ||
803 | if ( retval == ITEM_FOUND ) { | ||
804 | |||
805 | RFALSE( ! ih_item_len( | ||
806 | B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path), | ||
807 | PATH_LAST_POSITION(p_s_search_path))), | ||
808 | "PAP-5165: item length equals zero"); | ||
809 | |||
810 | pos_in_item(p_s_search_path) = 0; | ||
811 | return POSITION_FOUND; | ||
812 | } | ||
813 | |||
814 | RFALSE( ! PATH_LAST_POSITION(p_s_search_path), | ||
815 | "PAP-5170: position equals zero"); | ||
816 | |||
817 | /* Item is not found. Set path to the previous item. */ | ||
818 | p_le_ih = B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path), --PATH_LAST_POSITION(p_s_search_path)); | ||
819 | n_blk_size = p_s_sb->s_blocksize; | ||
820 | |||
821 | if (comp_short_keys (&(p_le_ih->ih_key), p_cpu_key)) { | ||
822 | return FILE_NOT_FOUND; | ||
823 | } | ||
824 | |||
825 | // FIXME: quite ugly this far | ||
826 | |||
827 | item_offset = le_ih_k_offset (p_le_ih); | ||
828 | offset = cpu_key_k_offset (p_cpu_key); | ||
829 | |||
830 | /* Needed byte is contained in the item pointed to by the path.*/ | ||
831 | if (item_offset <= offset && | ||
832 | item_offset + op_bytes_number (p_le_ih, n_blk_size) > offset) { | ||
833 | pos_in_item (p_s_search_path) = offset - item_offset; | ||
834 | if ( is_indirect_le_ih(p_le_ih) ) { | ||
835 | pos_in_item (p_s_search_path) /= n_blk_size; | ||
836 | } | ||
837 | return POSITION_FOUND; | ||
838 | } | ||
839 | |||
840 | /* Needed byte is not contained in the item pointed to by the | ||
841 | path. Set pos_in_item out of the item. */ | ||
842 | if ( is_indirect_le_ih (p_le_ih) ) | ||
843 | pos_in_item (p_s_search_path) = ih_item_len(p_le_ih) / UNFM_P_SIZE; | ||
844 | else | ||
845 | pos_in_item (p_s_search_path) = ih_item_len( p_le_ih ); | ||
846 | |||
847 | return POSITION_NOT_FOUND; | ||
848 | } | ||
849 | |||
850 | |||
851 | /* Compare given item and item pointed to by the path. */ | ||
852 | int comp_items (const struct item_head * stored_ih, const struct path * p_s_path) | ||
853 | { | ||
854 | struct buffer_head * p_s_bh; | ||
855 | struct item_head * ih; | ||
856 | |||
857 | /* Last buffer at the path is not in the tree. */ | ||
858 | if ( ! B_IS_IN_TREE(p_s_bh = PATH_PLAST_BUFFER(p_s_path)) ) | ||
859 | return 1; | ||
860 | |||
861 | /* Last path position is invalid. */ | ||
862 | if ( PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(p_s_bh) ) | ||
863 | return 1; | ||
864 | |||
865 | /* we need only to know, whether it is the same item */ | ||
866 | ih = get_ih (p_s_path); | ||
867 | return memcmp (stored_ih, ih, IH_SIZE); | ||
868 | } | ||
869 | |||
870 | |||
871 | /* unformatted nodes are not logged anymore, ever. This is safe | ||
872 | ** now | ||
873 | */ | ||
874 | #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) | ||
875 | |||
876 | // block can not be forgotten as it is in I/O or held by someone | ||
877 | #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) | ||
878 | |||
879 | |||
880 | |||
881 | // prepare for delete or cut of direct item | ||
882 | static inline int prepare_for_direct_item (struct path * path, | ||
883 | struct item_head * le_ih, | ||
884 | struct inode * inode, | ||
885 | loff_t new_file_length, | ||
886 | int * cut_size) | ||
887 | { | ||
888 | loff_t round_len; | ||
889 | |||
890 | |||
891 | if ( new_file_length == max_reiserfs_offset (inode) ) { | ||
892 | /* item has to be deleted */ | ||
893 | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | ||
894 | return M_DELETE; | ||
895 | } | ||
896 | |||
897 | // new file gets truncated | ||
898 | if (get_inode_item_key_version (inode) == KEY_FORMAT_3_6) { | ||
899 | // | ||
900 | round_len = ROUND_UP (new_file_length); | ||
901 | /* this was n_new_file_length < le_ih ... */ | ||
902 | if ( round_len < le_ih_k_offset (le_ih) ) { | ||
903 | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | ||
904 | return M_DELETE; /* Delete this item. */ | ||
905 | } | ||
906 | /* Calculate first position and size for cutting from item. */ | ||
907 | pos_in_item (path) = round_len - (le_ih_k_offset (le_ih) - 1); | ||
908 | *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); | ||
909 | |||
910 | return M_CUT; /* Cut from this item. */ | ||
911 | } | ||
912 | |||
913 | |||
914 | // old file: items may have any length | ||
915 | |||
916 | if ( new_file_length < le_ih_k_offset (le_ih) ) { | ||
917 | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | ||
918 | return M_DELETE; /* Delete this item. */ | ||
919 | } | ||
920 | /* Calculate first position and size for cutting from item. */ | ||
921 | *cut_size = -(ih_item_len(le_ih) - | ||
922 | (pos_in_item (path) = new_file_length + 1 - le_ih_k_offset (le_ih))); | ||
923 | return M_CUT; /* Cut from this item. */ | ||
924 | } | ||
925 | |||
926 | |||
927 | static inline int prepare_for_direntry_item (struct path * path, | ||
928 | struct item_head * le_ih, | ||
929 | struct inode * inode, | ||
930 | loff_t new_file_length, | ||
931 | int * cut_size) | ||
932 | { | ||
933 | if (le_ih_k_offset (le_ih) == DOT_OFFSET && | ||
934 | new_file_length == max_reiserfs_offset (inode)) { | ||
935 | RFALSE( ih_entry_count (le_ih) != 2, | ||
936 | "PAP-5220: incorrect empty directory item (%h)", le_ih); | ||
937 | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | ||
938 | return M_DELETE; /* Delete the directory item containing "." and ".." entry. */ | ||
939 | } | ||
940 | |||
941 | if ( ih_entry_count (le_ih) == 1 ) { | ||
942 | /* Delete the directory item such as there is one record only | ||
943 | in this item*/ | ||
944 | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | ||
945 | return M_DELETE; | ||
946 | } | ||
947 | |||
948 | /* Cut one record from the directory item. */ | ||
949 | *cut_size = -(DEH_SIZE + entry_length (get_last_bh (path), le_ih, pos_in_item (path))); | ||
950 | return M_CUT; | ||
951 | } | ||
952 | |||
953 | |||
954 | /* If the path points to a directory or direct item, calculate mode and the size cut, for balance. | ||
955 | If the path points to an indirect item, remove some number of its unformatted nodes. | ||
956 | In case of file truncate calculate whether this item must be deleted/truncated or last | ||
957 | unformatted node of this item will be converted to a direct item. | ||
958 | This function returns a determination of what balance mode the calling function should employ. */ | ||
959 | static char prepare_for_delete_or_cut( | ||
960 | struct reiserfs_transaction_handle *th, | ||
961 | struct inode * inode, | ||
962 | struct path * p_s_path, | ||
963 | const struct cpu_key * p_s_item_key, | ||
964 | int * p_n_removed, /* Number of unformatted nodes which were removed | ||
965 | from end of the file. */ | ||
966 | int * p_n_cut_size, | ||
967 | unsigned long long n_new_file_length /* MAX_KEY_OFFSET in case of delete. */ | ||
