aboutsummaryrefslogtreecommitdiffstats
path: root/fs/reiserfs/inode.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/reiserfs/inode.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'fs/reiserfs/inode.c')
-rw-r--r--fs/reiserfs/inode.c2846
1 files changed, 2846 insertions, 0 deletions
diff --git a/fs/reiserfs/inode.c b/fs/reiserfs/inode.c
new file mode 100644
index 000000000000..7543031396f4
--- /dev/null
+++ b/fs/reiserfs/inode.c
@@ -0,0 +1,2846 @@
1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <linux/config.h>
6#include <linux/time.h>
7#include <linux/fs.h>
8#include <linux/reiserfs_fs.h>
9#include <linux/reiserfs_acl.h>
10#include <linux/reiserfs_xattr.h>
11#include <linux/smp_lock.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <asm/uaccess.h>
15#include <asm/unaligned.h>
16#include <linux/buffer_head.h>
17#include <linux/mpage.h>
18#include <linux/writeback.h>
19#include <linux/quotaops.h>
20
21extern int reiserfs_default_io_size; /* default io size devuned in super.c */
22
23static int reiserfs_commit_write(struct file *f, struct page *page,
24 unsigned from, unsigned to);
25static int reiserfs_prepare_write(struct file *f, struct page *page,
26 unsigned from, unsigned to);
27
28void reiserfs_delete_inode (struct inode * inode)
29{
30 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
31 int jbegin_count = JOURNAL_PER_BALANCE_CNT * 2 + 2 * REISERFS_QUOTA_INIT_BLOCKS;
32 struct reiserfs_transaction_handle th ;
33
34 reiserfs_write_lock(inode->i_sb);
35
36 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
37 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
38 down (&inode->i_sem);
39
40 reiserfs_delete_xattrs (inode);
41
42 if (journal_begin(&th, inode->i_sb, jbegin_count)) {
43 up (&inode->i_sem);
44 goto out;
45 }
46 reiserfs_update_inode_transaction(inode) ;
47
48 if (reiserfs_delete_object (&th, inode)) {
49 up (&inode->i_sem);
50 goto out;
51 }
52
53 /* Do quota update inside a transaction for journaled quotas. We must do that
54 * after delete_object so that quota updates go into the same transaction as
55 * stat data deletion */
56 DQUOT_FREE_INODE(inode);
57
58 if (journal_end(&th, inode->i_sb, jbegin_count)) {
59 up (&inode->i_sem);
60 goto out;
61 }
62
63 up (&inode->i_sem);
64
65 /* all items of file are deleted, so we can remove "save" link */
66 remove_save_link (inode, 0/* not truncate */); /* we can't do anything
67 * about an error here */
68 } else {
69 /* no object items are in the tree */
70 ;
71 }
72out:
73 clear_inode (inode); /* note this must go after the journal_end to prevent deadlock */
74 inode->i_blocks = 0;
75 reiserfs_write_unlock(inode->i_sb);
76}
77
78static void _make_cpu_key (struct cpu_key * key, int version, __u32 dirid, __u32 objectid,
79 loff_t offset, int type, int length )
80{
81 key->version = version;
82
83 key->on_disk_key.k_dir_id = dirid;
84 key->on_disk_key.k_objectid = objectid;
85 set_cpu_key_k_offset (key, offset);
86 set_cpu_key_k_type (key, type);
87 key->key_length = length;
88}
89
90
91/* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
92 offset and type of key */
93void make_cpu_key (struct cpu_key * key, struct inode * inode, loff_t offset,
94 int type, int length )
95{
96 _make_cpu_key (key, get_inode_item_key_version (inode), le32_to_cpu (INODE_PKEY (inode)->k_dir_id),
97 le32_to_cpu (INODE_PKEY (inode)->k_objectid),
98 offset, type, length);
99}
100
101
102//
103// when key is 0, do not set version and short key
104//
105inline void make_le_item_head (struct item_head * ih, const struct cpu_key * key,
106 int version,
107 loff_t offset, int type, int length,
108 int entry_count/*or ih_free_space*/)
109{
110 if (key) {
111 ih->ih_key.k_dir_id = cpu_to_le32 (key->on_disk_key.k_dir_id);
112 ih->ih_key.k_objectid = cpu_to_le32 (key->on_disk_key.k_objectid);
113 }
114 put_ih_version( ih, version );
115 set_le_ih_k_offset (ih, offset);
116 set_le_ih_k_type (ih, type);
117 put_ih_item_len( ih, length );
118 /* set_ih_free_space (ih, 0);*/
119 // for directory items it is entry count, for directs and stat
120 // datas - 0xffff, for indirects - 0
121 put_ih_entry_count( ih, entry_count );
122}
123
124//
125// FIXME: we might cache recently accessed indirect item
126
127// Ugh. Not too eager for that....
128// I cut the code until such time as I see a convincing argument (benchmark).
129// I don't want a bloated inode struct..., and I don't like code complexity....
130
131/* cutting the code is fine, since it really isn't in use yet and is easy
132** to add back in. But, Vladimir has a really good idea here. Think
133** about what happens for reading a file. For each page,
134** The VFS layer calls reiserfs_readpage, who searches the tree to find
135** an indirect item. This indirect item has X number of pointers, where
136** X is a big number if we've done the block allocation right. But,
137** we only use one or two of these pointers during each call to readpage,
138** needlessly researching again later on.
139**
140** The size of the cache could be dynamic based on the size of the file.
141**
142** I'd also like to see us cache the location the stat data item, since
143** we are needlessly researching for that frequently.
144**
145** --chris
146*/
147
148/* If this page has a file tail in it, and
149** it was read in by get_block_create_0, the page data is valid,
150** but tail is still sitting in a direct item, and we can't write to
151** it. So, look through this page, and check all the mapped buffers
152** to make sure they have valid block numbers. Any that don't need
153** to be unmapped, so that block_prepare_write will correctly call
154** reiserfs_get_block to convert the tail into an unformatted node
155*/
156static inline void fix_tail_page_for_writing(struct page *page) {
157 struct buffer_head *head, *next, *bh ;
158
159 if (page && page_has_buffers(page)) {
160 head = page_buffers(page) ;
161 bh = head ;
162 do {
163 next = bh->b_this_page ;
164 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
165 reiserfs_unmap_buffer(bh) ;
166 }
167 bh = next ;
168 } while (bh != head) ;
169 }
170}
171
172/* reiserfs_get_block does not need to allocate a block only if it has been
173 done already or non-hole position has been found in the indirect item */
174static inline int allocation_needed (int retval, b_blocknr_t allocated,
175 struct item_head * ih,
176 __u32 * item, int pos_in_item)
177{
178 if (allocated)
179 return 0;
180 if (retval == POSITION_FOUND && is_indirect_le_ih (ih) &&
181 get_block_num(item, pos_in_item))
182 return 0;
183 return 1;
184}
185
186static inline int indirect_item_found (int retval, struct item_head * ih)
187{
188 return (retval == POSITION_FOUND) && is_indirect_le_ih (ih);
189}
190
191
192static inline void set_block_dev_mapped (struct buffer_head * bh,
193 b_blocknr_t block, struct inode * inode)
194{
195 map_bh(bh, inode->i_sb, block);
196}
197
198
199//
200// files which were created in the earlier version can not be longer,
201// than 2 gb
202//
203static int file_capable (struct inode * inode, long block)
204{
205 if (get_inode_item_key_version (inode) != KEY_FORMAT_3_5 || // it is new file.
206 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
207 return 1;
208
209 return 0;
210}
211
212/*static*/ int restart_transaction(struct reiserfs_transaction_handle *th,
213 struct inode *inode, struct path *path) {
214 struct super_block *s = th->t_super ;
215 int len = th->t_blocks_allocated ;
216 int err;
217
218 BUG_ON (!th->t_trans_id);
219 BUG_ON (!th->t_refcount);
220
221 /* we cannot restart while nested */
222 if (th->t_refcount > 1) {
223 return 0 ;
224 }
225 pathrelse(path) ;
226 reiserfs_update_sd(th, inode) ;
227 err = journal_end(th, s, len) ;
228 if (!err) {
229 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6) ;
230 if (!err)
231 reiserfs_update_inode_transaction(inode) ;
232 }
233 return err;
234}
235
236// it is called by get_block when create == 0. Returns block number
237// for 'block'-th logical block of file. When it hits direct item it
238// returns 0 (being called from bmap) or read direct item into piece
239// of page (bh_result)
240
241// Please improve the english/clarity in the comment above, as it is
242// hard to understand.
243
244static int _get_block_create_0 (struct inode * inode, long block,
245 struct buffer_head * bh_result,
246 int args)
247{
248 INITIALIZE_PATH (path);
249 struct cpu_key key;
250 struct buffer_head * bh;
251 struct item_head * ih, tmp_ih;
252 int fs_gen ;
253 int blocknr;
254 char * p = NULL;
255 int chars;
256 int ret ;
257 int done = 0 ;
258 unsigned long offset ;
259
260 // prepare the key to look for the 'block'-th block of file
261 make_cpu_key (&key, inode,
262 (loff_t)block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 3);
263
264research:
265 if (search_for_position_by_key (inode->i_sb, &key, &path) != POSITION_FOUND) {
266 pathrelse (&path);
267 if (p)
268 kunmap(bh_result->b_page) ;
269 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
270 // That there is some MMAPED data associated with it that is yet to be written to disk.
271 if ((args & GET_BLOCK_NO_HOLE) && !PageUptodate(bh_result->b_page) ) {
272 return -ENOENT ;
273 }
274 return 0 ;
275 }
276
277 //
278 bh = get_last_bh (&path);
279 ih = get_ih (&path);
280 if (is_indirect_le_ih (ih)) {
281 __u32 * ind_item = (__u32 *)B_I_PITEM (bh, ih);
282
283 /* FIXME: here we could cache indirect item or part of it in
284 the inode to avoid search_by_key in case of subsequent
285 access to file */
286 blocknr = get_block_num(ind_item, path.pos_in_item) ;
287 ret = 0 ;
288 if (blocknr) {
289 map_bh(bh_result, inode->i_sb, blocknr);
290 if (path.pos_in_item == ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
291 set_buffer_boundary(bh_result);
292 }
293 } else
294 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
295 // That there is some MMAPED data associated with it that is yet to be written to disk.
296 if ((args & GET_BLOCK_NO_HOLE) && !PageUptodate(bh_result->b_page) ) {
297 ret = -ENOENT ;
298 }
299
300 pathrelse (&path);
301 if (p)
302 kunmap(bh_result->b_page) ;
303 return ret ;
304 }
305
306 // requested data are in direct item(s)
307 if (!(args & GET_BLOCK_READ_DIRECT)) {
308 // we are called by bmap. FIXME: we can not map block of file
309 // when it is stored in direct item(s)
310 pathrelse (&path);
311 if (p)
312 kunmap(bh_result->b_page) ;
313 return -ENOENT;
314 }
315
316 /* if we've got a direct item, and the buffer or page was uptodate,
317 ** we don't want to pull data off disk again. skip to the
318 ** end, where we map the buffer and return
319 */
320 if (buffer_uptodate(bh_result)) {
321 goto finished ;
322 } else
323 /*
324 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
325 ** pages without any buffers. If the page is up to date, we don't want
326 ** read old data off disk. Set the up to date bit on the buffer instead
327 ** and jump to the end
328 */
329 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
330 set_buffer_uptodate(bh_result);
331 goto finished ;
332 }
333
334 // read file tail into part of page
335 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1) ;
336 fs_gen = get_generation(inode->i_sb) ;
337 copy_item_head (&tmp_ih, ih);
338
339 /* we only want to kmap if we are reading the tail into the page.
