diff options
author | Tony Luck <tony.luck@intel.com> | 2005-07-13 15:15:43 -0400 |
---|---|---|
committer | Tony Luck <tony.luck@intel.com> | 2005-07-13 15:15:43 -0400 |
commit | 99ad25a313bda566a346b46a6015afa65bc0a02b (patch) | |
tree | b9443fed1ab74f320c4ee0791864ee96d7c069df /fs/reiserfs/objectid.c | |
parent | f62c4a96f74d6c6dd56d1742697e94a5c2085e87 (diff) | |
parent | 9a556e89081b0c1c2f83cee915363b15a68a6f2d (diff) |
Auto merge with /home/aegl/GIT/linus
Diffstat (limited to 'fs/reiserfs/objectid.c')
-rw-r--r-- | fs/reiserfs/objectid.c | 303 |
1 files changed, 152 insertions, 151 deletions
diff --git a/fs/reiserfs/objectid.c b/fs/reiserfs/objectid.c index bfe8e25ef293..f62590aa9c95 100644 --- a/fs/reiserfs/objectid.c +++ b/fs/reiserfs/objectid.c | |||
@@ -14,24 +14,24 @@ | |||
14 | (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\ | 14 | (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\ |
15 | (__le32 *)((rs) + 1)) | 15 | (__le32 *)((rs) + 1)) |
16 | 16 | ||
17 | |||
18 | #ifdef CONFIG_REISERFS_CHECK | 17 | #ifdef CONFIG_REISERFS_CHECK |
19 | 18 | ||
20 | static void check_objectid_map (struct super_block * s, __le32 * map) | 19 | static void check_objectid_map(struct super_block *s, __le32 * map) |
21 | { | 20 | { |
22 | if (le32_to_cpu (map[0]) != 1) | 21 | if (le32_to_cpu(map[0]) != 1) |
23 | reiserfs_panic (s, "vs-15010: check_objectid_map: map corrupted: %lx", | 22 | reiserfs_panic(s, |
24 | ( long unsigned int ) le32_to_cpu (map[0])); | 23 | "vs-15010: check_objectid_map: map corrupted: %lx", |
24 | (long unsigned int)le32_to_cpu(map[0])); | ||
25 | 25 | ||
26 | // FIXME: add something else here | 26 | // FIXME: add something else here |
27 | } | 27 | } |
28 | 28 | ||
29 | #else | 29 | #else |
30 | static void check_objectid_map (struct super_block * s, __le32 * map) | 30 | static void check_objectid_map(struct super_block *s, __le32 * map) |
31 | {;} | 31 | {; |
32 | } | ||
32 | #endif | 33 | #endif |
33 | 34 | ||
34 | |||
35 | /* When we allocate objectids we allocate the first unused objectid. | 35 | /* When we allocate objectids we allocate the first unused objectid. |
36 | Each sequence of objectids in use (the odd sequences) is followed | 36 | Each sequence of objectids in use (the odd sequences) is followed |
37 | by a sequence of objectids not in use (the even sequences). We | 37 | by a sequence of objectids not in use (the even sequences). We |
@@ -46,161 +46,162 @@ static void check_objectid_map (struct super_block * s, __le32 * map) | |||
46 | interesting optimizations of layout could result from complicating | 46 | interesting optimizations of layout could result from complicating |
47 | objectid assignment, but we have deferred making them for now. */ | 47 | objectid assignment, but we have deferred making them for now. */ |
48 | 48 | ||
49 | |||
50 | /* get unique object identifier */ | 49 | /* get unique object identifier */ |
51 | __u32 reiserfs_get_unused_objectid (struct reiserfs_transaction_handle *th) | 50 | __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th) |
52 | { | 51 | { |
53 | struct super_block * s = th->t_super; | 52 | struct super_block *s = th->t_super; |
54 | struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s); | 53 | struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s); |
55 | __le32 * map = objectid_map (s, rs); | 54 | __le32 *map = objectid_map(s, rs); |
56 | __u32 unused_objectid; | 55 | __u32 unused_objectid; |
57 | 56 | ||
58 | BUG_ON (!th->t_trans_id); | 57 | BUG_ON(!th->t_trans_id); |
58 | |||
59 | check_objectid_map(s, map); | ||
60 | |||
61 | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1); | ||
62 | /* comment needed -Hans */ | ||
63 | unused_objectid = le32_to_cpu(map[1]); | ||
64 | if (unused_objectid == U32_MAX) { | ||
65 | reiserfs_warning(s, "%s: no more object ids", __FUNCTION__); | ||
66 | reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)); | ||
67 | return 0; | ||
68 | } | ||
59 | 69 | ||