968 | ) { | ||
969 | struct super_block * p_s_sb = inode->i_sb; | ||
970 | struct item_head * p_le_ih = PATH_PITEM_HEAD(p_s_path); | ||
971 | struct buffer_head * p_s_bh = PATH_PLAST_BUFFER(p_s_path); | ||
972 | |||
973 | BUG_ON (!th->t_trans_id); | ||
974 | |||
975 | /* Stat_data item. */ | ||
976 | if ( is_statdata_le_ih (p_le_ih) ) { | ||
977 | |||
978 | RFALSE( n_new_file_length != max_reiserfs_offset (inode), | ||
979 | "PAP-5210: mode must be M_DELETE"); | ||
980 | |||
981 | *p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); | ||
982 | return M_DELETE; | ||
983 | } | ||
984 | |||
985 | |||
986 | /* Directory item. */ | ||
987 | if ( is_direntry_le_ih (p_le_ih) ) | ||
988 | return prepare_for_direntry_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size); | ||
989 | |||
990 | /* Direct item. */ | ||
991 | if ( is_direct_le_ih (p_le_ih) ) | ||
992 | return prepare_for_direct_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size); | ||
993 | |||
994 | |||
995 | /* Case of an indirect item. */ | ||
996 | { | ||
997 | int n_unfm_number, /* Number of the item unformatted nodes. */ | ||
998 | n_counter, | ||
999 | n_blk_size; | ||
1000 | __u32 * p_n_unfm_pointer; /* Pointer to the unformatted node number. */ | ||
1001 | __u32 tmp; | ||
1002 | struct item_head s_ih; /* Item header. */ | ||
1003 | char c_mode; /* Returned mode of the balance. */ | ||
1004 | int need_research; | ||
1005 | |||
1006 | |||
1007 | n_blk_size = p_s_sb->s_blocksize; | ||
1008 | |||
1009 | /* Search for the needed object indirect item until there are no unformatted nodes to be removed. */ | ||
1010 | do { | ||
1011 | need_research = 0; | ||
1012 | p_s_bh = PATH_PLAST_BUFFER(p_s_path); | ||
1013 | /* Copy indirect item header to a temp variable. */ | ||
1014 | copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path)); | ||
1015 | /* Calculate number of unformatted nodes in this item. */ | ||
1016 | n_unfm_number = I_UNFM_NUM(&s_ih); | ||
1017 | |||
1018 | RFALSE( ! is_indirect_le_ih(&s_ih) || ! n_unfm_number || | ||
1019 | pos_in_item (p_s_path) + 1 != n_unfm_number, | ||
1020 | "PAP-5240: invalid item %h " | ||
1021 | "n_unfm_number = %d *p_n_pos_in_item = %d", | ||
1022 | &s_ih, n_unfm_number, pos_in_item (p_s_path)); | ||
1023 | |||
1024 | /* Calculate balance mode and position in the item to remove unformatted nodes. */ | ||
1025 | if ( n_new_file_length == max_reiserfs_offset (inode) ) {/* Case of delete. */ | ||
1026 | pos_in_item (p_s_path) = 0; | ||
1027 | *p_n_cut_size = -(IH_SIZE + ih_item_len(&s_ih)); | ||
1028 | c_mode = M_DELETE; | ||
1029 | } | ||
1030 | else { /* Case of truncate. */ | ||
1031 | if ( n_new_file_length < le_ih_k_offset (&s_ih) ) { | ||
1032 | pos_in_item (p_s_path) = 0; | ||
1033 | *p_n_cut_size = -(IH_SIZE + ih_item_len(&s_ih)); | ||
1034 | c_mode = M_DELETE; /* Delete this item. */ | ||
1035 | } | ||
1036 | else { | ||
1037 | /* indirect item must be truncated starting from *p_n_pos_in_item-th position */ | ||
1038 | pos_in_item (p_s_path) = (n_new_file_length + n_blk_size - le_ih_k_offset (&s_ih) ) >> p_s_sb->s_blocksize_bits; | ||
1039 | |||
1040 | RFALSE( pos_in_item (p_s_path) > n_unfm_number, | ||
1041 | "PAP-5250: invalid position in the item"); | ||
1042 | |||
1043 | /* Either convert last unformatted node of indirect item to direct item or increase | ||
1044 | its free space. */ | ||
1045 | if ( pos_in_item (p_s_path) == n_unfm_number ) { | ||
1046 | *p_n_cut_size = 0; /* Nothing to cut. */ | ||
1047 | return M_CONVERT; /* Maybe convert last unformatted node to the direct item. */ | ||
1048 | } | ||
1049 | /* Calculate size to cut. */ | ||
1050 | *p_n_cut_size = -(ih_item_len(&s_ih) - pos_in_item(p_s_path) * UNFM_P_SIZE); | ||
1051 | |||
1052 | c_mode = M_CUT; /* Cut from this indirect item. */ | ||
1053 | } | ||
1054 | } | ||
1055 | |||
1056 | RFALSE( n_unfm_number <= pos_in_item (p_s_path), | ||
1057 | "PAP-5260: invalid position in the indirect item"); | ||
1058 | |||
1059 | /* pointers to be cut */ | ||
1060 | n_unfm_number -= pos_in_item (p_s_path); | ||
1061 | /* Set pointer to the last unformatted node pointer that is to be cut. */ | ||
1062 | p_n_unfm_pointer = (__u32 *)B_I_PITEM(p_s_bh, &s_ih) + I_UNFM_NUM(&s_ih) - 1 - *p_n_removed; | ||
1063 | |||
1064 | |||
1065 | /* We go through the unformatted nodes pointers of the indirect | ||
1066 | item and look for the unformatted nodes in the cache. If we | ||
1067 | found some of them we free it, zero corresponding indirect item | ||
1068 | entry and log buffer containing that indirect item. For this we | ||
1069 | need to prepare last path element for logging. If some | ||
1070 | unformatted node has b_count > 1 we must not free this | ||
1071 | unformatted node since it is in use. */ | ||
1072 | reiserfs_prepare_for_journal(p_s_sb, p_s_bh, 1); | ||
1073 | // note: path could be changed, first line in for loop takes care | ||
1074 | // of it | ||
1075 | |||
1076 | for (n_counter = *p_n_removed; | ||
1077 | n_counter < n_unfm_number; n_counter++, p_n_unfm_pointer-- ) { | ||
1078 | |||
1079 | cond_resched(); | ||
1080 | if (item_moved (&s_ih, p_s_path)) { | ||
1081 | need_research = 1 ; | ||
1082 | break; | ||
1083 | } | ||
1084 | RFALSE( p_n_unfm_pointer < (__u32 *)B_I_PITEM(p_s_bh, &s_ih) || | ||
1085 | p_n_unfm_pointer > (__u32 *)B_I_PITEM(p_s_bh, &s_ih) + I_UNFM_NUM(&s_ih) - 1, | ||
1086 | "vs-5265: pointer out of range"); | ||
1087 | |||
1088 | /* Hole, nothing to remove. */ | ||
1089 | if ( ! get_block_num(p_n_unfm_pointer,0) ) { | ||
1090 | (*p_n_removed)++; | ||
1091 | continue; | ||
1092 | } | ||
1093 | |||
1094 | (*p_n_removed)++; | ||
1095 | |||
1096 | tmp = get_block_num(p_n_unfm_pointer,0); | ||
1097 | put_block_num(p_n_unfm_pointer, 0, 0); | ||
1098 | journal_mark_dirty (th, p_s_sb, p_s_bh); | ||
1099 | reiserfs_free_block(th, inode, tmp, 1); | ||
1100 | if ( item_moved (&s_ih, p_s_path) ) { | ||
1101 | need_research = 1; | ||
1102 | break ; | ||
1103 | } | ||
1104 | } | ||
1105 | |||
1106 | /* a trick. If the buffer has been logged, this | ||
1107 | ** will do nothing. If we've broken the loop without | ||
1108 | ** logging it, it will restore the buffer | ||
1109 | ** | ||
1110 | */ | ||
1111 | reiserfs_restore_prepared_buffer(p_s_sb, p_s_bh); | ||
1112 | |||
1113 | /* This loop can be optimized. */ | ||
1114 | } while ( (*p_n_removed < n_unfm_number || need_research) && | ||
1115 | search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_FOUND ); | ||
1116 | |||
1117 | RFALSE( *p_n_removed < n_unfm_number, | ||
1118 | "PAP-5310: indirect item is not found"); | ||
1119 | RFALSE( item_moved (&s_ih, p_s_path), | ||
1120 | "after while, comp failed, retry") ; | ||
1121 | |||
1122 | if (c_mode == M_CUT) | ||
1123 | pos_in_item (p_s_path) *= UNFM_P_SIZE; | ||
1124 | return c_mode; | ||
1125 | } | ||
1126 | } | ||
