aboutsummaryrefslogtreecommitdiffstats
path: root/fs/ntfs/layout.h
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/ntfs/layout.h
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'fs/ntfs/layout.h')
-rw-r--r--fs/ntfs/layout.h2413
1 files changed, 2413 insertions, 0 deletions
diff --git a/fs/ntfs/layout.h b/fs/ntfs/layout.h
new file mode 100644
index 000000000000..47b338999921
--- /dev/null
+++ b/fs/ntfs/layout.h
@@ -0,0 +1,2413 @@
1/*
2 * layout.h - All NTFS associated on-disk structures. Part of the Linux-NTFS
3 * project.
4 *
5 * Copyright (c) 2001-2004 Anton Altaparmakov
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#ifndef _LINUX_NTFS_LAYOUT_H
25#define _LINUX_NTFS_LAYOUT_H
26
27#include <linux/types.h>
28#include <linux/bitops.h>
29#include <linux/list.h>
30#include <asm/byteorder.h>
31
32#include "types.h"
33
34/*
35 * Constant endianness conversion defines.
36 */
37#define const_le16_to_cpu(x) __constant_le16_to_cpu(x)
38#define const_le32_to_cpu(x) __constant_le32_to_cpu(x)
39#define const_le64_to_cpu(x) __constant_le64_to_cpu(x)
40
41#define const_cpu_to_le16(x) __constant_cpu_to_le16(x)
42#define const_cpu_to_le32(x) __constant_cpu_to_le32(x)
43#define const_cpu_to_le64(x) __constant_cpu_to_le64(x)
44
45/* The NTFS oem_id "NTFS " */
46#define magicNTFS const_cpu_to_le64(0x202020205346544eULL)
47
48/*
49 * Location of bootsector on partition:
50 * The standard NTFS_BOOT_SECTOR is on sector 0 of the partition.
51 * On NT4 and above there is one backup copy of the boot sector to
52 * be found on the last sector of the partition (not normally accessible
53 * from within Windows as the bootsector contained number of sectors
54 * value is one less than the actual value!).
55 * On versions of NT 3.51 and earlier, the backup copy was located at
56 * number of sectors/2 (integer divide), i.e. in the middle of the volume.
57 */
58
59/*
60 * BIOS parameter block (bpb) structure.
61 */
62typedef struct {
63 le16 bytes_per_sector; /* Size of a sector in bytes. */
64 u8 sectors_per_cluster; /* Size of a cluster in sectors. */
65 le16 reserved_sectors; /* zero */
66 u8 fats; /* zero */
67 le16 root_entries; /* zero */
68 le16 sectors; /* zero */
69 u8 media_type; /* 0xf8 = hard disk */
70 le16 sectors_per_fat; /* zero */
71 le16 sectors_per_track; /* irrelevant */
72 le16 heads; /* irrelevant */
73 le32 hidden_sectors; /* zero */
74 le32 large_sectors; /* zero */
75} __attribute__ ((__packed__)) BIOS_PARAMETER_BLOCK;
76
77/*
78 * NTFS boot sector structure.
79 */
80typedef struct {
81 u8 jump[3]; /* Irrelevant (jump to boot up code).*/
82 le64 oem_id; /* Magic "NTFS ". */
83 BIOS_PARAMETER_BLOCK bpb; /* See BIOS_PARAMETER_BLOCK. */
84 u8 unused[4]; /* zero, NTFS diskedit.exe states that
85 this is actually:
86 __u8 physical_drive; // 0x80
87 __u8 current_head; // zero
88 __u8 extended_boot_signature;
89 // 0x80
90 __u8 unused; // zero
91 */
92/*0x28*/sle64 number_of_sectors; /* Number of sectors in volume. Gives
93 maximum volume size of 2^63 sectors.
94 Assuming standard sector size of 512
95 bytes, the maximum byte size is
96 approx. 4.7x10^21 bytes. (-; */
97 sle64 mft_lcn; /* Cluster location of mft data. */
98 sle64 mftmirr_lcn; /* Cluster location of copy of mft. */
99 s8 clusters_per_mft_record; /* Mft record size in clusters. */
100 u8 reserved0[3]; /* zero */
101 s8 clusters_per_index_record; /* Index block size in clusters. */
102 u8 reserved1[3]; /* zero */
103 le64 volume_serial_number; /* Irrelevant (serial number). */
104 le32 checksum; /* Boot sector checksum. */
105/*0x54*/u8 bootstrap[426]; /* Irrelevant (boot up code). */
106 le16 end_of_sector_marker; /* End of bootsector magic. Always is
107 0xaa55 in little endian. */
108/* sizeof() = 512 (0x200) bytes */
109} __attribute__ ((__packed__)) NTFS_BOOT_SECTOR;
110
111/*
112 * Magic identifiers present at the beginning of all ntfs record containing
113 * records (like mft records for example).
