aboutsummaryrefslogtreecommitdiffstats
path: root/fs/ocfs2/aops.c
diff options
context:
space:
mode:
authorMark Fasheh <mark.fasheh@oracle.com>2007-02-09 23:24:12 -0500
committerMark Fasheh <mark.fasheh@oracle.com>2007-04-26 18:02:08 -0400
commit9517bac6cc7a7aa4fee63cb38a32cb6014e264c7 (patch)
tree3cac0c18d0cacc316e0e8a60f483282d6f991779 /fs/ocfs2/aops.c
parent89488984ac23b0580f959b9ee549f2fcb1c2f194 (diff)
ocfs2: teach ocfs2_file_aio_write() about sparse files
Unfortunately, ocfs2 can no longer make use of generic_file_aio_write_nlock() because allocating writes will require zeroing of pages adjacent to the I/O for cluster sizes greater than page size. Implement a custom file write here, which can order page locks for zeroing. This also has the advantage that cluster locks can easily be ordered outside of the page locks. Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Diffstat (limited to 'fs/ocfs2/aops.c')
-rw-r--r--fs/ocfs2/aops.c679
1 files changed, 663 insertions, 16 deletions
diff --git a/fs/ocfs2/aops.c b/fs/ocfs2/aops.c
index f3b0cc5cba1a..5ffb3702b5e9 100644
--- a/fs/ocfs2/aops.c
+++ b/fs/ocfs2/aops.c
@@ -24,6 +24,7 @@
24#include <linux/highmem.h> 24#include <linux/highmem.h>
25#include <linux/pagemap.h> 25#include <linux/pagemap.h>
26#include <asm/byteorder.h> 26#include <asm/byteorder.h>
27#include <linux/swap.h>
27 28
28#define MLOG_MASK_PREFIX ML_FILE_IO 29#define MLOG_MASK_PREFIX ML_FILE_IO
29#include <cluster/masklog.h> 30#include <cluster/masklog.h>
@@ -37,6 +38,7 @@
37#include "file.h" 38#include "file.h"
38#include "inode.h" 39#include "inode.h"
39#include "journal.h" 40#include "journal.h"
41#include "suballoc.h"
40#include "super.h" 42#include "super.h"
41#include "symlink.h" 43#include "symlink.h"
42 44
@@ -645,23 +647,27 @@ static ssize_t ocfs2_direct_IO(int rw,
645 647
646 mlog_entry_void(); 648 mlog_entry_void();
647 649
648 /* 650 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
649 * We get PR data locks even for O_DIRECT. This allows 651 /*
650 * concurrent O_DIRECT I/O but doesn't let O_DIRECT with 652 * We get PR data locks even for O_DIRECT. This
651 * extending and buffered zeroing writes race. If they did 653 * allows concurrent O_DIRECT I/O but doesn't let
652 * race then the buffered zeroing could be written back after 654 * O_DIRECT with extending and buffered zeroing writes
653 * the O_DIRECT I/O. It's one thing to tell people not to mix 655 * race. If they did race then the buffered zeroing
654 * buffered and O_DIRECT writes, but expecting them to 656 * could be written back after the O_DIRECT I/O. It's
655 * understand that file extension is also an implicit buffered 657 * one thing to tell people not to mix buffered and
656 * write is too much. By getting the PR we force writeback of 658 * O_DIRECT writes, but expecting them to understand
657 * the buffered zeroing before proceeding. 659 * that file extension is also an implicit buffered
658 */ 660 * write is too much. By getting the PR we force
659 ret = ocfs2_data_lock(inode, 0); 661 * writeback of the buffered zeroing before
660 if (ret < 0) { 662 * proceeding.
661 mlog_errno(ret); 663 */
662 goto out; 664 ret = ocfs2_data_lock(inode, 0);
665 if (ret < 0) {
666 mlog_errno(ret);
667 goto out;
668 }
669 ocfs2_data_unlock(inode, 0);
663 } 670 }
664 ocfs2_data_unlock(inode, 0);
665 671
666 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, 672 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
667 inode->i_sb->s_bdev, iov, offset, 673 inode->i_sb->s_bdev, iov, offset,
@@ -673,6 +679,647 @@ out:
673 return ret; 679 return ret;
674} 680}
675 681
682static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
683 u32 cpos,
684 unsigned int *start,
685 unsigned int *end)
686{
687 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
688
689 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
690 unsigned int cpp;
691
692 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
693
694 cluster_start = cpos % cpp;
695 cluster_start = cluster_start << osb->s_clustersize_bits;
696
697 cluster_end = cluster_start + osb->s_clustersize;
698 }
699
700 BUG_ON(cluster_start > PAGE_SIZE);
701 BUG_ON(cluster_end > PAGE_SIZE);
702
703 if (start)
704 *start = cluster_start;
705 if (end)
706 *end = cluster_end;
707}
708
709/*
710 * 'from' and 'to' are the region in the page to avoid zeroing.