340 ** this is not the common case, so we don't kmap until we are
341 ** sure we need to. But, this means the item might move if
342 ** kmap schedules
343 */
344 if (!p) {
345 p = (char *)kmap(bh_result->b_page) ;
346 if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) {
347 goto research;
348 }
349 }
350 p += offset ;
351 memset (p, 0, inode->i_sb->s_blocksize);
352 do {
353 if (!is_direct_le_ih (ih)) {
354 BUG ();
355 }
356 /* make sure we don't read more bytes than actually exist in
357 ** the file. This can happen in odd cases where i_size isn't
358 ** correct, and when direct item padding results in a few
359 ** extra bytes at the end of the direct item
360 */
361 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
362 break ;
363 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
364 chars = inode->i_size - (le_ih_k_offset(ih) - 1) - path.pos_in_item;
365 done = 1 ;
366 } else {
367 chars = ih_item_len(ih) - path.pos_in_item;
368 }
369 memcpy (p, B_I_PITEM (bh, ih) + path.pos_in_item, chars);
370
371 if (done)
372 break ;
373
374 p += chars;
375
376 if (PATH_LAST_POSITION (&path) != (B_NR_ITEMS (bh) - 1))
377 // we done, if read direct item is not the last item of
378 // node FIXME: we could try to check right delimiting key
379 // to see whether direct item continues in the right
380 // neighbor or rely on i_size
381 break;
382
383 // update key to look for the next piece
384 set_cpu_key_k_offset (&key, cpu_key_k_offset (&key) + chars);
385 if (search_for_position_by_key (inode->i_sb, &key, &path) != POSITION_FOUND)
386 // we read something from tail, even if now we got IO_ERROR
387 break;
388 bh = get_last_bh (&path);
389 ih = get_ih (&path);
390 } while (1);
391
392 flush_dcache_page(bh_result->b_page) ;
393 kunmap(bh_result->b_page) ;
394
395finished:
396 pathrelse (&path);
397 /* this buffer has valid data, but isn't valid for io. mapping it to
398 * block #0 tells the rest of reiserfs it just has a tail in it
399 */
400 map_bh(bh_result, inode->i_sb, 0);
401 set_buffer_uptodate (bh_result);
402 return 0;
403}
404
405
406// this is called to create file map. So, _get_block_create_0 will not
407// read direct item
408static int reiserfs_bmap (struct inode * inode, sector_t block,
409 struct buffer_head * bh_result, int create)
410{
411 if (!file_capable (inode, block))
412 return -EFBIG;
413
414 reiserfs_write_lock(inode->i_sb);
415 /* do not read the direct item */
416 _get_block_create_0 (inode, block, bh_result, 0) ;
417 reiserfs_write_unlock(inode->i_sb);
418 return 0;
419}
420
421/* special version of get_block that is only used by grab_tail_page right
422** now. It is sent to block_prepare_write, and when you try to get a
423** block past the end of the file (or a block from a hole) it returns
424** -ENOENT instead of a valid buffer. block_prepare_write expects to
425** be able to do i/o on the buffers returned, unless an error value
426** is also returned.
427**
428** So, this allows block_prepare_write to be used for reading a single block
429** in a page. Where it does not produce a valid page for holes, or past the
430** end of the file. This turns out to be exactly what we need for reading
431** tails for conversion.
432**
433** The point of the wrapper is forcing a certain value for create, even
434** though the VFS layer is calling this function with create==1. If you
435** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
436** don't use this function.
437*/
438static int reiserfs_get_block_create_0 (struct inode * inode, sector_t block,
439 struct buffer_head * bh_result, int create) {
440 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE) ;
441}
442
443/* This is special helper for reiserfs_get_block in case we are executing
444 direct_IO request. */
445static int reiserfs_get_blocks_direct_io(struct inode *inode,
446 sector_t iblock,
447 unsigned long max_blocks,
448 struct buffer_head *bh_result,
449 int create)
450{
451 int ret ;
452
453 bh_result->b_page = NULL;
454
455 /* We set the b_size before reiserfs_get_block call since it is
456 referenced in convert_tail_for_hole() that may be called from
457 reiserfs_get_block() */
458 bh_result->b_size = (1 << inode->i_blkbits);
459
460 ret = reiserfs_get_block(inode, iblock, bh_result,
461 create | GET_BLOCK_NO_DANGLE) ;
462 if (ret)
463 goto out;
464
465 /* don't allow direct io onto tail pages */
466 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
467 /* make sure future calls to the direct io funcs for this offset
468 ** in the file fail by unmapping the buffer
469 */
470 clear_buffer_mapped(bh_result);
471 ret = -EINVAL ;
472 }
473 /* Possible unpacked tail. Flush the data before pages have
474 disappeared */
475 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
476 int err;
477 lock_kernel();
478 err = reiserfs_commit_for_inode(inode);
479 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
480 unlock_kernel();
481 if (err < 0)
482 ret = err;
483 }
484out:
485 return ret ;
486}
487
488
489/*
490** helper function for when reiserfs_get_block is called for a hole
491** but the file tail is still in a direct item
492** bh_result is the buffer head for the hole
493** tail_offset is the offset of the start of the tail in the file
494**
495** This calls prepare_write, which will start a new transaction
496** you should not be in a transaction, or have any paths held when you
497** call this.
498*/
499static int convert_tail_for_hole(struct inode *inode,
500 struct buffer_head *bh_result,
501 loff_t tail_offset) {
502 unsigned long index ;
503 unsigned long tail_end ;
504 unsigned long tail_start ;
505 struct page * tail_page ;
506 struct page * hole_page = bh_result->b_page ;
507 int retval = 0 ;
508
509 if ((tail_offset & (bh_result->b_size - 1)) != 1)
510 return -EIO ;
511
512 /* always try to read until the end of the block */
513 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1) ;
514 tail_end = (tail_start | (bh_result->b_size - 1)) + 1 ;
515
516 index = tail_offset >> PAGE_CACHE_SHIFT ;
517 /* hole_page can be zero in case of direct_io, we are sure
518 that we cannot get here if we write with O_DIRECT into
519 tail page */
520 if (!hole_page || index != hole_page->index) {
521 tail_page = grab_cache_page(inode->i_mapping, index) ;
522 retval = -ENOMEM;
523 if (!tail_page) {
524 goto out ;
525 }
526 } else {
527 tail_page = hole_page ;
528 }
529
530 /* we don't have to make sure the conversion did not happen while
531 ** we were locking the page because anyone that could convert
532 ** must first take i_sem.
533 **
534 ** We must fix the tail page for writing because it might have buffers
535 ** that are mapped, but have a block number of 0. This indicates tail
536 ** data that has been read directly into the page, and block_prepare_write
537 ** won't trigger a get_block in this case.
538 */
539 fix_tail_page_for_writing(tail_page) ;
540 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
541 if (retval)
542 goto unlock ;
543
544 /* tail conversion might change the data in the page */
545 flush_dcache_page(tail_page) ;
546
547 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end) ;
548
549unlock:
550 if (tail_page != hole_page) {
551 unlock_page(tail_page) ;
552 page_cache_release(tail_page) ;
553 }
554out:
555 return retval ;
556}
557
558static inline int _allocate_block(struct reiserfs_transaction_handle *th,
559 long block,
560 struct inode *inode,
561 b_blocknr_t *allocated_block_nr,
562 struct path * path,
563 int flags) {
564 BUG_ON (!th->t_trans_id);
565
566#ifdef REISERFS_PREALLOCATE
567 if (!(flags & GET_BLOCK_NO_ISEM)) {
568 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, path, block);
569 }
570#endif
571 return reiserfs_new_unf_blocknrs (th, inode, allocated_block_nr, path, block);
572}
573
574int reiserfs_get_block (struct inode * inode, sector_t block,
575 struct buffer_head * bh_result, int create)
576{
577 int repeat, retval = 0;
578 b_blocknr_t allocated_block_nr = 0;// b_blocknr_t is (unsigned) 32 bit int
579 INITIALIZE_PATH(path);
580 int pos_in_item;
581 struct cpu_key key;
582 struct buffer_head * bh, * unbh = NULL;
583 struct item_head * ih, tmp_ih;
584 __u32 * item;
585 int done;
586 int fs_gen;
587 struct reiserfs_transaction_handle *th = NULL;
588 /* space reserved in transaction batch:
589 . 3 balancings in direct->indirect conversion
590 . 1 block involved into reiserfs_update_sd()
591 XXX in practically impossible worst case direct2indirect()
592 can incur (much) more than 3 balancings.
593 quota update for user, group */
594 int jbegin_count = JOURNAL_PER_BALANCE_CNT * 3 + 1 + 2 * REISERFS_QUOTA_TRANS_BLOCKS;
595 int version;
596 int dangle = 1;
597 loff_t new_offset = (((loff_t)block) << inode->i_sb->s_blocksize_bits) + 1 ;
598
599 /* bad.... */
600 reiserfs_write_lock(inode->i_sb);
601 version = get_inode_item_key_version (inode);
602
603 if (block < 0) {
604 reiserfs_write_unlock(inode->i_sb);
605 return -EIO;
606 }
607
608 if (!file_capable (inode, block)) {
609 reiserfs_write_unlock(inode->i_sb);
610 return -EFBIG;
611 }
612
613 /* if !create, we aren't changing the FS, so we don't need to
614 ** log anything, so we don't need to start a transaction
615 */
616 if (!(create & GET_BLOCK_CREATE)) {
617 int ret ;
618 /* find number of block-th logical block of the file */
619 ret = _get_block_create_0 (inode, block, bh_result,
620 create | GET_BLOCK_READ_DIRECT) ;
621 reiserfs_write_unlock(inode->i_sb);
622 return ret;
623 }
624 /*
625 * if we're already in a transaction, make sure to close
626 * any new transactions we start in this func
627 */
628 if ((create & GET_BLOCK_NO_DANGLE) ||
629 reiserfs_transaction_running(inode->i_sb))
630 dangle = 0;
631
632 /* If file is of such a size, that it might have a tail and tails are enabled
633 ** we should mark it as possibly needing tail packing on close
634 */
635 if ( (have_large_tails (inode->i_sb) && inode->i_size < i_block_size (inode)*4) ||
636 (have_small_tails (inode->i_sb) && inode->i_size < i_block_size(inode)) )
637 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask ;
638
639 /* set the key of the first byte in the 'block'-th block of file */
640 make_cpu_key (&key, inode, new_offset,
641 TYPE_ANY, 3/*key length*/);
642 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
643start_trans:
644 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
645 if (!th) {
646 retval = -ENOMEM;
647 goto failure;
648 }
649 reiserfs_update_inode_transaction(inode) ;
650 }
651 research:
652
653 retval = search_for_position_by_key (inode->i_sb, &key, &path);
654 if (retval == IO_ERROR) {
655 retval = -EIO;
656 goto failure;
657 }
658
659 bh = get_last_bh (&path);
660 ih = get_ih (&path);
661 item = get_item (&path);
662 pos_in_item = path.pos_in_item;
663
664 fs_gen = get_generation (inode->i_sb);
665 copy_item_head (&tmp_ih, ih);
666
667 if (allocation_needed (retval, allocated_block_nr, ih, item, pos_in_item)) {
668 /* we have to allocate block for the unformatted node */
669 if (!th) {
670 pathrelse(&path) ;
671 goto start_trans;
672 }
673
674 repeat = _allocate_block(th, block, inode, &allocated_block_nr, &path, create);
675
676 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
677 /* restart the transaction to give the journal a chance to free
678 ** some blocks. releases the path, so we have to go back to
679 ** research if we succeed on the second try
680 */
681 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
682 retval = restart_transaction(th, inode, &path) ;
683 if (retval)
684 goto failure;
685 repeat = _allocate_block(th, block, inode, &allocated_block_nr, NULL, create);
686
687 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
688 goto research ;
689 }
690 if (repeat == QUOTA_EXCEEDED)
691 retval = -EDQUOT;
692 else
693 retval = -ENOSPC;
694 goto failure;
695 }
696
697 if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) {
698 goto research;
699 }
700 }
701
702 if (indirect_item_found (retval, ih)) {
703 b_blocknr_t unfm_ptr;
704 /* 'block'-th block is in the file already (there is
705 corresponding cell in some indirect item). But it may be
706 zero unformatted node pointer (hole) */
707 unfm_ptr = get_block_num (item, pos_in_item);
708 if (unfm_ptr == 0) {
709 /* use allocated block to plug the hole */
710 reiserfs_prepare_for_journal(inode->i_sb, bh, 1) ;
711 if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) {
712 reiserfs_restore_prepared_buffer(inode->i_sb, bh) ;
713 goto research;
714 }
715 set_buffer_new(bh_result);
716 if (buffer_dirty(bh_result) && reiserfs_data_ordered(inode->i_sb))
717 reiserfs_add_ordered_list(inode, bh_result);
718 put_block_num(item, pos_in_item, allocated_block_nr) ;
719 unfm_ptr = allocated_block_nr;
720 journal_mark_dirty (th, inode->i_sb, bh);
721 reiserfs_update_sd(th, inode) ;
722 }
723 set_block_dev_mapped(bh_result, unfm_ptr, inode);
724 pathrelse (&path);
725 retval = 0;
726 if (!dangle && th)
727 retval = reiserfs_end_persistent_transaction(th);