1127 | |||
1128 | /* Calculate number of bytes which will be deleted or cut during balance */ | ||
1129 | static int calc_deleted_bytes_number( | ||
1130 | struct tree_balance * p_s_tb, | ||
1131 | char c_mode | ||
1132 | ) { | ||
1133 | int n_del_size; | ||
1134 | struct item_head * p_le_ih = PATH_PITEM_HEAD(p_s_tb->tb_path); | ||
1135 | |||
1136 | if ( is_statdata_le_ih (p_le_ih) ) | ||
1137 | return 0; | ||
1138 | |||
1139 | n_del_size = ( c_mode == M_DELETE ) ? ih_item_len(p_le_ih) : -p_s_tb->insert_size[0]; | ||
1140 | if ( is_direntry_le_ih (p_le_ih) ) { | ||
1141 | // return EMPTY_DIR_SIZE; /* We delete emty directoris only. */ | ||
1142 | // we can't use EMPTY_DIR_SIZE, as old format dirs have a different | ||
1143 | // empty size. ick. FIXME, is this right? | ||
1144 | // | ||
1145 | return n_del_size ; | ||
1146 | } | ||
1147 | |||
1148 | if ( is_indirect_le_ih (p_le_ih) ) | ||
1149 | n_del_size = (n_del_size/UNFM_P_SIZE)* | ||
1150 | (PATH_PLAST_BUFFER(p_s_tb->tb_path)->b_size);// - get_ih_free_space (p_le_ih); | ||
1151 | return n_del_size; | ||
1152 | } | ||
1153 | |||
1154 | static void init_tb_struct( | ||
1155 | struct reiserfs_transaction_handle *th, | ||
1156 | struct tree_balance * p_s_tb, | ||
1157 | struct super_block * p_s_sb, | ||
1158 | struct path * p_s_path, | ||
1159 | int n_size | ||
1160 | ) { | ||
1161 | |||
1162 | BUG_ON (!th->t_trans_id); | ||
1163 | |||
1164 | memset (p_s_tb,'\0',sizeof(struct tree_balance)); | ||
1165 | p_s_tb->transaction_handle = th ; | ||
1166 | p_s_tb->tb_sb = p_s_sb; | ||
1167 | p_s_tb->tb_path = p_s_path; | ||
1168 | PATH_OFFSET_PBUFFER(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; | ||
1169 | PATH_OFFSET_POSITION(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; | ||
1170 | p_s_tb->insert_size[0] = n_size; | ||
1171 | } | ||
1172 | |||
1173 | |||
1174 | |||
1175 | void padd_item (char * item, int total_length, int length) | ||
1176 | { | ||
1177 | int i; | ||
1178 | |||
1179 | for (i = total_length; i > length; ) | ||
1180 | item [--i] = 0; | ||
1181 | } | ||
1182 | |||
1183 | #ifdef REISERQUOTA_DEBUG | ||
1184 | char key2type(struct reiserfs_key *ih) | ||
1185 | { | ||
1186 | if (is_direntry_le_key(2, ih)) | ||
1187 | return 'd'; | ||
1188 | if (is_direct_le_key(2, ih)) | ||
1189 | return 'D'; | ||
1190 | if (is_indirect_le_key(2, ih)) | ||
1191 | return 'i'; | ||
1192 | if (is_statdata_le_key(2, ih)) | ||
1193 | return 's'; | ||
1194 | return 'u'; | ||
1195 | } | ||
1196 | |||
1197 | char head2type(struct item_head *ih) | ||
1198 | { | ||
1199 | if (is_direntry_le_ih(ih)) | ||
1200 | return 'd'; | ||
1201 | if (is_direct_le_ih(ih)) | ||
1202 | return 'D'; | ||
1203 | if (is_indirect_le_ih(ih)) | ||
1204 | return 'i'; | ||
1205 | if (is_statdata_le_ih(ih)) | ||
1206 | return 's'; | ||
1207 | return 'u'; | ||
1208 | } | ||
1209 | #endif | ||
1210 | |||
1211 | /* Delete object item. */ | ||
1212 | int reiserfs_delete_item (struct reiserfs_transaction_handle *th, | ||
1213 | struct path * p_s_path, /* Path to the deleted item. */ | ||
1214 | const struct cpu_key * p_s_item_key, /* Key to search for the deleted item. */ | ||
1215 | struct inode * p_s_inode,/* inode is here just to update i_blocks and quotas */ | ||
1216 | struct buffer_head * p_s_un_bh) /* NULL or unformatted node pointer. */ | ||
1217 | { | ||
1218 | struct super_block * p_s_sb = p_s_inode->i_sb; | ||
1219 | struct tree_balance s_del_balance; | ||
1220 | struct item_head s_ih; | ||
1221 | struct item_head *q_ih; | ||
1222 | int quota_cut_bytes; | ||
1223 | int n_ret_value, | ||
1224 | n_del_size, | ||
1225 | n_removed; | ||
1226 | |||
1227 | #ifdef CONFIG_REISERFS_CHECK | ||
1228 | char c_mode; | ||
1229 | int n_iter = 0; | ||
1230 | #endif | ||
1231 | |||
1232 | BUG_ON (!th->t_trans_id); | ||
1233 | |||
1234 | init_tb_struct(th, &s_del_balance, p_s_sb, p_s_path, 0/*size is unknown*/); | ||
1235 | |||
1236 | while ( 1 ) { | ||
1237 | n_removed = 0; | ||
1238 | |||
1239 | #ifdef CONFIG_REISERFS_CHECK | ||
1240 | n_iter++; | ||
1241 | c_mode = | ||
1242 | #endif | ||
1243 | prepare_for_delete_or_cut(th, p_s_inode, p_s_path, p_s_item_key, &n_removed, &n_del_size, max_reiserfs_offset (p_s_inode)); | ||
1244 | |||
1245 | RFALSE( c_mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); | ||
1246 | |||
1247 | copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path)); | ||
1248 | s_del_balance.insert_size[0] = n_del_size; | ||
1249 | |||
1250 | n_ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); | ||
1251 | if ( n_ret_value != REPEAT_SEARCH ) | ||
1252 | break; | ||
1253 | |||
1254 | PROC_INFO_INC( p_s_sb, delete_item_restarted ); | ||
1255 | |||
1256 | // file system changed, repeat search | ||
1257 | n_ret_value = search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path); | ||
1258 | if (n_ret_value == IO_ERROR) | ||
1259 | break; | ||
1260 | if (n_ret_value == FILE_NOT_FOUND) { | ||
1261 | reiserfs_warning (p_s_sb, "vs-5340: reiserfs_delete_item: " | ||
1262 | "no items of the file %K found", p_s_item_key); | ||
1263 | break; | ||
1264 | } | ||
1265 | } /* while (1) */ | ||
1266 | |||
1267 | if ( n_ret_value != CARRY_ON ) { | ||
1268 | unfix_nodes(&s_del_balance); | ||
1269 | return 0; | ||
1270 | } | ||
1271 | |||
1272 | // reiserfs_delete_item returns item length when success | ||
1273 | n_ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); | ||
1274 | q_ih = get_ih(p_s_path) ; | ||
1275 | quota_cut_bytes = ih_item_len(q_ih) ; | ||
1276 | |||
1277 | /* hack so the quota code doesn't have to guess if the file | ||
1278 | ** has a tail. On tail insert, we allocate quota for 1 unformatted node. | ||
1279 | ** We test the offset because the tail might have been | ||
1280 | ** split into multiple items, and we only want to decrement for | ||
1281 | ** the unfm node once | ||
1282 | */ | ||
1283 | if (!S_ISLNK (p_s_inode->i_mode) && is_direct_le_ih(q_ih)) { | ||
1284 | if ((le_ih_k_offset(q_ih) & (p_s_sb->s_blocksize - 1)) == 1) { | ||
1285 | quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE; | ||
1286 | } else { | ||
1287 | quota_cut_bytes = 0 ; | ||
1288 | } | ||
1289 | } | ||
1290 | |||
1291 | if ( p_s_un_bh ) { | ||
1292 | int off; | ||
1293 | char *data ; | ||
1294 | |||
1295 | /* We are in direct2indirect conversion, so move tail contents | ||
1296 | to the unformatted node */ | ||
1297 | /* note, we do the copy before preparing the buffer because we | ||
1298 | ** don't care about the contents of the unformatted node yet. | ||
1299 | ** the only thing we really care about is the direct item's data | ||
1300 | ** is in the unformatted node. | ||
1301 | ** | ||
1302 | ** Otherwise, we would have to call reiserfs_prepare_for_journal on | ||
1303 | ** the unformatted node, which might schedule, meaning we'd have to | ||
