diff options
author | Al Viro <viro@zeniv.linux.org.uk> | 2012-03-17 01:16:43 -0400 |
---|---|---|
committer | Al Viro <viro@zeniv.linux.org.uk> | 2012-03-20 21:29:43 -0400 |
commit | f466c6fdb3b1f043ff1977a8d2a1d0cd4dc164fa (patch) | |
tree | 4ebd1b27da5be1a77c6d095b2d0066ab8fb2c5e0 /fs/reiserfs/reiserfs.h | |
parent | a8a4b79b53fc7cbb023afedf58b04dd4e9bbb114 (diff) |
move private bits of reiserfs_fs.h to fs/reiserfs/reiserfs.h
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Diffstat (limited to 'fs/reiserfs/reiserfs.h')
-rw-r--r-- | fs/reiserfs/reiserfs.h | 2327 |
1 files changed, 2327 insertions, 0 deletions
diff --git a/fs/reiserfs/reiserfs.h b/fs/reiserfs/reiserfs.h new file mode 100644 index 000000000000..b3865c84f54c --- /dev/null +++ b/fs/reiserfs/reiserfs.h | |||
@@ -0,0 +1,2327 @@ | |||
1 | /* | ||
2 | * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details | ||
3 | */ | ||
4 | |||
5 | #include <linux/reiserfs_fs.h> | ||
6 | |||
7 | #include <linux/slab.h> | ||
8 | #include <linux/interrupt.h> | ||
9 | #include <linux/sched.h> | ||
10 | #include <linux/workqueue.h> | ||
11 | #include <asm/unaligned.h> | ||
12 | #include <linux/bitops.h> | ||
13 | #include <linux/proc_fs.h> | ||
14 | #include <linux/buffer_head.h> | ||
15 | #include <linux/reiserfs_fs_i.h> | ||
16 | #include <linux/reiserfs_fs_sb.h> | ||
17 | |||
18 | /* the 32 bit compat definitions with int argument */ | ||
19 | #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) | ||
20 | #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS | ||
21 | #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS | ||
22 | #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION | ||
23 | #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION | ||
24 | |||
25 | /* | ||
26 | * Locking primitives. The write lock is a per superblock | ||
27 | * special mutex that has properties close to the Big Kernel Lock | ||
28 | * which was used in the previous locking scheme. | ||
29 | */ | ||
30 | void reiserfs_write_lock(struct super_block *s); | ||
31 | void reiserfs_write_unlock(struct super_block *s); | ||
32 | int reiserfs_write_lock_once(struct super_block *s); | ||
33 | void reiserfs_write_unlock_once(struct super_block *s, int lock_depth); | ||
34 | |||
35 | #ifdef CONFIG_REISERFS_CHECK | ||
36 | void reiserfs_lock_check_recursive(struct super_block *s); | ||
37 | #else | ||
38 | static inline void reiserfs_lock_check_recursive(struct super_block *s) { } | ||
39 | #endif | ||
40 | |||
41 | /* | ||
42 | * Several mutexes depend on the write lock. | ||
43 | * However sometimes we want to relax the write lock while we hold | ||
44 | * these mutexes, according to the release/reacquire on schedule() | ||
45 | * properties of the Bkl that were used. | ||
46 | * Reiserfs performances and locking were based on this scheme. | ||
47 | * Now that the write lock is a mutex and not the bkl anymore, doing so | ||
48 | * may result in a deadlock: | ||
49 | * | ||
50 | * A acquire write_lock | ||
51 | * A acquire j_commit_mutex | ||
52 | * A release write_lock and wait for something | ||
53 | * B acquire write_lock | ||
54 | * B can't acquire j_commit_mutex and sleep | ||
55 | * A can't acquire write lock anymore | ||
56 | * deadlock | ||
57 | * | ||
58 | * What we do here is avoiding such deadlock by playing the same game | ||
59 | * than the Bkl: if we can't acquire a mutex that depends on the write lock, | ||
60 | * we release the write lock, wait a bit and then retry. | ||
61 | * | ||
62 | * The mutexes concerned by this hack are: | ||
63 | * - The commit mutex of a journal list | ||
64 | * - The flush mutex | ||
65 | * - The journal lock | ||
66 | * - The inode mutex | ||
67 | */ | ||
68 | static inline void reiserfs_mutex_lock_safe(struct mutex *m, | ||
69 | struct super_block *s) | ||
70 | { | ||
71 | reiserfs_lock_check_recursive(s); | ||
72 | reiserfs_write_unlock(s); | ||
73 | mutex_lock(m); | ||
74 | reiserfs_write_lock(s); | ||
75 | } | ||
76 | |||
77 | static inline void | ||
78 | reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, | ||
79 | struct super_block *s) | ||
80 | { | ||
81 | reiserfs_lock_check_recursive(s); | ||
82 | reiserfs_write_unlock(s); | ||
83 | mutex_lock_nested(m, subclass); | ||
84 | reiserfs_write_lock(s); | ||
85 | } | ||
86 | |||
87 | static inline void | ||
88 | reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) | ||
89 | { | ||
90 | reiserfs_lock_check_recursive(s); | ||
91 | reiserfs_write_unlock(s); | ||
92 | down_read(sem); | ||
93 | reiserfs_write_lock(s); | ||
94 | } | ||
95 | |||
96 | /* | ||
97 | * When we schedule, we usually want to also release the write lock, | ||
98 | * according to the previous bkl based locking scheme of reiserfs. | ||
99 | */ | ||
100 | static inline void reiserfs_cond_resched(struct super_block *s) | ||
101 | { | ||
102 | if (need_resched()) { | ||
103 | reiserfs_write_unlock(s); | ||
104 | schedule(); | ||
105 | reiserfs_write_lock(s); | ||
106 | } | ||
107 | } | ||
108 | |||
109 | struct fid; | ||
110 | |||
111 | /* in reading the #defines, it may help to understand that they employ | ||
112 | the following abbreviations: | ||
113 | |||
114 | B = Buffer | ||
115 | I = Item header | ||
116 | H = Height within the tree (should be changed to LEV) | ||
117 | N = Number of the item in the node | ||
118 | STAT = stat data | ||
119 | DEH = Directory Entry Header | ||
120 | EC = Entry Count | ||
121 | E = Entry number | ||
122 | UL = Unsigned Long | ||
123 | BLKH = BLocK Header | ||
124 | UNFM = UNForMatted node | ||
125 | DC = Disk Child | ||
126 | P = Path | ||
127 | |||
128 | These #defines are named by concatenating these abbreviations, | ||
129 | where first comes the arguments, and last comes the return value, | ||
130 | of the macro. | ||
131 | |||
132 | */ | ||
133 | |||
134 | #define USE_INODE_GENERATION_COUNTER | ||
135 | |||
136 | #define REISERFS_PREALLOCATE | ||
137 | #define DISPLACE_NEW_PACKING_LOCALITIES | ||
138 | #define PREALLOCATION_SIZE 9 | ||
139 | |||
140 | /* n must be power of 2 */ | ||
141 | #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) | ||
142 | |||
143 | // to be ok for alpha and others we have to align structures to 8 byte | ||
144 | // boundary. | ||
145 | // FIXME: do not change 4 by anything else: there is code which relies on that | ||
146 | #define ROUND_UP(x) _ROUND_UP(x,8LL) | ||
147 | |||
148 | /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug | ||
149 | ** messages. | ||
150 | */ | ||
151 | #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ | ||
152 | |||
153 | void __reiserfs_warning(struct super_block *s, const char *id, | ||
154 | const char *func, const char *fmt, ...); | ||
155 | #define reiserfs_warning(s, id, fmt, args...) \ | ||
156 | __reiserfs_warning(s, id, __func__, fmt, ##args) | ||
157 | /* assertions handling */ | ||
158 | |||
159 | /** always check a condition and panic if it's false. */ | ||
160 | #define __RASSERT(cond, scond, format, args...) \ | ||
161 | do { \ | ||
162 | if (!(cond)) \ | ||
163 | reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ | ||
164 | __FILE__ ":%i:%s: " format "\n", \ | ||
165 | in_interrupt() ? -1 : task_pid_nr(current), \ | ||
166 | __LINE__, __func__ , ##args); \ | ||
167 | } while (0) | ||
168 | |||
169 | #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) | ||
170 | |||
171 | #if defined( CONFIG_REISERFS_CHECK ) | ||
172 | #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) | ||
173 | #else | ||
174 | #define RFALSE( cond, format, args... ) do {;} while( 0 ) | ||
175 | #endif | ||
176 | |||
177 | #define CONSTF __attribute_const__ | ||
178 | /* | ||
179 | * Disk Data Structures | ||
180 | */ | ||
181 | |||
182 | /***************************************************************************/ | ||
183 | /* SUPER BLOCK */ | ||
184 | /***************************************************************************/ | ||
185 | |||
186 | /* | ||
187 | * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs | ||
188 | * the version in RAM is part of a larger structure containing fields never written to disk. | ||
189 | */ | ||
190 | #define UNSET_HASH 0 // read_super will guess about, what hash names | ||
191 | // in directories were sorted with | ||
192 | #define TEA_HASH 1 | ||
193 | #define YURA_HASH 2 | ||
194 | #define R5_HASH 3 | ||
195 | #define DEFAULT_HASH R5_HASH | ||
196 | |||
197 | struct journal_params { | ||
198 | __le32 jp_journal_1st_block; /* where does journal start from on its | ||
199 | * device */ | ||
200 | __le32 jp_journal_dev; /* journal device st_rdev */ | ||
201 | __le32 jp_journal_size; /* size of the journal */ | ||
202 | __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */ | ||
203 | __le32 jp_journal_magic; /* random value made on fs creation (this | ||
204 | * was sb_journal_block_count) */ | ||
205 | __le32 jp_journal_max_batch; /* max number of blocks to batch into a | ||
206 | * trans */ | ||
207 | __le32 jp_journal_max_commit_age; /* in seconds, how old can an async | ||
208 | * commit be */ | ||
209 | __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction | ||
210 | * be */ | ||
211 | }; | ||
212 | |||
213 | /* this is the super from 3.5.X, where X >= 10 */ | ||
214 | struct reiserfs_super_block_v1 { | ||
215 | __le32 s_block_count; /* blocks count */ | ||
216 | __le32 s_free_blocks; /* free blocks count */ | ||
217 | __le32 s_root_block; /* root block number */ | ||
218 | struct journal_params s_journal; | ||
219 | __le16 s_blocksize; /* block size */ | ||
220 | __le16 s_oid_maxsize; /* max size of object id array, see | ||
221 | * get_objectid() commentary */ | ||
222 | __le16 s_oid_cursize; /* current size of object id array */ | ||
223 | __le16 s_umount_state; /* this is set to 1 when filesystem was | ||
224 | * umounted, to 2 - when not */ | ||
225 | char s_magic[10]; /* reiserfs magic string indicates that | ||
226 | * file system is reiserfs: | ||
227 | * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */ | ||
228 | __le16 s_fs_state; /* it is set to used by fsck to mark which | ||
229 | * phase of rebuilding is done */ | ||
230 | __le32 s_hash_function_code; /* indicate, what hash function is being use | ||
231 | * to sort names in a directory*/ | ||
232 | __le16 s_tree_height; /* height of disk tree */ | ||
233 | __le16 s_bmap_nr; /* amount of bitmap blocks needed to address | ||
234 | * each block of file system */ | ||
235 | __le16 s_version; /* this field is only reliable on filesystem | ||
236 | * with non-standard journal */ | ||
237 | __le16 s_reserved_for_journal; /* size in blocks of journal area on main | ||
238 | * device, we need to keep after | ||
239 | * making fs with non-standard journal */ | ||
240 | } __attribute__ ((__packed__)); | ||
241 | |||
242 | #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) | ||
243 | |||
244 | /* this is the on disk super block */ | ||
245 | struct reiserfs_super_block { | ||
246 | struct reiserfs_super_block_v1 s_v1; | ||
247 | __le32 s_inode_generation; | ||
248 | __le32 s_flags; /* Right now used only by inode-attributes, if enabled */ | ||
249 | unsigned char s_uuid[16]; /* filesystem unique identifier */ | ||
250 | unsigned char s_label[16]; /* filesystem volume label */ | ||
251 | __le16 s_mnt_count; /* Count of mounts since last fsck */ | ||
252 | __le16 s_max_mnt_count; /* Maximum mounts before check */ | ||
253 | __le32 s_lastcheck; /* Timestamp of last fsck */ | ||
254 | __le32 s_check_interval; /* Interval between checks */ | ||
255 | char s_unused[76]; /* zero filled by mkreiserfs and | ||
256 | * reiserfs_convert_objectid_map_v1() | ||
257 | * so any additions must be updated | ||
258 | * there as well. */ | ||
259 | } __attribute__ ((__packed__)); | ||
260 | |||
261 | #define SB_SIZE (sizeof(struct reiserfs_super_block)) | ||
262 | |||
263 | #define REISERFS_VERSION_1 0 | ||
264 | #define REISERFS_VERSION_2 2 | ||
265 | |||
266 | // on-disk super block fields converted to cpu form | ||
267 | #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) | ||
268 | #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) | ||
269 | #define SB_BLOCKSIZE(s) \ | ||
270 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) | ||
271 | #define SB_BLOCK_COUNT(s) \ | ||
272 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) | ||
273 | #define SB_FREE_BLOCKS(s) \ | ||
274 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) | ||
275 | #define SB_REISERFS_MAGIC(s) \ | ||
276 | (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) | ||
277 | #define SB_ROOT_BLOCK(s) \ | ||
278 | le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) | ||
279 | #define SB_TREE_HEIGHT(s) \ | ||
280 | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) | ||
281 | #define SB_REISERFS_STATE(s) \ | ||
282 | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) | ||
283 | #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) | ||
284 | #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) | ||
285 | |||
286 | #define PUT_SB_BLOCK_COUNT(s, val) \ | ||
287 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) | ||
288 | #define PUT_SB_FREE_BLOCKS(s, val) \ | ||
289 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) | ||
290 | #define PUT_SB_ROOT_BLOCK(s, val) \ | ||
291 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) | ||
292 | #define PUT_SB_TREE_HEIGHT(s, val) \ | ||
293 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) | ||
294 | #define PUT_SB_REISERFS_STATE(s, val) \ | ||
295 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) | ||