728
729 reiserfs_write_unlock(inode->i_sb);
730
731 /* the item was found, so new blocks were not added to the file
732 ** there is no need to make sure the inode is updated with this
733 ** transaction
734 */
735 return retval;
736 }
737
738 if (!th) {
739 pathrelse(&path) ;
740 goto start_trans;
741 }
742
743 /* desired position is not found or is in the direct item. We have
744 to append file with holes up to 'block'-th block converting
745 direct items to indirect one if necessary */
746 done = 0;
747 do {
748 if (is_statdata_le_ih (ih)) {
749 __u32 unp = 0;
750 struct cpu_key tmp_key;
751
752 /* indirect item has to be inserted */
753 make_le_item_head (&tmp_ih, &key, version, 1, TYPE_INDIRECT,
754 UNFM_P_SIZE, 0/* free_space */);
755
756 if (cpu_key_k_offset (&key) == 1) {
757 /* we are going to add 'block'-th block to the file. Use
758 allocated block for that */
759 unp = cpu_to_le32 (allocated_block_nr);
760 set_block_dev_mapped (bh_result, allocated_block_nr, inode);
761 set_buffer_new(bh_result);
762 done = 1;
763 }
764 tmp_key = key; // ;)
765 set_cpu_key_k_offset (&tmp_key, 1);
766 PATH_LAST_POSITION(&path) ++;
767
768 retval = reiserfs_insert_item (th, &path, &tmp_key, &tmp_ih, inode, (char *)&unp);
769 if (retval) {
770 reiserfs_free_block (th, inode, allocated_block_nr, 1);
771 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
772 }
773 //mark_tail_converted (inode);
774 } else if (is_direct_le_ih (ih)) {
775 /* direct item has to be converted */
776 loff_t tail_offset;
777
778 tail_offset = ((le_ih_k_offset (ih) - 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
779 if (tail_offset == cpu_key_k_offset (&key)) {
780 /* direct item we just found fits into block we have
781 to map. Convert it into unformatted node: use
782 bh_result for the conversion */
783 set_block_dev_mapped (bh_result, allocated_block_nr, inode);
784 unbh = bh_result;
785 done = 1;
786 } else {
787 /* we have to padd file tail stored in direct item(s)
788 up to block size and convert it to unformatted
789 node. FIXME: this should also get into page cache */
790
791 pathrelse(&path) ;
792 /*
793 * ugly, but we can only end the transaction if
794 * we aren't nested
795 */
796 BUG_ON (!th->t_refcount);
797 if (th->t_refcount == 1) {
798 retval = reiserfs_end_persistent_transaction(th);
799 th = NULL;
800 if (retval)
801 goto failure;
802 }
803
804 retval = convert_tail_for_hole(inode, bh_result, tail_offset) ;
805 if (retval) {
806 if ( retval != -ENOSPC )
807 reiserfs_warning (inode->i_sb, "clm-6004: convert tail failed inode %lu, error %d", inode->i_ino, retval) ;
808 if (allocated_block_nr) {
809 /* the bitmap, the super, and the stat data == 3 */
810 if (!th)
811 th = reiserfs_persistent_transaction(inode->i_sb,3);
812 if (th)
813 reiserfs_free_block (th,inode,allocated_block_nr,1);
814 }
815 goto failure ;
816 }
817 goto research ;
818 }
819 retval = direct2indirect (th, inode, &path, unbh, tail_offset);
820 if (retval) {
821 reiserfs_unmap_buffer(unbh);
822 reiserfs_free_block (th, inode, allocated_block_nr, 1);
823 goto failure;
824 }
825 /* it is important the set_buffer_uptodate is done after
826 ** the direct2indirect. The buffer might contain valid
827 ** data newer than the data on disk (read by readpage, changed,
828 ** and then sent here by writepage). direct2indirect needs
829 ** to know if unbh was already up to date, so it can decide
830 ** if the data in unbh needs to be replaced with data from
831 ** the disk
832 */
833 set_buffer_uptodate (unbh);
834
835 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
836 buffer will disappear shortly, so it should not be added to
837 */
838 if ( unbh->b_page ) {
839 /* we've converted the tail, so we must
840 ** flush unbh before the transaction commits
841 */
842 reiserfs_add_tail_list(inode, unbh) ;
843
844 /* mark it dirty now to prevent commit_write from adding
845 ** this buffer to the inode's dirty buffer list
846 */
847 /*
848 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
849 * It's still atomic, but it sets the page dirty too,
850 * which makes it eligible for writeback at any time by the
851 * VM (which was also the case with __mark_buffer_dirty())
852 */
853 mark_buffer_dirty(unbh) ;
854 }
855 } else {
856 /* append indirect item with holes if needed, when appending
857 pointer to 'block'-th block use block, which is already
858 allocated */
859 struct cpu_key tmp_key;
860 unp_t unf_single=0; // We use this in case we need to allocate only
861 // one block which is a fastpath
862 unp_t *un;
863 __u64 max_to_insert=MAX_ITEM_LEN(inode->i_sb->s_blocksize)/UNFM_P_SIZE;
864 __u64 blocks_needed;
865
866 RFALSE( pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
867 "vs-804: invalid position for append");
868 /* indirect item has to be appended, set up key of that position */
869 make_cpu_key (&tmp_key, inode,
870 le_key_k_offset (version, &(ih->ih_key)) + op_bytes_number (ih, inode->i_sb->s_blocksize),
871 //pos_in_item * inode->i_sb->s_blocksize,
872 TYPE_INDIRECT, 3);// key type is unimportant
873
874 blocks_needed = 1 + ((cpu_key_k_offset (&key) - cpu_key_k_offset (&tmp_key)) >> inode->i_sb->s_blocksize_bits);
875 RFALSE( blocks_needed < 0, "green-805: invalid offset");
876
877 if ( blocks_needed == 1 ) {
878 un = &unf_single;
879 } else {
880 un=kmalloc( min(blocks_needed,max_to_insert)*UNFM_P_SIZE,
881 GFP_ATOMIC); // We need to avoid scheduling.
882 if ( !un) {
883 un = &unf_single;
884 blocks_needed = 1;
885 max_to_insert = 0;
886 } else
887 memset(un, 0, UNFM_P_SIZE * min(blocks_needed,max_to_insert));
888 }
889 if ( blocks_needed <= max_to_insert) {
890 /* we are going to add target block to the file. Use allocated
891 block for that */
892 un[blocks_needed-1] = cpu_to_le32 (allocated_block_nr);
893 set_block_dev_mapped (bh_result, allocated_block_nr, inode);
894 set_buffer_new(bh_result);
895 done = 1;
896 } else {
897 /* paste hole to the indirect item */
898 /* If kmalloc failed, max_to_insert becomes zero and it means we
899 only have space for one block */
900 blocks_needed=max_to_insert?max_to_insert:1;
901 }
902 retval = reiserfs_paste_into_item (th, &path, &tmp_key, inode, (char *)un, UNFM_P_SIZE * blocks_needed);
903
904 if (blocks_needed != 1)
905 kfree(un);
906
907 if (retval) {
908 reiserfs_free_block (th, inode, allocated_block_nr, 1);
909 goto failure;
910 }
911 if (!done) {
912 /* We need to mark new file size in case this function will be
913 interrupted/aborted later on. And we may do this only for
914 holes. */
915 inode->i_size += inode->i_sb->s_blocksize * blocks_needed;
916 }
917 }
918
919 if (done == 1)
920 break;
921
922 /* this loop could log more blocks than we had originally asked
923 ** for. So, we have to allow the transaction to end if it is
924 ** too big or too full. Update the inode so things are
925 ** consistent if we crash before the function returns
926 **
927 ** release the path so that anybody waiting on the path before
928 ** ending their transaction will be able to continue.
929 */
930 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
931 retval = restart_transaction(th, inode, &path) ;
932 if (retval)
933 goto failure;
934 }
935 /* inserting indirect pointers for a hole can take a
936 ** long time. reschedule if needed
937 */
938 cond_resched();
939
940 retval = search_for_position_by_key (inode->i_sb, &key, &path);
941 if (retval == IO_ERROR) {
942 retval = -EIO;
943 goto failure;
944 }
945 if (retval == POSITION_FOUND) {
946 reiserfs_warning (inode->i_sb, "vs-825: reiserfs_get_block: "
947 "%K should not be found", &key);
948 retval = -EEXIST;
949 if (allocated_block_nr)
950 reiserfs_free_block (th, inode, allocated_block_nr, 1);
951 pathrelse(&path) ;
952 goto failure;
953 }
954 bh = get_last_bh (&path);
955 ih = get_ih (&path);
956 item = get_item (&path);
957 pos_in_item = path.pos_in_item;
958 } while (1);
959
960
961 retval = 0;
962
963 failure:
964 if (th && (!dangle || (retval && !th->t_trans_id))) {
965 int err;
966 if (th->t_trans_id)
967 reiserfs_update_sd(th, inode);
968 err = reiserfs_end_persistent_transaction(th);
969 if (err)
970 retval = err;
971 }
972
973 reiserfs_write_unlock(inode->i_sb);
974 reiserfs_check_path(&path) ;
975 return retval;
976}
977
978static int
979reiserfs_readpages(struct file *file, struct address_space *mapping,
980 struct list_head *pages, unsigned nr_pages)
981{
982 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
983}
984
985/* Compute real number of used bytes by file
986 * Following three functions can go away when we'll have enough space in stat item
987 */
988static int real_space_diff(struct inode *inode, int sd_size)
989{
990 int bytes;
991 loff_t blocksize = inode->i_sb->s_blocksize ;
992
993 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
994 return sd_size ;
995
996 /* End of file is also in full block with indirect reference, so round
997 ** up to the next block.
998 **
999 ** there is just no way to know if the tail is actually packed
1000 ** on the file, so we have to assume it isn't. When we pack the
1001 ** tail, we add 4 bytes to pretend there really is an unformatted
1002 ** node pointer
1003 */
1004 bytes = ((inode->i_size + (blocksize-1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + sd_size;
1005 return bytes ;
1006}
1007
1008static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1009 int sd_size)
1010{
1011 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1012 return inode->i_size + (loff_t)(real_space_diff(inode, sd_size)) ;
1013 }
1014 return ((loff_t)real_space_diff(inode, sd_size)) + (((loff_t)blocks) << 9);
1015}
1016
1017/* Compute number of blocks used by file in ReiserFS counting */
1018static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1019{
1020 loff_t bytes = inode_get_bytes(inode) ;
1021 loff_t real_space = real_space_diff(inode, sd_size) ;
1022
1023 /* keeps fsck and non-quota versions of reiserfs happy */
1024 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1025 bytes += (loff_t)511 ;
1026 }
1027
1028 /* files from before the quota patch might i_blocks such that
1029 ** bytes < real_space. Deal with that here to prevent it from
1030 ** going negative.
1031 */
1032 if (bytes < real_space)
1033 return 0 ;
1034 return (bytes - real_space) >> 9;
1035}
1036
1037//
1038// BAD: new directories have stat data of new type and all other items
1039// of old type. Version stored in the inode says about body items, so
1040// in update_stat_data we can not rely on inode, but have to check
1041// item version directly
1042//
1043
1044// called by read_locked_inode
1045static void init_inode (struct inode * inode, struct path * path)
1046{
1047 struct buffer_head * bh;
1048 struct item_head * ih;
1049 __u32 rdev;
1050 //int version = ITEM_VERSION_1;
1051
1052 bh = PATH_PLAST_BUFFER (path);
1053 ih = PATH_PITEM_HEAD (path);
1054
1055
1056 copy_key (INODE_PKEY (inode), &(ih->ih_key));
1057 inode->i_blksize = reiserfs_default_io_size;
1058
1059 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list ));
1060 REISERFS_I(inode)->i_flags = 0;
1061 REISERFS_I(inode)->i_prealloc_block = 0;
1062 REISERFS_I(inode)->i_prealloc_count = 0;
1063 REISERFS_I(inode)->i_trans_id = 0;
1064 REISERFS_I(inode)->i_jl = NULL;
1065 REISERFS_I(inode)->i_acl_access = NULL;
1066 REISERFS_I(inode)->i_acl_default = NULL;
1067 init_rwsem (&REISERFS_I(inode)->xattr_sem);
1068
1069 if (stat_data_v1 (ih)) {
1070 struct stat_data_v1 * sd = (struct stat_data_v1 *)B_I_PITEM (bh, ih);
1071 unsigned long blocks;
1072
1073 set_inode_item_key_version (inode, KEY_FORMAT_3_5);
1074 set_inode_sd_version (inode, STAT_DATA_V1);
1075 inode->i_mode = sd_v1_mode(sd);
1076 inode->i_nlink = sd_v1_nlink(sd);
1077 inode->i_uid = sd_v1_uid(sd);
1078 inode->i_gid = sd_v1_gid(sd);
1079 inode->i_size = sd_v1_size(sd);
1080 inode->i_atime.tv_sec = sd_v1_atime(sd);
1081 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1082 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1083 inode->i_atime.tv_nsec = 0;
1084 inode->i_ctime.tv_nsec = 0;
1085 inode->i_mtime.tv_nsec = 0;
1086
1087 inode->i_blocks = sd_v1_blocks(sd);
1088 inode->i_generation = le32_to_cpu (INODE_PKEY (inode)->k_dir_id);
1089 blocks = (inode->i_size + 511) >> 9;
1090 blocks = _ROUND_UP (blocks, inode->i_sb->s_blocksize >> 9);
1091 if (inode->i_blocks > blocks) {
1092 // there was a bug in <=3.5.23 when i_blocks could take negative
1093 // values. Starting from 3.5.17 this value could even be stored in
1094 // stat data. For such files we set i_blocks based on file
1095 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1096 // only updated if file's inode will ever change
1097 inode->i_blocks = blocks;
1098 }
1099
1100 rdev = sd_v1_rdev(sd);
1101 REISERFS_I(inode)->i_first_direct_byte = sd_v1_first_direct_byte(sd);
1102 /* an early bug in the quota code can give us an odd number for the
1103 ** block count. This is incorrect, fix it here.
