diff options
author | Linus Torvalds <torvalds@g5.osdl.org> | 2005-07-12 23:21:28 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2005-07-12 23:21:28 -0400 |
commit | bd4c625c061c2a38568d0add3478f59172455159 (patch) | |
tree | 1c44a17c55bce2ee7ad5ea3d15a208ecc0955f74 /fs/reiserfs/objectid.c | |
parent | 7fa94c8868edfef8cb6a201fcc9a5078b7b961da (diff) |
reiserfs: run scripts/Lindent on reiserfs code
This was a pure indentation change, using:
scripts/Lindent fs/reiserfs/*.c include/linux/reiserfs_*.h
to make reiserfs match the regular Linux indentation style. As Jeff
Mahoney <jeffm@suse.com> writes:
The ReiserFS code is a mix of a number of different coding styles, sometimes
different even from line-to-line. Since the code has been relatively stable
for quite some time and there are few outstanding patches to be applied, it
is time to reformat the code to conform to the Linux style standard outlined
in Documentation/CodingStyle.
This patch contains the result of running scripts/Lindent against
fs/reiserfs/*.c and include/linux/reiserfs_*.h. There are places where the
code can be made to look better, but I'd rather keep those patches separate
so that there isn't a subtle by-hand hand accident in the middle of a huge
patch. To be clear: This patch is reformatting *only*.
A number of patches may follow that continue to make the code more consistent
with the Linux coding style.
Hans wasn't particularly enthusiastic about these patches, but said he
wouldn't really oppose them either.
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'fs/reiserfs/objectid.c')
-rw-r--r-- | fs/reiserfs/objectid.c | 303 |
1 files changed, 152 insertions, 151 deletions
diff --git a/fs/reiserfs/objectid.c b/fs/reiserfs/objectid.c index bfe8e25ef293..f62590aa9c95 100644 --- a/fs/reiserfs/objectid.c +++ b/fs/reiserfs/objectid.c | |||
@@ -14,24 +14,24 @@ | |||
14 | (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\ | 14 | (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\ |
15 | (__le32 *)((rs) + 1)) | 15 | (__le32 *)((rs) + 1)) |
16 | 16 | ||
17 | |||
18 | #ifdef CONFIG_REISERFS_CHECK | 17 | #ifdef CONFIG_REISERFS_CHECK |
19 | 18 | ||
20 | static void check_objectid_map (struct super_block * s, __le32 * map) | 19 | static void check_objectid_map(struct super_block *s, __le32 * map) |
21 | { | 20 | { |
22 | if (le32_to_cpu (map[0]) != 1) | 21 | if (le32_to_cpu(map[0]) != 1) |
23 | reiserfs_panic (s, "vs-15010: check_objectid_map: map corrupted: %lx", | 22 | reiserfs_panic(s, |
24 | ( long unsigned int ) le32_to_cpu (map[0])); | 23 | "vs-15010: check_objectid_map: map corrupted: %lx", |
24 | (long unsigned int)le32_to_cpu(map[0])); | ||
25 | 25 | ||
26 | // FIXME: add something else here | 26 | // FIXME: add something else here |
27 | } | 27 | } |
28 | 28 | ||
29 | #else | 29 | #else |
30 | static void check_objectid_map (struct super_block * s, __le32 * map) | 30 | static void check_objectid_map(struct super_block *s, __le32 * map) |
31 | {;} | 31 | {; |
32 | } | ||
32 | #endif | 33 | #endif |
33 | 34 | ||
34 | |||
35 | /* When we allocate objectids we allocate the first unused objectid. | 35 | /* When we allocate objectids we allocate the first unused objectid. |
36 | Each sequence of objectids in use (the odd sequences) is followed | 36 | Each sequence of objectids in use (the odd sequences) is followed |
37 | by a sequence of objectids not in use (the even sequences). We | 37 | by a sequence of objectids not in use (the even sequences). We |
@@ -46,161 +46,162 @@ static void check_objectid_map (struct super_block * s, __le32 * map) | |||
46 | interesting optimizations of layout could result from complicating | 46 | interesting optimizations of layout could result from complicating |
47 | objectid assignment, but we have deferred making them for now. */ | 47 | objectid assignment, but we have deferred making them for now. */ |
48 | 48 | ||
49 | |||
50 | /* get unique object identifier */ | 49 | /* get unique object identifier */ |
51 | __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th) | 50 | __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th) |
52 | { | 51 | { |
53 | struct super_block * s = th->t_super; | 52 | struct super_block *s = th->t_super; |