296 | #define PUT_SB_VERSION(s, val) \ | ||
297 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) | ||
298 | #define PUT_SB_BMAP_NR(s, val) \ | ||
299 | do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) | ||
300 | |||
301 | #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) | ||
302 | #define SB_ONDISK_JOURNAL_SIZE(s) \ | ||
303 | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) | ||
304 | #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ | ||
305 | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) | ||
306 | #define SB_ONDISK_JOURNAL_DEVICE(s) \ | ||
307 | le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) | ||
308 | #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ | ||
309 | le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) | ||
310 | |||
311 | #define is_block_in_log_or_reserved_area(s, block) \ | ||
312 | block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ | ||
313 | && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ | ||
314 | ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ | ||
315 | SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) | ||
316 | |||
317 | int is_reiserfs_3_5(struct reiserfs_super_block *rs); | ||
318 | int is_reiserfs_3_6(struct reiserfs_super_block *rs); | ||
319 | int is_reiserfs_jr(struct reiserfs_super_block *rs); | ||
320 | |||
321 | /* ReiserFS leaves the first 64k unused, so that partition labels have | ||
322 | enough space. If someone wants to write a fancy bootloader that | ||
323 | needs more than 64k, let us know, and this will be increased in size. | ||
324 | This number must be larger than than the largest block size on any | ||
325 | platform, or code will break. -Hans */ | ||
326 | #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) | ||
327 | #define REISERFS_FIRST_BLOCK unused_define | ||
328 | #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES | ||
329 | |||
330 | /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ | ||
331 | #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) | ||
332 | |||
333 | /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ | ||
334 | #define CARRY_ON 0 | ||
335 | #define REPEAT_SEARCH -1 | ||
336 | #define IO_ERROR -2 | ||
337 | #define NO_DISK_SPACE -3 | ||
338 | #define NO_BALANCING_NEEDED (-4) | ||
339 | #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) | ||
340 | #define QUOTA_EXCEEDED -6 | ||
341 | |||
342 | typedef __u32 b_blocknr_t; | ||
343 | typedef __le32 unp_t; | ||
344 | |||
345 | struct unfm_nodeinfo { | ||
346 | unp_t unfm_nodenum; | ||
347 | unsigned short unfm_freespace; | ||
348 | }; | ||
349 | |||
350 | /* there are two formats of keys: 3.5 and 3.6 | ||
351 | */ | ||
352 | #define KEY_FORMAT_3_5 0 | ||
353 | #define KEY_FORMAT_3_6 1 | ||
354 | |||
355 | /* there are two stat datas */ | ||
356 | #define STAT_DATA_V1 0 | ||
357 | #define STAT_DATA_V2 1 | ||
358 | |||
359 | static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) | ||
360 | { | ||
361 | return container_of(inode, struct reiserfs_inode_info, vfs_inode); | ||
362 | } | ||
363 | |||
364 | static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) | ||
365 | { | ||
366 | return sb->s_fs_info; | ||
367 | } | ||
368 | |||
369 | /* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 | ||
370 | * which overflows on large file systems. */ | ||
371 | static inline __u32 reiserfs_bmap_count(struct super_block *sb) | ||
372 | { | ||
373 | return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; | ||
374 | } | ||
375 | |||
376 | static inline int bmap_would_wrap(unsigned bmap_nr) | ||
377 | { | ||
378 | return bmap_nr > ((1LL << 16) - 1); | ||
379 | } | ||
380 | |||
381 | /** this says about version of key of all items (but stat data) the | ||
382 | object consists of */ | ||
383 | #define get_inode_item_key_version( inode ) \ | ||
384 | ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) | ||
385 | |||
386 | #define set_inode_item_key_version( inode, version ) \ | ||
387 | ({ if((version)==KEY_FORMAT_3_6) \ | ||
388 | REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ | ||
389 | else \ | ||
390 | REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) | ||
391 | |||
392 | #define get_inode_sd_version(inode) \ | ||
393 | ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) | ||
394 | |||
395 | #define set_inode_sd_version(inode, version) \ | ||
396 | ({ if((version)==STAT_DATA_V2) \ | ||
397 | REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ | ||
398 | else \ | ||
399 | REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) | ||
400 | |||
401 | /* This is an aggressive tail suppression policy, I am hoping it | ||
402 | improves our benchmarks. The principle behind it is that percentage | ||
403 | space saving is what matters, not absolute space saving. This is | ||
404 | non-intuitive, but it helps to understand it if you consider that the | ||
405 | cost to access 4 blocks is not much more than the cost to access 1 | ||
406 | block, if you have to do a seek and rotate. A tail risks a | ||
407 | non-linear disk access that is significant as a percentage of total | ||
408 | time cost for a 4 block file and saves an amount of space that is | ||
409 | less significant as a percentage of space, or so goes the hypothesis. | ||
410 | -Hans */ | ||
411 | #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ | ||
412 | (\ | ||
413 | (!(n_tail_size)) || \ | ||
414 | (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ | ||
415 | ( (n_file_size) >= (n_block_size) * 4 ) || \ | ||
416 | ( ( (n_file_size) >= (n_block_size) * 3 ) && \ | ||
417 | ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ | ||
418 | ( ( (n_file_size) >= (n_block_size) * 2 ) && \ | ||
419 | ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ | ||
420 | ( ( (n_file_size) >= (n_block_size) ) && \ | ||
421 | ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ | ||
422 | ) | ||
423 | |||
424 | /* Another strategy for tails, this one means only create a tail if all the | ||
425 | file would fit into one DIRECT item. | ||
426 | Primary intention for this one is to increase performance by decreasing | ||
427 | seeking. | ||
428 | */ | ||
429 | #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ | ||
430 | (\ | ||
431 | (!(n_tail_size)) || \ | ||
432 | (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ | ||
433 | ) | ||
434 | |||
435 | /* | ||
436 | * values for s_umount_state field | ||
437 | */ | ||
438 | #define REISERFS_VALID_FS 1 | ||
439 | #define REISERFS_ERROR_FS 2 | ||
440 | |||
441 | // | ||
442 | // there are 5 item types currently | ||
443 | // | ||
444 | #define TYPE_STAT_DATA 0 | ||
445 | #define TYPE_INDIRECT 1 | ||
446 | #define TYPE_DIRECT 2 | ||
447 | #define TYPE_DIRENTRY 3 | ||
448 | #define TYPE_MAXTYPE 3 | ||
449 | #define TYPE_ANY 15 // FIXME: comment is required | ||
450 | |||
451 | /***************************************************************************/ | ||
452 | /* KEY & ITEM HEAD */ | ||
453 | /***************************************************************************/ | ||
454 | |||
455 | // | ||
456 | // directories use this key as well as old files | ||
457 | // | ||
458 | struct offset_v1 { | ||
459 | __le32 k_offset; | ||
460 | __le32 k_uniqueness; | ||
461 | } __attribute__ ((__packed__)); | ||
462 | |||
463 | struct offset_v2 { | ||
464 | __le64 v; | ||
465 | } __attribute__ ((__packed__)); | ||
466 | |||
467 | static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) | ||
468 | { | ||
469 | __u8 type = le64_to_cpu(v2->v) >> 60; | ||
470 | return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; | ||
471 | } | ||
472 | |||
473 | static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) | ||
474 | { | ||
475 | v2->v = | ||
476 | (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); | ||
477 | } | ||
478 | |||
479 | static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) | ||
480 | { | ||
481 | return le64_to_cpu(v2->v) & (~0ULL >> 4); | ||
482 | } | ||
483 | |||
484 | static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) | ||
485 | { | ||
486 | offset &= (~0ULL >> 4); | ||
487 | v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); | ||
488 | } | ||
489 | |||
490 | /* Key of an item determines its location in the S+tree, and | ||
491 | is composed of 4 components */ | ||
492 | struct reiserfs_key { | ||
493 | __le32 k_dir_id; /* packing locality: by default parent | ||
494 | directory object id */ | ||
495 | __le32 k_objectid; /* object identifier */ | ||
496 | union { | ||
497 | struct offset_v1 k_offset_v1; | ||
498 | struct offset_v2 k_offset_v2; | ||
499 | } __attribute__ ((__packed__)) u; | ||
500 | } __attribute__ ((__packed__)); | ||
501 | |||
502 | struct in_core_key { | ||
503 | __u32 k_dir_id; /* packing locality: by default parent | ||
504 | directory object id */ | ||
505 | __u32 k_objectid; /* object identifier */ | ||
506 | __u64 k_offset; | ||
507 | __u8 k_type; | ||
508 | }; | ||
509 | |||
510 | struct cpu_key { | ||
511 | struct in_core_key on_disk_key; | ||
512 | int version; | ||
513 | int key_length; /* 3 in all cases but direct2indirect and | ||
514 | indirect2direct conversion */ | ||
515 | }; | ||
516 | |||
517 | /* Our function for comparing keys can compare keys of different | ||
518 | lengths. It takes as a parameter the length of the keys it is to | ||
519 | compare. These defines are used in determining what is to be passed | ||
520 | to it as that parameter. */ | ||
521 | #define REISERFS_FULL_KEY_LEN 4 | ||
522 | #define REISERFS_SHORT_KEY_LEN 2 | ||
523 | |||
524 | /* The result of the key compare */ | ||
525 | #define FIRST_GREATER 1 | ||
526 | #define SECOND_GREATER -1 | ||
527 | #define KEYS_IDENTICAL 0 | ||
528 | #define KEY_FOUND 1 | ||
529 | #define KEY_NOT_FOUND 0 | ||
530 | |||
531 | #define KEY_SIZE (sizeof(struct reiserfs_key)) | ||
532 | #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32)) | ||
533 | |||
534 | /* return values for search_by_key and clones */ | ||
535 | #define ITEM_FOUND 1 | ||
536 | #define ITEM_NOT_FOUND 0 | ||
537 | #define ENTRY_FOUND 1 | ||
538 | #define ENTRY_NOT_FOUND 0 | ||
539 | #define DIRECTORY_NOT_FOUND -1 | ||
540 | #define REGULAR_FILE_FOUND -2 | ||
541 | #define DIRECTORY_FOUND -3 | ||
542 | #define BYTE_FOUND 1 | ||
543 | #define BYTE_NOT_FOUND 0 | ||
544 | #define FILE_NOT_FOUND -1 | ||
545 | |||
546 | #define POSITION_FOUND 1 | ||
547 | #define POSITION_NOT_FOUND 0 | ||
548 | |||
549 | // return values for reiserfs_find_entry and search_by_entry_key | ||
550 | #define NAME_FOUND 1 | ||
551 | #define NAME_NOT_FOUND 0 | ||
552 | #define GOTO_PREVIOUS_ITEM 2 | ||
553 | #define NAME_FOUND_INVISIBLE 3 | ||
554 | |||
555 | /* Everything in the filesystem is stored as a set of items. The | ||
556 | item head contains the key of the item, its free space (for | ||
557 | indirect items) and specifies the location of the item itself | ||
558 | within the block. */ | ||
559 | |||
560 | struct item_head { | ||
561 | /* Everything in the tree is found by searching for it based on | ||
562 | * its key.*/ | ||
563 | struct reiserfs_key ih_key; | ||
564 | union { | ||
565 | /* The free space in the last unformatted node of an | ||
566 | indirect item if this is an indirect item. This | ||
567 | equals 0xFFFF iff this is a direct item or stat data | ||
568 | item. Note that the key, not this field, is used to | ||
569 | determine the item type, and thus which field this | ||
570 | union contains. */ | ||
571 | __le16 ih_free_space_reserved; | ||
572 | /* Iff this is a directory item, this field equals the | ||
573 | number of directory entries in the directory item. */ | ||
574 | __le16 ih_entry_count; | ||
575 | } __attribute__ ((__packed__)) u; | ||
576 | __le16 ih_item_len; /* total size of the item body */ | ||
577 | __le16 ih_item_location; /* an offset to the item body | ||
578 | * within the block */ | ||
579 | __le16 ih_version; /* 0 for all old items, 2 for new | ||
580 | ones. Highest bit is set by fsck | ||
581 | temporary, cleaned after all | ||
582 | done */ | ||
583 | } __attribute__ ((__packed__)); | ||
584 | /* size of item header */ | ||
585 | #define IH_SIZE (sizeof(struct item_head)) | ||
586 | |||
587 | #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) | ||
588 | #define ih_version(ih) le16_to_cpu((ih)->ih_version) | ||
589 | #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) | ||
590 | #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) | ||
591 | #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) | ||
592 | |||
593 | #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) | ||
594 | #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) | ||
595 | #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) | ||
596 | #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) | ||
597 | #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) | ||
598 | |||
599 | #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) | ||
600 | |||
601 | #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) | ||
602 | #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) | ||
603 | |||
604 | /* these operate on indirect items, where you've got an array of ints | ||
605 | ** at a possibly unaligned location. These are a noop on ia32 | ||
606 | ** | ||
607 | ** p is the array of __u32, i is the index into the array, v is the value | ||
608 | ** to store there. | ||
609 | */ | ||
610 | #define get_block_num(p, i) get_unaligned_le32((p) + (i)) | ||
611 | #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) | ||
612 | |||
613 | // | ||