114 */
115enum {
116 /* Found in $MFT/$DATA. */
117 magic_FILE = const_cpu_to_le32(0x454c4946), /* Mft entry. */
118 magic_INDX = const_cpu_to_le32(0x58444e49), /* Index buffer. */
119 magic_HOLE = const_cpu_to_le32(0x454c4f48), /* ? (NTFS 3.0+?) */
120
121 /* Found in $LogFile/$DATA. */
122 magic_RSTR = const_cpu_to_le32(0x52545352), /* Restart page. */
123 magic_RCRD = const_cpu_to_le32(0x44524352), /* Log record page. */
124
125 /* Found in $LogFile/$DATA. (May be found in $MFT/$DATA, also?) */
126 magic_CHKD = const_cpu_to_le32(0x424b4843), /* Modified by chkdsk. */
127
128 /* Found in all ntfs record containing records. */
129 magic_BAAD = const_cpu_to_le32(0x44414142), /* Failed multi sector
130 transfer was detected. */
131 /*
132 * Found in $LogFile/$DATA when a page is full of 0xff bytes and is
133 * thus not initialized. Page must be initialized before using it.
134 */
135 magic_empty = const_cpu_to_le32(0xffffffff) /* Record is empty. */
136};
137
138typedef le32 NTFS_RECORD_TYPE;
139
140/*
141 * Generic magic comparison macros. Finally found a use for the ## preprocessor
142 * operator! (-8
143 */
144
145static inline BOOL __ntfs_is_magic(le32 x, NTFS_RECORD_TYPE r)
146{
147 return (x == r);
148}
149#define ntfs_is_magic(x, m) __ntfs_is_magic(x, magic_##m)
150
151static inline BOOL __ntfs_is_magicp(le32 *p, NTFS_RECORD_TYPE r)
152{
153 return (*p == r);
154}
155#define ntfs_is_magicp(p, m) __ntfs_is_magicp(p, magic_##m)
156
157/*
158 * Specialised magic comparison macros for the NTFS_RECORD_TYPEs defined above.
159 */
160#define ntfs_is_file_record(x) ( ntfs_is_magic (x, FILE) )
161#define ntfs_is_file_recordp(p) ( ntfs_is_magicp(p, FILE) )
162#define ntfs_is_mft_record(x) ( ntfs_is_file_record (x) )
163#define ntfs_is_mft_recordp(p) ( ntfs_is_file_recordp(p) )
164#define ntfs_is_indx_record(x) ( ntfs_is_magic (x, INDX) )
165#define ntfs_is_indx_recordp(p) ( ntfs_is_magicp(p, INDX) )
166#define ntfs_is_hole_record(x) ( ntfs_is_magic (x, HOLE) )
167#define ntfs_is_hole_recordp(p) ( ntfs_is_magicp(p, HOLE) )
168
169#define ntfs_is_rstr_record(x) ( ntfs_is_magic (x, RSTR) )
170#define ntfs_is_rstr_recordp(p) ( ntfs_is_magicp(p, RSTR) )
171#define ntfs_is_rcrd_record(x) ( ntfs_is_magic (x, RCRD) )
172#define ntfs_is_rcrd_recordp(p) ( ntfs_is_magicp(p, RCRD) )
173
174#define ntfs_is_chkd_record(x) ( ntfs_is_magic (x, CHKD) )
175#define ntfs_is_chkd_recordp(p) ( ntfs_is_magicp(p, CHKD) )
176
177#define ntfs_is_baad_record(x) ( ntfs_is_magic (x, BAAD) )
178#define ntfs_is_baad_recordp(p) ( ntfs_is_magicp(p, BAAD) )
179
180#define ntfs_is_empty_record(x) ( ntfs_is_magic (x, empty) )
181#define ntfs_is_empty_recordp(p) ( ntfs_is_magicp(p, empty) )
182
183/*
184 * The Update Sequence Array (usa) is an array of the le16 values which belong
185 * to the end of each sector protected by the update sequence record in which
186 * this array is contained. Note that the first entry is the Update Sequence
187 * Number (usn), a cyclic counter of how many times the protected record has
188 * been written to disk. The values 0 and -1 (ie. 0xffff) are not used. All
189 * last le16's of each sector have to be equal to the usn (during reading) or
190 * are set to it (during writing). If they are not, an incomplete multi sector
191 * transfer has occurred when the data was written.
192 * The maximum size for the update sequence array is fixed to:
193 * maximum size = usa_ofs + (usa_count * 2) = 510 bytes
194 * The 510 bytes comes from the fact that the last le16 in the array has to
195 * (obviously) finish before the last le16 of the first 512-byte sector.
196 * This formula can be used as a consistency check in that usa_ofs +
197 * (usa_count * 2) has to be less than or equal to 510.
198 */
199typedef struct {
200 NTFS_RECORD_TYPE magic; /* A four-byte magic identifying the record
201 type and/or status. */
202 le16 usa_ofs; /* Offset to the Update Sequence Array (usa)
203 from the start of the ntfs record. */
204 le16 usa_count; /* Number of le16 sized entries in the usa
205 including the Update Sequence Number (usn),
206 thus the number of fixups is the usa_count
207 minus 1. */
208} __attribute__ ((__packed__)) NTFS_RECORD;
209
210/*
211 * System files mft record numbers. All these files are always marked as used
212 * in the bitmap attribute of the mft; presumably in order to avoid accidental
213 * allocation for random other mft records. Also, the sequence number for each
214 * of the system files is always equal to their mft record number and it is
215 * never modified.