60 | check_objectid_map (s, map); | 70 | /* This incrementation allocates the first unused objectid. That |
71 | is to say, the first entry on the objectid map is the first | ||
72 | unused objectid, and by incrementing it we use it. See below | ||
73 | where we check to see if we eliminated a sequence of unused | ||
74 | objectids.... */ | ||
75 | map[1] = cpu_to_le32(unused_objectid + 1); | ||
76 | |||
77 | /* Now we check to see if we eliminated the last remaining member of | ||
78 | the first even sequence (and can eliminate the sequence by | ||
79 | eliminating its last objectid from oids), and can collapse the | ||
80 | first two odd sequences into one sequence. If so, then the net | ||
81 | result is to eliminate a pair of objectids from oids. We do this | ||
82 | by shifting the entire map to the left. */ | ||
83 | if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) { | ||
84 | memmove(map + 1, map + 3, | ||
85 | (sb_oid_cursize(rs) - 3) * sizeof(__u32)); | ||
86 | set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2); | ||
87 | } | ||
61 | 88 | ||
62 | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ; | 89 | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s)); |
63 | /* comment needed -Hans */ | 90 | return unused_objectid; |
64 | unused_objectid = le32_to_cpu (map[1]); | ||
65 | if (unused_objectid == U32_MAX) { | ||
66 | reiserfs_warning (s, "%s: no more object ids", __FUNCTION__); | ||
67 | reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)) ; | ||
68 | return 0; | ||
69 | } | ||
70 | |||
71 | /* This incrementation allocates the first unused objectid. That | ||
72 | is to say, the first entry on the objectid map is the first | ||
73 | unused objectid, and by incrementing it we use it. See below | ||
74 | where we check to see if we eliminated a sequence of unused | ||
75 | objectids.... */ | ||
76 | map[1] = cpu_to_le32 (unused_objectid + 1); | ||
77 | |||
78 | /* Now we check to see if we eliminated the last remaining member of | ||
79 | the first even sequence (and can eliminate the sequence by | ||
80 | eliminating its last objectid from oids), and can collapse the | ||
81 | first two odd sequences into one sequence. If so, then the net | ||
82 | result is to eliminate a pair of objectids from oids. We do this | ||
83 | by shifting the entire map to the left. */ | ||
84 | if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) { | ||
85 | memmove (map + 1, map + 3, (sb_oid_cursize(rs) - 3) * sizeof(__u32)); | ||
86 | set_sb_oid_cursize( rs, sb_oid_cursize(rs) - 2 ); | ||
87 | } | ||
88 | |||
89 | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s)); | ||
90 | return unused_objectid; | ||
91 | } | 91 | } |
92 | 92 | ||
93 | |||
94 | /* makes object identifier unused */ | 93 | /* makes object identifier unused */ |
95 | void reiserfs_release_objectid (struct reiserfs_transaction_handle *th, | 94 | void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, |
96 | __u32 objectid_to_release) | 95 | __u32 objectid_to_release) |
97 | { | 96 | { |
98 | struct super_block * s = th->t_super; | 97 | struct super_block *s = th->t_super; |
99 | struct reiserfs_super_block * rs = SB_DISK_SUPER_BLOCK (s); | 98 | struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s); |
100 | __le32 * map = objectid_map (s, rs); | 99 | __le32 *map = objectid_map(s, rs); |
101 | int i = 0; | 100 | int i = 0; |
102 | 101 | ||
103 | BUG_ON (!th->t_trans_id); | 102 | BUG_ON(!th->t_trans_id); |
104 | //return; | 103 | //return; |
105 | check_objectid_map (s, map); | 104 | check_objectid_map(s, map); |
106 | 105 | ||
107 | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1) ; | 106 | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1); |
108 | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB (s)); | 107 | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s)); |
109 | 108 | ||
110 | /* start at the beginning of the objectid map (i = 0) and go to | 109 | /* start at the beginning of the objectid map (i = 0) and go to |