614 | // in old version uniqueness field shows key type | ||
615 | // | ||
616 | #define V1_SD_UNIQUENESS 0 | ||
617 | #define V1_INDIRECT_UNIQUENESS 0xfffffffe | ||
618 | #define V1_DIRECT_UNIQUENESS 0xffffffff | ||
619 | #define V1_DIRENTRY_UNIQUENESS 500 | ||
620 | #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required | ||
621 | |||
622 | // | ||
623 | // here are conversion routines | ||
624 | // | ||
625 | static inline int uniqueness2type(__u32 uniqueness) CONSTF; | ||
626 | static inline int uniqueness2type(__u32 uniqueness) | ||
627 | { | ||
628 | switch ((int)uniqueness) { | ||
629 | case V1_SD_UNIQUENESS: | ||
630 | return TYPE_STAT_DATA; | ||
631 | case V1_INDIRECT_UNIQUENESS: | ||
632 | return TYPE_INDIRECT; | ||
633 | case V1_DIRECT_UNIQUENESS: | ||
634 | return TYPE_DIRECT; | ||
635 | case V1_DIRENTRY_UNIQUENESS: | ||
636 | return TYPE_DIRENTRY; | ||
637 | case V1_ANY_UNIQUENESS: | ||
638 | default: | ||
639 | return TYPE_ANY; | ||
640 | } | ||
641 | } | ||
642 | |||
643 | static inline __u32 type2uniqueness(int type) CONSTF; | ||
644 | static inline __u32 type2uniqueness(int type) | ||
645 | { | ||
646 | switch (type) { | ||
647 | case TYPE_STAT_DATA: | ||
648 | return V1_SD_UNIQUENESS; | ||
649 | case TYPE_INDIRECT: | ||
650 | return V1_INDIRECT_UNIQUENESS; | ||
651 | case TYPE_DIRECT: | ||
652 | return V1_DIRECT_UNIQUENESS; | ||
653 | case TYPE_DIRENTRY: | ||
654 | return V1_DIRENTRY_UNIQUENESS; | ||
655 | case TYPE_ANY: | ||
656 | default: | ||
657 | return V1_ANY_UNIQUENESS; | ||
658 | } | ||
659 | } | ||
660 | |||
661 | // | ||
662 | // key is pointer to on disk key which is stored in le, result is cpu, | ||
663 | // there is no way to get version of object from key, so, provide | ||
664 | // version to these defines | ||
665 | // | ||
666 | static inline loff_t le_key_k_offset(int version, | ||
667 | const struct reiserfs_key *key) | ||
668 | { | ||
669 | return (version == KEY_FORMAT_3_5) ? | ||
670 | le32_to_cpu(key->u.k_offset_v1.k_offset) : | ||
671 | offset_v2_k_offset(&(key->u.k_offset_v2)); | ||
672 | } | ||
673 | |||
674 | static inline loff_t le_ih_k_offset(const struct item_head *ih) | ||
675 | { | ||
676 | return le_key_k_offset(ih_version(ih), &(ih->ih_key)); | ||
677 | } | ||
678 | |||
679 | static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) | ||
680 | { | ||
681 | return (version == KEY_FORMAT_3_5) ? | ||
682 | uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) : | ||
683 | offset_v2_k_type(&(key->u.k_offset_v2)); | ||
684 | } | ||
685 | |||
686 | static inline loff_t le_ih_k_type(const struct item_head *ih) | ||
687 | { | ||
688 | return le_key_k_type(ih_version(ih), &(ih->ih_key)); | ||
689 | } | ||
690 | |||
691 | static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, | ||
692 | loff_t offset) | ||
693 | { | ||
694 | (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */ | ||
695 | (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset)); | ||
696 | } | ||
697 | |||
698 | static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) | ||
699 | { | ||
700 | set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); | ||
701 | } | ||
702 | |||
703 | static inline void set_le_key_k_type(int version, struct reiserfs_key *key, | ||
704 | int type) | ||
705 | { | ||
706 | (version == KEY_FORMAT_3_5) ? | ||
707 | (void)(key->u.k_offset_v1.k_uniqueness = | ||
708 | cpu_to_le32(type2uniqueness(type))) | ||
709 | : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type)); | ||
710 | } | ||
711 | |||
712 | static inline void set_le_ih_k_type(struct item_head *ih, int type) | ||
713 | { | ||
714 | set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); | ||
715 | } | ||
716 | |||
717 | static inline int is_direntry_le_key(int version, struct reiserfs_key *key) | ||
718 | { | ||
719 | return le_key_k_type(version, key) == TYPE_DIRENTRY; | ||
720 | } | ||
721 | |||
722 | static inline int is_direct_le_key(int version, struct reiserfs_key *key) | ||
723 | { | ||
724 | return le_key_k_type(version, key) == TYPE_DIRECT; | ||
725 | } | ||
726 | |||
727 | static inline int is_indirect_le_key(int version, struct reiserfs_key *key) | ||
728 | { | ||
729 | return le_key_k_type(version, key) == TYPE_INDIRECT; | ||
730 | } | ||
731 | |||
732 | static inline int is_statdata_le_key(int version, struct reiserfs_key *key) | ||
733 | { | ||
734 | return le_key_k_type(version, key) == TYPE_STAT_DATA; | ||
735 | } | ||
736 | |||
737 | // | ||
738 | // item header has version. | ||
739 | // | ||
740 | static inline int is_direntry_le_ih(struct item_head *ih) | ||
741 | { | ||
742 | return is_direntry_le_key(ih_version(ih), &ih->ih_key); | ||
743 | } | ||
744 | |||
745 | static inline int is_direct_le_ih(struct item_head *ih) | ||
746 | { | ||
747 | return is_direct_le_key(ih_version(ih), &ih->ih_key); | ||
748 | } | ||
749 | |||
750 | static inline int is_indirect_le_ih(struct item_head *ih) | ||
751 | { | ||
752 | return is_indirect_le_key(ih_version(ih), &ih->ih_key); | ||
753 | } | ||
754 | |||
755 | static inline int is_statdata_le_ih(struct item_head *ih) | ||
756 | { | ||
757 | return is_statdata_le_key(ih_version(ih), &ih->ih_key); | ||
758 | } | ||
759 | |||
760 | // | ||
761 | // key is pointer to cpu key, result is cpu | ||
762 | // | ||
763 | static inline loff_t cpu_key_k_offset(const struct cpu_key *key) | ||
764 | { | ||
765 | return key->on_disk_key.k_offset; | ||
766 | } | ||
767 | |||
768 | static inline loff_t cpu_key_k_type(const struct cpu_key *key) | ||
769 | { | ||
770 | return key->on_disk_key.k_type; | ||
771 | } | ||
772 | |||
773 | static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) | ||
774 | { | ||
775 | key->on_disk_key.k_offset = offset; | ||
776 | } | ||
777 | |||
778 | static inline void set_cpu_key_k_type(struct cpu_key *key, int type) | ||
779 | { | ||
780 | key->on_disk_key.k_type = type; | ||
781 | } | ||
782 | |||
783 | static inline void cpu_key_k_offset_dec(struct cpu_key *key) | ||
784 | { | ||
785 | key->on_disk_key.k_offset--; | ||
786 | } | ||
787 | |||
788 | #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) | ||
789 | #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) | ||
790 | #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) | ||
791 | #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) | ||
792 | |||
793 | /* are these used ? */ | ||
794 | #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) | ||
795 | #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) | ||
796 | #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) | ||
797 | #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) | ||
798 | |||
799 | #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ | ||
800 | (!COMP_SHORT_KEYS(ih, key) && \ | ||
801 | I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) | ||
802 | |||
803 | /* maximal length of item */ | ||
804 | #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) | ||
805 | #define MIN_ITEM_LEN 1 | ||
806 | |||
807 | /* object identifier for root dir */ | ||
808 | #define REISERFS_ROOT_OBJECTID 2 | ||
809 | #define REISERFS_ROOT_PARENT_OBJECTID 1 | ||
810 | |||
811 | extern struct reiserfs_key root_key; | ||
812 | |||
813 | /* | ||
814 | * Picture represents a leaf of the S+tree | ||
815 | * ______________________________________________________ | ||
816 | * | | Array of | | | | ||
817 | * |Block | Object-Item | F r e e | Objects- | | ||
818 | * | head | Headers | S p a c e | Items | | ||
819 | * |______|_______________|___________________|___________| | ||
820 | */ | ||
821 | |||
822 | /* Header of a disk block. More precisely, header of a formatted leaf | ||
823 | or internal node, and not the header of an unformatted node. */ | ||
824 | struct block_head { | ||
825 | __le16 blk_level; /* Level of a block in the tree. */ | ||
826 | __le16 blk_nr_item; /* Number of keys/items in a block. */ | ||
827 | __le16 blk_free_space; /* Block free space in bytes. */ | ||
828 | __le16 blk_reserved; | ||
829 | /* dump this in v4/planA */ | ||
830 | struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */ | ||
831 | }; | ||
832 | |||
833 | #define BLKH_SIZE (sizeof(struct block_head)) | ||
834 | #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) | ||
835 | #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) | ||
836 | #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) | ||
837 | #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) | ||
838 | #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) | ||
839 | #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) | ||
840 | #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) | ||
841 | #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) | ||
842 | #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) | ||
843 | #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) | ||
844 | |||
845 | /* | ||
846 | * values for blk_level field of the struct block_head | ||
847 | */ | ||
848 | |||
849 | #define FREE_LEVEL 0 /* when node gets removed from the tree its | ||
850 | blk_level is set to FREE_LEVEL. It is then | ||
851 | used to see whether the node is still in the | ||
852 | tree */ | ||
853 | |||
854 | #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ | ||
855 | |||
856 | /* Given the buffer head of a formatted node, resolve to the block head of that node. */ | ||
857 | #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) | ||
858 | /* Number of items that are in buffer. */ | ||
859 | #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) | ||
860 | #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh))) | ||
861 | #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh))) | ||
862 | |||
863 | #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) | ||
864 | #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) | ||
865 | #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) | ||
866 | |||
867 | /* Get right delimiting key. -- little endian */ | ||
868 | #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh)))) | ||
869 | |||
870 | /* Does the buffer contain a disk leaf. */ | ||
871 | #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) | ||
872 | |||
873 | /* Does the buffer contain a disk internal node */ | ||
874 | #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ | ||
875 | && B_LEVEL(bh) <= MAX_HEIGHT) | ||
876 | |||
877 | /***************************************************************************/ | ||
878 | /* STAT DATA */ | ||
879 | /***************************************************************************/ | ||
880 | |||
881 | // | ||
882 | // old stat data is 32 bytes long. We are going to distinguish new one by | ||
883 | // different size | ||
884 | // | ||
885 | struct stat_data_v1 { | ||
886 | __le16 sd_mode; /* file type, permissions */ | ||
887 | __le16 sd_nlink; /* number of hard links */ | ||
888 | __le16 sd_uid; /* owner */ | ||
889 | __le16 sd_gid; /* group */ | ||
890 | __le32 sd_size; /* file size */ | ||
891 | __le32 sd_atime; /* time of last access */ | ||
892 | __le32 sd_mtime; /* time file was last modified */ | ||
893 | __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ | ||
894 | union { | ||
895 | __le32 sd_rdev; | ||
896 | __le32 sd_blocks; /* number of blocks file uses */ | ||
897 | } __attribute__ ((__packed__)) u; | ||
898 | __le32 sd_first_direct_byte; /* first byte of file which is stored | ||
899 | in a direct item: except that if it | ||
900 | equals 1 it is a symlink and if it | ||
901 | equals ~(__u32)0 there is no | ||
902 | direct item. The existence of this | ||
903 | field really grates on me. Let's | ||
904 | replace it with a macro based on | ||
905 | sd_size and our tail suppression | ||
906 | policy. Someday. -Hans */ | ||
907 | } __attribute__ ((__packed__)); | ||
908 | |||
909 | #define SD_V1_SIZE (sizeof(struct stat_data_v1)) | ||
910 | #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) | ||
911 | #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) | ||
912 | #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) | ||
913 | #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) | ||
914 | #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) | ||
915 | #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) | ||
916 | #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) | ||
917 | #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) | ||
918 | #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) | ||
919 | #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) | ||
920 | #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) | ||
921 | #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) | ||
922 | #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) | ||
923 | #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) | ||
924 | #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) | ||
925 | #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) | ||
926 | #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) | ||
927 | #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) | ||
928 | #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) | ||
929 | #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) | ||
930 | #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) | ||
931 | #define sd_v1_first_direct_byte(sdp) \ | ||
932 | (le32_to_cpu((sdp)->sd_first_direct_byte)) | ||
933 | #define set_sd_v1_first_direct_byte(sdp,v) \ | ||
934 | ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) | ||
935 | |||
936 | /* inode flags stored in sd_attrs (nee sd_reserved) */ | ||
937 | |||