216 */
217typedef enum {
218 FILE_MFT = 0, /* Master file table (mft). Data attribute
219 contains the entries and bitmap attribute
220 records which ones are in use (bit==1). */
221 FILE_MFTMirr = 1, /* Mft mirror: copy of first four mft records
222 in data attribute. If cluster size > 4kiB,
223 copy of first N mft records, with
224 N = cluster_size / mft_record_size. */
225 FILE_LogFile = 2, /* Journalling log in data attribute. */
226 FILE_Volume = 3, /* Volume name attribute and volume information
227 attribute (flags and ntfs version). Windows
228 refers to this file as volume DASD (Direct
229 Access Storage Device). */
230 FILE_AttrDef = 4, /* Array of attribute definitions in data
231 attribute. */
232 FILE_root = 5, /* Root directory. */
233 FILE_Bitmap = 6, /* Allocation bitmap of all clusters (lcns) in
234 data attribute. */
235 FILE_Boot = 7, /* Boot sector (always at cluster 0) in data
236 attribute. */
237 FILE_BadClus = 8, /* Contains all bad clusters in the non-resident
238 data attribute. */
239 FILE_Secure = 9, /* Shared security descriptors in data attribute
240 and two indexes into the descriptors.
241 Appeared in Windows 2000. Before that, this
242 file was named $Quota but was unused. */
243 FILE_UpCase = 10, /* Uppercase equivalents of all 65536 Unicode
244 characters in data attribute. */
245 FILE_Extend = 11, /* Directory containing other system files (eg.
246 $ObjId, $Quota, $Reparse and $UsnJrnl). This
247 is new to NTFS3.0. */
248 FILE_reserved12 = 12, /* Reserved for future use (records 12-15). */
249 FILE_reserved13 = 13,
250 FILE_reserved14 = 14,
251 FILE_reserved15 = 15,
252 FILE_first_user = 16, /* First user file, used as test limit for
253 whether to allow opening a file or not. */
254} NTFS_SYSTEM_FILES;
255
256/*
257 * These are the so far known MFT_RECORD_* flags (16-bit) which contain
258 * information about the mft record in which they are present.
259 */
260enum {
261 MFT_RECORD_IN_USE = const_cpu_to_le16(0x0001),
262 MFT_RECORD_IS_DIRECTORY = const_cpu_to_le16(0x0002),
263} __attribute__ ((__packed__));
264
265typedef le16 MFT_RECORD_FLAGS;
266
267/*
268 * mft references (aka file references or file record segment references) are
269 * used whenever a structure needs to refer to a record in the mft.
270 *
271 * A reference consists of a 48-bit index into the mft and a 16-bit sequence
272 * number used to detect stale references.
273 *
274 * For error reporting purposes we treat the 48-bit index as a signed quantity.
275 *
276 * The sequence number is a circular counter (skipping 0) describing how many
277 * times the referenced mft record has been (re)used. This has to match the
278 * sequence number of the mft record being referenced, otherwise the reference
279 * is considered stale and removed (FIXME: only ntfsck or the driver itself?).
280 *
281 * If the sequence number is zero it is assumed that no sequence number
282 * consistency checking should be performed.
283 *
284 * FIXME: Since inodes are 32-bit as of now, the driver needs to always check
285 * for high_part being 0 and if not either BUG(), cause a panic() or handle
286 * the situation in some other way. This shouldn't be a problem as a volume has
287 * to become HUGE in order to need more than 32-bits worth of mft records.
288 * Assuming the standard mft record size of 1kb only the records (never mind
289 * the non-resident attributes, etc.) would require 4Tb of space on their own
290 * for the first 32 bits worth of records. This is only if some strange person
291 * doesn't decide to foul play and make the mft sparse which would be a really
292 * horrible thing to do as it would trash our current driver implementation. )-:
293 * Do I hear screams "we want 64-bit inodes!" ?!? (-;
294 *
295 * FIXME: The mft zone is defined as the first 12% of the volume. This space is
296 * reserved so that the mft can grow contiguously and hence doesn't become
297 * fragmented. Volume free space includes the empty part of the mft zone and
298 * when the volume's free 88% are used up, the mft zone is shrunk by a factor
299 * of 2, thus making more space available for more files/data. This process is
300 * repeated everytime there is no more free space except for the mft zone until
301 * there really is no more free space.
302 */
303
304/*
305 * Typedef the MFT_REF as a 64-bit value for easier handling.
306 * Also define two unpacking macros to get to the reference (MREF) and
307 * sequence number (MSEQNO) respectively.
308 * The _LE versions are to be applied on little endian MFT_REFs.
309 * Note: The _LE versions will return a CPU endian formatted value!
310 */
311typedef enum {
312 MFT_REF_MASK_CPU = 0x0000ffffffffffffULL,
313 MFT_REF_MASK_LE = const_cpu_to_le64(0x0000ffffffffffffULL),
314} MFT_REF_CONSTS;
315
316typedef u64 MFT_REF;
317typedef le64 leMFT_REF;
318
319#define MK_MREF(m, s) ((MFT_REF)(((MFT_REF)(s) << 48) | \
320 ((MFT_REF)(m) & MFT_REF_MASK_CPU)))
321#define MK_LE_MREF(m, s) cpu_to_le64(MK_MREF(m, s))
322
323#define MREF(x) ((unsigned long)((x) & MFT_REF_MASK_CPU))
324#define MSEQNO(x) ((u16)(((x) >> 48) & 0xffff))
325#define MREF_LE(x) ((unsigned long)(le64_to_cpu(x) & MFT_REF_MASK_CPU))
326#define MSEQNO_LE(x) ((u16)((le64_to_cpu(x) >> 48) & 0xffff))
327
328#define IS_ERR_MREF(x) (((x) & 0x0000800000000000ULL) ? 1 : 0)
329#define ERR_MREF(x) ((u64)((s64)(x)))
330#define MREF_ERR(x) ((int)((s64)(x)))
331
332/*
333 * The mft record header present at the beginning of every record in the mft.