1104 */
1105 if (inode->i_blocks & 1) {
1106 inode->i_blocks++ ;
1107 }
1108 inode_set_bytes(inode, to_real_used_space(inode, inode->i_blocks,
1109 SD_V1_SIZE));
1110 /* nopack is initially zero for v1 objects. For v2 objects,
1111 nopack is initialised from sd_attrs */
1112 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1113 } else {
1114 // new stat data found, but object may have old items
1115 // (directories and symlinks)
1116 struct stat_data * sd = (struct stat_data *)B_I_PITEM (bh, ih);
1117
1118 inode->i_mode = sd_v2_mode(sd);
1119 inode->i_nlink = sd_v2_nlink(sd);
1120 inode->i_uid = sd_v2_uid(sd);
1121 inode->i_size = sd_v2_size(sd);
1122 inode->i_gid = sd_v2_gid(sd);
1123 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1124 inode->i_atime.tv_sec = sd_v2_atime(sd);
1125 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1126 inode->i_ctime.tv_nsec = 0;
1127 inode->i_mtime.tv_nsec = 0;
1128 inode->i_atime.tv_nsec = 0;
1129 inode->i_blocks = sd_v2_blocks(sd);
1130 rdev = sd_v2_rdev(sd);
1131 if( S_ISCHR( inode -> i_mode ) || S_ISBLK( inode -> i_mode ) )
1132 inode->i_generation = le32_to_cpu (INODE_PKEY (inode)->k_dir_id);
1133 else
1134 inode->i_generation = sd_v2_generation(sd);
1135
1136 if (S_ISDIR (inode->i_mode) || S_ISLNK (inode->i_mode))
1137 set_inode_item_key_version (inode, KEY_FORMAT_3_5);
1138 else
1139 set_inode_item_key_version (inode, KEY_FORMAT_3_6);
1140 REISERFS_I(inode)->i_first_direct_byte = 0;
1141 set_inode_sd_version (inode, STAT_DATA_V2);
1142 inode_set_bytes(inode, to_real_used_space(inode, inode->i_blocks,
1143 SD_V2_SIZE));
1144 /* read persistent inode attributes from sd and initalise
1145 generic inode flags from them */
1146 REISERFS_I(inode)->i_attrs = sd_v2_attrs( sd );
1147 sd_attrs_to_i_attrs( sd_v2_attrs( sd ), inode );
1148 }
1149
1150 pathrelse (path);
1151 if (S_ISREG (inode->i_mode)) {
1152 inode->i_op = &reiserfs_file_inode_operations;
1153 inode->i_fop = &reiserfs_file_operations;
1154 inode->i_mapping->a_ops = &reiserfs_address_space_operations ;
1155 } else if (S_ISDIR (inode->i_mode)) {
1156 inode->i_op = &reiserfs_dir_inode_operations;
1157 inode->i_fop = &reiserfs_dir_operations;
1158 } else if (S_ISLNK (inode->i_mode)) {
1159 inode->i_op = &reiserfs_symlink_inode_operations;
1160 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1161 } else {
1162 inode->i_blocks = 0;
1163 inode->i_op = &reiserfs_special_inode_operations;
1164 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1165 }
1166}
1167
1168
1169// update new stat data with inode fields
1170static void inode2sd (void * sd, struct inode * inode, loff_t size)
1171{
1172 struct stat_data * sd_v2 = (struct stat_data *)sd;
1173 __u16 flags;
1174
1175 set_sd_v2_mode(sd_v2, inode->i_mode );
1176 set_sd_v2_nlink(sd_v2, inode->i_nlink );
1177 set_sd_v2_uid(sd_v2, inode->i_uid );
1178 set_sd_v2_size(sd_v2, size );
1179 set_sd_v2_gid(sd_v2, inode->i_gid );
1180 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec );
1181 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec );
1182 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec );
1183 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1184 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1185 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1186 else
1187 set_sd_v2_generation(sd_v2, inode->i_generation);
1188 flags = REISERFS_I(inode)->i_attrs;
1189 i_attrs_to_sd_attrs( inode, &flags );
1190 set_sd_v2_attrs( sd_v2, flags );
1191}
1192
1193
1194// used to copy inode's fields to old stat data
1195static void inode2sd_v1 (void * sd, struct inode * inode, loff_t size)
1196{
1197 struct stat_data_v1 * sd_v1 = (struct stat_data_v1 *)sd;
1198
1199 set_sd_v1_mode(sd_v1, inode->i_mode );
1200 set_sd_v1_uid(sd_v1, inode->i_uid );
1201 set_sd_v1_gid(sd_v1, inode->i_gid );
1202 set_sd_v1_nlink(sd_v1, inode->i_nlink );
1203 set_sd_v1_size(sd_v1, size );
1204 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec );
1205 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec );
1206 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec );
1207
1208 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1209 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1210 else
1211 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1212
1213 // Sigh. i_first_direct_byte is back
1214 set_sd_v1_first_direct_byte(sd_v1, REISERFS_I(inode)->i_first_direct_byte);
1215}
1216
1217
1218/* NOTE, you must prepare the buffer head before sending it here,
1219** and then log it after the call
1220*/
1221static void update_stat_data (struct path * path, struct inode * inode,
1222 loff_t size)
1223{
1224 struct buffer_head * bh;
1225 struct item_head * ih;
1226
1227 bh = PATH_PLAST_BUFFER (path);
1228 ih = PATH_PITEM_HEAD (path);
1229
1230 if (!is_statdata_le_ih (ih))
1231 reiserfs_panic (inode->i_sb, "vs-13065: update_stat_data: key %k, found item %h",
1232 INODE_PKEY (inode), ih);
1233
1234 if (stat_data_v1 (ih)) {
1235 // path points to old stat data
1236 inode2sd_v1 (B_I_PITEM (bh, ih), inode, size);
1237 } else {
1238 inode2sd (B_I_PITEM (bh, ih), inode, size);
1239 }
1240
1241 return;
1242}
1243
1244
1245void reiserfs_update_sd_size (struct reiserfs_transaction_handle *th,
1246 struct inode * inode, loff_t size)
1247{
1248 struct cpu_key key;
1249 INITIALIZE_PATH(path);
1250 struct buffer_head *bh ;
1251 int fs_gen ;
1252 struct item_head *ih, tmp_ih ;
1253 int retval;
1254
1255 BUG_ON (!th->t_trans_id);
1256
1257 make_cpu_key (&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);//key type is unimportant
1258
1259 for(;;) {
1260 int pos;
1261 /* look for the object's stat data */
1262 retval = search_item (inode->i_sb, &key, &path);
1263 if (retval == IO_ERROR) {
1264 reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: "
1265 "i/o failure occurred trying to update %K stat data",
1266 &key);
1267 return;
1268 }
1269 if (retval == ITEM_NOT_FOUND) {
1270 pos = PATH_LAST_POSITION (&path);
1271 pathrelse(&path) ;
1272 if (inode->i_nlink == 0) {
1273 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found");*/
1274 return;
1275 }
1276 reiserfs_warning (inode->i_sb, "vs-13060: reiserfs_update_sd: "
1277 "stat data of object %k (nlink == %d) not found (pos %d)",
1278 INODE_PKEY (inode), inode->i_nlink, pos);
1279 reiserfs_check_path(&path) ;
1280 return;
1281 }
1282
1283 /* sigh, prepare_for_journal might schedule. When it schedules the
1284 ** FS might change. We have to detect that, and loop back to the
1285 ** search if the stat data item has moved
1286 */
1287 bh = get_last_bh(&path) ;
1288 ih = get_ih(&path) ;
1289 copy_item_head (&tmp_ih, ih);
1290 fs_gen = get_generation (inode->i_sb);
1291 reiserfs_prepare_for_journal(inode->i_sb, bh, 1) ;
1292 if (fs_changed (fs_gen, inode->i_sb) && item_moved(&tmp_ih, &path)) {
1293 reiserfs_restore_prepared_buffer(inode->i_sb, bh) ;
1294 continue ; /* Stat_data item has been moved after scheduling. */
1295 }
1296 break;
1297 }
1298 update_stat_data (&path, inode, size);
1299 journal_mark_dirty(th, th->t_super, bh) ;
1300 pathrelse (&path);
1301 return;
1302}
1303
1304/* reiserfs_read_locked_inode is called to read the inode off disk, and it
1305** does a make_bad_inode when things go wrong. But, we need to make sure
1306** and clear the key in the private portion of the inode, otherwise a
1307** corresponding iput might try to delete whatever object the inode last
1308** represented.
1309*/
1310static void reiserfs_make_bad_inode(struct inode *inode) {
1311 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1312 make_bad_inode(inode);
1313}
1314
1315//
1316// initially this function was derived from minix or ext2's analog and
1317// evolved as the prototype did
1318//
1319
1320int reiserfs_init_locked_inode (struct inode * inode, void *p)
1321{
1322 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p ;
1323 inode->i_ino = args->objectid;
1324 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1325 return 0;
1326}
1327
1328/* looks for stat data in the tree, and fills up the fields of in-core
1329 inode stat data fields */
1330void reiserfs_read_locked_inode (struct inode * inode, struct reiserfs_iget_args *args)
1331{
1332 INITIALIZE_PATH (path_to_sd);
1333 struct cpu_key key;
1334 unsigned long dirino;
1335 int retval;
1336
1337 dirino = args->dirid ;
1338
1339 /* set version 1, version 2 could be used too, because stat data
1340 key is the same in both versions */
1341 key.version = KEY_FORMAT_3_5;
1342 key.on_disk_key.k_dir_id = dirino;
1343 key.on_disk_key.k_objectid = inode->i_ino;
1344 key.on_disk_key.u.k_offset_v1.k_offset = SD_OFFSET;
1345 key.on_disk_key.u.k_offset_v1.k_uniqueness = SD_UNIQUENESS;
1346
1347 /* look for the object's stat data */
1348 retval = search_item (inode->i_sb, &key, &path_to_sd);
1349 if (retval == IO_ERROR) {
1350 reiserfs_warning (inode->i_sb, "vs-13070: reiserfs_read_locked_inode: "
1351 "i/o failure occurred trying to find stat data of %K",
1352 &key);
1353 reiserfs_make_bad_inode(inode) ;
1354 return;
1355 }
1356 if (retval != ITEM_FOUND) {
1357 /* a stale NFS handle can trigger this without it being an error */
1358 pathrelse (&path_to_sd);
1359 reiserfs_make_bad_inode(inode) ;
1360 inode->i_nlink = 0;
1361 return;
1362 }
1363
1364 init_inode (inode, &path_to_sd);
1365
1366 /* It is possible that knfsd is trying to access inode of a file
1367 that is being removed from the disk by some other thread. As we
1368 update sd on unlink all that is required is to check for nlink
1369 here. This bug was first found by Sizif when debugging
1370 SquidNG/Butterfly, forgotten, and found again after Philippe
1371 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1372
1373 More logical fix would require changes in fs/inode.c:iput() to
1374 remove inode from hash-table _after_ fs cleaned disk stuff up and
1375 in iget() to return NULL if I_FREEING inode is found in
1376 hash-table. */
1377 /* Currently there is one place where it's ok to meet inode with
1378 nlink==0: processing of open-unlinked and half-truncated files
1379 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1380 if( ( inode -> i_nlink == 0 ) &&
1381 ! REISERFS_SB(inode -> i_sb) -> s_is_unlinked_ok ) {
1382 reiserfs_warning (inode->i_sb,
1383 "vs-13075: reiserfs_read_locked_inode: "
1384 "dead inode read from disk %K. "
1385 "This is likely to be race with knfsd. Ignore",
1386 &key );
1387 reiserfs_make_bad_inode( inode );
1388 }
1389
1390 reiserfs_check_path(&path_to_sd) ; /* init inode should be relsing */
1391
1392}
1393
1394/**
1395 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1396 *
1397 * @inode: inode from hash table to check
1398 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1399 *
1400 * This function is called by iget5_locked() to distinguish reiserfs inodes
1401 * having the same inode numbers. Such inodes can only exist due to some
1402 * error condition. One of them should be bad. Inodes with identical
1403 * inode numbers (objectids) are distinguished by parent directory ids.