938 | /* we want common flags to have the same values as in ext2, | ||
939 | so chattr(1) will work without problems */ | ||
940 | #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL | ||
941 | #define REISERFS_APPEND_FL FS_APPEND_FL | ||
942 | #define REISERFS_SYNC_FL FS_SYNC_FL | ||
943 | #define REISERFS_NOATIME_FL FS_NOATIME_FL | ||
944 | #define REISERFS_NODUMP_FL FS_NODUMP_FL | ||
945 | #define REISERFS_SECRM_FL FS_SECRM_FL | ||
946 | #define REISERFS_UNRM_FL FS_UNRM_FL | ||
947 | #define REISERFS_COMPR_FL FS_COMPR_FL | ||
948 | #define REISERFS_NOTAIL_FL FS_NOTAIL_FL | ||
949 | |||
950 | /* persistent flags that file inherits from the parent directory */ | ||
951 | #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ | ||
952 | REISERFS_SYNC_FL | \ | ||
953 | REISERFS_NOATIME_FL | \ | ||
954 | REISERFS_NODUMP_FL | \ | ||
955 | REISERFS_SECRM_FL | \ | ||
956 | REISERFS_COMPR_FL | \ | ||
957 | REISERFS_NOTAIL_FL ) | ||
958 | |||
959 | /* Stat Data on disk (reiserfs version of UFS disk inode minus the | ||
960 | address blocks) */ | ||
961 | struct stat_data { | ||
962 | __le16 sd_mode; /* file type, permissions */ | ||
963 | __le16 sd_attrs; /* persistent inode flags */ | ||
964 | __le32 sd_nlink; /* number of hard links */ | ||
965 | __le64 sd_size; /* file size */ | ||
966 | __le32 sd_uid; /* owner */ | ||
967 | __le32 sd_gid; /* group */ | ||
968 | __le32 sd_atime; /* time of last access */ | ||
969 | __le32 sd_mtime; /* time file was last modified */ | ||
970 | __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ | ||
971 | __le32 sd_blocks; | ||
972 | union { | ||
973 | __le32 sd_rdev; | ||
974 | __le32 sd_generation; | ||
975 | //__le32 sd_first_direct_byte; | ||
976 | /* first byte of file which is stored in a | ||
977 | direct item: except that if it equals 1 | ||
978 | it is a symlink and if it equals | ||
979 | ~(__u32)0 there is no direct item. The | ||
980 | existence of this field really grates | ||
981 | on me. Let's replace it with a macro | ||
982 | based on sd_size and our tail | ||
983 | suppression policy? */ | ||
984 | } __attribute__ ((__packed__)) u; | ||
985 | } __attribute__ ((__packed__)); | ||
986 | // | ||
987 | // this is 44 bytes long | ||
988 | // | ||
989 | #define SD_SIZE (sizeof(struct stat_data)) | ||
990 | #define SD_V2_SIZE SD_SIZE | ||
991 | #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) | ||
992 | #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) | ||
993 | #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) | ||
994 | /* sd_reserved */ | ||
995 | /* set_sd_reserved */ | ||
996 | #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) | ||
997 | #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) | ||
998 | #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) | ||
999 | #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) | ||
1000 | #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) | ||
1001 | #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) | ||
1002 | #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) | ||
1003 | #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) | ||
1004 | #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) | ||
1005 | #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) | ||
1006 | #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) | ||
1007 | #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) | ||
1008 | #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) | ||
1009 | #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) | ||
1010 | #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) | ||
1011 | #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) | ||
1012 | #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) | ||
1013 | #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) | ||
1014 | #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) | ||
1015 | #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) | ||
1016 | #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) | ||
1017 | #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) | ||
1018 | |||
1019 | /***************************************************************************/ | ||
1020 | /* DIRECTORY STRUCTURE */ | ||
1021 | /***************************************************************************/ | ||
1022 | /* | ||
1023 | Picture represents the structure of directory items | ||
1024 | ________________________________________________ | ||
1025 | | Array of | | | | | | | ||
1026 | | directory |N-1| N-2 | .... | 1st |0th| | ||
1027 | | entry headers | | | | | | | ||
1028 | |_______________|___|_____|________|_______|___| | ||
1029 | <---- directory entries ------> | ||
1030 | |||
1031 | First directory item has k_offset component 1. We store "." and ".." | ||
1032 | in one item, always, we never split "." and ".." into differing | ||
1033 | items. This makes, among other things, the code for removing | ||
1034 | directories simpler. */ | ||
1035 | #define SD_OFFSET 0 | ||
1036 | #define SD_UNIQUENESS 0 | ||
1037 | #define DOT_OFFSET 1 | ||
1038 | #define DOT_DOT_OFFSET 2 | ||
1039 | #define DIRENTRY_UNIQUENESS 500 | ||
1040 | |||
1041 | /* */ | ||
1042 | #define FIRST_ITEM_OFFSET 1 | ||
1043 | |||
1044 | /* | ||
1045 | Q: How to get key of object pointed to by entry from entry? | ||
1046 | |||
1047 | A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key | ||
1048 | of object, entry points to */ | ||
1049 | |||
1050 | /* NOT IMPLEMENTED: | ||
1051 | Directory will someday contain stat data of object */ | ||
1052 | |||
1053 | struct reiserfs_de_head { | ||
1054 | __le32 deh_offset; /* third component of the directory entry key */ | ||
1055 | __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced | ||
1056 | by directory entry */ | ||
1057 | __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */ | ||
1058 | __le16 deh_location; /* offset of name in the whole item */ | ||
1059 | __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether | ||
1060 | entry is hidden (unlinked) */ | ||
1061 | } __attribute__ ((__packed__)); | ||
1062 | #define DEH_SIZE sizeof(struct reiserfs_de_head) | ||
1063 | #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) | ||
1064 | #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) | ||
1065 | #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) | ||
1066 | #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) | ||
1067 | #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) | ||
1068 | |||
1069 | #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) | ||
1070 | #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) | ||
1071 | #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) | ||
1072 | #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) | ||
1073 | #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) | ||
1074 | |||
1075 | /* empty directory contains two entries "." and ".." and their headers */ | ||
1076 | #define EMPTY_DIR_SIZE \ | ||
1077 | (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) | ||
1078 | |||
1079 | /* old format directories have this size when empty */ | ||
1080 | #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) | ||
1081 | |||
1082 | #define DEH_Statdata 0 /* not used now */ | ||
1083 | #define DEH_Visible 2 | ||
1084 | |||
1085 | /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ | ||
1086 | #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) | ||
1087 | # define ADDR_UNALIGNED_BITS (3) | ||
1088 | #endif | ||
1089 | |||
1090 | /* These are only used to manipulate deh_state. | ||
1091 | * Because of this, we'll use the ext2_ bit routines, | ||
1092 | * since they are little endian */ | ||
1093 | #ifdef ADDR_UNALIGNED_BITS | ||
1094 | |||
1095 | # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) | ||
1096 | # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) | ||
1097 | |||
1098 | # define set_bit_unaligned(nr, addr) \ | ||
1099 | __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) | ||
1100 | # define clear_bit_unaligned(nr, addr) \ | ||
1101 | __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) | ||
1102 | # define test_bit_unaligned(nr, addr) \ | ||
1103 | test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) | ||
1104 | |||
1105 | #else | ||
1106 | |||
1107 | # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr) | ||
1108 | # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr) | ||
1109 | # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr) | ||
1110 | |||
1111 | #endif | ||
1112 | |||
1113 | #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) | ||
1114 | #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) | ||
1115 | #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | ||
1116 | #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | ||
1117 | |||
1118 | #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) | ||
1119 | #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | ||
1120 | #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) | ||
1121 | |||
1122 | extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, | ||
1123 | __le32 par_dirid, __le32 par_objid); | ||
1124 | extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, | ||
1125 | __le32 par_dirid, __le32 par_objid); | ||
1126 | |||
1127 | /* array of the entry headers */ | ||
1128 | /* get item body */ | ||
1129 | #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) ) | ||
1130 | #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih))) | ||
1131 | |||
1132 | /* length of the directory entry in directory item. This define | ||
1133 | calculates length of i-th directory entry using directory entry | ||
1134 | locations from dir entry head. When it calculates length of 0-th | ||
1135 | directory entry, it uses length of whole item in place of entry | ||
1136 | location of the non-existent following entry in the calculation. | ||
1137 | See picture above.*/ | ||
1138 | /* | ||
1139 | #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \ | ||
1140 | ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh)))) | ||
1141 | */ | ||
1142 | static inline int entry_length(const struct buffer_head *bh, | ||
1143 | const struct item_head *ih, int pos_in_item) | ||
1144 | { | ||
1145 | struct reiserfs_de_head *deh; | ||
1146 | |||
1147 | deh = B_I_DEH(bh, ih) + pos_in_item; | ||
1148 | if (pos_in_item) | ||
1149 | return deh_location(deh - 1) - deh_location(deh); | ||
1150 | |||
1151 | return ih_item_len(ih) - deh_location(deh); | ||
1152 | } | ||
1153 | |||
1154 | /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */ | ||
1155 | #define I_ENTRY_COUNT(ih) (ih_entry_count((ih))) | ||
1156 | |||
1157 | /* name by bh, ih and entry_num */ | ||
1158 | #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num)))) | ||
1159 | |||
1160 | // two entries per block (at least) | ||
1161 | #define REISERFS_MAX_NAME(block_size) 255 | ||
1162 | |||
1163 | /* this structure is used for operations on directory entries. It is | ||
1164 | not a disk structure. */ | ||
1165 | /* When reiserfs_find_entry or search_by_entry_key find directory | ||
1166 | entry, they return filled reiserfs_dir_entry structure */ | ||
1167 | struct reiserfs_dir_entry { | ||
1168 | struct buffer_head *de_bh; | ||
1169 | int de_item_num; | ||
1170 | struct item_head *de_ih; | ||
1171 | int de_entry_num; | ||
1172 | struct reiserfs_de_head *de_deh; | ||
1173 | int de_entrylen; | ||
1174 | int de_namelen; | ||
1175 | char *de_name; | ||
1176 | unsigned long *de_gen_number_bit_string; | ||
1177 | |||
1178 | __u32 de_dir_id; | ||
1179 | __u32 de_objectid; | ||
1180 | |||
1181 | struct cpu_key de_entry_key; | ||
1182 | }; | ||
1183 | |||
1184 | /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */ | ||
1185 | |||
1186 | /* pointer to file name, stored in entry */ | ||
1187 | #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh)) | ||
1188 | |||
1189 | /* length of name */ | ||
1190 | #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ | ||
1191 | (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) | ||
1192 | |||
1193 | /* hash value occupies bits from 7 up to 30 */ | ||
1194 | #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) | ||
1195 | /* generation number occupies 7 bits starting from 0 up to 6 */ | ||
1196 | #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) | ||
1197 | #define MAX_GENERATION_NUMBER 127 | ||
1198 | |||
1199 | #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) | ||
1200 | |||
1201 | /* | ||
1202 | * Picture represents an internal node of the reiserfs tree | ||
1203 | * ______________________________________________________ | ||
1204 | * | | Array of | Array of | Free | | ||
1205 | * |block | keys | pointers | space | | ||
1206 | * | head | N | N+1 | | | ||
1207 | * |______|_______________|___________________|___________| | ||
1208 | */ | ||
1209 | |||
1210 | /***************************************************************************/ | ||
1211 | /* DISK CHILD */ | ||
1212 | /***************************************************************************/ | ||
1213 | /* Disk child pointer: The pointer from an internal node of the tree | ||
1214 | to a node that is on disk. */ | ||
1215 | struct disk_child { | ||
1216 | __le32 dc_block_number; /* Disk child's block number. */ | ||
1217 | __le16 dc_size; /* Disk child's used space. */ | ||
1218 | __le16 dc_reserved; | ||
1219 | }; | ||
1220 | |||
1221 | #define DC_SIZE (sizeof(struct disk_child)) | ||
1222 | #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) | ||
1223 | #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) | ||