1304 | ** loop all the way back up to the start of the while loop. | ||
1305 | ** | ||
1306 | ** The unformatted node must be dirtied later on. We can't be | ||
1307 | ** sure here if the entire tail has been deleted yet. | ||
1308 | ** | ||
1309 | ** p_s_un_bh is from the page cache (all unformatted nodes are | ||
1310 | ** from the page cache) and might be a highmem page. So, we | ||
1311 | ** can't use p_s_un_bh->b_data. | ||
1312 | ** -clm | ||
1313 | */ | ||
1314 | |||
1315 | data = kmap_atomic(p_s_un_bh->b_page, KM_USER0); | ||
1316 | off = ((le_ih_k_offset (&s_ih) - 1) & (PAGE_CACHE_SIZE - 1)); | ||
1317 | memcpy(data + off, | ||
1318 | B_I_PITEM(PATH_PLAST_BUFFER(p_s_path), &s_ih), n_ret_value); | ||
1319 | kunmap_atomic(data, KM_USER0); | ||
1320 | } | ||
1321 | /* Perform balancing after all resources have been collected at once. */ | ||
1322 | do_balance(&s_del_balance, NULL, NULL, M_DELETE); | ||
1323 | |||
1324 | #ifdef REISERQUOTA_DEBUG | ||
1325 | reiserfs_debug (p_s_sb, REISERFS_DEBUG_CODE, "reiserquota delete_item(): freeing %u, id=%u type=%c", quota_cut_bytes, p_s_inode->i_uid, head2type(&s_ih)); | ||
1326 | #endif | ||
1327 | DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes); | ||
1328 | |||
1329 | /* Return deleted body length */ | ||
1330 | return n_ret_value; | ||
1331 | } | ||
1332 | |||
1333 | |||
1334 | /* Summary Of Mechanisms For Handling Collisions Between Processes: | ||
1335 | |||
1336 | deletion of the body of the object is performed by iput(), with the | ||
1337 | result that if multiple processes are operating on a file, the | ||
1338 | deletion of the body of the file is deferred until the last process | ||
1339 | that has an open inode performs its iput(). | ||
1340 | |||
1341 | writes and truncates are protected from collisions by use of | ||
1342 | semaphores. | ||
1343 | |||
1344 | creates, linking, and mknod are protected from collisions with other | ||
1345 | processes by making the reiserfs_add_entry() the last step in the | ||
1346 | creation, and then rolling back all changes if there was a collision. | ||
1347 | - Hans | ||
1348 | */ | ||
1349 | |||
1350 | |||
1351 | /* this deletes item which never gets split */ | ||
1352 | void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th, | ||
1353 | struct inode *inode, | ||
1354 | struct reiserfs_key * key) | ||
1355 | { | ||
1356 | struct tree_balance tb; | ||
1357 | INITIALIZE_PATH (path); | ||
1358 | int item_len = 0; | ||
1359 | int tb_init = 0 ; | ||
1360 | struct cpu_key cpu_key; | ||
1361 | int retval; | ||
1362 | int quota_cut_bytes = 0; | ||
1363 | |||
1364 | BUG_ON (!th->t_trans_id); | ||
1365 | |||
1366 | le_key2cpu_key (&cpu_key, key); | ||
1367 | |||
1368 | while (1) { | ||
1369 | retval = search_item (th->t_super, &cpu_key, &path); | ||
1370 | if (retval == IO_ERROR) { | ||
1371 | reiserfs_warning (th->t_super, | ||
1372 | "vs-5350: reiserfs_delete_solid_item: " | ||
1373 | "i/o failure occurred trying to delete %K", | ||
1374 | &cpu_key); | ||
1375 | break; | ||
1376 | } | ||
1377 | if (retval != ITEM_FOUND) { | ||
1378 | pathrelse (&path); | ||
1379 | // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir | ||
1380 | if ( !( (unsigned long long) GET_HASH_VALUE (le_key_k_offset (le_key_version (key), key)) == 0 && \ | ||
1381 | (unsigned long long) GET_GENERATION_NUMBER (le_key_k_offset (le_key_version (key), key)) == 1 ) ) | ||
1382 | reiserfs_warning (th->t_super, "vs-5355: reiserfs_delete_solid_item: %k not found", key); | ||
1383 | break; | ||
1384 | } | ||
1385 | if (!tb_init) { | ||
1386 | tb_init = 1 ; | ||
1387 | item_len = ih_item_len( PATH_PITEM_HEAD(&path) ); | ||
1388 | init_tb_struct (th, &tb, th->t_super, &path, - (IH_SIZE + item_len)); | ||
1389 | } | ||
1390 | quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path)) ; | ||
1391 | |||
1392 | retval = fix_nodes (M_DELETE, &tb, NULL, NULL); | ||
1393 | if (retval == REPEAT_SEARCH) { | ||
1394 | PROC_INFO_INC( th -> t_super, delete_solid_item_restarted ); | ||
1395 | continue; | ||
1396 | } | ||
1397 | |||
1398 | if (retval == CARRY_ON) { | ||
1399 | do_balance (&tb, NULL, NULL, M_DELETE); | ||
1400 | if (inode) { /* Should we count quota for item? (we don't count quotas for save-links) */ | ||
1401 | #ifdef REISERQUOTA_DEBUG | ||
1402 | reiserfs_debug (th->t_super, REISERFS_DEBUG_CODE, "reiserquota delete_solid_item(): freeing %u id=%u type=%c", quota_cut_bytes, inode->i_uid, key2type(key)); | ||
1403 | #endif | ||
1404 | DQUOT_FREE_SPACE_NODIRTY(inode, quota_cut_bytes); | ||
1405 | } | ||
1406 | break; | ||
1407 | } | ||
1408 | |||
1409 | // IO_ERROR, NO_DISK_SPACE, etc | ||
1410 | reiserfs_warning (th->t_super, "vs-5360: reiserfs_delete_solid_item: " | ||
1411 | "could not delete %K due to fix_nodes failure", &cpu_key); | ||
1412 | unfix_nodes (&tb); | ||
1413 | break; | ||
1414 | } | ||
1415 | |||
1416 | reiserfs_check_path(&path) ; | ||
1417 | } | ||
1418 | |||
1419 | |||
1420 | int reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * inode) | ||
1421 | { | ||
1422 | int err; | ||
1423 | inode->i_size = 0; | ||
1424 | BUG_ON (!th->t_trans_id); | ||
1425 | |||
1426 | /* for directory this deletes item containing "." and ".." */ | ||
1427 | err = reiserfs_do_truncate (th, inode, NULL, 0/*no timestamp updates*/); | ||
1428 | if (err) | ||
1429 | return err; | ||
1430 | |||
1431 | #if defined( USE_INODE_GENERATION_COUNTER ) | ||
1432 | if( !old_format_only ( th -> t_super ) ) | ||
1433 | { | ||
1434 | __u32 *inode_generation; | ||
1435 | |||
1436 | inode_generation = | ||
1437 | &REISERFS_SB(th -> t_super) -> s_rs -> s_inode_generation; | ||
1438 | *inode_generation = cpu_to_le32( le32_to_cpu( *inode_generation ) + 1 ); | ||
1439 | } | ||
1440 | /* USE_INODE_GENERATION_COUNTER */ | ||
1441 | #endif | ||
1442 | reiserfs_delete_solid_item (th, inode, INODE_PKEY (inode)); | ||
1443 | |||
1444 | return err; | ||
1445 | } | ||
1446 | |||
1447 | static void | ||
1448 | unmap_buffers(struct page *page, loff_t pos) { | ||
1449 | struct buffer_head *bh ; | ||
1450 | struct buffer_head *head ; | ||
1451 | struct buffer_head *next ; | ||
1452 | unsigned long tail_index ; | ||
1453 | unsigned long cur_index ; | ||
1454 | |||
1455 | if (page) { | ||
1456 | if (page_has_buffers(page)) { | ||
1457 | tail_index = pos & (PAGE_CACHE_SIZE - 1) ; | ||
1458 | cur_index = 0 ; | ||
1459 | head = page_buffers(page) ; | ||
1460 | bh = head ; | ||
1461 | do { | ||
1462 | next = bh->b_this_page ; | ||
1463 | |||
1464 | /* we want to unmap the buffers that contain the tail, and | ||
1465 | ** all the buffers after it (since the tail must be at the | ||
1466 | ** end of the file). We don't want to unmap file data | ||
1467 | ** before the tail, since it might be dirty and waiting to | ||
1468 | ** reach disk | ||
1469 | */ | ||
1470 | cur_index += bh->b_size ; | ||