111 | the end of it (i = disk_sb->s_oid_cursize). Linear search is | 110 | the end of it (i = disk_sb->s_oid_cursize). Linear search is |
112 | what we use, though it is possible that binary search would be | 111 | what we use, though it is possible that binary search would be |
113 | more efficient after performing lots of deletions (which is | 112 | more efficient after performing lots of deletions (which is |
114 | when oids is large.) We only check even i's. */ | 113 | when oids is large.) We only check even i's. */ |
115 | while (i < sb_oid_cursize(rs)) { | 114 | while (i < sb_oid_cursize(rs)) { |
116 | if (objectid_to_release == le32_to_cpu (map[i])) { | 115 | if (objectid_to_release == le32_to_cpu(map[i])) { |
117 | /* This incrementation unallocates the objectid. */ | 116 | /* This incrementation unallocates the objectid. */ |
118 | //map[i]++; | 117 | //map[i]++; |
119 | map[i] = cpu_to_le32 (le32_to_cpu (map[i]) + 1); | 118 | map[i] = cpu_to_le32(le32_to_cpu(map[i]) + 1); |
120 | 119 | ||
121 | /* Did we unallocate the last member of an odd sequence, and can shrink oids? */ | 120 | /* Did we unallocate the last member of an odd sequence, and can shrink oids? */ |
122 | if (map[i] == map[i+1]) { | 121 | if (map[i] == map[i + 1]) { |
123 | /* shrink objectid map */ | 122 | /* shrink objectid map */ |
124 | memmove (map + i, map + i + 2, | 123 | memmove(map + i, map + i + 2, |
125 | (sb_oid_cursize(rs) - i - 2) * sizeof (__u32)); | 124 | (sb_oid_cursize(rs) - i - |
126 | //disk_sb->s_oid_cursize -= 2; | 125 | 2) * sizeof(__u32)); |
127 | set_sb_oid_cursize( rs, sb_oid_cursize(rs) - 2 ); | 126 | //disk_sb->s_oid_cursize -= 2; |
128 | 127 | set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2); | |
129 | RFALSE( sb_oid_cursize(rs) < 2 || | 128 | |
130 | sb_oid_cursize(rs) > sb_oid_maxsize(rs), | 129 | RFALSE(sb_oid_cursize(rs) < 2 || |
131 | "vs-15005: objectid map corrupted cur_size == %d (max == %d)", | 130 | sb_oid_cursize(rs) > sb_oid_maxsize(rs), |
132 | sb_oid_cursize(rs), sb_oid_maxsize(rs)); | 131 | "vs-15005: objectid map corrupted cur_size == %d (max == %d)", |
133 | } | 132 | sb_oid_cursize(rs), sb_oid_maxsize(rs)); |
134 | return; | 133 | } |
134 | return; | ||
135 | } | ||
136 | |||
137 | if (objectid_to_release > le32_to_cpu(map[i]) && | ||
138 | objectid_to_release < le32_to_cpu(map[i + 1])) { | ||
139 | /* size of objectid map is not changed */ | ||
140 | if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) { | ||
141 | //objectid_map[i+1]--; | ||
142 | map[i + 1] = | ||
143 | cpu_to_le32(le32_to_cpu(map[i + 1]) - 1); | ||
144 | return; | ||
145 | } | ||
146 | |||
147 | /* JDM comparing two little-endian values for equality -- safe */ | ||
148 | if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) { | ||
149 | /* objectid map must be expanded, but there is no space */ | ||
150 | PROC_INFO_INC(s, leaked_oid); | ||
151 | return; | ||
152 | } | ||
153 | |||
154 | /* expand the objectid map */ | ||
155 | memmove(map + i + 3, map + i + 1, | ||
156 | (sb_oid_cursize(rs) - i - 1) * sizeof(__u32)); | ||
157 | map[i + 1] = cpu_to_le32(objectid_to_release); | ||
158 | map[i + 2] = cpu_to_le32(objectid_to_release + 1); | ||
159 | set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2); | ||
160 | return; | ||
161 | } | ||
162 | i += 2; | ||
135 | } | 163 | } |
136 | 164 | ||
137 | if (objectid_to_release > le32_to_cpu (map[i]) && | 165 | reiserfs_warning(s, |
138 | objectid_to_release < le32_to_cpu (map[i + 1])) { | 166 | "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)", |
139 | /* size of objectid map is not changed */ | 167 | (long unsigned)objectid_to_release); |
140 | if (objectid_to_release + 1 == le32_to_cpu (map[i + 1])) { | 168 | } |
141 | //objectid_map[i+1]--; | ||
142 | map[i + 1] = cpu_to_le32 (le32_to_cpu (map[i + 1]) - 1); | ||
143 | return; | ||
144 | } | ||
145 | |||
146 | /* JDM comparing two little-endian values for equality -- safe */ | ||
147 | if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) { | ||