1224 | #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) | ||
1225 | #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) | ||
1226 | |||
1227 | /* Get disk child by buffer header and position in the tree node. */ | ||
1228 | #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\ | ||
1229 | ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) | ||
1230 | |||
1231 | /* Get disk child number by buffer header and position in the tree node. */ | ||
1232 | #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) | ||
1233 | #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ | ||
1234 | (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) | ||
1235 | |||
1236 | /* maximal value of field child_size in structure disk_child */ | ||
1237 | /* child size is the combined size of all items and their headers */ | ||
1238 | #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) | ||
1239 | |||
1240 | /* amount of used space in buffer (not including block head) */ | ||
1241 | #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) | ||
1242 | |||
1243 | /* max and min number of keys in internal node */ | ||
1244 | #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) | ||
1245 | #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) | ||
1246 | |||
1247 | /***************************************************************************/ | ||
1248 | /* PATH STRUCTURES AND DEFINES */ | ||
1249 | /***************************************************************************/ | ||
1250 | |||
1251 | /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the | ||
1252 | key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it | ||
1253 | does not find them in the cache it reads them from disk. For each node search_by_key finds using | ||
1254 | reiserfs_bread it then uses bin_search to look through that node. bin_search will find the | ||
1255 | position of the block_number of the next node if it is looking through an internal node. If it | ||
1256 | is looking through a leaf node bin_search will find the position of the item which has key either | ||
1257 | equal to given key, or which is the maximal key less than the given key. */ | ||
1258 | |||
1259 | struct path_element { | ||
1260 | struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */ | ||
1261 | int pe_position; /* Position in the tree node which is placed in the */ | ||
1262 | /* buffer above. */ | ||
1263 | }; | ||
1264 | |||
1265 | #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */ | ||
1266 | #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ | ||
1267 | #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */ | ||
1268 | |||
1269 | #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ | ||
1270 | #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ | ||
1271 | |||
1272 | /* We need to keep track of who the ancestors of nodes are. When we | ||
1273 | perform a search we record which nodes were visited while | ||
1274 | descending the tree looking for the node we searched for. This list | ||
1275 | of nodes is called the path. This information is used while | ||
1276 | performing balancing. Note that this path information may become | ||
1277 | invalid, and this means we must check it when using it to see if it | ||
1278 | is still valid. You'll need to read search_by_key and the comments | ||
1279 | in it, especially about decrement_counters_in_path(), to understand | ||
1280 | this structure. | ||
1281 | |||
1282 | Paths make the code so much harder to work with and debug.... An | ||
1283 | enormous number of bugs are due to them, and trying to write or modify | ||
1284 | code that uses them just makes my head hurt. They are based on an | ||
1285 | excessive effort to avoid disturbing the precious VFS code.:-( The | ||
1286 | gods only know how we are going to SMP the code that uses them. | ||
1287 | znodes are the way! */ | ||
1288 | |||
1289 | #define PATH_READA 0x1 /* do read ahead */ | ||
1290 | #define PATH_READA_BACK 0x2 /* read backwards */ | ||
1291 | |||
1292 | struct treepath { | ||
1293 | int path_length; /* Length of the array above. */ | ||
1294 | int reada; | ||
1295 | struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */ | ||
1296 | int pos_in_item; | ||
1297 | }; | ||
1298 | |||
1299 | #define pos_in_item(path) ((path)->pos_in_item) | ||
1300 | |||
1301 | #define INITIALIZE_PATH(var) \ | ||
1302 | struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} | ||
1303 | |||
1304 | /* Get path element by path and path position. */ | ||
1305 | #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset)) | ||
1306 | |||
1307 | /* Get buffer header at the path by path and path position. */ | ||
1308 | #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) | ||
1309 | |||
1310 | /* Get position in the element at the path by path and path position. */ | ||
1311 | #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) | ||
1312 | |||
1313 | #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) | ||
1314 | /* you know, to the person who didn't | ||
1315 | write this the macro name does not | ||
1316 | at first suggest what it does. | ||
1317 | Maybe POSITION_FROM_PATH_END? Or | ||
1318 | maybe we should just focus on | ||
1319 | dumping paths... -Hans */ | ||
1320 | #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) | ||
1321 | |||
1322 | #define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)) | ||
1323 | |||
1324 | /* in do_balance leaf has h == 0 in contrast with path structure, | ||
1325 | where root has level == 0. That is why we need these defines */ | ||
1326 | #define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */ | ||
1327 | #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */ | ||
1328 | #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h)) | ||
1329 | #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */ | ||
1330 | |||
1331 | #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) | ||
1332 | |||
1333 | #define get_last_bh(path) PATH_PLAST_BUFFER(path) | ||
1334 | #define get_ih(path) PATH_PITEM_HEAD(path) | ||
1335 | #define get_item_pos(path) PATH_LAST_POSITION(path) | ||
1336 | #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path))) | ||
1337 | #define item_moved(ih,path) comp_items(ih, path) | ||
1338 | #define path_changed(ih,path) comp_items (ih, path) | ||
1339 | |||
1340 | /***************************************************************************/ | ||
1341 | /* MISC */ | ||
1342 | /***************************************************************************/ | ||
1343 | |||
1344 | /* Size of pointer to the unformatted node. */ | ||
1345 | #define UNFM_P_SIZE (sizeof(unp_t)) | ||
1346 | #define UNFM_P_SHIFT 2 | ||
1347 | |||
1348 | // in in-core inode key is stored on le form | ||
1349 | #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) | ||
1350 | |||
1351 | #define MAX_UL_INT 0xffffffff | ||
1352 | #define MAX_INT 0x7ffffff | ||
1353 | #define MAX_US_INT 0xffff | ||
1354 | |||
1355 | // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset | ||
1356 | #define U32_MAX (~(__u32)0) | ||
1357 | |||
1358 | static inline loff_t max_reiserfs_offset(struct inode *inode) | ||
1359 | { | ||
1360 | if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) | ||
1361 | return (loff_t) U32_MAX; | ||
1362 | |||
1363 | return (loff_t) ((~(__u64) 0) >> 4); | ||
1364 | } | ||
1365 | |||
1366 | /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/ | ||
1367 | #define MAX_KEY_OBJECTID MAX_UL_INT | ||
1368 | |||
1369 | #define MAX_B_NUM MAX_UL_INT | ||
1370 | #define MAX_FC_NUM MAX_US_INT | ||
1371 | |||
1372 | /* the purpose is to detect overflow of an unsigned short */ | ||
1373 | #define REISERFS_LINK_MAX (MAX_US_INT - 1000) | ||
1374 | |||
1375 | /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */ | ||
1376 | #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */ | ||
1377 | #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */ | ||
1378 | |||
1379 | #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) | ||
1380 | #define get_generation(s) atomic_read (&fs_generation(s)) | ||
1381 | #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) | ||
1382 | #define __fs_changed(gen,s) (gen != get_generation (s)) | ||
1383 | #define fs_changed(gen,s) \ | ||
1384 | ({ \ | ||
1385 | reiserfs_cond_resched(s); \ | ||
1386 | __fs_changed(gen, s); \ | ||
1387 | }) | ||
1388 | |||
1389 | /***************************************************************************/ | ||
1390 | /* FIXATE NODES */ | ||
1391 | /***************************************************************************/ | ||
1392 | |||
1393 | #define VI_TYPE_LEFT_MERGEABLE 1 | ||
1394 | #define VI_TYPE_RIGHT_MERGEABLE 2 | ||
1395 | |||
1396 | /* To make any changes in the tree we always first find node, that | ||
1397 | contains item to be changed/deleted or place to insert a new | ||
1398 | item. We call this node S. To do balancing we need to decide what | ||
1399 | we will shift to left/right neighbor, or to a new node, where new | ||
1400 | item will be etc. To make this analysis simpler we build virtual | ||
1401 | node. Virtual node is an array of items, that will replace items of | ||
1402 | node S. (For instance if we are going to delete an item, virtual | ||
1403 | node does not contain it). Virtual node keeps information about | ||
1404 | item sizes and types, mergeability of first and last items, sizes | ||
1405 | of all entries in directory item. We use this array of items when | ||
1406 | calculating what we can shift to neighbors and how many nodes we | ||
1407 | have to have if we do not any shiftings, if we shift to left/right | ||
1408 | neighbor or to both. */ | ||
1409 | struct virtual_item { | ||
1410 | int vi_index; // index in the array of item operations | ||
1411 | unsigned short vi_type; // left/right mergeability | ||
1412 | unsigned short vi_item_len; /* length of item that it will have after balancing */ | ||
1413 | struct item_head *vi_ih; | ||
1414 | const char *vi_item; // body of item (old or new) | ||
1415 | const void *vi_new_data; // 0 always but paste mode | ||
1416 | void *vi_uarea; // item specific area | ||
1417 | }; | ||
1418 | |||
1419 | struct virtual_node { | ||
1420 | char *vn_free_ptr; /* this is a pointer to the free space in the buffer */ | ||
1421 | unsigned short vn_nr_item; /* number of items in virtual node */ | ||
1422 | short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */ | ||
1423 | short vn_mode; /* mode of balancing (paste, insert, delete, cut) */ | ||
1424 | short vn_affected_item_num; | ||
1425 | short vn_pos_in_item; | ||
1426 | struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */ | ||
1427 | const void *vn_data; | ||
1428 | struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */ | ||
1429 | }; | ||
1430 | |||
1431 | /* used by directory items when creating virtual nodes */ | ||
1432 | struct direntry_uarea { | ||
1433 | int flags; | ||
1434 | __u16 entry_count; | ||
1435 | __u16 entry_sizes[1]; | ||
1436 | } __attribute__ ((__packed__)); | ||
1437 | |||
1438 | /***************************************************************************/ | ||
1439 | /* TREE BALANCE */ | ||
1440 | /***************************************************************************/ | ||
1441 | |||
1442 | /* This temporary structure is used in tree balance algorithms, and | ||
1443 | constructed as we go to the extent that its various parts are | ||
1444 | needed. It contains arrays of nodes that can potentially be | ||
1445 | involved in the balancing of node S, and parameters that define how | ||
1446 | each of the nodes must be balanced. Note that in these algorithms | ||
1447 | for balancing the worst case is to need to balance the current node | ||
1448 | S and the left and right neighbors and all of their parents plus | ||
1449 | create a new node. We implement S1 balancing for the leaf nodes | ||
1450 | and S0 balancing for the internal nodes (S1 and S0 are defined in | ||
1451 | our papers.)*/ | ||
1452 | |||
1453 | #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */ | ||
1454 | |||
1455 | /* maximum number of FEB blocknrs on a single level */ | ||
1456 | #define MAX_AMOUNT_NEEDED 2 | ||
1457 | |||
1458 | /* someday somebody will prefix every field in this struct with tb_ */ | ||
1459 | struct tree_balance { | ||
1460 | int tb_mode; | ||
1461 | int need_balance_dirty; | ||
1462 | struct super_block *tb_sb; | ||
1463 | struct reiserfs_transaction_handle *transaction_handle; | ||
1464 | struct treepath *tb_path; | ||
1465 | struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */ | ||
1466 | struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */ | ||
1467 | struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */ | ||
1468 | struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */ | ||
1469 | struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */ | ||
1470 | struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */ | ||
1471 | |||
1472 | struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals | ||
1473 | cur_blknum. */ | ||
1474 | struct buffer_head *used[MAX_FEB_SIZE]; | ||
1475 | struct buffer_head *thrown[MAX_FEB_SIZE]; | ||
1476 | int lnum[MAX_HEIGHT]; /* array of number of items which must be | ||
1477 | shifted to the left in order to balance the | ||
1478 | current node; for leaves includes item that | ||
1479 | will be partially shifted; for internal | ||
1480 | nodes, it is the number of child pointers | ||
1481 | rather than items. It includes the new item | ||
1482 | being created. The code sometimes subtracts | ||