711 *
712 * If pagesize > clustersize, this function will avoid zeroing outside
713 * of the cluster boundary.
714 *
715 * from == to == 0 is code for "zero the entire cluster region"
716 */
717static void ocfs2_clear_page_regions(struct page *page,
718 struct ocfs2_super *osb, u32 cpos,
719 unsigned from, unsigned to)
720{
721 void *kaddr;
722 unsigned int cluster_start, cluster_end;
723
724 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
725
726 kaddr = kmap_atomic(page, KM_USER0);
727
728 if (from || to) {
729 if (from > cluster_start)
730 memset(kaddr + cluster_start, 0, from - cluster_start);
731 if (to < cluster_end)
732 memset(kaddr + to, 0, cluster_end - to);
733 } else {
734 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
735 }
736
737 kunmap_atomic(kaddr, KM_USER0);
738}
739
740/*
741 * Some of this taken from block_prepare_write(). We already have our
742 * mapping by now though, and the entire write will be allocating or
743 * it won't, so not much need to use BH_New.
744 *
745 * This will also skip zeroing, which is handled externally.
746 */
747static int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
748 struct inode *inode, unsigned int from,
749 unsigned int to, int new)
750{
751 int ret = 0;
752 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
753 unsigned int block_end, block_start;
754 unsigned int bsize = 1 << inode->i_blkbits;
755
756 if (!page_has_buffers(page))
757 create_empty_buffers(page, bsize, 0);
758
759 head = page_buffers(page);
760 for (bh = head, block_start = 0; bh != head || !block_start;
761 bh = bh->b_this_page, block_start += bsize) {
762 block_end = block_start + bsize;
763
764 /*
765 * Ignore blocks outside of our i/o range -
766 * they may belong to unallocated clusters.
767 */
768 if (block_start >= to ||
769 (block_start + bsize) <= from) {
770 if (PageUptodate(page))
771 set_buffer_uptodate(bh);
772 continue;
773 }
774
775 /*
776 * For an allocating write with cluster size >= page
777 * size, we always write the entire page.
778 */
779
780 if (buffer_new(bh))
781 clear_buffer_new(bh);
782
783 if (!buffer_mapped(bh)) {
784 map_bh(bh, inode->i_sb, *p_blkno);
785 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
786 }
787
788 if (PageUptodate(page)) {
789 if (!buffer_uptodate(bh))
790 set_buffer_uptodate(bh);
791 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
792 (block_start < from || block_end > to)) {
793 ll_rw_block(READ, 1, &bh);
794 *wait_bh++=bh;
795 }
796
797 *p_blkno = *p_blkno + 1;
798 }
799
800 /*
801 * If we issued read requests - let them complete.
802 */
803 while(wait_bh > wait) {
804 wait_on_buffer(*--wait_bh);
805 if (!buffer_uptodate(*wait_bh))
806 ret = -EIO;
807 }
808
809 if (ret == 0 || !new)
810 return ret;
811
812 /*
813 * If we get -EIO above, zero out any newly allocated blocks
814 * to avoid exposing stale data.
815 */
816 bh = head;
817 block_start = 0;
818 do {
819 void *kaddr;
820
821 block_end = block_start + bsize;
822 if (block_end <= from)
823 goto next_bh;
824 if (block_start >= to)
825 break;
826
827 kaddr = kmap_atomic(page, KM_USER0);
828 memset(kaddr+block_start, 0, bh->b_size);
829 flush_dcache_page(page);
830 kunmap_atomic(kaddr, KM_USER0);
831 set_buffer_uptodate(bh);
832 mark_buffer_dirty(bh);
833
834next_bh:
835 block_start = block_end;
836 bh = bh->b_this_page;
837 } while (bh != head);
838
839 return ret;
840}
841
842/*
843 * This will copy user data from the iovec in the buffered write
844 * context.
845 */
846int ocfs2_map_and_write_user_data(struct inode *inode,
847 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
848 unsigned int *ret_from, unsigned int *ret_to)
849{
850 int ret;
851 unsigned int to, from, cluster_start, cluster_end;
852 unsigned long bytes, src_from;
853 char *dst;
854 struct ocfs2_buffered_write_priv *bp = wc->w_private;
855 const struct iovec *cur_iov = bp->b_cur_iov;
856 char __user *buf;
857 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
858
859 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
860 &cluster_end);
861
862 buf = cur_iov->iov_base + bp->b_cur_off;
863 src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
864
865 from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
866
867 /*
868 * This is a lot of comparisons, but it reads quite
869 * easily, which is important here.