148 | /* objectid map must be expanded, but there is no space */ | ||
149 | PROC_INFO_INC( s, leaked_oid ); | ||
150 | return; | ||
151 | } | ||
152 | 169 | ||
153 | /* expand the objectid map*/ | 170 | int reiserfs_convert_objectid_map_v1(struct super_block *s) |
154 | memmove (map + i + 3, map + i + 1, | 171 | { |
155 | (sb_oid_cursize(rs) - i - 1) * sizeof(__u32)); | 172 | struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s); |
156 | map[i + 1] = cpu_to_le32 (objectid_to_release); | 173 | int cur_size = sb_oid_cursize(disk_sb); |
157 | map[i + 2] = cpu_to_le32 (objectid_to_release + 1); | 174 | int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2; |
158 | set_sb_oid_cursize( rs, sb_oid_cursize(rs) + 2 ); | 175 | int old_max = sb_oid_maxsize(disk_sb); |
159 | return; | 176 | struct reiserfs_super_block_v1 *disk_sb_v1; |
177 | __le32 *objectid_map, *new_objectid_map; | ||
178 | int i; | ||
179 | |||
180 | disk_sb_v1 = | ||
181 | (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data); | ||
182 | objectid_map = (__le32 *) (disk_sb_v1 + 1); | ||
183 | new_objectid_map = (__le32 *) (disk_sb + 1); | ||
184 | |||
185 | if (cur_size > new_size) { | ||
186 | /* mark everyone used that was listed as free at the end of the objectid | ||
187 | ** map | ||
188 | */ | ||
189 | objectid_map[new_size - 1] = objectid_map[cur_size - 1]; | ||
190 | set_sb_oid_cursize(disk_sb, new_size); | ||
191 | } | ||
192 | /* move the smaller objectid map past the end of the new super */ | ||
193 | for (i = new_size - 1; i >= 0; i--) { | ||
194 | objectid_map[i + (old_max - new_size)] = objectid_map[i]; | ||
160 | } | 195 | } |
161 | i += 2; | ||
162 | } | ||
163 | 196 | ||
164 | reiserfs_warning (s, "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)", | 197 | /* set the max size so we don't overflow later */ |
165 | ( long unsigned ) objectid_to_release); | 198 | set_sb_oid_maxsize(disk_sb, new_size); |
166 | } | ||
167 | 199 | ||
200 | /* Zero out label and generate random UUID */ | ||
201 | memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label)); | ||
202 | generate_random_uuid(disk_sb->s_uuid); | ||
168 | 203 | ||
169 | int reiserfs_convert_objectid_map_v1(struct super_block *s) { | 204 | /* finally, zero out the unused chunk of the new super */ |
170 | struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK (s); | 205 | memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)); |
171 | int cur_size = sb_oid_cursize(disk_sb); | 206 | return 0; |
172 | int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2 ; | ||
173 | int old_max = sb_oid_maxsize(disk_sb); | ||
174 | struct reiserfs_super_block_v1 *disk_sb_v1 ; | ||
175 | __le32 *objectid_map, *new_objectid_map ; | ||
176 | int i ; | ||
177 | |||
178 | disk_sb_v1=(struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data); | ||
179 | objectid_map = (__le32 *)(disk_sb_v1 + 1) ; | ||
180 | new_objectid_map = (__le32 *)(disk_sb + 1) ; | ||
181 | |||
182 | if (cur_size > new_size) { | ||
183 | /* mark everyone used that was listed as free at the end of the objectid | ||
184 | ** map | ||
185 | */ | ||
186 | objectid_map[new_size - 1] = objectid_map[cur_size - 1] ; | ||
187 | set_sb_oid_cursize(disk_sb,new_size) ; | ||
188 | } | ||
189 | /* move the smaller objectid map past the end of the new super */ | ||
190 | for (i = new_size - 1 ; i >= 0 ; i--) { | ||
191 | objectid_map[i + (old_max - new_size)] = objectid_map[i] ; | ||
192 | } | ||
193 | |||
194 | |||
195 | /* set the max size so we don't overflow later */ | ||
196 | set_sb_oid_maxsize(disk_sb,new_size) ; | ||
197 | |||
198 | /* Zero out label and generate random UUID */ | ||
199 | memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label)) ; | ||
200 | generate_random_uuid(disk_sb->s_uuid); | ||
201 | |||
202 | /* finally, zero out the unused chunk of the new super */ | ||
203 | memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)) ; | ||
204 | return 0 ; | ||
205 | } | 207 | } |
206 | |||