1471 | if (cur_index > tail_index) { | ||
1472 | reiserfs_unmap_buffer(bh) ; | ||
1473 | } | ||
1474 | bh = next ; | ||
1475 | } while (bh != head) ; | ||
1476 | if ( PAGE_SIZE == bh->b_size ) { | ||
1477 | clear_page_dirty(page); | ||
1478 | } | ||
1479 | } | ||
1480 | } | ||
1481 | } | ||
1482 | |||
1483 | static int maybe_indirect_to_direct (struct reiserfs_transaction_handle *th, | ||
1484 | struct inode * p_s_inode, | ||
1485 | struct page *page, | ||
1486 | struct path * p_s_path, | ||
1487 | const struct cpu_key * p_s_item_key, | ||
1488 | loff_t n_new_file_size, | ||
1489 | char * p_c_mode | ||
1490 | ) { | ||
1491 | struct super_block * p_s_sb = p_s_inode->i_sb; | ||
1492 | int n_block_size = p_s_sb->s_blocksize; | ||
1493 | int cut_bytes; | ||
1494 | BUG_ON (!th->t_trans_id); | ||
1495 | |||
1496 | if (n_new_file_size != p_s_inode->i_size) | ||
1497 | BUG (); | ||
1498 | |||
1499 | /* the page being sent in could be NULL if there was an i/o error | ||
1500 | ** reading in the last block. The user will hit problems trying to | ||
1501 | ** read the file, but for now we just skip the indirect2direct | ||
1502 | */ | ||
1503 | if (atomic_read(&p_s_inode->i_count) > 1 || | ||
1504 | !tail_has_to_be_packed (p_s_inode) || | ||
1505 | !page || (REISERFS_I(p_s_inode)->i_flags & i_nopack_mask)) { | ||
1506 | // leave tail in an unformatted node | ||
1507 | *p_c_mode = M_SKIP_BALANCING; | ||
1508 | cut_bytes = n_block_size - (n_new_file_size & (n_block_size - 1)); | ||
1509 | pathrelse(p_s_path); | ||
1510 | return cut_bytes; | ||
1511 | } | ||
1512 | /* Permorm the conversion to a direct_item. */ | ||
1513 | /*return indirect_to_direct (p_s_inode, p_s_path, p_s_item_key, n_new_file_size, p_c_mode);*/ | ||
1514 | return indirect2direct (th, p_s_inode, page, p_s_path, p_s_item_key, n_new_file_size, p_c_mode); | ||
1515 | } | ||
1516 | |||
1517 | |||
1518 | /* we did indirect_to_direct conversion. And we have inserted direct | ||
1519 | item successesfully, but there were no disk space to cut unfm | ||
1520 | pointer being converted. Therefore we have to delete inserted | ||
1521 | direct item(s) */ | ||
1522 | static void indirect_to_direct_roll_back (struct reiserfs_transaction_handle *th, struct inode * inode, struct path * path) | ||
1523 | { | ||
1524 | struct cpu_key tail_key; | ||
1525 | int tail_len; | ||
1526 | int removed; | ||
1527 | BUG_ON (!th->t_trans_id); | ||
1528 | |||
1529 | make_cpu_key (&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);// !!!! | ||
1530 | tail_key.key_length = 4; | ||
1531 | |||
1532 | tail_len = (cpu_key_k_offset (&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; | ||
1533 | while (tail_len) { | ||
1534 | /* look for the last byte of the tail */ | ||
1535 | if (search_for_position_by_key (inode->i_sb, &tail_key, path) == POSITION_NOT_FOUND) | ||
1536 | reiserfs_panic (inode->i_sb, "vs-5615: indirect_to_direct_roll_back: found invalid item"); | ||
1537 | RFALSE( path->pos_in_item != ih_item_len(PATH_PITEM_HEAD (path)) - 1, | ||
1538 | "vs-5616: appended bytes found"); | ||
1539 | PATH_LAST_POSITION (path) --; | ||
1540 | |||
1541 | removed = reiserfs_delete_item (th, path, &tail_key, inode, NULL/*unbh not needed*/); | ||
1542 | RFALSE( removed <= 0 || removed > tail_len, | ||
1543 | "vs-5617: there was tail %d bytes, removed item length %d bytes", | ||
1544 | tail_len, removed); | ||
1545 | tail_len -= removed; | ||
1546 | set_cpu_key_k_offset (&tail_key, cpu_key_k_offset (&tail_key) - removed); | ||
1547 | } | ||
1548 | reiserfs_warning (inode->i_sb, "indirect_to_direct_roll_back: indirect_to_direct conversion has been rolled back due to lack of disk space"); | ||
1549 | //mark_file_without_tail (inode); | ||
1550 | mark_inode_dirty (inode); | ||
1551 | } | ||
1552 | |||
1553 | |||
1554 | /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ | ||
1555 | int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th, | ||
1556 | struct path * p_s_path, | ||
1557 | struct cpu_key * p_s_item_key, | ||
1558 | struct inode * p_s_inode, | ||
1559 | struct page *page, | ||
1560 | loff_t n_new_file_size) | ||
1561 | { | ||
1562 | struct super_block * p_s_sb = p_s_inode->i_sb; | ||
1563 | /* Every function which is going to call do_balance must first | ||
1564 | create a tree_balance structure. Then it must fill up this | ||
1565 | structure by using the init_tb_struct and fix_nodes functions. | ||
1566 | After that we can make tree balancing. */ | ||
1567 | struct tree_balance s_cut_balance; | ||
1568 | struct item_head *p_le_ih; | ||
1569 | int n_cut_size = 0, /* Amount to be cut. */ | ||
1570 | n_ret_value = CARRY_ON, | ||
1571 | n_removed = 0, /* Number of the removed unformatted nodes. */ | ||
1572 | n_is_inode_locked = 0; | ||
1573 | char c_mode; /* Mode of the balance. */ | ||
1574 | int retval2 = -1; | ||
1575 | int quota_cut_bytes; | ||
1576 | loff_t tail_pos = 0; | ||
1577 | |||
1578 | BUG_ON (!th->t_trans_id); | ||
1579 | |||
1580 | init_tb_struct(th, &s_cut_balance, p_s_inode->i_sb, p_s_path, n_cut_size); | ||
1581 | |||
1582 | |||
1583 | /* Repeat this loop until we either cut the item without needing | ||
1584 | to balance, or we fix_nodes without schedule occurring */ | ||
1585 | while ( 1 ) { | ||
1586 | /* Determine the balance mode, position of the first byte to | ||
1587 | be cut, and size to be cut. In case of the indirect item | ||
1588 | free unformatted nodes which are pointed to by the cut | ||
1589 | pointers. */ | ||
1590 | |||
1591 | c_mode = prepare_for_delete_or_cut(th, p_s_inode, p_s_path, p_s_item_key, &n_removed, | ||
1592 | &n_cut_size, n_new_file_size); | ||
1593 | if ( c_mode == M_CONVERT ) { | ||
1594 | /* convert last unformatted node to direct item or leave | ||
1595 | tail in the unformatted node */ | ||
1596 | RFALSE( n_ret_value != CARRY_ON, "PAP-5570: can not convert twice"); | ||
1597 | |||
1598 | n_ret_value = maybe_indirect_to_direct (th, p_s_inode, page, p_s_path, p_s_item_key, | ||
1599 | n_new_file_size, &c_mode); | ||
1600 | if ( c_mode == M_SKIP_BALANCING ) | ||
1601 | /* tail has been left in the unformatted node */ | ||
1602 | return n_ret_value; | ||
1603 | |||
1604 | n_is_inode_locked = 1; | ||
1605 | |||
1606 | /* removing of last unformatted node will change value we | ||
1607 | have to return to truncate. Save it */ | ||
1608 | retval2 = n_ret_value; | ||
1609 | /*retval2 = p_s_sb->s_blocksize - (n_new_file_size & (p_s_sb->s_blocksize - 1));*/ | ||
1610 | |||
1611 | /* So, we have performed the first part of the conversion: | ||
1612 | inserting the new direct item. Now we are removing the | ||
1613 | last unformatted node pointer. Set key to search for | ||
1614 | it. */ | ||
1615 | set_cpu_key_k_type (p_s_item_key, TYPE_INDIRECT); | ||
1616 | p_s_item_key->key_length = 4; | ||
1617 | n_new_file_size -= (n_new_file_size & (p_s_sb->s_blocksize - 1)); | ||