334 * This is followed by a sequence of variable length attribute records which
335 * is terminated by an attribute of type AT_END which is a truncated attribute
336 * in that it only consists of the attribute type code AT_END and none of the
337 * other members of the attribute structure are present.
338 */
339typedef struct {
340/*Ofs*/
341/* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */
342 NTFS_RECORD_TYPE magic; /* Usually the magic is "FILE". */
343 le16 usa_ofs; /* See NTFS_RECORD definition above. */
344 le16 usa_count; /* See NTFS_RECORD definition above. */
345
346/* 8*/ le64 lsn; /* $LogFile sequence number for this record.
347 Changed every time the record is modified. */
348/* 16*/ le16 sequence_number; /* Number of times this mft record has been
349 reused. (See description for MFT_REF
350 above.) NOTE: The increment (skipping zero)
351 is done when the file is deleted. NOTE: If
352 this is zero it is left zero. */
353/* 18*/ le16 link_count; /* Number of hard links, i.e. the number of
354 directory entries referencing this record.
355 NOTE: Only used in mft base records.
356 NOTE: When deleting a directory entry we
357 check the link_count and if it is 1 we
358 delete the file. Otherwise we delete the
359 FILE_NAME_ATTR being referenced by the
360 directory entry from the mft record and
361 decrement the link_count.
362 FIXME: Careful with Win32 + DOS names! */
363/* 20*/ le16 attrs_offset; /* Byte offset to the first attribute in this
364 mft record from the start of the mft record.
365 NOTE: Must be aligned to 8-byte boundary. */
366/* 22*/ MFT_RECORD_FLAGS flags; /* Bit array of MFT_RECORD_FLAGS. When a file
367 is deleted, the MFT_RECORD_IN_USE flag is
368 set to zero. */
369/* 24*/ le32 bytes_in_use; /* Number of bytes used in this mft record.
370 NOTE: Must be aligned to 8-byte boundary. */
371/* 28*/ le32 bytes_allocated; /* Number of bytes allocated for this mft
372 record. This should be equal to the mft
373 record size. */
374/* 32*/ leMFT_REF base_mft_record;/* This is zero for base mft records.
375 When it is not zero it is a mft reference
376 pointing to the base mft record to which
377 this record belongs (this is then used to
378 locate the attribute list attribute present
379 in the base record which describes this
380 extension record and hence might need
381 modification when the extension record
382 itself is modified, also locating the
383 attribute list also means finding the other
384 potential extents, belonging to the non-base
385 mft record). */
386/* 40*/ le16 next_attr_instance;/* The instance number that will be assigned to
387 the next attribute added to this mft record.
388 NOTE: Incremented each time after it is used.
389 NOTE: Every time the mft record is reused
390 this number is set to zero. NOTE: The first
391 instance number is always 0. */
392/* The below fields are specific to NTFS 3.1+ (Windows XP and above): */
393/* 42*/ le16 reserved; /* Reserved/alignment. */
394/* 44*/ le32 mft_record_number; /* Number of this mft record. */
395/* sizeof() = 48 bytes */
396/*
397 * When (re)using the mft record, we place the update sequence array at this
398 * offset, i.e. before we start with the attributes. This also makes sense,
399 * otherwise we could run into problems with the update sequence array
400 * containing in itself the last two bytes of a sector which would mean that
401 * multi sector transfer protection wouldn't work. As you can't protect data
402 * by overwriting it since you then can't get it back...
403 * When reading we obviously use the data from the ntfs record header.
404 */
405} __attribute__ ((__packed__)) MFT_RECORD;
406
407/* This is the version without the NTFS 3.1+ specific fields. */
408typedef struct {
409/*Ofs*/
410/* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */
411 NTFS_RECORD_TYPE magic; /* Usually the magic is "FILE". */
412 le16 usa_ofs; /* See NTFS_RECORD definition above. */
413 le16 usa_count; /* See NTFS_RECORD definition above. */
414
415/* 8*/ le64 lsn; /* $LogFile sequence number for this record.
416 Changed every time the record is modified. */
417/* 16*/ le16 sequence_number; /* Number of times this mft record has been
418 reused. (See description for MFT_REF
419 above.) NOTE: The increment (skipping zero)
420 is done when the file is deleted. NOTE: If
421 this is zero it is left zero. */
422/* 18*/ le16 link_count; /* Number of hard links, i.e. the number of
423 directory entries referencing this record.
424 NOTE: Only used in mft base records.
425 NOTE: When deleting a directory entry we
426 check the link_count and if it is 1 we
427 delete the file. Otherwise we delete the
428 FILE_NAME_ATTR being referenced by the
429 directory entry from the mft record and
430 decrement the link_count.