870 */
871 /* Stay within the src page */
872 bytes = PAGE_SIZE - src_from;
873 /* Stay within the vector */
874 bytes = min(bytes,
875 (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
876 /* Stay within count */
877 bytes = min(bytes, (unsigned long)wc->w_count);
878 /*
879 * For clustersize > page size, just stay within
880 * target page, otherwise we have to calculate pos
881 * within the cluster and obey the rightmost
882 * boundary.
883 */
884 if (wc->w_large_pages) {
885 /*
886 * For cluster size < page size, we have to
887 * calculate pos within the cluster and obey
888 * the rightmost boundary.
889 */
890 bytes = min(bytes, (unsigned long)(osb->s_clustersize
891 - (wc->w_pos & (osb->s_clustersize - 1))));
892 } else {
893 /*
894 * cluster size > page size is the most common
895 * case - we just stay within the target page
896 * boundary.
897 */
898 bytes = min(bytes, PAGE_CACHE_SIZE - from);
899 }
900
901 to = from + bytes;
902
903 if (wc->w_this_page_new)
904 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
905 cluster_start, cluster_end, 1);
906 else
907 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
908 from, to, 0);
909 if (ret) {
910 mlog_errno(ret);
911 goto out;
912 }
913
914 BUG_ON(from > PAGE_CACHE_SIZE);
915 BUG_ON(to > PAGE_CACHE_SIZE);
916 BUG_ON(from > osb->s_clustersize);
917 BUG_ON(to > osb->s_clustersize);
918
919 dst = kmap(wc->w_this_page);
920 memcpy(dst + from, bp->b_src_buf + src_from, bytes);
921 kunmap(wc->w_this_page);
922
923 /*
924 * XXX: This is slow, but simple. The caller of
925 * ocfs2_buffered_write_cluster() is responsible for
926 * passing through the iovecs, so it's difficult to
927 * predict what our next step is in here after our
928 * initial write. A future version should be pushing
929 * that iovec manipulation further down.
930 *
931 * By setting this, we indicate that a copy from user
932 * data was done, and subsequent calls for this
933 * cluster will skip copying more data.
934 */
935 wc->w_finished_copy = 1;
936
937 *ret_from = from;
938 *ret_to = to;
939out:
940
941 return bytes ? (unsigned int)bytes : ret;
942}
943
944/*
945 * Map, fill and write a page to disk.
946 *
947 * The work of copying data is done via callback. Newly allocated
948 * pages which don't take user data will be zero'd (set 'new' to
949 * indicate an allocating write)
950 *
951 * Returns a negative error code or the number of bytes copied into
952 * the page.
953 */
954int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
955 u64 *p_blkno, struct page *page,
956 struct ocfs2_write_ctxt *wc, int new)
957{
958 int ret, copied = 0;
959 unsigned int from = 0, to = 0;
960 unsigned int cluster_start, cluster_end;
961 unsigned int zero_from = 0, zero_to = 0;
962
963 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
964 &cluster_start, &cluster_end);
965
966 if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
967 && !wc->w_finished_copy) {
968
969 wc->w_this_page = page;
970 wc->w_this_page_new = new;
971 ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
972 if (ret < 0) {
973 mlog_errno(ret);
974 goto out;
975 }
976
977 copied = ret;
978
979 zero_from = from;
980 zero_to = to;
981 if (new) {
982 from = cluster_start;
983 to = cluster_end;
984 }
985 } else {
986 /*
987 * If we haven't allocated the new page yet, we
988 * shouldn't be writing it out without copying user
989 * data. This is likely a math error from the caller.
990 */
991 BUG_ON(!new);
992
993 from = cluster_start;
994 to = cluster_end;
995
996 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
997 cluster_start, cluster_end, 1);
998 if (ret) {
999 mlog_errno(ret);
1000 goto out;
1001 }
1002 }
1003
1004 /*
1005 * Parts of newly allocated pages need to be zero'd.
1006 *
1007 * Above, we have also rewritten 'to' and 'from' - as far as
1008 * the rest of the function is concerned, the entire cluster
1009 * range inside of a page needs to be written.
1010 *
1011 * We can skip this if the page is up to date - it's already
1012 * been zero'd from being read in as a hole.