1618 | tail_pos = n_new_file_size; | ||
1619 | set_cpu_key_k_offset (p_s_item_key, n_new_file_size + 1); | ||
1620 | if ( search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_NOT_FOUND ){ | ||
1621 | print_block (PATH_PLAST_BUFFER (p_s_path), 3, PATH_LAST_POSITION (p_s_path) - 1, PATH_LAST_POSITION (p_s_path) + 1); | ||
1622 | reiserfs_panic(p_s_sb, "PAP-5580: reiserfs_cut_from_item: item to convert does not exist (%K)", p_s_item_key); | ||
1623 | } | ||
1624 | continue; | ||
1625 | } | ||
1626 | if (n_cut_size == 0) { | ||
1627 | pathrelse (p_s_path); | ||
1628 | return 0; | ||
1629 | } | ||
1630 | |||
1631 | s_cut_balance.insert_size[0] = n_cut_size; | ||
1632 | |||
1633 | n_ret_value = fix_nodes(c_mode, &s_cut_balance, NULL, NULL); | ||
1634 | if ( n_ret_value != REPEAT_SEARCH ) | ||
1635 | break; | ||
1636 | |||
1637 | PROC_INFO_INC( p_s_sb, cut_from_item_restarted ); | ||
1638 | |||
1639 | n_ret_value = search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path); | ||
1640 | if (n_ret_value == POSITION_FOUND) | ||
1641 | continue; | ||
1642 | |||
1643 | reiserfs_warning (p_s_sb, "PAP-5610: reiserfs_cut_from_item: item %K not found", p_s_item_key); | ||
1644 | unfix_nodes (&s_cut_balance); | ||
1645 | return (n_ret_value == IO_ERROR) ? -EIO : -ENOENT; | ||
1646 | } /* while */ | ||
1647 | |||
1648 | // check fix_nodes results (IO_ERROR or NO_DISK_SPACE) | ||
1649 | if ( n_ret_value != CARRY_ON ) { | ||
1650 | if ( n_is_inode_locked ) { | ||
1651 | // FIXME: this seems to be not needed: we are always able | ||
1652 | // to cut item | ||
1653 | indirect_to_direct_roll_back (th, p_s_inode, p_s_path); | ||
1654 | } | ||
1655 | if (n_ret_value == NO_DISK_SPACE) | ||
1656 | reiserfs_warning (p_s_sb, "NO_DISK_SPACE"); | ||
1657 | unfix_nodes (&s_cut_balance); | ||
1658 | return -EIO; | ||
1659 | } | ||
1660 | |||
1661 | /* go ahead and perform balancing */ | ||
1662 | |||
1663 | RFALSE( c_mode == M_PASTE || c_mode == M_INSERT, "invalid mode"); | ||
1664 | |||
1665 | /* Calculate number of bytes that need to be cut from the item. */ | ||
1666 | quota_cut_bytes = ( c_mode == M_DELETE ) ? ih_item_len(get_ih(p_s_path)) : -s_cut_balance.insert_size[0]; | ||
1667 | if (retval2 == -1) | ||
1668 | n_ret_value = calc_deleted_bytes_number(&s_cut_balance, c_mode); | ||
1669 | else | ||
1670 | n_ret_value = retval2; | ||
1671 | |||
1672 | |||
1673 | /* For direct items, we only change the quota when deleting the last | ||
1674 | ** item. | ||
1675 | */ | ||
1676 | p_le_ih = PATH_PITEM_HEAD (s_cut_balance.tb_path); | ||
1677 | if (!S_ISLNK (p_s_inode->i_mode) && is_direct_le_ih(p_le_ih)) { | ||
1678 | if (c_mode == M_DELETE && | ||
1679 | (le_ih_k_offset (p_le_ih) & (p_s_sb->s_blocksize - 1)) == 1 ) { | ||
1680 | // FIXME: this is to keep 3.5 happy | ||
1681 | REISERFS_I(p_s_inode)->i_first_direct_byte = U32_MAX; | ||
1682 | quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE ; | ||
1683 | } else { | ||
1684 | quota_cut_bytes = 0 ; | ||
1685 | } | ||
1686 | } | ||
1687 | #ifdef CONFIG_REISERFS_CHECK | ||
1688 | if (n_is_inode_locked) { | ||
1689 | struct item_head * le_ih = PATH_PITEM_HEAD (s_cut_balance.tb_path); | ||
1690 | /* we are going to complete indirect2direct conversion. Make | ||
1691 | sure, that we exactly remove last unformatted node pointer | ||
1692 | of the item */ | ||
1693 | if (!is_indirect_le_ih (le_ih)) | ||
1694 | reiserfs_panic (p_s_sb, "vs-5652: reiserfs_cut_from_item: " | ||
1695 | "item must be indirect %h", le_ih); | ||
1696 | |||
1697 | if (c_mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) | ||
1698 | reiserfs_panic (p_s_sb, "vs-5653: reiserfs_cut_from_item: " | ||
1699 | "completing indirect2direct conversion indirect item %h " | ||
1700 | "being deleted must be of 4 byte long", le_ih); | ||
1701 | |||
1702 | if (c_mode == M_CUT && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { | ||
1703 | reiserfs_panic (p_s_sb, "vs-5654: reiserfs_cut_from_item: " | ||
1704 | "can not complete indirect2direct conversion of %h (CUT, insert_size==%d)", | ||
1705 | le_ih, s_cut_balance.insert_size[0]); | ||
1706 | } | ||
1707 | /* it would be useful to make sure, that right neighboring | ||
1708 | item is direct item of this file */ | ||
1709 | } | ||
1710 | #endif | ||
1711 | |||
1712 | do_balance(&s_cut_balance, NULL, NULL, c_mode); | ||
1713 | if ( n_is_inode_locked ) { | ||
1714 | /* we've done an indirect->direct conversion. when the data block | ||
1715 | ** was freed, it was removed from the list of blocks that must | ||
1716 | ** be flushed before the transaction commits, make sure to | ||
1717 | ** unmap and invalidate it | ||
1718 | */ | ||
1719 | unmap_buffers(page, tail_pos); | ||
1720 | REISERFS_I(p_s_inode)->i_flags &= ~i_pack_on_close_mask ; | ||
1721 | } | ||
1722 | #ifdef REISERQUOTA_DEBUG | ||
1723 | reiserfs_debug (p_s_inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota cut_from_item(): freeing %u id=%u type=%c", quota_cut_bytes, p_s_inode->i_uid, '?'); | ||
1724 | #endif | ||
1725 | DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes); | ||
1726 | return n_ret_value; | ||
1727 | } | ||
1728 | |||
1729 | static void truncate_directory (struct reiserfs_transaction_handle *th, struct inode * inode) | ||
1730 | { | ||
1731 | BUG_ON (!th->t_trans_id); | ||
1732 | if (inode->i_nlink) | ||
1733 | reiserfs_warning (inode->i_sb, | ||
1734 | "vs-5655: truncate_directory: link count != 0"); | ||
1735 | |||
1736 | set_le_key_k_offset (KEY_FORMAT_3_5, INODE_PKEY (inode), DOT_OFFSET); | ||
1737 | set_le_key_k_type (KEY_FORMAT_3_5, INODE_PKEY (inode), TYPE_DIRENTRY); | ||
1738 | reiserfs_delete_solid_item (th, inode, INODE_PKEY (inode)); | ||
1739 | reiserfs_update_sd(th, inode) ; | ||
1740 | set_le_key_k_offset (KEY_FORMAT_3_5, INODE_PKEY (inode), SD_OFFSET); | ||
1741 | set_le_key_k_type (KEY_FORMAT_3_5, INODE_PKEY (inode), TYPE_STAT_DATA); | ||
1742 | } | ||
1743 | |||
1744 | |||
1745 | |||
1746 | |||
1747 | /* Truncate file to the new size. Note, this must be called with a transaction | ||
1748 | already started */ | ||
1749 | int reiserfs_do_truncate (struct reiserfs_transaction_handle *th, | ||
1750 | struct inode * p_s_inode, /* ->i_size contains new | ||
1751 | size */ | ||
1752 | struct page *page, /* up to date for last block */ | ||
1753 | int update_timestamps /* when it is called by | ||
1754 | file_release to convert | ||
1755 | the tail - no timestamps | ||
1756 | should be updated */ | ||
1757 | ) { | ||
1758 | INITIALIZE_PATH (s_search_path); /* Path to the current object item. */ | ||
1759 | struct item_head * p_le_ih; /* Pointer to an item header. */ | ||
1760 | struct cpu_key s_item_key; /* Key to search for a previous file item. */ | ||
1761 | loff_t n_file_size, /* Old file size. */ | ||
1762 | n_new_file_size;/* New file size. */ | ||