1404 *
1405 */
1406int reiserfs_find_actor( struct inode *inode, void *opaque )
1407{
1408 struct reiserfs_iget_args *args;
1409
1410 args = opaque;
1411 /* args is already in CPU order */
1412 return (inode->i_ino == args->objectid) &&
1413 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1414}
1415
1416struct inode * reiserfs_iget (struct super_block * s, const struct cpu_key * key)
1417{
1418 struct inode * inode;
1419 struct reiserfs_iget_args args ;
1420
1421 args.objectid = key->on_disk_key.k_objectid ;
1422 args.dirid = key->on_disk_key.k_dir_id ;
1423 inode = iget5_locked (s, key->on_disk_key.k_objectid,
1424 reiserfs_find_actor, reiserfs_init_locked_inode, (void *)(&args));
1425 if (!inode)
1426 return ERR_PTR(-ENOMEM) ;
1427
1428 if (inode->i_state & I_NEW) {
1429 reiserfs_read_locked_inode(inode, &args);
1430 unlock_new_inode(inode);
1431 }
1432
1433 if (comp_short_keys (INODE_PKEY (inode), key) || is_bad_inode (inode)) {
1434 /* either due to i/o error or a stale NFS handle */
1435 iput (inode);
1436 inode = NULL;
1437 }
1438 return inode;
1439}
1440
1441struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1442{
1443 __u32 *data = vobjp;
1444 struct cpu_key key ;
1445 struct dentry *result;
1446 struct inode *inode;
1447
1448 key.on_disk_key.k_objectid = data[0] ;
1449 key.on_disk_key.k_dir_id = data[1] ;
1450 reiserfs_write_lock(sb);
1451 inode = reiserfs_iget(sb, &key) ;
1452 if (inode && !IS_ERR(inode) && data[2] != 0 &&
1453 data[2] != inode->i_generation) {
1454 iput(inode) ;
1455 inode = NULL ;
1456 }
1457 reiserfs_write_unlock(sb);
1458 if (!inode)
1459 inode = ERR_PTR(-ESTALE);
1460 if (IS_ERR(inode))
1461 return ERR_PTR(PTR_ERR(inode));
1462 result = d_alloc_anon(inode);
1463 if (!result) {
1464 iput(inode);
1465 return ERR_PTR(-ENOMEM);
1466 }
1467 return result;
1468}
1469
1470struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 *data,
1471 int len, int fhtype,
1472 int (*acceptable)(void *contect, struct dentry *de),
1473 void *context) {
1474 __u32 obj[3], parent[3];
1475
1476 /* fhtype happens to reflect the number of u32s encoded.
1477 * due to a bug in earlier code, fhtype might indicate there
1478 * are more u32s then actually fitted.
1479 * so if fhtype seems to be more than len, reduce fhtype.
1480 * Valid types are:
1481 * 2 - objectid + dir_id - legacy support
1482 * 3 - objectid + dir_id + generation
1483 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1484 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1485 * 6 - as above plus generation of directory
1486 * 6 does not fit in NFSv2 handles
1487 */
1488 if (fhtype > len) {
1489 if (fhtype != 6 || len != 5)
1490 reiserfs_warning (sb, "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1491 fhtype, len);
1492 fhtype = 5;
1493 }
1494
1495 obj[0] = data[0];
1496 obj[1] = data[1];
1497 if (fhtype == 3 || fhtype >= 5)
1498 obj[2] = data[2];
1499 else obj[2] = 0; /* generation number */
1500
1501 if (fhtype >= 4) {
1502 parent[0] = data[fhtype>=5?3:2] ;
1503 parent[1] = data[fhtype>=5?4:3] ;
1504 if (fhtype == 6)
1505 parent[2] = data[5];
1506 else parent[2] = 0;
1507 }
1508 return sb->s_export_op->find_exported_dentry(sb, obj, fhtype < 4 ? NULL : parent,
1509 acceptable, context);
1510}
1511
1512int reiserfs_encode_fh(struct dentry *dentry, __u32 *data, int *lenp, int need_parent) {
1513 struct inode *inode = dentry->d_inode ;
1514 int maxlen = *lenp;
1515
1516 if (maxlen < 3)
1517 return 255 ;
1518
1519 data[0] = inode->i_ino ;
1520 data[1] = le32_to_cpu(INODE_PKEY (inode)->k_dir_id) ;
1521 data[2] = inode->i_generation ;
1522 *lenp = 3 ;
1523 /* no room for directory info? return what we've stored so far */
1524 if (maxlen < 5 || ! need_parent)
1525 return 3 ;
1526
1527 spin_lock(&dentry->d_lock);
1528 inode = dentry->d_parent->d_inode ;
1529 data[3] = inode->i_ino ;
1530 data[4] = le32_to_cpu(INODE_PKEY (inode)->k_dir_id) ;
1531 *lenp = 5 ;
1532 if (maxlen >= 6) {
1533 data[5] = inode->i_generation ;
1534 *lenp = 6 ;
1535 }
1536 spin_unlock(&dentry->d_lock);
1537 return *lenp ;
1538}
1539
1540
1541/* looks for stat data, then copies fields to it, marks the buffer
1542 containing stat data as dirty */
1543/* reiserfs inodes are never really dirty, since the dirty inode call
1544** always logs them. This call allows the VFS inode marking routines
1545** to properly mark inodes for datasync and such, but only actually
1546** does something when called for a synchronous update.
1547*/
1548int reiserfs_write_inode (struct inode * inode, int do_sync) {
1549 struct reiserfs_transaction_handle th ;
1550 int jbegin_count = 1 ;
1551
1552 if (inode->i_sb->s_flags & MS_RDONLY)
1553 return -EROFS;
1554 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1555 ** these cases are just when the system needs ram, not when the
1556 ** inode needs to reach disk for safety, and they can safely be
1557 ** ignored because the altered inode has already been logged.
1558 */
1559 if (do_sync && !(current->flags & PF_MEMALLOC)) {
1560 reiserfs_write_lock(inode->i_sb);
1561 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1562 reiserfs_update_sd (&th, inode);
1563 journal_end_sync(&th, inode->i_sb, jbegin_count) ;
1564 }
1565 reiserfs_write_unlock(inode->i_sb);
1566 }
1567 return 0;
1568}
1569
1570/* stat data of new object is inserted already, this inserts the item
1571 containing "." and ".." entries */
1572static int reiserfs_new_directory (struct reiserfs_transaction_handle *th,
1573 struct inode *inode,
1574 struct item_head * ih, struct path * path,
1575 struct inode * dir)
1576{
1577 struct super_block * sb = th->t_super;
1578 char empty_dir [EMPTY_DIR_SIZE];
1579 char * body = empty_dir;
1580 struct cpu_key key;
1581 int retval;
1582
1583 BUG_ON (!th->t_trans_id);
1584
1585 _make_cpu_key (&key, KEY_FORMAT_3_5, le32_to_cpu (ih->ih_key.k_dir_id),
1586 le32_to_cpu (ih->ih_key.k_objectid), DOT_OFFSET, TYPE_DIRENTRY, 3/*key length*/);
1587
1588 /* compose item head for new item. Directories consist of items of
1589 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1590 is done by reiserfs_new_inode */
1591 if (old_format_only (sb)) {
1592 make_le_item_head (ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1593
1594 make_empty_dir_item_v1 (body, ih->ih_key.k_dir_id, ih->ih_key.k_objectid,
1595 INODE_PKEY (dir)->k_dir_id,
1596 INODE_PKEY (dir)->k_objectid );
1597 } else {
1598 make_le_item_head (ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1599
1600 make_empty_dir_item (body, ih->ih_key.k_dir_id, ih->ih_key.k_objectid,
1601 INODE_PKEY (dir)->k_dir_id,
1602 INODE_PKEY (dir)->k_objectid );
1603 }
1604
1605 /* look for place in the tree for new item */
1606 retval = search_item (sb, &key, path);
1607 if (retval == IO_ERROR) {
1608 reiserfs_warning (sb, "vs-13080: reiserfs_new_directory: "
1609 "i/o failure occurred creating new directory");
1610 return -EIO;
1611 }
1612 if (retval == ITEM_FOUND) {
1613 pathrelse (path);
1614 reiserfs_warning (sb, "vs-13070: reiserfs_new_directory: "
1615 "object with this key exists (%k)", &(ih->ih_key));
1616 return -EEXIST;
1617 }
1618
1619 /* insert item, that is empty directory item */
1620 return reiserfs_insert_item (th, path, &key, ih, inode, body);
1621}
1622
1623
1624/* stat data of object has been inserted, this inserts the item
1625 containing the body of symlink */
1626static int reiserfs_new_symlink (struct reiserfs_transaction_handle *th,
1627 struct inode *inode, /* Inode of symlink */
1628 struct item_head * ih,
1629 struct path * path, const char * symname, int item_len)
1630{
1631 struct super_block * sb = th->t_super;
1632 struct cpu_key key;
1633 int retval;
1634
1635 BUG_ON (!th->t_trans_id);
1636
1637 _make_cpu_key (&key, KEY_FORMAT_3_5,
1638 le32_to_cpu (ih->ih_key.k_dir_id),
1639 le32_to_cpu (ih->ih_key.k_objectid),
1640 1, TYPE_DIRECT, 3/*key length*/);
1641
1642 make_le_item_head (ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 0/*free_space*/);
1643
1644 /* look for place in the tree for new item */
1645 retval = search_item (sb, &key, path);
1646 if (retval == IO_ERROR) {
1647 reiserfs_warning (sb, "vs-13080: reiserfs_new_symlinik: "
1648 "i/o failure occurred creating new symlink");
1649 return -EIO;
1650 }
1651 if (retval == ITEM_FOUND) {
1652 pathrelse (path);
1653 reiserfs_warning (sb, "vs-13080: reiserfs_new_symlink: "
1654 "object with this key exists (%k)", &(ih->ih_key));
1655 return -EEXIST;
1656 }
1657
1658 /* insert item, that is body of symlink */
1659 return reiserfs_insert_item (th, path, &key, ih, inode, symname);
1660}
1661
1662
1663/* inserts the stat data into the tree, and then calls
1664 reiserfs_new_directory (to insert ".", ".." item if new object is
1665 directory) or reiserfs_new_symlink (to insert symlink body if new
1666 object is symlink) or nothing (if new object is regular file)
1667
1668 NOTE! uid and gid must already be set in the inode. If we return
1669 non-zero due to an error, we have to drop the quota previously allocated
1670 for the fresh inode. This can only be done outside a transaction, so
1671 if we return non-zero, we also end the transaction. */
1672int reiserfs_new_inode (struct reiserfs_transaction_handle *th,
1673 struct inode * dir, int mode,
1674 const char * symname,
1675 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1676 strlen (symname) for symlinks)*/
1677 loff_t i_size, struct dentry *dentry,
1678 struct inode *inode)
1679{
1680 struct super_block * sb;
1681 INITIALIZE_PATH (path_to_key);
1682 struct cpu_key key;
1683 struct item_head ih;
1684 struct stat_data sd;
1685 int retval;
1686 int err;
1687
1688 BUG_ON (!th->t_trans_id);
1689
1690 if (DQUOT_ALLOC_INODE(inode)) {
1691 err = -EDQUOT;
1692 goto out_end_trans;
1693 }
1694 if (!dir || !dir->i_nlink) {
1695 err = -EPERM;
1696 goto out_bad_inode;
1697 }
1698
1699 sb = dir->i_sb;
1700
1701 /* item head of new item */
1702 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1703 ih.ih_key.k_objectid = cpu_to_le32 (reiserfs_get_unused_objectid (th));
1704 if (!ih.ih_key.k_objectid) {
1705 err = -ENOMEM;
1706 goto out_bad_inode ;
1707 }
1708 if (old_format_only (sb))
1709 /* not a perfect generation count, as object ids can be reused, but
1710 ** this is as good as reiserfs can do right now.
1711 ** note that the private part of inode isn't filled in yet, we have
1712 ** to use the directory.