54 | struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s); | 53 | struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s); |
55 | __le32 * map = objectid_map (s, rs); | 54 | __le32 *map = objectid_map(s, rs); |
56 | __u32 unused_objectid; | 55 | __u32 unused_objectid; |
57 | 56 | ||
58 | BUG_ON (!th->t_trans_id); | 57 | BUG_ON(!th->t_trans_id); |
58 | |||
59 | check_objectid_map(s, map); | ||
60 | |||
61 | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1); | ||
62 | /* comment needed -Hans */ | ||
63 | unused_objectid = le32_to_cpu(map[1]); | ||
64 | if (unused_objectid == U32_MAX) { | ||
65 | reiserfs_warning(s, "%s: no more object ids", __FUNCTION__); | ||
66 | reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)); | ||
67 | return 0; | ||
68 | } | ||
59 | 69 | ||
60 | check_objectid_map (s, map); | 70 | /* This incrementation allocates the first unused objectid. That |
71 | is to say, the first entry on the objectid map is the first | ||
72 | unused objectid, and by incrementing it we use it. See below | ||
73 | where we check to see if we eliminated a sequence of unused | ||
74 | objectids.... */ | ||
75 | map[1] = cpu_to_le32(unused_objectid + 1); | ||
76 | |||
77 | /* Now we check to see if we eliminated the last remaining member of | ||
78 | the first even sequence (and can eliminate the sequence by | ||
79 | eliminating its last objectid from oids), and can collapse the | ||
80 | first two odd sequences into one sequence. If so, then the net | ||
81 | result is to eliminate a pair of objectids from oids. We do this | ||
82 | by shifting the entire map to the left. */ | ||
83 | if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) { | ||
84 | memmove(map + 1, map + 3, | ||
85 | (sb_oid_cursize(rs) - 3) * sizeof(__u32)); | ||
86 | set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2); | ||
87 | } | ||
61 | 88 | ||
62 | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ; | 89 | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s)); |
63 | /* comment needed -Hans */ | 90 | return unused_objectid; |
64 | unused_objectid = le32_to_cpu (map[1]); | ||
65 | if (unused_objectid == U32_MAX) { | ||
66 | reiserfs_warning (s, "%s: no more object ids", __FUNCTION__); | ||
67 | reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)) ; | ||
68 | return 0; | ||
69 | } | ||
70 | |||
71 | /* This incrementation allocates the first unused objectid. That | ||
72 | is to say, the first entry on the objectid map is the first | ||
73 | unused objectid, and by incrementing it we use it. See below | ||
74 | where we check to see if we eliminated a sequence of unused | ||
75 | objectids.... */ | ||
76 | map[1] = cpu_to_le32 (unused_objectid + 1); | ||
77 | |||
78 | /* Now we check to see if we eliminated the last remaining member of | ||
79 | the first even sequence (and can eliminate the sequence by | ||
80 | eliminating its last objectid from oids), and can collapse the | ||
81 | first two odd sequences into one sequence. If so, then the net | ||
82 | result is to eliminate a pair of objectids from oids. We do this | ||
83 | by shifting the entire map to the left. */ | ||
84 | if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) { | ||
85 | memmove (map + 1, map + 3, (sb_oid_cursize(rs) - 3) * sizeof(__u32)); | ||
86 | set_sb_oid_cursize( rs, sb_oid_cursize(rs) - 2 ); | ||
87 | } | ||
88 | |||
89 | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s)); | ||
90 | return unused_objectid; | ||
91 | } | 91 | } |
92 | 92 | ||
93 | |||
94 | /* makes object identifier unused */ | 93 | /* makes object identifier unused */ |
95 | void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, | 94 | void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, |
96 | __u32 objectid_to_release) | 95 | __u32 objectid_to_release) |
97 | { | 96 | { |
98 | struct super_block * s = th->t_super; | 97 | struct super_block *s = th->t_super; |
99 | struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s); | 98 | struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s); |
100 | __le32 * map = objectid_map (s, rs); | 99 | __le32 *map = objectid_map(s, rs); |
101 | int i = 0; | 100 | int i = 0; |
102 | 101 | ||
103 | BUG_ON (!th->t_trans_id); | 102 | BUG_ON(!th->t_trans_id); |
104 | //return; | 103 | //return; |