1763 | int n_deleted; /* Number of deleted or truncated bytes. */ | ||
1764 | int retval; | ||
1765 | int err = 0; | ||
1766 | |||
1767 | BUG_ON (!th->t_trans_id); | ||
1768 | if ( ! (S_ISREG(p_s_inode->i_mode) || S_ISDIR(p_s_inode->i_mode) || S_ISLNK(p_s_inode->i_mode)) ) | ||
1769 | return 0; | ||
1770 | |||
1771 | if (S_ISDIR(p_s_inode->i_mode)) { | ||
1772 | // deletion of directory - no need to update timestamps | ||
1773 | truncate_directory (th, p_s_inode); | ||
1774 | return 0; | ||
1775 | } | ||
1776 | |||
1777 | /* Get new file size. */ | ||
1778 | n_new_file_size = p_s_inode->i_size; | ||
1779 | |||
1780 | // FIXME: note, that key type is unimportant here | ||
1781 | make_cpu_key (&s_item_key, p_s_inode, max_reiserfs_offset (p_s_inode), TYPE_DIRECT, 3); | ||
1782 | |||
1783 | retval = search_for_position_by_key(p_s_inode->i_sb, &s_item_key, &s_search_path); | ||
1784 | if (retval == IO_ERROR) { | ||
1785 | reiserfs_warning (p_s_inode->i_sb, "vs-5657: reiserfs_do_truncate: " | ||
1786 | "i/o failure occurred trying to truncate %K", &s_item_key); | ||
1787 | err = -EIO; | ||
1788 | goto out; | ||
1789 | } | ||
1790 | if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { | ||
1791 | reiserfs_warning (p_s_inode->i_sb, "PAP-5660: reiserfs_do_truncate: " | ||
1792 | "wrong result %d of search for %K", retval, &s_item_key); | ||
1793 | |||
1794 | err = -EIO; | ||
1795 | goto out; | ||
1796 | } | ||
1797 | |||
1798 | s_search_path.pos_in_item --; | ||
1799 | |||
1800 | /* Get real file size (total length of all file items) */ | ||
1801 | p_le_ih = PATH_PITEM_HEAD(&s_search_path); | ||
1802 | if ( is_statdata_le_ih (p_le_ih) ) | ||
1803 | n_file_size = 0; | ||
1804 | else { | ||
1805 | loff_t offset = le_ih_k_offset (p_le_ih); | ||
1806 | int bytes = op_bytes_number (p_le_ih,p_s_inode->i_sb->s_blocksize); | ||
1807 | |||
1808 | /* this may mismatch with real file size: if last direct item | ||
1809 | had no padding zeros and last unformatted node had no free | ||
1810 | space, this file would have this file size */ | ||
1811 | n_file_size = offset + bytes - 1; | ||
1812 | } | ||
1813 | /* | ||
1814 | * are we doing a full truncate or delete, if so | ||
1815 | * kick in the reada code | ||
1816 | */ | ||
1817 | if (n_new_file_size == 0) | ||
1818 | s_search_path.reada = PATH_READA | PATH_READA_BACK; | ||
1819 | |||
1820 | if ( n_file_size == 0 || n_file_size < n_new_file_size ) { | ||
1821 | goto update_and_out ; | ||
1822 | } | ||
1823 | |||
1824 | /* Update key to search for the last file item. */ | ||
1825 | set_cpu_key_k_offset (&s_item_key, n_file_size); | ||
1826 | |||
1827 | do { | ||
1828 | /* Cut or delete file item. */ | ||
1829 | n_deleted = reiserfs_cut_from_item(th, &s_search_path, &s_item_key, p_s_inode, page, n_new_file_size); | ||
1830 | if (n_deleted < 0) { | ||
1831 | reiserfs_warning (p_s_inode->i_sb, "vs-5665: reiserfs_do_truncate: reiserfs_cut_from_item failed"); | ||
1832 | reiserfs_check_path(&s_search_path) ; | ||
1833 | return 0; | ||
1834 | } | ||
1835 | |||
1836 | RFALSE( n_deleted > n_file_size, | ||
1837 | "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", | ||
1838 | n_deleted, n_file_size, &s_item_key); | ||
1839 | |||
1840 | /* Change key to search the last file item. */ | ||
1841 | n_file_size -= n_deleted; | ||
1842 | |||
1843 | set_cpu_key_k_offset (&s_item_key, n_file_size); | ||
1844 | |||
1845 | /* While there are bytes to truncate and previous file item is presented in the tree. */ | ||
1846 | |||
1847 | /* | ||
1848 | ** This loop could take a really long time, and could log | ||
1849 | ** many more blocks than a transaction can hold. So, we do a polite | ||
1850 | ** journal end here, and if the transaction needs ending, we make | ||
1851 | ** sure the file is consistent before ending the current trans | ||
1852 | ** and starting a new one | ||
1853 | */ | ||
1854 | if (journal_transaction_should_end(th, th->t_blocks_allocated)) { | ||
1855 | int orig_len_alloc = th->t_blocks_allocated ; | ||
1856 | decrement_counters_in_path(&s_search_path) ; | ||
1857 | |||
1858 | if (update_timestamps) { | ||
1859 | p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC; | ||
1860 | } | ||
1861 | reiserfs_update_sd(th, p_s_inode) ; | ||
1862 | |||
1863 | err = journal_end(th, p_s_inode->i_sb, orig_len_alloc) ; | ||
1864 | if (err) | ||
1865 | goto out; | ||
1866 | err = journal_begin (th, p_s_inode->i_sb, | ||
1867 | JOURNAL_PER_BALANCE_CNT * 6); | ||
1868 | if (err) | ||
1869 | goto out; | ||
1870 | reiserfs_update_inode_transaction(p_s_inode) ; | ||
1871 | } | ||
1872 | } while ( n_file_size > ROUND_UP (n_new_file_size) && | ||
1873 | search_for_position_by_key(p_s_inode->i_sb, &s_item_key, &s_search_path) == POSITION_FOUND ) ; | ||
1874 | |||
1875 | RFALSE( n_file_size > ROUND_UP (n_new_file_size), | ||
1876 | "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d", | ||
1877 | n_new_file_size, n_file_size, s_item_key.on_disk_key.k_objectid); | ||
1878 | |||
1879 | update_and_out: | ||
1880 | if (update_timestamps) { | ||
1881 | // this is truncate, not file closing | ||
1882 | p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC; | ||
1883 | } | ||
1884 | reiserfs_update_sd (th, p_s_inode); | ||
1885 | |||
1886 | out: | ||
1887 | pathrelse(&s_search_path) ; | ||
1888 | return err; | ||
1889 | } | ||
1890 | |||
1891 | |||
1892 | #ifdef CONFIG_REISERFS_CHECK | ||
1893 | // this makes sure, that we __append__, not overwrite or add holes | ||
1894 | static void check_research_for_paste (struct path * path, | ||
1895 | const struct cpu_key * p_s_key) | ||
1896 | { | ||
1897 | struct item_head * found_ih = get_ih (path); | ||
1898 | |||
1899 | if (is_direct_le_ih (found_ih)) { | ||
1900 | if (le_ih_k_offset (found_ih) + op_bytes_number (found_ih, get_last_bh (path)->b_size) != | ||
1901 | cpu_key_k_offset (p_s_key) || | ||
1902 | op_bytes_number (found_ih, get_last_bh (path)->b_size) != pos_in_item (path)) | ||
1903 | reiserfs_panic (NULL, "PAP-5720: check_research_for_paste: " | ||
1904 | "found direct item %h or position (%d) does not match to key %K", | ||
1905 | found_ih, pos_in_item (path), p_s_key); | ||
1906 | } | ||
1907 | if (is_indirect_le_ih (found_ih)) { | ||
1908 | if (le_ih_k_offset (found_ih) + op_bytes_number (found_ih, get_last_bh (path)->b_size) != cpu_key_k_offset (p_s_key) || | ||
1909 | I_UNFM_NUM (found_ih) != pos_in_item (path) || | ||
1910 | get_ih_free_space (found_ih) != 0) | ||
1911 | reiserfs_panic (NULL, "PAP-5730: check_research_for_paste: " | ||
1912 | "found indirect item (%h) or position (%d) does not match to key (%K)", | ||
1913 | found_ih, pos_in_item (path), p_s_key); | ||
1914 | } | ||
1915 | } | ||
1916 | #endif /* config reiserfs check */ | ||
1917 | |||
1918 | |||