1713 */
1714 inode->i_generation = le32_to_cpu (INODE_PKEY (dir)->k_objectid);
1715 else
1716#if defined( USE_INODE_GENERATION_COUNTER )
1717 inode->i_generation = le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1718#else
1719 inode->i_generation = ++event;
1720#endif
1721
1722 /* fill stat data */
1723 inode->i_nlink = (S_ISDIR (mode) ? 2 : 1);
1724
1725 /* uid and gid must already be set by the caller for quota init */
1726
1727 /* symlink cannot be immutable or append only, right? */
1728 if( S_ISLNK( inode -> i_mode ) )
1729 inode -> i_flags &= ~ ( S_IMMUTABLE | S_APPEND );
1730
1731 inode->i_mtime = inode->i_atime = inode->i_ctime =
1732 CURRENT_TIME_SEC;
1733 inode->i_size = i_size;
1734 inode->i_blocks = 0;
1735 inode->i_bytes = 0;
1736 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1737 U32_MAX/*NO_BYTES_IN_DIRECT_ITEM*/;
1738
1739 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list ));
1740 REISERFS_I(inode)->i_flags = 0;
1741 REISERFS_I(inode)->i_prealloc_block = 0;
1742 REISERFS_I(inode)->i_prealloc_count = 0;
1743 REISERFS_I(inode)->i_trans_id = 0;
1744 REISERFS_I(inode)->i_jl = NULL;
1745 REISERFS_I(inode)->i_attrs =
1746 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1747 sd_attrs_to_i_attrs( REISERFS_I(inode) -> i_attrs, inode );
1748 REISERFS_I(inode)->i_acl_access = NULL;
1749 REISERFS_I(inode)->i_acl_default = NULL;
1750 init_rwsem (&REISERFS_I(inode)->xattr_sem);
1751
1752 if (old_format_only (sb))
1753 make_le_item_head (&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1754 else
1755 make_le_item_head (&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1756
1757 /* key to search for correct place for new stat data */
1758 _make_cpu_key (&key, KEY_FORMAT_3_6, le32_to_cpu (ih.ih_key.k_dir_id),
1759 le32_to_cpu (ih.ih_key.k_objectid), SD_OFFSET, TYPE_STAT_DATA, 3/*key length*/);
1760
1761 /* find proper place for inserting of stat data */
1762 retval = search_item (sb, &key, &path_to_key);
1763 if (retval == IO_ERROR) {
1764 err = -EIO;
1765 goto out_bad_inode;
1766 }
1767 if (retval == ITEM_FOUND) {
1768 pathrelse (&path_to_key);
1769 err = -EEXIST;
1770 goto out_bad_inode;
1771 }
1772 if (old_format_only (sb)) {
1773 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1774 pathrelse (&path_to_key);
1775 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1776 err = -EINVAL;
1777 goto out_bad_inode;
1778 }
1779 inode2sd_v1 (&sd, inode, inode->i_size);
1780 } else {
1781 inode2sd (&sd, inode, inode->i_size);
1782 }
1783 // these do not go to on-disk stat data
1784 inode->i_ino = le32_to_cpu (ih.ih_key.k_objectid);
1785 inode->i_blksize = reiserfs_default_io_size;
1786
1787 // store in in-core inode the key of stat data and version all
1788 // object items will have (directory items will have old offset
1789 // format, other new objects will consist of new items)
1790 memcpy (INODE_PKEY (inode), &(ih.ih_key), KEY_SIZE);
1791 if (old_format_only (sb) || S_ISDIR(mode) || S_ISLNK(mode))
1792 set_inode_item_key_version (inode, KEY_FORMAT_3_5);
1793 else
1794 set_inode_item_key_version (inode, KEY_FORMAT_3_6);
1795 if (old_format_only (sb))
1796 set_inode_sd_version (inode, STAT_DATA_V1);
1797 else
1798 set_inode_sd_version (inode, STAT_DATA_V2);
1799
1800 /* insert the stat data into the tree */
1801#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1802 if (REISERFS_I(dir)->new_packing_locality)
1803 th->displace_new_blocks = 1;
1804#endif
1805 retval = reiserfs_insert_item (th, &path_to_key, &key, &ih, inode, (char *)(&sd));
1806 if (retval) {
1807 err = retval;
1808 reiserfs_check_path(&path_to_key) ;
1809 goto out_bad_inode;
1810 }
1811
1812#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1813 if (!th->displace_new_blocks)
1814 REISERFS_I(dir)->new_packing_locality = 0;
1815#endif
1816 if (S_ISDIR(mode)) {
1817 /* insert item with "." and ".." */
1818 retval = reiserfs_new_directory (th, inode, &ih, &path_to_key, dir);
1819 }
1820
1821 if (S_ISLNK(mode)) {
1822 /* insert body of symlink */
1823 if (!old_format_only (sb))
1824 i_size = ROUND_UP(i_size);
1825 retval = reiserfs_new_symlink (th, inode, &ih, &path_to_key, symname, i_size);
1826 }
1827 if (retval) {
1828 err = retval;
1829 reiserfs_check_path(&path_to_key) ;
1830 journal_end(th, th->t_super, th->t_blocks_allocated);
1831 goto out_inserted_sd;
1832 }
1833
1834 /* XXX CHECK THIS */
1835 if (reiserfs_posixacl (inode->i_sb)) {
1836 retval = reiserfs_inherit_default_acl (dir, dentry, inode);
1837 if (retval) {
1838 err = retval;
1839 reiserfs_check_path(&path_to_key) ;
1840 journal_end(th, th->t_super, th->t_blocks_allocated);
1841 goto out_inserted_sd;
1842 }
1843 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1844 reiserfs_warning (inode->i_sb, "ACLs aren't enabled in the fs, "
1845 "but vfs thinks they are!");
1846 } else if (is_reiserfs_priv_object (dir)) {
1847 reiserfs_mark_inode_private (inode);
1848 }
1849
1850 insert_inode_hash (inode);
1851 reiserfs_update_sd(th, inode);
1852 reiserfs_check_path(&path_to_key) ;
1853
1854 return 0;
1855
1856/* it looks like you can easily compress these two goto targets into
1857 * one. Keeping it like this doesn't actually hurt anything, and they
1858 * are place holders for what the quota code actually needs.
1859 */
1860out_bad_inode:
1861 /* Invalidate the object, nothing was inserted yet */
1862 INODE_PKEY(inode)->k_objectid = 0;
1863
1864 /* Quota change must be inside a transaction for journaling */
1865 DQUOT_FREE_INODE(inode);
1866
1867out_end_trans:
1868 journal_end(th, th->t_super, th->t_blocks_allocated) ;
1869 /* Drop can be outside and it needs more credits so it's better to have it outside */
1870 DQUOT_DROP(inode);
1871 inode->i_flags |= S_NOQUOTA;
1872 make_bad_inode(inode);
1873
1874out_inserted_sd:
1875 inode->i_nlink = 0;
1876 th->t_trans_id = 0; /* so the caller can't use this handle later */
1877 iput(inode);
1878 return err;
1879}
1880
1881/*
1882** finds the tail page in the page cache,
1883** reads the last block in.
1884**
1885** On success, page_result is set to a locked, pinned page, and bh_result
1886** is set to an up to date buffer for the last block in the file. returns 0.
1887**
1888** tail conversion is not done, so bh_result might not be valid for writing
1889** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1890** trying to write the block.
1891**
1892** on failure, nonzero is returned, page_result and bh_result are untouched.
1893*/
1894static int grab_tail_page(struct inode *p_s_inode,
1895 struct page **page_result,
1896 struct buffer_head **bh_result) {
1897
1898 /* we want the page with the last byte in the file,
1899 ** not the page that will hold the next byte for appending
1900 */
1901 unsigned long index = (p_s_inode->i_size-1) >> PAGE_CACHE_SHIFT ;
1902 unsigned long pos = 0 ;
1903 unsigned long start = 0 ;
1904 unsigned long blocksize = p_s_inode->i_sb->s_blocksize ;
1905 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1) ;
1906 struct buffer_head *bh ;
1907 struct buffer_head *head ;
1908 struct page * page ;
1909 int error ;
1910
1911 /* we know that we are only called with inode->i_size > 0.
1912 ** we also know that a file tail can never be as big as a block
1913 ** If i_size % blocksize == 0, our file is currently block aligned
1914 ** and it won't need converting or zeroing after a truncate.
1915 */
1916 if ((offset & (blocksize - 1)) == 0) {
1917 return -ENOENT ;
1918 }
1919 page = grab_cache_page(p_s_inode->i_mapping, index) ;
1920 error = -ENOMEM ;
1921 if (!page) {
1922 goto out ;
1923 }
1924 /* start within the page of the last block in the file */
1925 start = (offset / blocksize) * blocksize ;
1926
1927 error = block_prepare_write(page, start, offset,
1928 reiserfs_get_block_create_0) ;
1929 if (error)
1930 goto unlock ;
1931
1932 head = page_buffers(page) ;
1933 bh = head;
1934 do {
1935 if (pos >= start) {
1936 break ;
1937 }
1938 bh = bh->b_this_page ;
1939 pos += blocksize ;
1940 } while(bh != head) ;
1941
1942 if (!buffer_uptodate(bh)) {
1943 /* note, this should never happen, prepare_write should
1944 ** be taking care of this for us. If the buffer isn't up to date,
1945 ** I've screwed up the code to find the buffer, or the code to
1946 ** call prepare_write
1947 */
1948 reiserfs_warning (p_s_inode->i_sb,
1949 "clm-6000: error reading block %lu on dev %s",
1950 bh->b_blocknr,
1951 reiserfs_bdevname (p_s_inode->i_sb)) ;
1952 error = -EIO ;
1953 goto unlock ;
1954 }
1955 *bh_result = bh ;
1956 *page_result = page ;
1957
1958out:
1959 return error ;
1960
1961unlock:
1962 unlock_page(page) ;
1963 page_cache_release(page) ;
1964 return error ;
1965}
1966
1967/*
1968** vfs version of truncate file. Must NOT be called with
1969** a transaction already started.
1970**
1971** some code taken from block_truncate_page
1972*/
1973int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps) {
1974 struct reiserfs_transaction_handle th ;
1975 /* we want the offset for the first byte after the end of the file */
1976 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1) ;
1977 unsigned blocksize = p_s_inode->i_sb->s_blocksize ;
1978 unsigned length ;
1979 struct page *page = NULL ;
1980 int error ;
1981 struct buffer_head *bh = NULL ;
1982
1983 reiserfs_write_lock(p_s_inode->i_sb);
1984
1985 if (p_s_inode->i_size > 0) {
1986 if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
1987 // -ENOENT means we truncated past the end of the file,
1988 // and get_block_create_0 could not find a block to read in,
1989 // which is ok.
1990 if (error != -ENOENT)
1991 reiserfs_warning (p_s_inode->i_sb,
1992 "clm-6001: grab_tail_page failed %d",
1993 error);
1994 page = NULL ;
1995 bh = NULL ;
1996 }
1997 }
1998
1999 /* so, if page != NULL, we have a buffer head for the offset at
2000 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2001 ** then we have an unformatted node. Otherwise, we have a direct item,
2002 ** and no zeroing is required on disk. We zero after the truncate,
2003 ** because the truncate might pack the item anyway
2004 ** (it will unmap bh if it packs).
2005 */
2006 /* it is enough to reserve space in transaction for 2 balancings:
2007 one for "save" link adding and another for the first
2008 cut_from_item. 1 is for update_sd */
2009 error = journal_begin (&th, p_s_inode->i_sb,
2010 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2011 if (error)
2012 goto out;
2013 reiserfs_update_inode_transaction(p_s_inode) ;
2014 if (update_timestamps)
2015 /* we are doing real truncate: if the system crashes before the last
2016 transaction of truncating gets committed - on reboot the file
2017 either appears truncated properly or not truncated at all */
2018 add_save_link (&th, p_s_inode, 1);
2019 error = reiserfs_do_truncate (&th, p_s_inode, page, update_timestamps) ;
2020 if (error)
2021 goto out;
2022 error = journal_end (&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2023 if (error)
2024 goto out;
2025
2026 if (update_timestamps) {
2027 error = remove_save_link (p_s_inode, 1/* truncate */);
2028 if (error)
2029 goto out;
2030 }
2031
2032 if (page) {
2033 length = offset & (blocksize - 1) ;
2034 /* if we are not on a block boundary */
2035 if (length) {
2036 char *kaddr;
2037
2038 length = blocksize - length ;
2039 kaddr = kmap_atomic(page, KM_USER0) ;
2040 memset(kaddr + offset, 0, length) ;
2041 flush_dcache_page(page) ;
2042 kunmap_atomic(kaddr, KM_USER0) ;
2043 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2044 mark_buffer_dirty(bh) ;
2045 }
2046 }
2047 unlock_page(page) ;
2048 page_cache_release(page) ;
2049 }
2050
2051 reiserfs_write_unlock(p_s_inode->i_sb);
2052 return 0;
2053out:
2054 if (page) {
2055 unlock_page (page);
2056 page_cache_release (page);
2057 }
2058 reiserfs_write_unlock(p_s_inode->i_sb);
2059 return error;
2060}
2061
2062static int map_block_for_writepage(struct inode *inode,
2063 struct buffer_head *bh_result,
2064 unsigned long block) {
2065 struct reiserfs_transaction_handle th ;
2066 int fs_gen ;
2067 struct item_head tmp_ih ;
2068 struct item_head *ih ;
2069 struct buffer_head *bh ;
2070 __u32 *item ;
2071 struct cpu_key key ;
2072 INITIALIZE_PATH(path) ;
2073 int pos_in_item ;
2074 int jbegin_count = JOURNAL_PER_BALANCE_CNT ;
2075 loff_t byte_offset = (block << inode->i_sb->s_blocksize_bits) + 1 ;
2076 int retval ;
2077 int use_get_block = 0 ;
2078 int bytes_copied = 0 ;
2079 int copy_size ;
2080 int trans_running = 0;
2081
2082 /* catch places below that try to log something without starting a trans */
2083 th.t_trans_id = 0;
2084
2085 if (!buffer_uptodate(bh_result)) {
2086 return -EIO;
2087 }
2088
2089 kmap(bh_result->b_page) ;
2090start_over:
2091 reiserfs_write_lock(inode->i_sb);
2092 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3) ;
2093
2094research:
2095 retval = search_for_position_by_key(inode->i_sb, &key, &path) ;
2096 if (retval != POSITION_FOUND) {
2097 use_get_block = 1;
2098 goto out ;
2099 }
2100
2101 bh = get_last_bh(&path) ;
2102 ih = get_ih(&path) ;
2103 item = get_item(&path) ;
2104 pos_in_item = path.pos_in_item ;
2105
2106 /* we've found an unformatted node */
2107 if (indirect_item_found(retval, ih)) {
2108 if (bytes_copied > 0) {
2109 reiserfs_warning (inode->i_sb, "clm-6002: bytes_copied %d",
2110 bytes_copied) ;
2111 }
2112 if (!get_block_num(item, pos_in_item)) {
2113 /* crap, we are writing to a hole */
2114 use_get_block = 1;
2115 goto out ;
2116 }
2117 set_block_dev_mapped(bh_result, get_block_num(item,pos_in_item),inode);
2118 } else if (is_direct_le_ih(ih)) {
2119 char *p ;
2120 p = page_address(bh_result->b_page) ;
2121 p += (byte_offset -1) & (PAGE_CACHE_SIZE - 1) ;
2122 copy_size = ih_item_len(ih) - pos_in_item;
2123
2124 fs_gen = get_generation(inode->i_sb) ;
2125 copy_item_head(&tmp_ih, ih) ;
2126
2127 if (!trans_running) {
2128 /* vs-3050 is gone, no need to drop the path */
2129 retval = journal_begin(&th, inode->i_sb, jbegin_count) ;
2130 if (retval)
2131 goto out;
2132 reiserfs_update_inode_transaction(inode) ;
2133 trans_running = 1;
2134 if (fs_changed(fs_gen, inode->i_sb) && item_moved(&tmp_ih, &path)) {
2135 reiserfs_restore_prepared_buffer(inode->i_sb, bh) ;
2136 goto research;
2137 }
2138 }
2139
2140 reiserfs_prepare_for_journal(inode->i_sb, bh, 1) ;
2141
2142 if (fs_changed (fs_gen, inode->i_sb) && item_moved (&tmp_ih, &path)) {
2143 reiserfs_restore_prepared_buffer(inode->i_sb, bh) ;
2144 goto research;
2145 }
2146
2147 memcpy( B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, copy_size) ;
2148
2149 journal_mark_dirty(&th, inode->i_sb, bh) ;
2150 bytes_copied += copy_size ;
2151 set_block_dev_mapped(bh_result, 0, inode);
2152
2153 /* are there still bytes left? */
2154 if (bytes_copied < bh_result->b_size &&
2155 (byte_offset + bytes_copied) < inode->i_size) {
2156 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + copy_size) ;
2157 goto research ;
2158 }
2159 } else {
2160 reiserfs_warning (inode->i_sb,
2161 "clm-6003: bad item inode %lu, device %s",
2162 inode->i_ino, reiserfs_bdevname (inode->i_sb)) ;
2163 retval = -EIO ;
2164 goto out ;
2165 }
2166 retval = 0 ;
2167
2168out:
2169 pathrelse(&path) ;
2170 if (trans_running) {
2171 int err = journal_end(&th, inode->i_sb, jbegin_count) ;
2172 if (err)
2173 retval = err;
2174 trans_running = 0;
2175 }
2176 reiserfs_write_unlock(inode->i_sb);
2177
2178 /* this is where we fill in holes in the file. */
2179 if (use_get_block) {
2180 retval = reiserfs_get_block(inode, block, bh_result,
2181 GET_BLOCK_CREATE | GET_BLOCK_NO_ISEM |
2182 GET_BLOCK_NO_DANGLE);
2183 if (!retval) {
2184 if (!buffer_mapped(bh_result) || bh_result->b_blocknr == 0) {
2185 /* get_block failed to find a mapped unformatted node. */
2186 use_get_block = 0 ;
2187 goto start_over ;
2188 }
2189 }
2190 }
2191 kunmap(bh_result->b_page) ;
2192
2193 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2194 /* we've copied data from the page into the direct item, so the
2195 * buffer in the page is now clean, mark it to reflect that.