1483 | one to get the number of wholly shifted | ||
1484 | items for other purposes. */ | ||
1485 | int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */ | ||
1486 | int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and | ||
1487 | S[h] to its item number within the node CFL[h] */ | ||
1488 | int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */ | ||
1489 | int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from | ||
1490 | S[h]. A negative value means removing. */ | ||
1491 | int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after | ||
1492 | balancing on the level h of the tree. If 0 then S is | ||
1493 | being deleted, if 1 then S is remaining and no new nodes | ||
1494 | are being created, if 2 or 3 then 1 or 2 new nodes is | ||
1495 | being created */ | ||
1496 | |||
1497 | /* fields that are used only for balancing leaves of the tree */ | ||
1498 | int cur_blknum; /* number of empty blocks having been already allocated */ | ||
1499 | int s0num; /* number of items that fall into left most node when S[0] splits */ | ||
1500 | int s1num; /* number of items that fall into first new node when S[0] splits */ | ||
1501 | int s2num; /* number of items that fall into second new node when S[0] splits */ | ||
1502 | int lbytes; /* number of bytes which can flow to the left neighbor from the left */ | ||
1503 | /* most liquid item that cannot be shifted from S[0] entirely */ | ||
1504 | /* if -1 then nothing will be partially shifted */ | ||
1505 | int rbytes; /* number of bytes which will flow to the right neighbor from the right */ | ||
1506 | /* most liquid item that cannot be shifted from S[0] entirely */ | ||
1507 | /* if -1 then nothing will be partially shifted */ | ||
1508 | int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */ | ||
1509 | /* note: if S[0] splits into 3 nodes, then items do not need to be cut */ | ||
1510 | int s2bytes; | ||
1511 | struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */ | ||
1512 | char *vn_buf; /* kmalloced memory. Used to create | ||
1513 | virtual node and keep map of | ||
1514 | dirtied bitmap blocks */ | ||
1515 | int vn_buf_size; /* size of the vn_buf */ | ||
1516 | struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */ | ||
1517 | |||
1518 | int fs_gen; /* saved value of `reiserfs_generation' counter | ||
1519 | see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */ | ||
1520 | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | ||
1521 | struct in_core_key key; /* key pointer, to pass to block allocator or | ||
1522 | another low-level subsystem */ | ||
1523 | #endif | ||
1524 | }; | ||
1525 | |||
1526 | /* These are modes of balancing */ | ||
1527 | |||
1528 | /* When inserting an item. */ | ||
1529 | #define M_INSERT 'i' | ||
1530 | /* When inserting into (directories only) or appending onto an already | ||
1531 | existent item. */ | ||
1532 | #define M_PASTE 'p' | ||
1533 | /* When deleting an item. */ | ||
1534 | #define M_DELETE 'd' | ||
1535 | /* When truncating an item or removing an entry from a (directory) item. */ | ||
1536 | #define M_CUT 'c' | ||
1537 | |||
1538 | /* used when balancing on leaf level skipped (in reiserfsck) */ | ||
1539 | #define M_INTERNAL 'n' | ||
1540 | |||
1541 | /* When further balancing is not needed, then do_balance does not need | ||
1542 | to be called. */ | ||
1543 | #define M_SKIP_BALANCING 's' | ||
1544 | #define M_CONVERT 'v' | ||
1545 | |||
1546 | /* modes of leaf_move_items */ | ||
1547 | #define LEAF_FROM_S_TO_L 0 | ||
1548 | #define LEAF_FROM_S_TO_R 1 | ||
1549 | #define LEAF_FROM_R_TO_L 2 | ||
1550 | #define LEAF_FROM_L_TO_R 3 | ||
1551 | #define LEAF_FROM_S_TO_SNEW 4 | ||
1552 | |||
1553 | #define FIRST_TO_LAST 0 | ||
1554 | #define LAST_TO_FIRST 1 | ||
1555 | |||
1556 | /* used in do_balance for passing parent of node information that has | ||
1557 | been gotten from tb struct */ | ||
1558 | struct buffer_info { | ||
1559 | struct tree_balance *tb; | ||
1560 | struct buffer_head *bi_bh; | ||
1561 | struct buffer_head *bi_parent; | ||
1562 | int bi_position; | ||
1563 | }; | ||
1564 | |||
1565 | static inline struct super_block *sb_from_tb(struct tree_balance *tb) | ||
1566 | { | ||
1567 | return tb ? tb->tb_sb : NULL; | ||
1568 | } | ||
1569 | |||
1570 | static inline struct super_block *sb_from_bi(struct buffer_info *bi) | ||
1571 | { | ||
1572 | return bi ? sb_from_tb(bi->tb) : NULL; | ||
1573 | } | ||
1574 | |||
1575 | /* there are 4 types of items: stat data, directory item, indirect, direct. | ||
1576 | +-------------------+------------+--------------+------------+ | ||
1577 | | | k_offset | k_uniqueness | mergeable? | | ||
1578 | +-------------------+------------+--------------+------------+ | ||
1579 | | stat data | 0 | 0 | no | | ||
1580 | +-------------------+------------+--------------+------------+ | ||
1581 | | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no | | ||
1582 | | non 1st directory | hash value | | yes | | ||
1583 | | item | | | | | ||
1584 | +-------------------+------------+--------------+------------+ | ||
1585 | | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object | ||
1586 | +-------------------+------------+--------------+------------+ | ||
1587 | | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object | ||
1588 | +-------------------+------------+--------------+------------+ | ||
1589 | */ | ||
1590 | |||
1591 | struct item_operations { | ||
1592 | int (*bytes_number) (struct item_head * ih, int block_size); | ||
1593 | void (*decrement_key) (struct cpu_key *); | ||
1594 | int (*is_left_mergeable) (struct reiserfs_key * ih, | ||
1595 | unsigned long bsize); | ||
1596 | void (*print_item) (struct item_head *, char *item); | ||
1597 | void (*check_item) (struct item_head *, char *item); | ||
1598 | |||
1599 | int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, | ||
1600 | int is_affected, int insert_size); | ||
1601 | int (*check_left) (struct virtual_item * vi, int free, | ||
1602 | int start_skip, int end_skip); | ||
1603 | int (*check_right) (struct virtual_item * vi, int free); | ||
1604 | int (*part_size) (struct virtual_item * vi, int from, int to); | ||
1605 | int (*unit_num) (struct virtual_item * vi); | ||
1606 | void (*print_vi) (struct virtual_item * vi); | ||
1607 | }; | ||
1608 | |||
1609 | extern struct item_operations *item_ops[TYPE_ANY + 1]; | ||
1610 | |||
1611 | #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) | ||
1612 | #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) | ||
1613 | #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) | ||
1614 | #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) | ||
1615 | #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) | ||
1616 | #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) | ||
1617 | #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) | ||
1618 | #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) | ||
1619 | #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) | ||
1620 | #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) | ||
1621 | |||
1622 | #define COMP_SHORT_KEYS comp_short_keys | ||
1623 | |||
1624 | /* number of blocks pointed to by the indirect item */ | ||
1625 | #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) | ||
1626 | |||
1627 | /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */ | ||
1628 | #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) | ||
1629 | |||
1630 | /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */ | ||
1631 | |||
1632 | /* get the item header */ | ||
1633 | #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) ) | ||
1634 | |||
1635 | /* get key */ | ||
1636 | #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) ) | ||
1637 | |||
1638 | /* get the key */ | ||
1639 | #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) ) | ||
1640 | |||
1641 | /* get item body */ | ||
1642 | #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num)))) | ||
1643 | |||
1644 | /* get the stat data by the buffer header and the item order */ | ||
1645 | #define B_N_STAT_DATA(bh,nr) \ | ||
1646 | ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) ) | ||
1647 | |||
1648 | /* following defines use reiserfs buffer header and item header */ | ||
1649 | |||
1650 | /* get stat-data */ | ||
1651 | #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) | ||
1652 | |||
1653 | // this is 3976 for size==4096 | ||
1654 | #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) | ||
1655 | |||
1656 | /* indirect items consist of entries which contain blocknrs, pos | ||
1657 | indicates which entry, and B_I_POS_UNFM_POINTER resolves to the | ||
1658 | blocknr contained by the entry pos points to */ | ||
1659 | #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos))) | ||
1660 | #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0) | ||
1661 | |||
1662 | struct reiserfs_iget_args { | ||
1663 | __u32 objectid; | ||
1664 | __u32 dirid; | ||
1665 | }; | ||
1666 | |||
1667 | /***************************************************************************/ | ||
1668 | /* FUNCTION DECLARATIONS */ | ||
1669 | /***************************************************************************/ | ||
1670 | |||
1671 | #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) | ||
1672 | |||
1673 | #define journal_trans_half(blocksize) \ | ||
1674 | ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) | ||
1675 | |||
1676 | /* journal.c see journal.c for all the comments here */ | ||
1677 | |||
1678 | /* first block written in a commit. */ | ||
1679 | struct reiserfs_journal_desc { | ||
1680 | __le32 j_trans_id; /* id of commit */ | ||
1681 | __le32 j_len; /* length of commit. len +1 is the commit block */ | ||
1682 | __le32 j_mount_id; /* mount id of this trans */ | ||
1683 | __le32 j_realblock[1]; /* real locations for each block */ | ||
1684 | }; | ||
1685 | |||
1686 | #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) | ||
1687 | #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) | ||
1688 | #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) | ||
1689 | |||
1690 | #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) | ||
1691 | #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) | ||
1692 | #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) | ||
1693 | |||
1694 | /* last block written in a commit */ | ||
1695 | struct reiserfs_journal_commit { | ||
1696 | __le32 j_trans_id; /* must match j_trans_id from the desc block */ | ||
1697 | __le32 j_len; /* ditto */ | ||
1698 | __le32 j_realblock[1]; /* real locations for each block */ | ||
1699 | }; | ||
1700 | |||
1701 | #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) | ||
1702 | #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) | ||
1703 | #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) | ||
1704 | |||
1705 | #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) | ||
1706 | #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) | ||
1707 | |||
1708 | /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the | ||
1709 | ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk, | ||
1710 | ** and this transaction does not need to be replayed. | ||
1711 | */ | ||
1712 | struct reiserfs_journal_header { | ||
1713 | __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */ | ||
1714 | __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */ | ||
1715 | __le32 j_mount_id; | ||
1716 | /* 12 */ struct journal_params jh_journal; | ||
1717 | }; | ||
1718 | |||
1719 | /* biggest tunable defines are right here */ | ||
1720 | #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ | ||
1721 | #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */ | ||
1722 | #define JOURNAL_TRANS_MIN_DEFAULT 256 | ||
1723 | #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */ | ||
1724 | #define JOURNAL_MIN_RATIO 2 | ||
1725 | #define JOURNAL_MAX_COMMIT_AGE 30 | ||
1726 | #define JOURNAL_MAX_TRANS_AGE 30 | ||
1727 | #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) | ||
1728 | #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \ | ||
1729 | 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ | ||
1730 | REISERFS_QUOTA_TRANS_BLOCKS(sb))) | ||
1731 | |||
1732 | #ifdef CONFIG_QUOTA | ||
1733 | #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) | ||
1734 | /* We need to update data and inode (atime) */ | ||
1735 | #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) | ||
1736 | /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ | ||
1737 | #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ | ||
1738 | (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) | ||
1739 | /* same as with INIT */ | ||
1740 | #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ | ||
1741 | (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) | ||
1742 | #else | ||
1743 | #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 | ||
1744 | #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 | ||
1745 | #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 | ||
1746 | #endif | ||
1747 | |||
1748 | /* both of these can be as low as 1, or as high as you want. The min is the | ||
1749 | ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated | ||
1750 | ** as needed, and released when transactions are committed. On release, if | ||
1751 | ** the current number of nodes is > max, the node is freed, otherwise, | ||
1752 | ** it is put on a free list for faster use later. | ||
1753 | */ | ||
1754 | #define REISERFS_MIN_BITMAP_NODES 10 | ||
1755 | #define REISERFS_MAX_BITMAP_NODES 100 | ||
1756 | |||