105 | check_objectid_map (s, map); | 104 | check_objectid_map(s, map); |
106 | 105 | ||
107 | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ; | 106 | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1); |
108 | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s)); | 107 | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s)); |
109 | 108 | ||
110 | /* start at the beginning of the objectid map (i = 0) and go to | 109 | /* start at the beginning of the objectid map (i = 0) and go to |
111 | the end of it (i = disk_sb->s_oid_cursize). Linear search is | 110 | the end of it (i = disk_sb->s_oid_cursize). Linear search is |
112 | what we use, though it is possible that binary search would be | 111 | what we use, though it is possible that binary search would be |
113 | more efficient after performing lots of deletions (which is | 112 | more efficient after performing lots of deletions (which is |
114 | when oids is large.) We only check even i's. */ | 113 | when oids is large.) We only check even i's. */ |
115 | while (i < sb_oid_cursize(rs)) { | 114 | while (i < sb_oid_cursize(rs)) { |
116 | if (objectid_to_release == le32_to_cpu (map[i])) { | 115 | if (objectid_to_release == le32_to_cpu(map[i])) { |
117 | /* This incrementation unallocates the objectid. */ | 116 | /* This incrementation unallocates the objectid. */ |
118 | //map[i]++; | 117 | //map[i]++; |
119 | map[i] = cpu_to_le32 (le32_to_cpu (map[i]) + 1); | 118 | map[i] = cpu_to_le32(le32_to_cpu(map[i]) + 1); |
120 | 119 | ||
121 | /* Did we unallocate the last member of an odd sequence, and can shrink oids? */ | 120 | /* Did we unallocate the last member of an odd sequence, and can shrink oids? */ |
122 | if (map[i] == map[i+1]) { | 121 | if (map[i] == map[i + 1]) { |
123 | /* shrink objectid map */ | 122 | /* shrink objectid map */ |
124 | memmove (map + i, map + i + 2, | 123 | memmove(map + i, map + i + 2, |
125 | (sb_oid_cursize(rs) - i - 2) * sizeof (__u32)); | 124 | (sb_oid_cursize(rs) - i - |
126 | //disk_sb->s_oid_cursize -= 2; | 125 | 2) * sizeof(__u32)); |
127 | set_sb_oid_cursize( rs, sb_oid_cursize(rs) - 2 ); | 126 | //disk_sb->s_oid_cursize -= 2; |
128 | 127 | set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2); | |
129 | RFALSE( sb_oid_cursize(rs) < 2 || | 128 | |
130 | sb_oid_cursize(rs) > sb_oid_maxsize(rs), | 129 | RFALSE(sb_oid_cursize(rs) < 2 || |
131 | "vs-15005: objectid map corrupted cur_size == %d (max == %d)", | 130 | sb_oid_cursize(rs) > sb_oid_maxsize(rs), |
132 | sb_oid_cursize(rs), sb_oid_maxsize(rs)); | 131 | "vs-15005: objectid map corrupted cur_size == %d (max == %d)", |
133 | } | 132 | sb_oid_cursize(rs), sb_oid_maxsize(rs)); |
134 | return; | 133 | } |
134 | return; | ||
135 | } | ||
136 | |||
137 | if (objectid_to_release > le32_to_cpu(map[i]) && | ||
138 | objectid_to_release < le32_to_cpu(map[i + 1])) { | ||
139 | /* size of objectid map is not changed */ | ||
140 | if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) { | ||
141 | //objectid_map[i+1]--; | ||
142 | map[i + 1] = | ||
143 | cpu_to_le32(le32_to_cpu(map[i + 1]) - 1); | ||
144 | return; | ||
145 | } | ||
146 | |||
147 | /* JDM comparing two little-endian values for equality -- safe */ | ||
148 | if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) { | ||
149 | /* objectid map must be expanded, but there is no space */ | ||
150 | PROC_INFO_INC(s, leaked_oid); | ||
151 | return; | ||
152 | } | ||
153 | |||
154 | /* expand the objectid map */ | ||
155 | memmove(map + i + 3, map + i + 1, | ||
156 | (sb_oid_cursize(rs) - i - 1) * sizeof(__u32)); | ||
157 | map[i + 1] = cpu_to_le32(objectid_to_release); | ||
158 | map[i + 2] = cpu_to_le32(objectid_to_release + 1); | ||
159 | set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2); | ||
160 | return; | ||
161 | } | ||
162 | i += 2; | ||
135 | } | 163 | } |
136 | 164 | ||
137 | if (objectid_to_release > le32_to_cpu (map[i]) && | 165 | reiserfs_warning(s, |
138 | objectid_to_release < le32_to_cpu (map[i + 1])) { | 166 | "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)", |
139 | /* size of objectid map is not changed */ | 167 | (long unsigned)objectid_to_release); |
140 | if (objectid_to_release + 1 == le32_to_cpu (map[i + 1])) { | 168 | } |
141 | //objectid_map[i+1]--; | ||