1919 | /* Paste bytes to the existing item. Returns bytes number pasted into the item. */ | ||
1920 | int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th, | ||
1921 | struct path * p_s_search_path, /* Path to the pasted item. */ | ||
1922 | const struct cpu_key * p_s_key, /* Key to search for the needed item.*/ | ||
1923 | struct inode * inode, /* Inode item belongs to */ | ||
1924 | const char * p_c_body, /* Pointer to the bytes to paste. */ | ||
1925 | int n_pasted_size) /* Size of pasted bytes. */ | ||
1926 | { | ||
1927 | struct tree_balance s_paste_balance; | ||
1928 | int retval; | ||
1929 | int fs_gen; | ||
1930 | |||
1931 | BUG_ON (!th->t_trans_id); | ||
1932 | |||
1933 | fs_gen = get_generation(inode->i_sb) ; | ||
1934 | |||
1935 | #ifdef REISERQUOTA_DEBUG | ||
1936 | reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota paste_into_item(): allocating %u id=%u type=%c", n_pasted_size, inode->i_uid, key2type(&(p_s_key->on_disk_key))); | ||
1937 | #endif | ||
1938 | |||
1939 | if (DQUOT_ALLOC_SPACE_NODIRTY(inode, n_pasted_size)) { | ||
1940 | pathrelse(p_s_search_path); | ||
1941 | return -EDQUOT; | ||
1942 | } | ||
1943 | init_tb_struct(th, &s_paste_balance, th->t_super, p_s_search_path, n_pasted_size); | ||
1944 | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | ||
1945 | s_paste_balance.key = p_s_key->on_disk_key; | ||
1946 | #endif | ||
1947 | |||
1948 | /* DQUOT_* can schedule, must check before the fix_nodes */ | ||
1949 | if (fs_changed(fs_gen, inode->i_sb)) { | ||
1950 | goto search_again; | ||
1951 | } | ||
1952 | |||
1953 | while ((retval = fix_nodes(M_PASTE, &s_paste_balance, NULL, p_c_body)) == | ||
1954 | REPEAT_SEARCH ) { | ||
1955 | search_again: | ||
1956 | /* file system changed while we were in the fix_nodes */ | ||
1957 | PROC_INFO_INC( th -> t_super, paste_into_item_restarted ); | ||
1958 | retval = search_for_position_by_key (th->t_super, p_s_key, p_s_search_path); | ||
1959 | if (retval == IO_ERROR) { | ||
1960 | retval = -EIO ; | ||
1961 | goto error_out ; | ||
1962 | } | ||
1963 | if (retval == POSITION_FOUND) { | ||
1964 | reiserfs_warning (inode->i_sb, "PAP-5710: reiserfs_paste_into_item: entry or pasted byte (%K) exists", p_s_key); | ||
1965 | retval = -EEXIST ; | ||
1966 | goto error_out ; | ||
1967 | } | ||
1968 | |||
1969 | #ifdef CONFIG_REISERFS_CHECK | ||
1970 | check_research_for_paste (p_s_search_path, p_s_key); | ||
1971 | #endif | ||
1972 | } | ||
1973 | |||
1974 | /* Perform balancing after all resources are collected by fix_nodes, and | ||
1975 | accessing them will not risk triggering schedule. */ | ||
1976 | if ( retval == CARRY_ON ) { | ||
1977 | do_balance(&s_paste_balance, NULL/*ih*/, p_c_body, M_PASTE); | ||
1978 | return 0; | ||
1979 | } | ||
1980 | retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; | ||
1981 | error_out: | ||
1982 | /* this also releases the path */ | ||
1983 | unfix_nodes(&s_paste_balance); | ||
1984 | #ifdef REISERQUOTA_DEBUG | ||
1985 | reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota paste_into_item(): freeing %u id=%u type=%c", n_pasted_size, inode->i_uid, key2type(&(p_s_key->on_disk_key))); | ||
1986 | #endif | ||
1987 | DQUOT_FREE_SPACE_NODIRTY(inode, n_pasted_size); | ||
1988 | return retval ; | ||
1989 | } | ||
1990 | |||
1991 | |||
1992 | /* Insert new item into the buffer at the path. */ | ||
1993 | int reiserfs_insert_item(struct reiserfs_transaction_handle *th, | ||
1994 | struct path * p_s_path, /* Path to the inserteded item. */ | ||
1995 | const struct cpu_key * key, | ||
1996 | struct item_head * p_s_ih, /* Pointer to the item header to insert.*/ | ||
1997 | struct inode * inode, | ||
1998 | const char * p_c_body) /* Pointer to the bytes to insert. */ | ||
1999 | { | ||
2000 | struct tree_balance s_ins_balance; | ||
2001 | int retval; | ||
2002 | int fs_gen = 0 ; | ||
2003 | int quota_bytes = 0 ; | ||
2004 | |||
2005 | BUG_ON (!th->t_trans_id); | ||
2006 | |||
2007 | if (inode) { /* Do we count quotas for item? */ | ||
2008 | fs_gen = get_generation(inode->i_sb); | ||
2009 | quota_bytes = ih_item_len(p_s_ih); | ||
2010 | |||
2011 | /* hack so the quota code doesn't have to guess if the file has | ||
2012 | ** a tail, links are always tails, so there's no guessing needed | ||
2013 | */ | ||
2014 | if (!S_ISLNK (inode->i_mode) && is_direct_le_ih(p_s_ih)) { | ||
2015 | quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE ; | ||
2016 | } | ||
2017 | #ifdef REISERQUOTA_DEBUG | ||
2018 | reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota insert_item(): allocating %u id=%u type=%c", quota_bytes, inode->i_uid, head2type(p_s_ih)); | ||
2019 | #endif | ||
2020 | /* We can't dirty inode here. It would be immediately written but | ||
2021 | * appropriate stat item isn't inserted yet... */ | ||
2022 | if (DQUOT_ALLOC_SPACE_NODIRTY(inode, quota_bytes)) { | ||
2023 | pathrelse(p_s_path); | ||
2024 | return -EDQUOT; | ||
2025 | } | ||
2026 | } | ||
2027 | init_tb_struct(th, &s_ins_balance, th->t_super, p_s_path, IH_SIZE + ih_item_len(p_s_ih)); | ||
2028 | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | ||
2029 | s_ins_balance.key = key->on_disk_key; | ||
2030 | #endif | ||
2031 | /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */ | ||
2032 | if (inode && fs_changed(fs_gen, inode->i_sb)) { | ||
2033 | goto search_again; | ||
2034 | } | ||
2035 | |||
2036 | while ( (retval = fix_nodes(M_INSERT, &s_ins_balance, p_s_ih, p_c_body)) == REPEAT_SEARCH) { | ||
2037 | search_again: | ||
2038 | /* file system changed while we were in the fix_nodes */ | ||
2039 | PROC_INFO_INC( th -> t_super, insert_item_restarted ); | ||
2040 | retval = search_item (th->t_super, key, p_s_path); | ||
2041 | if (retval == IO_ERROR) { | ||
2042 | retval = -EIO; | ||
2043 | goto error_out ; | ||
2044 | } | ||
2045 | if (retval == ITEM_FOUND) { | ||
2046 | reiserfs_warning (th->t_super, "PAP-5760: reiserfs_insert_item: " | ||
2047 | "key %K already exists in the tree", key); | ||
2048 | retval = -EEXIST ; | ||
2049 | goto error_out; | ||
2050 | } | ||
2051 | } | ||
2052 | |||
2053 | /* make balancing after all resources will be collected at a time */ | ||
2054 | if ( retval == CARRY_ON ) { | ||
2055 | do_balance (&s_ins_balance, p_s_ih, p_c_body, M_INSERT); | ||
2056 | return 0; | ||
2057 | } | ||
2058 | |||
2059 | retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; | ||
2060 | error_out: | ||
2061 | /* also releases the path */ | ||
2062 | unfix_nodes(&s_ins_balance); | ||
2063 | #ifdef REISERQUOTA_DEBUG | ||
2064 | reiserfs_debug (th->t_super, REISERFS_DEBUG_CODE, "reiserquota insert_item(): freeing %u id=%u type=%c", quota_bytes, inode->i_uid, head2type(p_s_ih)); | ||
2065 | #endif | ||
2066 | if (inode) | ||
2067 | DQUOT_FREE_SPACE_NODIRTY(inode, quota_bytes) ; | ||
2068 | return retval; | ||
2069 | } | ||
2070 | |||
2071 | |||
2072 | |||
2073 | |||