431 FIXME: Careful with Win32 + DOS names! */
432/* 20*/ le16 attrs_offset; /* Byte offset to the first attribute in this
433 mft record from the start of the mft record.
434 NOTE: Must be aligned to 8-byte boundary. */
435/* 22*/ MFT_RECORD_FLAGS flags; /* Bit array of MFT_RECORD_FLAGS. When a file
436 is deleted, the MFT_RECORD_IN_USE flag is
437 set to zero. */
438/* 24*/ le32 bytes_in_use; /* Number of bytes used in this mft record.
439 NOTE: Must be aligned to 8-byte boundary. */
440/* 28*/ le32 bytes_allocated; /* Number of bytes allocated for this mft
441 record. This should be equal to the mft
442 record size. */
443/* 32*/ leMFT_REF base_mft_record;/* This is zero for base mft records.
444 When it is not zero it is a mft reference
445 pointing to the base mft record to which
446 this record belongs (this is then used to
447 locate the attribute list attribute present
448 in the base record which describes this
449 extension record and hence might need
450 modification when the extension record
451 itself is modified, also locating the
452 attribute list also means finding the other
453 potential extents, belonging to the non-base
454 mft record). */
455/* 40*/ le16 next_attr_instance;/* The instance number that will be assigned to
456 the next attribute added to this mft record.
457 NOTE: Incremented each time after it is used.
458 NOTE: Every time the mft record is reused
459 this number is set to zero. NOTE: The first
460 instance number is always 0. */
461/* sizeof() = 42 bytes */
462/*
463 * When (re)using the mft record, we place the update sequence array at this
464 * offset, i.e. before we start with the attributes. This also makes sense,
465 * otherwise we could run into problems with the update sequence array
466 * containing in itself the last two bytes of a sector which would mean that
467 * multi sector transfer protection wouldn't work. As you can't protect data
468 * by overwriting it since you then can't get it back...
469 * When reading we obviously use the data from the ntfs record header.
470 */
471} __attribute__ ((__packed__)) MFT_RECORD_OLD;
472
473/*
474 * System defined attributes (32-bit). Each attribute type has a corresponding
475 * attribute name (Unicode string of maximum 64 character length) as described
476 * by the attribute definitions present in the data attribute of the $AttrDef
477 * system file. On NTFS 3.0 volumes the names are just as the types are named
478 * in the below defines exchanging AT_ for the dollar sign ($). If that is not
479 * a revealing choice of symbol I do not know what is... (-;
480 */
481enum {
482 AT_UNUSED = const_cpu_to_le32( 0),
483 AT_STANDARD_INFORMATION = const_cpu_to_le32( 0x10),
484 AT_ATTRIBUTE_LIST = const_cpu_to_le32( 0x20),
485 AT_FILE_NAME = const_cpu_to_le32( 0x30),
486 AT_OBJECT_ID = const_cpu_to_le32( 0x40),
487 AT_SECURITY_DESCRIPTOR = const_cpu_to_le32( 0x50),
488 AT_VOLUME_NAME = const_cpu_to_le32( 0x60),
489 AT_VOLUME_INFORMATION = const_cpu_to_le32( 0x70),
490 AT_DATA = const_cpu_to_le32( 0x80),
491 AT_INDEX_ROOT = const_cpu_to_le32( 0x90),
492 AT_INDEX_ALLOCATION = const_cpu_to_le32( 0xa0),
493 AT_BITMAP = const_cpu_to_le32( 0xb0),
494 AT_REPARSE_POINT = const_cpu_to_le32( 0xc0),
495 AT_EA_INFORMATION = const_cpu_to_le32( 0xd0),
496 AT_EA = const_cpu_to_le32( 0xe0),
497 AT_PROPERTY_SET = const_cpu_to_le32( 0xf0),
498 AT_LOGGED_UTILITY_STREAM = const_cpu_to_le32( 0x100),
499 AT_FIRST_USER_DEFINED_ATTRIBUTE = const_cpu_to_le32( 0x1000),
500 AT_END = const_cpu_to_le32(0xffffffff)
501};
502
503typedef le32 ATTR_TYPE;
504
505/*
506 * The collation rules for sorting views/indexes/etc (32-bit).
507 *
508 * COLLATION_BINARY - Collate by binary compare where the first byte is most
509 * significant.
510 * COLLATION_UNICODE_STRING - Collate Unicode strings by comparing their binary
511 * Unicode values, except that when a character can be uppercased, the
512 * upper case value collates before the lower case one.
513 * COLLATION_FILE_NAME - Collate file names as Unicode strings. The collation
514 * is done very much like COLLATION_UNICODE_STRING. In fact I have no idea
515 * what the difference is. Perhaps the difference is that file names
516 * would treat some special characters in an odd way (see
517 * unistr.c::ntfs_collate_names() and unistr.c::legal_ansi_char_array[]
518 * for what I mean but COLLATION_UNICODE_STRING would not give any special
519 * treatment to any characters at all, but this is speculation.
520 * COLLATION_NTOFS_ULONG - Sorting is done according to ascending le32 key
521 * values. E.g. used for $SII index in FILE_Secure, which sorts by
522 * security_id (le32).