2196 */
2197 lock_buffer(bh_result);
2198 clear_buffer_dirty(bh_result);
2199 unlock_buffer(bh_result);
2200 }
2201 return retval ;
2202}
2203
2204/*
2205 * mason@suse.com: updated in 2.5.54 to follow the same general io
2206 * start/recovery path as __block_write_full_page, along with special
2207 * code to handle reiserfs tails.
2208 */
2209static int reiserfs_write_full_page(struct page *page, struct writeback_control *wbc) {
2210 struct inode *inode = page->mapping->host ;
2211 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT ;
2212 int error = 0;
2213 unsigned long block ;
2214 struct buffer_head *head, *bh;
2215 int partial = 0 ;
2216 int nr = 0;
2217 int checked = PageChecked(page);
2218 struct reiserfs_transaction_handle th;
2219 struct super_block *s = inode->i_sb;
2220 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2221 th.t_trans_id = 0;
2222
2223 /* The page dirty bit is cleared before writepage is called, which
2224 * means we have to tell create_empty_buffers to make dirty buffers
2225 * The page really should be up to date at this point, so tossing
2226 * in the BH_Uptodate is just a sanity check.
2227 */
2228 if (!page_has_buffers(page)) {
2229 create_empty_buffers(page, s->s_blocksize,
2230 (1 << BH_Dirty) | (1 << BH_Uptodate));
2231 }
2232 head = page_buffers(page) ;
2233
2234 /* last page in the file, zero out any contents past the
2235 ** last byte in the file
2236 */
2237 if (page->index >= end_index) {
2238 char *kaddr;
2239 unsigned last_offset;
2240
2241 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1) ;
2242 /* no file contents in this page */
2243 if (page->index >= end_index + 1 || !last_offset) {
2244 unlock_page(page);
2245 return 0;
2246 }
2247 kaddr = kmap_atomic(page, KM_USER0);
2248 memset(kaddr + last_offset, 0, PAGE_CACHE_SIZE-last_offset) ;
2249 flush_dcache_page(page) ;
2250 kunmap_atomic(kaddr, KM_USER0) ;
2251 }
2252 bh = head ;
2253 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits) ;
2254 /* first map all the buffers, logging any direct items we find */
2255 do {
2256 if ((checked || buffer_dirty(bh)) && (!buffer_mapped(bh) ||
2257 (buffer_mapped(bh) && bh->b_blocknr == 0))) {
2258 /* not mapped yet, or it points to a direct item, search
2259 * the btree for the mapping info, and log any direct
2260 * items found
2261 */
2262 if ((error = map_block_for_writepage(inode, bh, block))) {
2263 goto fail ;
2264 }
2265 }
2266 bh = bh->b_this_page;
2267 block++;
2268 } while(bh != head) ;
2269
2270 /*
2271 * we start the transaction after map_block_for_writepage,
2272 * because it can create holes in the file (an unbounded operation).
2273 * starting it here, we can make a reliable estimate for how many
2274 * blocks we're going to log
2275 */
2276 if (checked) {
2277 ClearPageChecked(page);
2278 reiserfs_write_lock(s);
2279 error = journal_begin(&th, s, bh_per_page + 1);
2280 if (error) {
2281 reiserfs_write_unlock(s);
2282 goto fail;
2283 }
2284 reiserfs_update_inode_transaction(inode);
2285 }
2286 /* now go through and lock any dirty buffers on the page */
2287 do {
2288 get_bh(bh);
2289 if (!buffer_mapped(bh))
2290 continue;
2291 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2292 continue;
2293
2294 if (checked) {
2295 reiserfs_prepare_for_journal(s, bh, 1);
2296 journal_mark_dirty(&th, s, bh);
2297 continue;
2298 }
2299 /* from this point on, we know the buffer is mapped to a
2300 * real block and not a direct item
2301 */
2302 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2303 lock_buffer(bh);
2304 } else {
2305 if (test_set_buffer_locked(bh)) {
2306 redirty_page_for_writepage(wbc, page);
2307 continue;
2308 }
2309 }
2310 if (test_clear_buffer_dirty(bh)) {
2311 mark_buffer_async_write(bh);
2312 } else {
2313 unlock_buffer(bh);
2314 }
2315 } while((bh = bh->b_this_page) != head);
2316
2317 if (checked) {
2318 error = journal_end(&th, s, bh_per_page + 1);
2319 reiserfs_write_unlock(s);
2320 if (error)
2321 goto fail;
2322 }
2323 BUG_ON(PageWriteback(page));
2324 set_page_writeback(page);
2325 unlock_page(page);
2326
2327 /*
2328 * since any buffer might be the only dirty buffer on the page,
2329 * the first submit_bh can bring the page out of writeback.
2330 * be careful with the buffers.
2331 */
2332 do {
2333 struct buffer_head *next = bh->b_this_page;
2334 if (buffer_async_write(bh)) {
2335 submit_bh(WRITE, bh);
2336 nr++;
2337 }
2338 put_bh(bh);
2339 bh = next;
2340 } while(bh != head);
2341
2342 error = 0;
2343done:
2344 if (nr == 0) {
2345 /*
2346 * if this page only had a direct item, it is very possible for
2347 * no io to be required without there being an error. Or,
2348 * someone else could have locked them and sent them down the
2349 * pipe without locking the page
2350 */
2351 bh = head ;
2352 do {
2353 if (!buffer_uptodate(bh)) {
2354 partial = 1;
2355 break;
2356 }
2357 bh = bh->b_this_page;
2358 } while(bh != head);
2359 if (!partial)
2360 SetPageUptodate(page);
2361 end_page_writeback(page);
2362 }
2363 return error;
2364
2365fail:
2366 /* catches various errors, we need to make sure any valid dirty blocks
2367 * get to the media. The page is currently locked and not marked for
2368 * writeback
2369 */
2370 ClearPageUptodate(page);
2371 bh = head;
2372 do {
2373 get_bh(bh);
2374 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2375 lock_buffer(bh);
2376 mark_buffer_async_write(bh);
2377 } else {
2378 /*
2379 * clear any dirty bits that might have come from getting
2380 * attached to a dirty page
2381 */
2382 clear_buffer_dirty(bh);
2383 }
2384 bh = bh->b_this_page;
2385 } while(bh != head);
2386 SetPageError(page);
2387 BUG_ON(PageWriteback(page));
2388 set_page_writeback(page);
2389 unlock_page(page);
2390 do {
2391 struct buffer_head *next = bh->b_this_page;
2392 if (buffer_async_write(bh)) {
2393 clear_buffer_dirty(bh);
2394 submit_bh(WRITE, bh);
2395 nr++;
2396 }
2397 put_bh(bh);
2398 bh = next;
2399 } while(bh != head);
2400 goto done;
2401}
2402
2403
2404static int reiserfs_readpage (struct file *f, struct page * page)
2405{
2406 return block_read_full_page (page, reiserfs_get_block);
2407}
2408
2409
2410static int reiserfs_writepage (struct page * page, struct writeback_control *wbc)
2411{
2412 struct inode *inode = page->mapping->host ;
2413 reiserfs_wait_on_write_block(inode->i_sb) ;
2414 return reiserfs_write_full_page(page, wbc) ;
2415}
2416
2417static int reiserfs_prepare_write(struct file *f, struct page *page,
2418 unsigned from, unsigned to) {
2419 struct inode *inode = page->mapping->host ;
2420 int ret;
2421 int old_ref = 0;
2422
2423 reiserfs_wait_on_write_block(inode->i_sb) ;
2424 fix_tail_page_for_writing(page) ;
2425 if (reiserfs_transaction_running(inode->i_sb)) {
2426 struct reiserfs_transaction_handle *th;
2427 th = (struct reiserfs_transaction_handle *)current->journal_info;
2428 BUG_ON (!th->t_refcount);
2429 BUG_ON (!th->t_trans_id);
2430 old_ref = th->t_refcount;
2431 th->t_refcount++;
2432 }
2433
2434 ret = block_prepare_write(page, from, to, reiserfs_get_block) ;
2435 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2436 struct reiserfs_transaction_handle *th = current->journal_info;
2437 /* this gets a little ugly. If reiserfs_get_block returned an
2438 * error and left a transacstion running, we've got to close it,
2439 * and we've got to free handle if it was a persistent transaction.
2440 *
2441 * But, if we had nested into an existing transaction, we need
2442 * to just drop the ref count on the handle.
2443 *
2444 * If old_ref == 0, the transaction is from reiserfs_get_block,
2445 * and it was a persistent trans. Otherwise, it was nested above.
2446 */
2447 if (th->t_refcount > old_ref) {
2448 if (old_ref)
2449 th->t_refcount--;
2450 else {
2451 int err;
2452 reiserfs_write_lock(inode->i_sb);
2453 err = reiserfs_end_persistent_transaction(th);
2454 reiserfs_write_unlock(inode->i_sb);
2455 if (err)
2456 ret = err;
2457 }
2458 }
2459 }
2460 return ret;
2461
2462}
2463
2464
2465static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) {
2466 return generic_block_bmap(as, block, reiserfs_bmap) ;
2467}
2468
2469static int reiserfs_commit_write(struct file *f, struct page *page,
2470 unsigned from, unsigned to) {
2471 struct inode *inode = page->mapping->host ;
2472 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2473 int ret = 0;
2474 int update_sd = 0;
2475 struct reiserfs_transaction_handle *th = NULL;
2476
2477 reiserfs_wait_on_write_block(inode->i_sb) ;
2478 if (reiserfs_transaction_running(inode->i_sb)) {
2479 th = current->journal_info;
2480 }
2481 reiserfs_commit_page(inode, page, from, to);
2482
2483 /* generic_commit_write does this for us, but does not update the
2484 ** transaction tracking stuff when the size changes. So, we have
2485 ** to do the i_size updates here.
