aboutsummaryrefslogtreecommitdiffstats
path: root/fs/proc/task_mmu.c
diff options
context:
space:
mode:
authorFengguang Wu <wfg@mail.ustc.edu.cn>2008-02-05 01:28:56 -0500
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2008-02-05 12:44:16 -0500
commitec4dd3eb35759f9fbeb5c1abb01403b2fde64cc9 (patch)
tree0eaf4d91180556df61da6300463d946390ce55fb /fs/proc/task_mmu.c
parent61d5048f149572434daee0cce5e1374a8a7cf3e8 (diff)
maps4: add proportional set size accounting in smaps
The "proportional set size" (PSS) of a process is the count of pages it has in memory, where each page is divided by the number of processes sharing it. So if a process has 1000 pages all to itself, and 1000 shared with one other process, its PSS will be 1500. - lwn.net: "ELC: How much memory are applications really using?" The PSS proposed by Matt Mackall is a very nice metic for measuring an process's memory footprint. So collect and export it via /proc/<pid>/smaps. Matt Mackall's pagemap/kpagemap and John Berthels's exmap can also do the job. They are comprehensive tools. But for PSS, let's do it in the simple way. Cc: John Berthels <jjberthels@gmail.com> Cc: Bernardo Innocenti <bernie@codewiz.org> Cc: Padraig Brady <P@draigBrady.com> Cc: Denys Vlasenko <vda.linux@googlemail.com> Cc: Balbir Singh <balbir@linux.vnet.ibm.com> Signed-off-by: Matt Mackall <mpm@selenic.com> Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Hugh Dickins <hugh@veritas.com> Cc: Dave Hansen <haveblue@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'fs/proc/task_mmu.c')
-rw-r--r--fs/proc/task_mmu.c28
1 files changed, 27 insertions, 1 deletions
diff --git a/fs/proc/task_mmu.c b/fs/proc/task_mmu.c
index 8043a3eab52c..8952ce70315e 100644
--- a/fs/proc/task_mmu.c
+++ b/fs/proc/task_mmu.c
@@ -114,6 +114,25 @@ static void pad_len_spaces(struct seq_file *m, int len)
114 seq_printf(m, "%*c", len, ' '); 114 seq_printf(m, "%*c", len, ' ');
115} 115}
116 116
117/*
118 * Proportional Set Size(PSS): my share of RSS.
119 *
120 * PSS of a process is the count of pages it has in memory, where each
121 * page is divided by the number of processes sharing it. So if a
122 * process has 1000 pages all to itself, and 1000 shared with one other
123 * process, its PSS will be 1500.
124 *
125 * To keep (accumulated) division errors low, we adopt a 64bit
126 * fixed-point pss counter to minimize division errors. So (pss >>
127 * PSS_SHIFT) would be the real byte count.
128 *
129 * A shift of 12 before division means (assuming 4K page size):
130 * - 1M 3-user-pages add up to 8KB errors;
131 * - supports mapcount up to 2^24, or 16M;
132 * - supports PSS up to 2^52 bytes, or 4PB.
133 */
134#define PSS_SHIFT 12
135
117struct mem_size_stats 136struct mem_size_stats
118{ 137{
119 unsigned long resident; 138 unsigned long resident;
@@ -122,6 +141,7 @@ struct mem_size_stats
122 unsigned long private_clean; 141 unsigned long private_clean;
123 unsigned long private_dirty; 142 unsigned long private_dirty;
124 unsigned long referenced; 143 unsigned long referenced;
144 u64 pss;
125}; 145};
126 146
127struct pmd_walker { 147struct pmd_walker {
@@ -195,6 +215,7 @@ static int show_map_internal(struct seq_file *m, void *v, struct mem_size_stats
195 seq_printf(m, 215 seq_printf(m,
196 "Size: %8lu kB\n" 216 "Size: %8lu kB\n"
197 "Rss: %8lu kB\n" 217 "Rss: %8lu kB\n"
218 "Pss: %8lu kB\n"
198 "Shared_Clean: %8lu kB\n" 219 "Shared_Clean: %8lu kB\n"
199 "Shared_Dirty: %8lu kB\n" 220 "Shared_Dirty: %8lu kB\n"
200 "Private_Clean: %8lu kB\n" 221 "Private_Clean: %8lu kB\n"
@@ -202,6 +223,7 @@ static int show_map_internal(struct seq_file *m, void *v, struct mem_size_stats
202 "Referenced: %8lu kB\n", 223 "Referenced: %8lu kB\n",
203 (vma->vm_end - vma->vm_start) >> 10, 224 (vma->vm_end - vma->vm_start) >> 10,
204 mss->resident >> 10, 225 mss->resident >> 10,
226 (unsigned long)(mss->pss >> (10 + PSS_SHIFT)),
205 mss->shared_clean >> 10, 227 mss->shared_clean >> 10,
206 mss->shared_dirty >> 10, 228 mss->shared_dirty >> 10,
207 mss->private_clean >> 10, 229 mss->private_clean >> 10,
@@ -226,6 +248,7 @@ static void smaps_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
226 pte_t *pte, ptent; 248 pte_t *pte, ptent;
227 spinlock_t *ptl; 249 spinlock_t *ptl;
228 struct page *page; 250 struct page *page;
251 int mapcount;
229 252
230 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 253 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
231 for (; addr != end; pte++, addr += PAGE_SIZE) { 254 for (; addr != end; pte++, addr += PAGE_SIZE) {
@@ -242,16 +265,19 @@ static void smaps_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
242 /* Accumulate the size in pages that have been accessed. */ 265 /* Accumulate the size in pages that have been accessed. */
243 if (pte_young(ptent) || PageReferenced(page)) 266 if (pte_young(ptent) || PageReferenced(page))
244 mss->referenced += PAGE_SIZE; 267 mss->referenced += PAGE_SIZE;
245 if (page_mapcount(page) >= 2) { 268 mapcount = page_mapcount(page);
269 if (mapcount >= 2) {
246 if (pte_dirty(ptent)) 270 if (pte_dirty(ptent))
247 mss->shared_dirty += PAGE_SIZE; 271 mss->shared_dirty += PAGE_SIZE;
248 else 272 else
249 mss->shared_clean += PAGE_SIZE; 273 mss->shared_clean += PAGE_SIZE;
274 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
250 } else { 275 } else {
251 if (pte_dirty(ptent)) 276 if (pte_dirty(ptent))
252 mss->private_dirty += PAGE_SIZE; 277 mss->private_dirty += PAGE_SIZE;
253 else 278 else
254 mss->private_clean += PAGE_SIZE; 279 mss->private_clean += PAGE_SIZE;
280 mss->pss += (PAGE_SIZE << PSS_SHIFT);
255 } 281 }
256 } 282 }
257 pte_unmap_unlock(pte - 1, ptl); 283 pte_unmap_unlock(pte - 1, ptl);