523 * COLLATION_NTOFS_SID - Sorting is done according to ascending SID values.
524 * E.g. used for $O index in FILE_Extend/$Quota.
525 * COLLATION_NTOFS_SECURITY_HASH - Sorting is done first by ascending hash
526 * values and second by ascending security_id values. E.g. used for $SDH
527 * index in FILE_Secure.
528 * COLLATION_NTOFS_ULONGS - Sorting is done according to a sequence of ascending
529 * le32 key values. E.g. used for $O index in FILE_Extend/$ObjId, which
530 * sorts by object_id (16-byte), by splitting up the object_id in four
531 * le32 values and using them as individual keys. E.g. take the following
532 * two security_ids, stored as follows on disk:
533 * 1st: a1 61 65 b7 65 7b d4 11 9e 3d 00 e0 81 10 42 59
534 * 2nd: 38 14 37 d2 d2 f3 d4 11 a5 21 c8 6b 79 b1 97 45
535 * To compare them, they are split into four le32 values each, like so:
536 * 1st: 0xb76561a1 0x11d47b65 0xe0003d9e 0x59421081
537 * 2nd: 0xd2371438 0x11d4f3d2 0x6bc821a5 0x4597b179
538 * Now, it is apparent why the 2nd object_id collates after the 1st: the
539 * first le32 value of the 1st object_id is less than the first le32 of
540 * the 2nd object_id. If the first le32 values of both object_ids were
541 * equal then the second le32 values would be compared, etc.
542 */
543enum {
544 COLLATION_BINARY = const_cpu_to_le32(0x00),
545 COLLATION_FILE_NAME = const_cpu_to_le32(0x01),
546 COLLATION_UNICODE_STRING = const_cpu_to_le32(0x02),
547 COLLATION_NTOFS_ULONG = const_cpu_to_le32(0x10),
548 COLLATION_NTOFS_SID = const_cpu_to_le32(0x11),
549 COLLATION_NTOFS_SECURITY_HASH = const_cpu_to_le32(0x12),
550 COLLATION_NTOFS_ULONGS = const_cpu_to_le32(0x13)
551};
552
553typedef le32 COLLATION_RULE;
554
555/*
556 * The flags (32-bit) describing attribute properties in the attribute
557 * definition structure. FIXME: This information is from Regis's information
558 * and, according to him, it is not certain and probably incomplete.
559 * The INDEXABLE flag is fairly certainly correct as only the file name
560 * attribute has this flag set and this is the only attribute indexed in NT4.
561 */
562enum {
563 INDEXABLE = const_cpu_to_le32(0x02), /* Attribute can be
564 indexed. */
565 NEED_TO_REGENERATE = const_cpu_to_le32(0x40), /* Need to regenerate
566 during regeneration
567 phase. */
568 CAN_BE_NON_RESIDENT = const_cpu_to_le32(0x80), /* Attribute can be
569 non-resident. */
570};
571
572typedef le32 ATTR_DEF_FLAGS;
573
574/*
575 * The data attribute of FILE_AttrDef contains a sequence of attribute
576 * definitions for the NTFS volume. With this, it is supposed to be safe for an
577 * older NTFS driver to mount a volume containing a newer NTFS version without
578 * damaging it (that's the theory. In practice it's: not damaging it too much).
579 * Entries are sorted by attribute type. The flags describe whether the
580 * attribute can be resident/non-resident and possibly other things, but the
581 * actual bits are unknown.
582 */
583typedef struct {
584/*hex ofs*/
585/* 0*/ ntfschar name[0x40]; /* Unicode name of the attribute. Zero
586 terminated. */
587/* 80*/ ATTR_TYPE type; /* Type of the attribute. */
588/* 84*/ le32 display_rule; /* Default display rule.
589 FIXME: What does it mean? (AIA) */
590/* 88*/ COLLATION_RULE collation_rule; /* Default collation rule. */
591/* 8c*/ ATTR_DEF_FLAGS flags; /* Flags describing the attribute. */
592/* 90*/ sle64 min_size; /* Optional minimum attribute size. */
593/* 98*/ sle64 max_size; /* Maximum size of attribute. */
594/* sizeof() = 0xa0 or 160 bytes */
595} __attribute__ ((__packed__)) ATTR_DEF;
596
597/*
598 * Attribute flags (16-bit).
599 */
600enum {
601 ATTR_IS_COMPRESSED = const_cpu_to_le16(0x0001),
602 ATTR_COMPRESSION_MASK = const_cpu_to_le16(0x00ff), /* Compression method
603 mask. Also, first
604 illegal value. */
605 ATTR_IS_ENCRYPTED = const_cpu_to_le16(0x4000),
606 ATTR_IS_SPARSE = const_cpu_to_le16(0x8000),
607} __attribute__ ((__packed__));
608
609typedef le16 ATTR_FLAGS;
610
611/*
612 * Attribute compression.
613 *
614 * Only the data attribute is ever compressed in the current ntfs driver in
615 * Windows. Further, compression is only applied when the data attribute is
616 * non-resident. Finally, to use compression, the maximum allowed cluster size
617 * on a volume is 4kib.
618 *
619 * The compression method is based on independently compressing blocks of X
620 * clusters, where X is determined from the compression_unit value found in the
621 * non-resident attribute record header (more precisely: X = 2^compression_unit
622 * clusters). On Windows NT/2k, X always is 16 clusters (compression_unit = 4).