1757 | #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */ | ||
1758 | #define JBH_HASH_MASK 8191 | ||
1759 | |||
1760 | #define _jhashfn(sb,block) \ | ||
1761 | (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ | ||
1762 | (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) | ||
1763 | #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) | ||
1764 | |||
1765 | // We need these to make journal.c code more readable | ||
1766 | #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) | ||
1767 | #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) | ||
1768 | #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) | ||
1769 | |||
1770 | enum reiserfs_bh_state_bits { | ||
1771 | BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ | ||
1772 | BH_JDirty_wait, | ||
1773 | BH_JNew, /* disk block was taken off free list before | ||
1774 | * being in a finished transaction, or | ||
1775 | * written to disk. Can be reused immed. */ | ||
1776 | BH_JPrepared, | ||
1777 | BH_JRestore_dirty, | ||
1778 | BH_JTest, // debugging only will go away | ||
1779 | }; | ||
1780 | |||
1781 | BUFFER_FNS(JDirty, journaled); | ||
1782 | TAS_BUFFER_FNS(JDirty, journaled); | ||
1783 | BUFFER_FNS(JDirty_wait, journal_dirty); | ||
1784 | TAS_BUFFER_FNS(JDirty_wait, journal_dirty); | ||
1785 | BUFFER_FNS(JNew, journal_new); | ||
1786 | TAS_BUFFER_FNS(JNew, journal_new); | ||
1787 | BUFFER_FNS(JPrepared, journal_prepared); | ||
1788 | TAS_BUFFER_FNS(JPrepared, journal_prepared); | ||
1789 | BUFFER_FNS(JRestore_dirty, journal_restore_dirty); | ||
1790 | TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); | ||
1791 | BUFFER_FNS(JTest, journal_test); | ||
1792 | TAS_BUFFER_FNS(JTest, journal_test); | ||
1793 | |||
1794 | /* | ||
1795 | ** transaction handle which is passed around for all journal calls | ||
1796 | */ | ||
1797 | struct reiserfs_transaction_handle { | ||
1798 | struct super_block *t_super; /* super for this FS when journal_begin was | ||
1799 | called. saves calls to reiserfs_get_super | ||
1800 | also used by nested transactions to make | ||
1801 | sure they are nesting on the right FS | ||
1802 | _must_ be first in the handle | ||
1803 | */ | ||
1804 | int t_refcount; | ||
1805 | int t_blocks_logged; /* number of blocks this writer has logged */ | ||
1806 | int t_blocks_allocated; /* number of blocks this writer allocated */ | ||
1807 | unsigned int t_trans_id; /* sanity check, equals the current trans id */ | ||
1808 | void *t_handle_save; /* save existing current->journal_info */ | ||
1809 | unsigned displace_new_blocks:1; /* if new block allocation occurres, that block | ||
1810 | should be displaced from others */ | ||
1811 | struct list_head t_list; | ||
1812 | }; | ||
1813 | |||
1814 | /* used to keep track of ordered and tail writes, attached to the buffer | ||
1815 | * head through b_journal_head. | ||
1816 | */ | ||
1817 | struct reiserfs_jh { | ||
1818 | struct reiserfs_journal_list *jl; | ||
1819 | struct buffer_head *bh; | ||
1820 | struct list_head list; | ||
1821 | }; | ||
1822 | |||
1823 | void reiserfs_free_jh(struct buffer_head *bh); | ||
1824 | int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); | ||
1825 | int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); | ||
1826 | int journal_mark_dirty(struct reiserfs_transaction_handle *, | ||
1827 | struct super_block *, struct buffer_head *bh); | ||
1828 | |||
1829 | static inline int reiserfs_file_data_log(struct inode *inode) | ||
1830 | { | ||
1831 | if (reiserfs_data_log(inode->i_sb) || | ||
1832 | (REISERFS_I(inode)->i_flags & i_data_log)) | ||
1833 | return 1; | ||
1834 | return 0; | ||
1835 | } | ||
1836 | |||
1837 | static inline int reiserfs_transaction_running(struct super_block *s) | ||
1838 | { | ||
1839 | struct reiserfs_transaction_handle *th = current->journal_info; | ||
1840 | if (th && th->t_super == s) | ||
1841 | return 1; | ||
1842 | if (th && th->t_super == NULL) | ||
1843 | BUG(); | ||
1844 | return 0; | ||
1845 | } | ||
1846 | |||
1847 | static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) | ||
1848 | { | ||
1849 | return th->t_blocks_allocated - th->t_blocks_logged; | ||
1850 | } | ||
1851 | |||
1852 | struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct | ||
1853 | super_block | ||
1854 | *, | ||
1855 | int count); | ||
1856 | int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); | ||
1857 | int reiserfs_commit_page(struct inode *inode, struct page *page, | ||
1858 | unsigned from, unsigned to); | ||
1859 | int reiserfs_flush_old_commits(struct super_block *); | ||
1860 | int reiserfs_commit_for_inode(struct inode *); | ||
1861 | int reiserfs_inode_needs_commit(struct inode *); | ||
1862 | void reiserfs_update_inode_transaction(struct inode *); | ||
1863 | void reiserfs_wait_on_write_block(struct super_block *s); | ||
1864 | void reiserfs_block_writes(struct reiserfs_transaction_handle *th); | ||
1865 | void reiserfs_allow_writes(struct super_block *s); | ||
1866 | void reiserfs_check_lock_depth(struct super_block *s, char *caller); | ||
1867 | int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, | ||
1868 | int wait); | ||
1869 | void reiserfs_restore_prepared_buffer(struct super_block *, | ||
1870 | struct buffer_head *bh); | ||
1871 | int journal_init(struct super_block *, const char *j_dev_name, int old_format, | ||
1872 | unsigned int); | ||
1873 | int journal_release(struct reiserfs_transaction_handle *, struct super_block *); | ||
1874 | int journal_release_error(struct reiserfs_transaction_handle *, | ||
1875 | struct super_block *); | ||
1876 | int journal_end(struct reiserfs_transaction_handle *, struct super_block *, | ||
1877 | unsigned long); | ||
1878 | int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, | ||
1879 | unsigned long); | ||
1880 | int journal_mark_freed(struct reiserfs_transaction_handle *, | ||
1881 | struct super_block *, b_blocknr_t blocknr); | ||
1882 | int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); | ||
1883 | int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, | ||
1884 | int bit_nr, int searchall, b_blocknr_t *next); | ||
1885 | int journal_begin(struct reiserfs_transaction_handle *, | ||
1886 | struct super_block *sb, unsigned long); | ||
1887 | int journal_join_abort(struct reiserfs_transaction_handle *, | ||
1888 | struct super_block *sb, unsigned long); | ||
1889 | void reiserfs_abort_journal(struct super_block *sb, int errno); | ||
1890 | void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); | ||
1891 | int reiserfs_allocate_list_bitmaps(struct super_block *s, | ||
1892 | struct reiserfs_list_bitmap *, unsigned int); | ||
1893 | |||
1894 | void add_save_link(struct reiserfs_transaction_handle *th, | ||
1895 | struct inode *inode, int truncate); | ||
1896 | int remove_save_link(struct inode *inode, int truncate); | ||
1897 | |||
1898 | /* objectid.c */ | ||
1899 | __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); | ||
1900 | void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, | ||
1901 | __u32 objectid_to_release); | ||
1902 | int reiserfs_convert_objectid_map_v1(struct super_block *); | ||
1903 | |||
1904 | /* stree.c */ | ||
1905 | int B_IS_IN_TREE(const struct buffer_head *); | ||
1906 | extern void copy_item_head(struct item_head *to, | ||
1907 | const struct item_head *from); | ||
1908 | |||
1909 | // first key is in cpu form, second - le | ||
1910 | extern int comp_short_keys(const struct reiserfs_key *le_key, | ||
1911 | const struct cpu_key *cpu_key); | ||
1912 | extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); | ||
1913 | |||
1914 | // both are in le form | ||
1915 | extern int comp_le_keys(const struct reiserfs_key *, | ||
1916 | const struct reiserfs_key *); | ||
1917 | extern int comp_short_le_keys(const struct reiserfs_key *, | ||
1918 | const struct reiserfs_key *); | ||
1919 | |||
1920 | // | ||
1921 | // get key version from on disk key - kludge | ||
1922 | // | ||
1923 | static inline int le_key_version(const struct reiserfs_key *key) | ||
1924 | { | ||
1925 | int type; | ||
1926 | |||
1927 | type = offset_v2_k_type(&(key->u.k_offset_v2)); | ||
1928 | if (type != TYPE_DIRECT && type != TYPE_INDIRECT | ||
1929 | && type != TYPE_DIRENTRY) | ||
1930 | return KEY_FORMAT_3_5; | ||
1931 | |||
1932 | return KEY_FORMAT_3_6; | ||
1933 | |||
1934 | } | ||
1935 | |||
1936 | static inline void copy_key(struct reiserfs_key *to, | ||
1937 | const struct reiserfs_key *from) | ||
1938 | { | ||
1939 | memcpy(to, from, KEY_SIZE); | ||
1940 | } | ||
1941 | |||
1942 | int comp_items(const struct item_head *stored_ih, const struct treepath *path); | ||
1943 | const struct reiserfs_key *get_rkey(const struct treepath *chk_path, | ||
1944 | const struct super_block *sb); | ||
1945 | int search_by_key(struct super_block *, const struct cpu_key *, | ||
1946 | struct treepath *, int); | ||
1947 | #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) | ||
1948 | int search_for_position_by_key(struct super_block *sb, | ||
1949 | const struct cpu_key *cpu_key, | ||
1950 | struct treepath *search_path); | ||
1951 | extern void decrement_bcount(struct buffer_head *bh); | ||
1952 | void decrement_counters_in_path(struct treepath *search_path); | ||
1953 | void pathrelse(struct treepath *search_path); | ||
1954 | int reiserfs_check_path(struct treepath *p); | ||
1955 | void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); | ||
1956 | |||
1957 | int reiserfs_insert_item(struct reiserfs_transaction_handle *th, | ||
1958 | struct treepath *path, | ||
1959 | const struct cpu_key *key, | ||
1960 | struct item_head *ih, | ||
1961 | struct inode *inode, const char *body); | ||
1962 | |||
1963 | int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, | ||
1964 | struct treepath *path, | ||
1965 | const struct cpu_key *key, | ||
1966 | struct inode *inode, | ||
1967 | const char *body, int paste_size); | ||
1968 | |||
1969 | int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, | ||
1970 | struct treepath *path, | ||
1971 | struct cpu_key *key, | ||
1972 | struct inode *inode, | ||
1973 | struct page *page, loff_t new_file_size); | ||
1974 | |||
1975 | int reiserfs_delete_item(struct reiserfs_transaction_handle *th, | ||
1976 | struct treepath *path, | ||
1977 | const struct cpu_key *key, | ||
1978 | struct inode *inode, struct buffer_head *un_bh); | ||
1979 | |||
1980 | void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, | ||
1981 | struct inode *inode, struct reiserfs_key *key); | ||
1982 | int reiserfs_delete_object(struct reiserfs_transaction_handle *th, | ||
1983 | struct inode *inode); | ||
1984 | int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, | ||
1985 | struct inode *inode, struct page *, | ||
1986 | int update_timestamps); | ||
1987 | |||
1988 | #define i_block_size(inode) ((inode)->i_sb->s_blocksize) | ||
1989 | #define file_size(inode) ((inode)->i_size) | ||
1990 | #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) | ||
1991 | |||
1992 | #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ | ||
1993 | !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) | ||
1994 | |||
1995 | void padd_item(char *item, int total_length, int length); | ||
1996 | |||
1997 | /* inode.c */ | ||
1998 | /* args for the create parameter of reiserfs_get_block */ | ||
1999 | #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ | ||
2000 | #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ | ||
2001 | #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ | ||
2002 | #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ | ||
2003 | #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ | ||
2004 | #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ | ||
2005 | |||
2006 | void reiserfs_read_locked_inode(struct inode *inode, | ||
2007 | struct reiserfs_iget_args *args); | ||
2008 | int reiserfs_find_actor(struct inode *inode, void *p); | ||
2009 | int reiserfs_init_locked_inode(struct inode *inode, void *p); | ||
2010 | void reiserfs_evict_inode(struct inode *inode); | ||
2011 | int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); | ||
2012 | int reiserfs_get_block(struct inode *inode, sector_t block, | ||
2013 | struct buffer_head *bh_result, int create); | ||
2014 | struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, | ||
2015 | int fh_len, int fh_type); | ||
2016 | struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, | ||
2017 | int fh_len, int fh_type); | ||
2018 | int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, | ||
2019 | int connectable); | ||
2020 | |||
2021 | int reiserfs_truncate_file(struct inode *, int update_timestamps); | ||
2022 | void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, | ||
2023 | int type, int key_length); | ||
2024 | void make_le_item_head(struct item_head *ih, const struct cpu_key *key, | ||
2025 | int version, | ||
2026 | loff_t offset, int type, int length, int entry_count); | ||
2027 | struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); | ||
2028 | |||
2029 | struct reiserfs_security_handle; | ||
2030 | int reiserfs_new_inode(struct reiserfs_transaction_handle *th, | ||
2031 | struct inode *dir, umode_t mode, | ||
2032 | const char *symname, loff_t i_size, | ||
2033 | struct dentry *dentry, struct inode *inode, | ||
2034 | struct reiserfs_security_handle *security); | ||
2035 | |||
2036 | void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, | ||
2037 | struct inode *inode, loff_t size); | ||
2038 | |||
2039 | static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, | ||
2040 | struct inode *inode) | ||