1013 */
1014 if (new && !PageUptodate(page))
1015 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1016 wc->w_cpos, zero_from, zero_to);
1017
1018 flush_dcache_page(page);
1019
1020 if (ocfs2_should_order_data(inode)) {
1021 ret = walk_page_buffers(handle,
1022 page_buffers(page),
1023 from, to, NULL,
1024 ocfs2_journal_dirty_data);
1025 if (ret < 0)
1026 mlog_errno(ret);
1027 }
1028
1029 /*
1030 * We don't use generic_commit_write() because we need to
1031 * handle our own i_size update.
1032 */
1033 ret = block_commit_write(page, from, to);
1034 if (ret)
1035 mlog_errno(ret);
1036out:
1037
1038 return copied ? copied : ret;
1039}
1040
1041/*
1042 * Do the actual write of some data into an inode. Optionally allocate
1043 * in order to fulfill the write.
1044 *
1045 * cpos is the logical cluster offset within the file to write at
1046 *
1047 * 'phys' is the physical mapping of that offset. a 'phys' value of
1048 * zero indicates that allocation is required. In this case, data_ac
1049 * and meta_ac should be valid (meta_ac can be null if metadata
1050 * allocation isn't required).
1051 */
1052static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
1053 struct buffer_head *di_bh,
1054 struct ocfs2_alloc_context *data_ac,
1055 struct ocfs2_alloc_context *meta_ac,
1056 struct ocfs2_write_ctxt *wc)
1057{
1058 int ret, i, numpages = 1, new;
1059 unsigned int copied = 0;
1060 u32 tmp_pos;
1061 u64 v_blkno, p_blkno;
1062 struct address_space *mapping = file->f_mapping;
1063 struct inode *inode = mapping->host;
1064 unsigned int cbits = OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1065 unsigned long index, start;
1066 struct page **cpages;
1067
1068 new = phys == 0 ? 1 : 0;
1069
1070 /*
1071 * Figure out how many pages we'll be manipulating here. For
1072 * non-allocating write, or any writes where cluster size is
1073 * less than page size, we only need one page. Otherwise,
1074 * allocating writes of cluster size larger than page size
1075 * need cluster size pages.
1076 */
1077 if (new && !wc->w_large_pages)
1078 numpages = (1 << cbits) / PAGE_SIZE;
1079
1080 cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
1081 if (!cpages) {
1082 ret = -ENOMEM;
1083 mlog_errno(ret);
1084 return ret;
1085 }
1086
1087 /*
1088 * Fill our page array first. That way we've grabbed enough so
1089 * that we can zero and flush if we error after adding the
1090 * extent.
1091 */
1092 if (new) {
1093 start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1094 wc->w_cpos);
1095 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1096 } else {
1097 start = wc->w_pos >> PAGE_CACHE_SHIFT;
1098 v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1099 }
1100
1101 for(i = 0; i < numpages; i++) {
1102 index = start + i;
1103
1104 cpages[i] = grab_cache_page(mapping, index);
1105 if (!cpages[i]) {
1106 ret = -ENOMEM;
1107 mlog_errno(ret);
1108 goto out;
1109 }
1110 }
1111
1112 if (new) {
1113 /*
1114 * This is safe to call with the page locks - it won't take
1115 * any additional semaphores or cluster locks.
1116 */
1117 tmp_pos = wc->w_cpos;
1118 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1119 &tmp_pos, 1, di_bh, handle,
1120 data_ac, meta_ac, NULL);
1121 /*
1122 * This shouldn't happen because we must have already
1123 * calculated the correct meta data allocation required. The
1124 * internal tree allocation code should know how to increase
1125 * transaction credits itself.
1126 *
1127 * If need be, we could handle -EAGAIN for a
1128 * RESTART_TRANS here.
1129 */
1130 mlog_bug_on_msg(ret == -EAGAIN,
1131 "Inode %llu: EAGAIN return during allocation.\n",
1132 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1133 if (ret < 0) {
1134 mlog_errno(ret);
1135 goto out;
1136 }
1137 }
1138
1139 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL);
1140 if (ret < 0) {
1141
1142 /*
1143 * XXX: Should we go readonly here?