623 *
624 * There are three different cases of how a compression block of X clusters
625 * can be stored:
626 *
627 * 1) The data in the block is all zero (a sparse block):
628 * This is stored as a sparse block in the runlist, i.e. the runlist
629 * entry has length = X and lcn = -1. The mapping pairs array actually
630 * uses a delta_lcn value length of 0, i.e. delta_lcn is not present at
631 * all, which is then interpreted by the driver as lcn = -1.
632 * NOTE: Even uncompressed files can be sparse on NTFS 3.0 volumes, then
633 * the same principles apply as above, except that the length is not
634 * restricted to being any particular value.
635 *
636 * 2) The data in the block is not compressed:
637 * This happens when compression doesn't reduce the size of the block
638 * in clusters. I.e. if compression has a small effect so that the
639 * compressed data still occupies X clusters, then the uncompressed data
640 * is stored in the block.
641 * This case is recognised by the fact that the runlist entry has
642 * length = X and lcn >= 0. The mapping pairs array stores this as
643 * normal with a run length of X and some specific delta_lcn, i.e.
644 * delta_lcn has to be present.
645 *
646 * 3) The data in the block is compressed:
647 * The common case. This case is recognised by the fact that the run
648 * list entry has length L < X and lcn >= 0. The mapping pairs array
649 * stores this as normal with a run length of X and some specific
650 * delta_lcn, i.e. delta_lcn has to be present. This runlist entry is
651 * immediately followed by a sparse entry with length = X - L and
652 * lcn = -1. The latter entry is to make up the vcn counting to the
653 * full compression block size X.
654 *
655 * In fact, life is more complicated because adjacent entries of the same type
656 * can be coalesced. This means that one has to keep track of the number of
657 * clusters handled and work on a basis of X clusters at a time being one
658 * block. An example: if length L > X this means that this particular runlist
659 * entry contains a block of length X and part of one or more blocks of length
660 * L - X. Another example: if length L < X, this does not necessarily mean that
661 * the block is compressed as it might be that the lcn changes inside the block
662 * and hence the following runlist entry describes the continuation of the
663 * potentially compressed block. The block would be compressed if the
664 * following runlist entry describes at least X - L sparse clusters, thus
665 * making up the compression block length as described in point 3 above. (Of
666 * course, there can be several runlist entries with small lengths so that the
667 * sparse entry does not follow the first data containing entry with
668 * length < X.)
669 *
670 * NOTE: At the end of the compressed attribute value, there most likely is not
671 * just the right amount of data to make up a compression block, thus this data
672 * is not even attempted to be compressed. It is just stored as is, unless
673 * the number of clusters it occupies is reduced when compressed in which case
674 * it is stored as a compressed compression block, complete with sparse
675 * clusters at the end.
676 */
677
678/*
679 * Flags of resident attributes (8-bit).
680 */
681enum {
682 RESIDENT_ATTR_IS_INDEXED = 0x01, /* Attribute is referenced in an index
683 (has implications for deleting and
684 modifying the attribute). */
685} __attribute__ ((__packed__));
686
687typedef u8 RESIDENT_ATTR_FLAGS;
688
689/*
690 * Attribute record header. Always aligned to 8-byte boundary.
691 */
692typedef struct {
693/*Ofs*/
694/* 0*/ ATTR_TYPE type; /* The (32-bit) type of the attribute. */
695/* 4*/ le32 length; /* Byte size of the resident part of the
696 attribute (aligned to 8-byte boundary).
697 Used to get to the next attribute. */
698/* 8*/ u8 non_resident; /* If 0, attribute is resident.
699 If 1, attribute is non-resident. */
700/* 9*/ u8 name_length; /* Unicode character size of name of attribute.
701 0 if unnamed. */
702/* 10*/ le16 name_offset; /* If name_length != 0, the byte offset to the
703 beginning of the name from the attribute
704 record. Note that the name is stored as a
705 Unicode string. When creating, place offset
706 just at the end of the record header. Then,
707 follow with attribute value or mapping pairs
708 array, resident and non-resident attributes
709 respectively, aligning to an 8-byte
710 boundary. */
711/* 12*/ ATTR_FLAGS flags; /* Flags describing the attribute. */
712/* 14*/ le16 instance; /* The instance of this attribute record. This
713 number is unique within this mft record (see
714 MFT_RECORD/next_attribute_instance notes in
715 in mft.h for more details). */
716/* 16*/ union {
717 /* Resident attributes. */
718 struct {
719/* 16 */ le32 value_length;/* Byte size of attribute value. */
720/* 20 */ le16 value_offset;/* Byte offset of the attribute
721 value from the start of the
722 attribute record. When creating,
723 align to 8-byte boundary if we
724 have a name present as this might
725 not have a length of a multiple
726 of 8-bytes. */
727/* 22 */ RESIDENT_ATTR_FLAGS flags; /* See above. */
728/* 23 */ s8 reserved; /* Reserved/alignment to 8-byte
729 boundary. */
730 } __attribute__ ((__packed__)) resident;
731 /* Non-resident attributes. */
732 struct {
733/* 16*/ leVCN lowest_vcn;/* Lowest valid virtual cluster number
734 for this portion of the attribute value or
735 0 if this is the only extent (usually the
736 case). - Only when an attribute list is used
737 does lowest_vcn != 0 ever occur. */
738/* 24*/ leVCN highest_vcn;/* Highest valid vcn of this extent of
739 the attribute value. - Usually there is only one
740 portion, so this usually equals the attribute
741 value size in clusters minus 1. Can be -1 for
742 zero length files. Can be 0 for "single extent"
743 attributes. */
744/* 32*/ le16 mapping_pairs_offset; /* Byte offset from the
745 beginning of the structure to the mapping pairs
746 array which contains the mappings between the
747 vcns and the logical cluster numbers (lcns).