2041 | { | ||
2042 | reiserfs_update_sd_size(th, inode, inode->i_size); | ||
2043 | } | ||
2044 | |||
2045 | void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); | ||
2046 | void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs); | ||
2047 | int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); | ||
2048 | |||
2049 | int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); | ||
2050 | |||
2051 | /* namei.c */ | ||
2052 | void set_de_name_and_namelen(struct reiserfs_dir_entry *de); | ||
2053 | int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, | ||
2054 | struct treepath *path, struct reiserfs_dir_entry *de); | ||
2055 | struct dentry *reiserfs_get_parent(struct dentry *); | ||
2056 | |||
2057 | #ifdef CONFIG_REISERFS_PROC_INFO | ||
2058 | int reiserfs_proc_info_init(struct super_block *sb); | ||
2059 | int reiserfs_proc_info_done(struct super_block *sb); | ||
2060 | int reiserfs_proc_info_global_init(void); | ||
2061 | int reiserfs_proc_info_global_done(void); | ||
2062 | |||
2063 | #define PROC_EXP( e ) e | ||
2064 | |||
2065 | #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data | ||
2066 | #define PROC_INFO_MAX( sb, field, value ) \ | ||
2067 | __PINFO( sb ).field = \ | ||
2068 | max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) | ||
2069 | #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) | ||
2070 | #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) | ||
2071 | #define PROC_INFO_BH_STAT( sb, bh, level ) \ | ||
2072 | PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ | ||
2073 | PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ | ||
2074 | PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) | ||
2075 | #else | ||
2076 | static inline int reiserfs_proc_info_init(struct super_block *sb) | ||
2077 | { | ||
2078 | return 0; | ||
2079 | } | ||
2080 | |||
2081 | static inline int reiserfs_proc_info_done(struct super_block *sb) | ||
2082 | { | ||
2083 | return 0; | ||
2084 | } | ||
2085 | |||
2086 | static inline int reiserfs_proc_info_global_init(void) | ||
2087 | { | ||
2088 | return 0; | ||
2089 | } | ||
2090 | |||
2091 | static inline int reiserfs_proc_info_global_done(void) | ||
2092 | { | ||
2093 | return 0; | ||
2094 | } | ||
2095 | |||
2096 | #define PROC_EXP( e ) | ||
2097 | #define VOID_V ( ( void ) 0 ) | ||
2098 | #define PROC_INFO_MAX( sb, field, value ) VOID_V | ||
2099 | #define PROC_INFO_INC( sb, field ) VOID_V | ||
2100 | #define PROC_INFO_ADD( sb, field, val ) VOID_V | ||
2101 | #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V | ||
2102 | #endif | ||
2103 | |||
2104 | /* dir.c */ | ||
2105 | extern const struct inode_operations reiserfs_dir_inode_operations; | ||
2106 | extern const struct inode_operations reiserfs_symlink_inode_operations; | ||
2107 | extern const struct inode_operations reiserfs_special_inode_operations; | ||
2108 | extern const struct file_operations reiserfs_dir_operations; | ||
2109 | int reiserfs_readdir_dentry(struct dentry *, void *, filldir_t, loff_t *); | ||
2110 | |||
2111 | /* tail_conversion.c */ | ||
2112 | int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, | ||
2113 | struct treepath *, struct buffer_head *, loff_t); | ||
2114 | int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, | ||
2115 | struct page *, struct treepath *, const struct cpu_key *, | ||
2116 | loff_t, char *); | ||
2117 | void reiserfs_unmap_buffer(struct buffer_head *); | ||
2118 | |||
2119 | /* file.c */ | ||
2120 | extern const struct inode_operations reiserfs_file_inode_operations; | ||
2121 | extern const struct file_operations reiserfs_file_operations; | ||
2122 | extern const struct address_space_operations reiserfs_address_space_operations; | ||
2123 | |||
2124 | /* fix_nodes.c */ | ||
2125 | |||
2126 | int fix_nodes(int n_op_mode, struct tree_balance *tb, | ||
2127 | struct item_head *ins_ih, const void *); | ||
2128 | void unfix_nodes(struct tree_balance *); | ||
2129 | |||
2130 | /* prints.c */ | ||
2131 | void __reiserfs_panic(struct super_block *s, const char *id, | ||
2132 | const char *function, const char *fmt, ...) | ||
2133 | __attribute__ ((noreturn)); | ||
2134 | #define reiserfs_panic(s, id, fmt, args...) \ | ||
2135 | __reiserfs_panic(s, id, __func__, fmt, ##args) | ||
2136 | void __reiserfs_error(struct super_block *s, const char *id, | ||
2137 | const char *function, const char *fmt, ...); | ||
2138 | #define reiserfs_error(s, id, fmt, args...) \ | ||
2139 | __reiserfs_error(s, id, __func__, fmt, ##args) | ||
2140 | void reiserfs_info(struct super_block *s, const char *fmt, ...); | ||
2141 | void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); | ||
2142 | void print_indirect_item(struct buffer_head *bh, int item_num); | ||
2143 | void store_print_tb(struct tree_balance *tb); | ||
2144 | void print_cur_tb(char *mes); | ||
2145 | void print_de(struct reiserfs_dir_entry *de); | ||
2146 | void print_bi(struct buffer_info *bi, char *mes); | ||
2147 | #define PRINT_LEAF_ITEMS 1 /* print all items */ | ||
2148 | #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ | ||
2149 | #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ | ||
2150 | void print_block(struct buffer_head *bh, ...); | ||
2151 | void print_bmap(struct super_block *s, int silent); | ||
2152 | void print_bmap_block(int i, char *data, int size, int silent); | ||
2153 | /*void print_super_block (struct super_block * s, char * mes);*/ | ||
2154 | void print_objectid_map(struct super_block *s); | ||
2155 | void print_block_head(struct buffer_head *bh, char *mes); | ||
2156 | void check_leaf(struct buffer_head *bh); | ||
2157 | void check_internal(struct buffer_head *bh); | ||
2158 | void print_statistics(struct super_block *s); | ||
2159 | char *reiserfs_hashname(int code); | ||
2160 | |||
2161 | /* lbalance.c */ | ||
2162 | int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, | ||
2163 | int mov_bytes, struct buffer_head *Snew); | ||
2164 | int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); | ||
2165 | int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); | ||
2166 | void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, | ||
2167 | int del_num, int del_bytes); | ||
2168 | void leaf_insert_into_buf(struct buffer_info *bi, int before, | ||
2169 | struct item_head *inserted_item_ih, | ||
2170 | const char *inserted_item_body, int zeros_number); | ||
2171 | void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, | ||
2172 | int pos_in_item, int paste_size, const char *body, | ||
2173 | int zeros_number); | ||
2174 | void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, | ||
2175 | int pos_in_item, int cut_size); | ||
2176 | void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, | ||
2177 | int new_entry_count, struct reiserfs_de_head *new_dehs, | ||
2178 | const char *records, int paste_size); | ||
2179 | /* ibalance.c */ | ||
2180 | int balance_internal(struct tree_balance *, int, int, struct item_head *, | ||
2181 | struct buffer_head **); | ||
2182 | |||
2183 | /* do_balance.c */ | ||
2184 | void do_balance_mark_leaf_dirty(struct tree_balance *tb, | ||
2185 | struct buffer_head *bh, int flag); | ||
2186 | #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty | ||
2187 | #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty | ||
2188 | |||
2189 | void do_balance(struct tree_balance *tb, struct item_head *ih, | ||
2190 | const char *body, int flag); | ||
2191 | void reiserfs_invalidate_buffer(struct tree_balance *tb, | ||
2192 | struct buffer_head *bh); | ||
2193 | |||
2194 | int get_left_neighbor_position(struct tree_balance *tb, int h); | ||
2195 | int get_right_neighbor_position(struct tree_balance *tb, int h); | ||
2196 | void replace_key(struct tree_balance *tb, struct buffer_head *, int, | ||
2197 | struct buffer_head *, int); | ||
2198 | void make_empty_node(struct buffer_info *); | ||
2199 | struct buffer_head *get_FEB(struct tree_balance *); | ||
2200 | |||
2201 | /* bitmap.c */ | ||
2202 | |||
2203 | /* structure contains hints for block allocator, and it is a container for | ||
2204 | * arguments, such as node, search path, transaction_handle, etc. */ | ||
2205 | struct __reiserfs_blocknr_hint { | ||
2206 | struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */ | ||
2207 | sector_t block; /* file offset, in blocks */ | ||
2208 | struct in_core_key key; | ||
2209 | struct treepath *path; /* search path, used by allocator to deternine search_start by | ||
2210 | * various ways */ | ||
2211 | struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and | ||
2212 | * bitmap blocks changes */ | ||
2213 | b_blocknr_t beg, end; | ||
2214 | b_blocknr_t search_start; /* a field used to transfer search start value (block number) | ||
2215 | * between different block allocator procedures | ||
2216 | * (determine_search_start() and others) */ | ||
2217 | int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed | ||
2218 | * function that do actual allocation */ | ||
2219 | |||
2220 | unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for | ||
2221 | * formatted/unformatted blocks with/without preallocation */ | ||
2222 | unsigned preallocate:1; | ||
2223 | }; | ||
2224 | |||
2225 | typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; | ||
2226 | |||
2227 | int reiserfs_parse_alloc_options(struct super_block *, char *); | ||
2228 | void reiserfs_init_alloc_options(struct super_block *s); | ||
2229 | |||
2230 | /* | ||
2231 | * given a directory, this will tell you what packing locality | ||
2232 | * to use for a new object underneat it. The locality is returned | ||
2233 | * in disk byte order (le). | ||
2234 | */ | ||
2235 | __le32 reiserfs_choose_packing(struct inode *dir); | ||
2236 | |||
2237 | int reiserfs_init_bitmap_cache(struct super_block *sb); | ||
2238 | void reiserfs_free_bitmap_cache(struct super_block *sb); | ||
2239 | void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); | ||
2240 | struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); | ||
2241 | int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); | ||
2242 | void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, | ||
2243 | b_blocknr_t, int for_unformatted); | ||
2244 | int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, | ||
2245 | int); | ||
2246 | static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, | ||
2247 | b_blocknr_t * new_blocknrs, | ||
2248 | int amount_needed) | ||
2249 | { | ||
2250 | reiserfs_blocknr_hint_t hint = { | ||
2251 | .th = tb->transaction_handle, | ||
2252 | .path = tb->tb_path, | ||
2253 | .inode = NULL, | ||
2254 | .key = tb->key, | ||
2255 | .block = 0, | ||
2256 | .formatted_node = 1 | ||
2257 | }; | ||
2258 | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, | ||
2259 | 0); | ||
2260 | } | ||
2261 | |||
2262 | static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle | ||
2263 | *th, struct inode *inode, | ||
2264 | b_blocknr_t * new_blocknrs, | ||
2265 | struct treepath *path, | ||
2266 | sector_t block) | ||
2267 | { | ||
2268 | reiserfs_blocknr_hint_t hint = { | ||
2269 | .th = th, | ||
2270 | .path = path, | ||
2271 | .inode = inode, | ||
2272 | .block = block, | ||
2273 | .formatted_node = 0, | ||
2274 | .preallocate = 0 | ||
2275 | }; | ||
2276 | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); | ||
2277 | } | ||
2278 | |||
2279 | #ifdef REISERFS_PREALLOCATE | ||
2280 | static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle | ||
2281 | *th, struct inode *inode, | ||
2282 | b_blocknr_t * new_blocknrs, | ||
2283 | struct treepath *path, | ||
2284 | sector_t block) | ||
2285 | { | ||
2286 | reiserfs_blocknr_hint_t hint = { | ||
2287 | .th = th, | ||
2288 | .path = path, | ||
2289 | .inode = inode, | ||
2290 | .block = block, | ||
2291 | .formatted_node = 0, | ||
2292 | .preallocate = 1 | ||
2293 | }; | ||
2294 | return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); | ||
2295 | } | ||
2296 | |||
2297 | void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, | ||
2298 | struct inode *inode); | ||
2299 | void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); | ||
2300 | #endif | ||
2301 | |||
2302 | /* hashes.c */ | ||
2303 | __u32 keyed_hash(const signed char *msg, int len); | ||
2304 | __u32 yura_hash(const signed char *msg, int len); | ||
2305 | __u32 r5_hash(const signed char *msg, int len); | ||
2306 | |||
2307 | #define reiserfs_set_le_bit __set_bit_le | ||
2308 | #define reiserfs_test_and_set_le_bit __test_and_set_bit_le | ||
2309 | #define reiserfs_clear_le_bit __clear_bit_le | ||
2310 | #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le | ||
2311 | #define reiserfs_test_le_bit test_bit_le | ||
2312 | #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le | ||
2313 | |||
2314 | /* sometimes reiserfs_truncate may require to allocate few new blocks | ||
2315 | to perform indirect2direct conversion. People probably used to | ||
2316 | think, that truncate should work without problems on a filesystem | ||
2317 | without free disk space. They may complain that they can not | ||
2318 | truncate due to lack of free disk space. This spare space allows us | ||
2319 | to not worry about it. 500 is probably too much, but it should be | ||
2320 | absolutely safe */ | ||
2321 | #define SPARE_SPACE 500 | ||
2322 | |||
2323 | /* prototypes from ioctl.c */ | ||
2324 | long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); | ||
2325 | long reiserfs_compat_ioctl(struct file *filp, | ||
2326 | unsigned int cmd, unsigned long arg); | ||
2327 | int reiserfs_unpack(struct inode *inode, struct file *filp); | ||