1144 */
1145
1146 mlog_errno(ret);
1147 goto out;
1148 }
1149
1150 BUG_ON(p_blkno == 0);
1151
1152 for(i = 0; i < numpages; i++) {
1153 ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1154 wc, new);
1155 if (ret < 0) {
1156 mlog_errno(ret);
1157 goto out;
1158 }
1159
1160 copied += ret;
1161 }
1162
1163out:
1164 for(i = 0; i < numpages; i++) {
1165 unlock_page(cpages[i]);
1166 mark_page_accessed(cpages[i]);
1167 page_cache_release(cpages[i]);
1168 }
1169 kfree(cpages);
1170
1171 return copied ? copied : ret;
1172}
1173
1174static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1175 struct ocfs2_super *osb, loff_t pos,
1176 size_t count, ocfs2_page_writer *cb,
1177 void *cb_priv)
1178{
1179 wc->w_count = count;
1180 wc->w_pos = pos;
1181 wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1182 wc->w_finished_copy = 0;
1183
1184 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1185 wc->w_large_pages = 1;
1186 else
1187 wc->w_large_pages = 0;
1188
1189 wc->w_write_data_page = cb;
1190 wc->w_private = cb_priv;
1191}
1192
1193/*
1194 * Write a cluster to an inode. The cluster may not be allocated yet,
1195 * in which case it will be. This only exists for buffered writes -
1196 * O_DIRECT takes a more "traditional" path through the kernel.
1197 *
1198 * The caller is responsible for incrementing pos, written counts, etc
1199 *
1200 * For file systems that don't support sparse files, pre-allocation
1201 * and page zeroing up until cpos should be done prior to this
1202 * function call.
1203 *
1204 * Callers should be holding i_sem, and the rw cluster lock.
1205 *
1206 * Returns the number of user bytes written, or less than zero for
1207 * error.
1208 */
1209ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1210 size_t count, ocfs2_page_writer *actor,
1211 void *priv)
1212{
1213 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1214 ssize_t written = 0;
1215 u32 phys;
1216 struct inode *inode = file->f_mapping->host;
1217 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1218 struct buffer_head *di_bh = NULL;
1219 struct ocfs2_dinode *di;
1220 struct ocfs2_alloc_context *data_ac = NULL;
1221 struct ocfs2_alloc_context *meta_ac = NULL;
1222 handle_t *handle;
1223 struct ocfs2_write_ctxt wc;
1224
1225 ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1226
1227 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1228 if (ret) {
1229 mlog_errno(ret);
1230 goto out;
1231 }
1232 di = (struct ocfs2_dinode *)di_bh->b_data;
1233
1234 /*
1235 * Take alloc sem here to prevent concurrent lookups. That way
1236 * the mapping, zeroing and tree manipulation within
1237 * ocfs2_write() will be safe against ->readpage(). This
1238 * should also serve to lock out allocation from a shared
1239 * writeable region.
1240 */
1241 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1242
1243 ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL);
1244 if (ret) {
1245 mlog_errno(ret);
1246 goto out_meta;
1247 }
1248
1249 /* phys == 0 means that allocation is required. */
1250 if (phys == 0) {
1251 ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1252 if (ret) {
1253 mlog_errno(ret);
1254 goto out_meta;
1255 }
1256
1257 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1258 }
1259
1260 ret = ocfs2_data_lock(inode, 1);
1261 if (ret) {
1262 mlog_errno(ret);
1263 goto out_meta;
1264 }
1265
1266 handle = ocfs2_start_trans(osb, credits);
1267 if (IS_ERR(handle)) {
1268 ret = PTR_ERR(handle);
1269 mlog_errno(ret);
1270 goto out_data;
1271 }
1272
1273 written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1274 meta_ac, &wc);
1275 if (written < 0) {
1276 ret = written;
1277 mlog_errno(ret);
1278 goto out_commit;
1279 }
1280
1281 ret = ocfs2_journal_access(handle, inode, di_bh,
1282 OCFS2_JOURNAL_ACCESS_WRITE);
1283 if (ret) {
1284 mlog_errno(ret);
1285 goto out_commit;
1286 }
1287
1288 pos += written;
1289 if (pos > inode->i_size) {
1290 i_size_write(inode, pos);
1291 mark_inode_dirty(inode);
1292 }
1293 inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode)));
1294 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1295 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1296 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1297 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1298
1299 ret = ocfs2_journal_dirty(handle, di_bh);
1300 if (ret)
1301 mlog_errno(ret);
1302
1303out_commit:
1304 ocfs2_commit_trans(osb, handle);
1305
1306out_data:
1307 ocfs2_data_unlock(inode, 1);
1308
1309out_meta:
1310 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1311 ocfs2_meta_unlock(inode, 1);
1312
1313out:
1314 brelse(di_bh);
1315 if (data_ac)
1316 ocfs2_free_alloc_context(data_ac);
1317 if (meta_ac)
1318 ocfs2_free_alloc_context(meta_ac);
1319
1320 return written ? written : ret;
1321}
1322
676const struct address_space_operations ocfs2_aops = { 1323const struct address_space_operations ocfs2_aops = {
677 .readpage = ocfs2_readpage, 1324 .readpage = ocfs2_readpage,
678 .writepage = ocfs2_writepage, 1325 .writepage = ocfs2_writepage,