2486 */
2487 if (pos > inode->i_size) {
2488 struct reiserfs_transaction_handle myth ;
2489 reiserfs_write_lock(inode->i_sb);
2490 /* If the file have grown beyond the border where it
2491 can have a tail, unmark it as needing a tail
2492 packing */
2493 if ( (have_large_tails (inode->i_sb) && inode->i_size > i_block_size (inode)*4) ||
2494 (have_small_tails (inode->i_sb) && inode->i_size > i_block_size(inode)) )
2495 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask ;
2496
2497 ret = journal_begin(&myth, inode->i_sb, 1) ;
2498 if (ret) {
2499 reiserfs_write_unlock(inode->i_sb);
2500 goto journal_error;
2501 }
2502 reiserfs_update_inode_transaction(inode) ;
2503 inode->i_size = pos ;
2504 reiserfs_update_sd(&myth, inode) ;
2505 update_sd = 1;
2506 ret = journal_end(&myth, inode->i_sb, 1) ;
2507 reiserfs_write_unlock(inode->i_sb);
2508 if (ret)
2509 goto journal_error;
2510 }
2511 if (th) {
2512 reiserfs_write_lock(inode->i_sb);
2513 if (!update_sd)
2514 reiserfs_update_sd(th, inode) ;
2515 ret = reiserfs_end_persistent_transaction(th);
2516 reiserfs_write_unlock(inode->i_sb);
2517 if (ret)
2518 goto out;
2519 }
2520
2521 /* we test for O_SYNC here so we can commit the transaction
2522 ** for any packed tails the file might have had
2523 */
2524 if (f && (f->f_flags & O_SYNC)) {
2525 reiserfs_write_lock(inode->i_sb);
2526 ret = reiserfs_commit_for_inode(inode) ;
2527 reiserfs_write_unlock(inode->i_sb);
2528 }
2529out:
2530 return ret ;
2531
2532journal_error:
2533 if (th) {
2534 reiserfs_write_lock(inode->i_sb);
2535 if (!update_sd)
2536 reiserfs_update_sd(th, inode) ;
2537 ret = reiserfs_end_persistent_transaction(th);
2538 reiserfs_write_unlock(inode->i_sb);
2539 }
2540
2541 return ret;
2542}
2543
2544void sd_attrs_to_i_attrs( __u16 sd_attrs, struct inode *inode )
2545{
2546 if( reiserfs_attrs( inode -> i_sb ) ) {
2547 if( sd_attrs & REISERFS_SYNC_FL )
2548 inode -> i_flags |= S_SYNC;
2549 else
2550 inode -> i_flags &= ~S_SYNC;
2551 if( sd_attrs & REISERFS_IMMUTABLE_FL )
2552 inode -> i_flags |= S_IMMUTABLE;
2553 else
2554 inode -> i_flags &= ~S_IMMUTABLE;
2555 if( sd_attrs & REISERFS_APPEND_FL )
2556 inode -> i_flags |= S_APPEND;
2557 else
2558 inode -> i_flags &= ~S_APPEND;
2559 if( sd_attrs & REISERFS_NOATIME_FL )
2560 inode -> i_flags |= S_NOATIME;
2561 else
2562 inode -> i_flags &= ~S_NOATIME;
2563 if( sd_attrs & REISERFS_NOTAIL_FL )
2564 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2565 else
2566 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2567 }
2568}
2569
2570void i_attrs_to_sd_attrs( struct inode *inode, __u16 *sd_attrs )
2571{
2572 if( reiserfs_attrs( inode -> i_sb ) ) {
2573 if( inode -> i_flags & S_IMMUTABLE )
2574 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2575 else
2576 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2577 if( inode -> i_flags & S_SYNC )
2578 *sd_attrs |= REISERFS_SYNC_FL;
2579 else
2580 *sd_attrs &= ~REISERFS_SYNC_FL;
2581 if( inode -> i_flags & S_NOATIME )
2582 *sd_attrs |= REISERFS_NOATIME_FL;
2583 else
2584 *sd_attrs &= ~REISERFS_NOATIME_FL;
2585 if( REISERFS_I(inode)->i_flags & i_nopack_mask )
2586 *sd_attrs |= REISERFS_NOTAIL_FL;
2587 else
2588 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2589 }
2590}
2591
2592/* decide if this buffer needs to stay around for data logging or ordered
2593** write purposes
2594*/
2595static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2596{
2597 int ret = 1 ;
2598 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb) ;
2599
2600 spin_lock(&j->j_dirty_buffers_lock) ;
2601 if (!buffer_mapped(bh)) {
2602 goto free_jh;
2603 }
2604 /* the page is locked, and the only places that log a data buffer
2605 * also lock the page.
2606 */
2607 if (reiserfs_file_data_log(inode)) {
2608 /*
2609 * very conservative, leave the buffer pinned if
2610 * anyone might need it.
2611 */
2612 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2613 ret = 0 ;
2614 }
2615 } else
2616 if (buffer_dirty(bh) || buffer_locked(bh)) {
2617 struct reiserfs_journal_list *jl;
2618 struct reiserfs_jh *jh = bh->b_private;
2619
2620 /* why is this safe?
2621 * reiserfs_setattr updates i_size in the on disk
2622 * stat data before allowing vmtruncate to be called.
2623 *
2624 * If buffer was put onto the ordered list for this
2625 * transaction, we know for sure either this transaction
2626 * or an older one already has updated i_size on disk,
2627 * and this ordered data won't be referenced in the file
2628 * if we crash.
2629 *
2630 * if the buffer was put onto the ordered list for an older
2631 * transaction, we need to leave it around
2632 */
2633 if (jh && (jl = jh->jl) && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2634 ret = 0;
2635 }
2636free_jh:
2637 if (ret && bh->b_private) {
2638 reiserfs_free_jh(bh);
2639 }
2640 spin_unlock(&j->j_dirty_buffers_lock) ;
2641 return ret ;
2642}
2643
2644/* clm -- taken from fs/buffer.c:block_invalidate_page */
2645static int reiserfs_invalidatepage(struct page *page, unsigned long offset)
2646{
2647 struct buffer_head *head, *bh, *next;
2648 struct inode *inode = page->mapping->host;
2649 unsigned int curr_off = 0;
2650 int ret = 1;
2651
2652 BUG_ON(!PageLocked(page));
2653
2654 if (offset == 0)
2655 ClearPageChecked(page);
2656
2657 if (!page_has_buffers(page))
2658 goto out;
2659
2660 head = page_buffers(page);
2661 bh = head;
2662 do {
2663 unsigned int next_off = curr_off + bh->b_size;
2664 next = bh->b_this_page;
2665
2666 /*
2667 * is this block fully invalidated?
2668 */
2669 if (offset <= curr_off) {
2670 if (invalidatepage_can_drop(inode, bh))
2671 reiserfs_unmap_buffer(bh);
2672 else
2673 ret = 0;
2674 }
2675 curr_off = next_off;
2676 bh = next;
2677 } while (bh != head);
2678
2679 /*
2680 * We release buffers only if the entire page is being invalidated.
2681 * The get_block cached value has been unconditionally invalidated,
2682 * so real IO is not possible anymore.
2683 */
2684 if (!offset && ret)
2685 ret = try_to_release_page(page, 0);
2686out:
2687 return ret;
2688}
2689
2690static int reiserfs_set_page_dirty(struct page *page) {
2691 struct inode *inode = page->mapping->host;
2692 if (reiserfs_file_data_log(inode)) {
2693 SetPageChecked(page);
2694 return __set_page_dirty_nobuffers(page);
2695 }
2696 return __set_page_dirty_buffers(page);
2697}
2698
2699/*
2700 * Returns 1 if the page's buffers were dropped. The page is locked.
2701 *
2702 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2703 * in the buffers at page_buffers(page).
2704 *
2705 * even in -o notail mode, we can't be sure an old mount without -o notail
2706 * didn't create files with tails.
2707 */
2708static int reiserfs_releasepage(struct page *page, int unused_gfp_flags)
2709{
2710 struct inode *inode = page->mapping->host ;
2711 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb) ;
2712 struct buffer_head *head ;
2713 struct buffer_head *bh ;
2714 int ret = 1 ;
2715
2716 WARN_ON(PageChecked(page));
2717 spin_lock(&j->j_dirty_buffers_lock) ;
2718 head = page_buffers(page) ;
2719 bh = head ;
2720 do {
2721 if (bh->b_private) {
2722 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
2723 reiserfs_free_jh(bh);
2724 } else {
2725 ret = 0 ;
2726 break ;
2727 }
2728 }
2729 bh = bh->b_this_page ;
2730 } while (bh != head) ;
2731 if (ret)
2732 ret = try_to_free_buffers(page) ;
2733 spin_unlock(&j->j_dirty_buffers_lock) ;
2734 return ret ;
2735}
2736
2737/* We thank Mingming Cao for helping us understand in great detail what
2738 to do in this section of the code. */
2739static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
2740 const struct iovec *iov, loff_t offset, unsigned long nr_segs)
2741{
2742 struct file *file = iocb->ki_filp;
2743 struct inode *inode = file->f_mapping->host;
2744
2745 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2746 offset, nr_segs, reiserfs_get_blocks_direct_io, NULL);
2747}
2748
2749int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) {
2750 struct inode *inode = dentry->d_inode ;
2751 int error ;
2752 unsigned int ia_valid = attr->ia_valid;
2753 reiserfs_write_lock(inode->i_sb);
2754 if (attr->ia_valid & ATTR_SIZE) {
2755 /* version 2 items will be caught by the s_maxbytes check
2756 ** done for us in vmtruncate
2757 */
2758 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
2759 attr->ia_size > MAX_NON_LFS) {
2760 error = -EFBIG ;
2761 goto out;
2762 }
2763 /* fill in hole pointers in the expanding truncate case. */
2764 if (attr->ia_size > inode->i_size) {
2765 error = generic_cont_expand(inode, attr->ia_size) ;
2766 if (REISERFS_I(inode)->i_prealloc_count > 0) {
2767 int err;
2768 struct reiserfs_transaction_handle th ;
2769 /* we're changing at most 2 bitmaps, inode + super */
2770 err = journal_begin(&th, inode->i_sb, 4) ;
2771 if (!err) {
2772 reiserfs_discard_prealloc (&th, inode);
2773 err = journal_end(&th, inode->i_sb, 4) ;
2774 }
2775 if (err)
2776 error = err;
2777 }
2778 if (error)
2779 goto out;
2780 }
2781 }
2782
2783 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
2784 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
2785 (get_inode_sd_version (inode) == STAT_DATA_V1)) {
2786 /* stat data of format v3.5 has 16 bit uid and gid */
2787 error = -EINVAL;
2788 goto out;
2789 }
2790
2791 error = inode_change_ok(inode, attr) ;
2792 if (!error) {
2793 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2794 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2795 error = reiserfs_chown_xattrs (inode, attr);
2796
2797 if (!error) {
2798 struct reiserfs_transaction_handle th;
2799
2800 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
2801 journal_begin(&th, inode->i_sb, 4*REISERFS_QUOTA_INIT_BLOCKS+2);
2802 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2803 if (error) {
2804 journal_end(&th, inode->i_sb, 4*REISERFS_QUOTA_INIT_BLOCKS+2);
2805 goto out;
2806 }
2807 /* Update corresponding info in inode so that everything is in
2808 * one transaction */
2809 if (attr->ia_valid & ATTR_UID)
2810 inode->i_uid = attr->ia_uid;
2811 if (attr->ia_valid & ATTR_GID)
2812 inode->i_gid = attr->ia_gid;
2813 mark_inode_dirty(inode);
2814 journal_end(&th, inode->i_sb, 4*REISERFS_QUOTA_INIT_BLOCKS+2);
2815 }
2816 }
2817 if (!error)
2818 error = inode_setattr(inode, attr) ;
2819 }
2820
2821
2822 if (!error && reiserfs_posixacl (inode->i_sb)) {
2823 if (attr->ia_valid & ATTR_MODE)
2824 error = reiserfs_acl_chmod (inode);
2825 }
2826
2827out:
2828 reiserfs_write_unlock(inode->i_sb);
2829 return error ;
2830}
2831
2832
2833
2834struct address_space_operations reiserfs_address_space_operations = {
2835 .writepage = reiserfs_writepage,
2836 .readpage = reiserfs_readpage,
2837 .readpages = reiserfs_readpages,
2838 .releasepage = reiserfs_releasepage,
2839 .invalidatepage = reiserfs_invalidatepage,
2840 .sync_page = block_sync_page,
2841 .prepare_write = reiserfs_prepare_write,
2842 .commit_write = reiserfs_commit_write,
2843 .bmap = reiserfs_aop_bmap,
2844 .direct_IO = reiserfs_direct_IO,
2845 .set_page_dirty = reiserfs_set_page_dirty,
2846} ;