142 | map[i + 1] = cpu_to_le32 (le32_to_cpu (map[i + 1]) - 1); | ||
143 | return; | ||
144 | } | ||
145 | |||
146 | /* JDM comparing two little-endian values for equality -- safe */ | ||
147 | if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) { | ||
148 | /* objectid map must be expanded, but there is no space */ | ||
149 | PROC_INFO_INC( s, leaked_oid ); | ||
150 | return; | ||
151 | } | ||
152 | 169 | ||
153 | /* expand the objectid map*/ | 170 | int reiserfs_convert_objectid_map_v1(struct super_block *s) |
154 | memmove (map + i + 3, map + i + 1, | 171 | { |
155 | (sb_oid_cursize(rs) - i - 1) * sizeof(__u32)); | 172 | struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s); |
156 | map[i + 1] = cpu_to_le32 (objectid_to_release); | 173 | int cur_size = sb_oid_cursize(disk_sb); |
157 | map[i + 2] = cpu_to_le32 (objectid_to_release + 1); | 174 | int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2; |
158 | set_sb_oid_cursize( rs, sb_oid_cursize(rs) + 2 ); | 175 | int old_max = sb_oid_maxsize(disk_sb); |
159 | return; | 176 | struct reiserfs_super_block_v1 *disk_sb_v1; |
177 | __le32 *objectid_map, *new_objectid_map; | ||
178 | int i; | ||
179 | |||
180 | disk_sb_v1 = | ||
181 | (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data); | ||
182 | objectid_map = (__le32 *) (disk_sb_v1 + 1); | ||
183 | new_objectid_map = (__le32 *) (disk_sb + 1); | ||
184 | |||
185 | if (cur_size > new_size) { | ||
186 | /* mark everyone used that was listed as free at the end of the objectid | ||
187 | ** map | ||
188 | */ | ||
189 | objectid_map[new_size - 1] = objectid_map[cur_size - 1]; | ||
190 | set_sb_oid_cursize(disk_sb, new_size); | ||
191 | } | ||
192 | /* move the smaller objectid map past the end of the new super */ | ||
193 | for (i = new_size - 1; i >= 0; i--) { | ||
194 | objectid_map[i + (old_max - new_size)] = objectid_map[i]; | ||
160 | } | 195 | } |
161 | i += 2; | ||
162 | } | ||
163 | 196 | ||
164 | reiserfs_warning (s, "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)", | 197 | /* set the max size so we don't overflow later */ |
165 | ( long unsigned ) objectid_to_release); | 198 | set_sb_oid_maxsize(disk_sb, new_size); |
166 | } | ||
167 | 199 | ||
200 | /* Zero out label and generate random UUID */ | ||
201 | memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label)); | ||
202 | generate_random_uuid(disk_sb->s_uuid); | ||
168 | 203 | ||
169 | int reiserfs_convert_objectid_map_v1(struct super_block *s) { | 204 | /* finally, zero out the unused chunk of the new super */ |
170 | struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK (s); | 205 | memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)); |
171 | int cur_size = sb_oid_cursize(disk_sb); | 206 | return 0; |
172 | int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2 ; | ||
173 | int old_max = sb_oid_maxsize(disk_sb); | ||
174 | struct reiserfs_super_block_v1 *disk_sb_v1 ; | ||
175 | __le32 *objectid_map, *new_objectid_map ; | ||
176 | int i ; | ||
177 | |||
178 | disk_sb_v1=(struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data); | ||
179 | objectid_map = (__le32 *)(disk_sb_v1 + 1) ; | ||
180 | new_objectid_map = (__le32 *)(disk_sb + 1) ; | ||
181 | |||
182 | if (cur_size > new_size) { | ||
183 | /* mark everyone used that was listed as free at the end of the objectid | ||
184 | ** map | ||
185 | */ | ||
186 | objectid_map[new_size - 1] = objectid_map[cur_size - 1] ; | ||
187 | set_sb_oid_cursize(disk_sb,new_size) ; | ||
188 | } | ||
189 | /* move the smaller objectid map past the end of the new super */ | ||
190 | for (i = new_size - 1 ; i >= 0 ; i--) { | ||
191 | objectid_map[i + (old_max - new_size)] = objectid_map[i] ; | ||
192 | } | ||
193 | |||
194 | |||
195 | /* set the max size so we don't overflow later */ | ||
196 | set_sb_oid_maxsize(disk_sb,new_size) ; | ||
197 | |||
198 | /* Zero out label and generate random UUID */ | ||
199 | memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label)) ; | ||
200 | generate_random_uuid(disk_sb->s_uuid); | ||
201 | |||
202 | /* finally, zero out the unused chunk of the new super */ | ||
203 | memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)) ; | ||
204 | return 0 ; | ||
205 | } | 207 | } |
206 | |||