748 When creating, place this at the end of this
749 record header aligned to 8-byte boundary. */
750/* 34*/ u8 compression_unit; /* The compression unit expressed
751 as the log to the base 2 of the number of
752 clusters in a compression unit. 0 means not
753 compressed. (This effectively limits the
754 compression unit size to be a power of two
755 clusters.) WinNT4 only uses a value of 4. */
756/* 35*/ u8 reserved[5]; /* Align to 8-byte boundary. */
757/* The sizes below are only used when lowest_vcn is zero, as otherwise it would
758 be difficult to keep them up-to-date.*/
759/* 40*/ sle64 allocated_size; /* Byte size of disk space
760 allocated to hold the attribute value. Always
761 is a multiple of the cluster size. When a file
762 is compressed, this field is a multiple of the
763 compression block size (2^compression_unit) and
764 it represents the logically allocated space
765 rather than the actual on disk usage. For this
766 use the compressed_size (see below). */
767/* 48*/ sle64 data_size; /* Byte size of the attribute
768 value. Can be larger than allocated_size if
769 attribute value is compressed or sparse. */
770/* 56*/ sle64 initialized_size; /* Byte size of initialized
771 portion of the attribute value. Usually equals
772 data_size. */
773/* sizeof(uncompressed attr) = 64*/
774/* 64*/ sle64 compressed_size; /* Byte size of the attribute
775 value after compression. Only present when
776 compressed. Always is a multiple of the
777 cluster size. Represents the actual amount of
778 disk space being used on the disk. */
779/* sizeof(compressed attr) = 72*/
780 } __attribute__ ((__packed__)) non_resident;
781 } __attribute__ ((__packed__)) data;
782} __attribute__ ((__packed__)) ATTR_RECORD;
783
784typedef ATTR_RECORD ATTR_REC;
785
786/*
787 * File attribute flags (32-bit).
788 */
789enum {
790 /*
791 * The following flags are only present in the STANDARD_INFORMATION
792 * attribute (in the field file_attributes).
793 */
794 FILE_ATTR_READONLY = const_cpu_to_le32(0x00000001),
795 FILE_ATTR_HIDDEN = const_cpu_to_le32(0x00000002),
796 FILE_ATTR_SYSTEM = const_cpu_to_le32(0x00000004),
797 /* Old DOS volid. Unused in NT. = const_cpu_to_le32(0x00000008), */
798
799 FILE_ATTR_DIRECTORY = const_cpu_to_le32(0x00000010),
800 /* Note, FILE_ATTR_DIRECTORY is not considered valid in NT. It is
801 reserved for the DOS SUBDIRECTORY flag. */
802 FILE_ATTR_ARCHIVE = const_cpu_to_le32(0x00000020),
803 FILE_ATTR_DEVICE = const_cpu_to_le32(0x00000040),
804 FILE_ATTR_NORMAL = const_cpu_to_le32(0x00000080),
805
806 FILE_ATTR_TEMPORARY = const_cpu_to_le32(0x00000100),
807 FILE_ATTR_SPARSE_FILE = const_cpu_to_le32(0x00000200),
808 FILE_ATTR_REPARSE_POINT = const_cpu_to_le32(0x00000400),
809 FILE_ATTR_COMPRESSED = const_cpu_to_le32(0x00000800),
810
811 FILE_ATTR_OFFLINE = const_cpu_to_le32(0x00001000),
812 FILE_ATTR_NOT_CONTENT_INDEXED = const_cpu_to_le32(0x00002000),
813 FILE_ATTR_ENCRYPTED = const_cpu_to_le32(0x00004000),
814
815 FILE_ATTR_VALID_FLAGS = const_cpu_to_le32(0x00007fb7),
816 /* Note, FILE_ATTR_VALID_FLAGS masks out the old DOS VolId and the
817 FILE_ATTR_DEVICE and preserves everything else. This mask is used
818 to obtain all flags that are valid for reading. */
819 FILE_ATTR_VALID_SET_FLAGS = const_cpu_to_le32(0x000031a7),
820 /* Note, FILE_ATTR_VALID_SET_FLAGS masks out the old DOS VolId, the
821 F_A_DEVICE, F_A_DIRECTORY, F_A_SPARSE_FILE, F_A_REPARSE_POINT,
822 F_A_COMPRESSED, and F_A_ENCRYPTED and preserves the rest. This mask
823 is used to to obtain all flags that are valid for setting. */
824
825 /*
826 * The following flags are only present in the FILE_NAME attribute (in
827 * the field file_attributes).
828 */
829 FILE_ATTR_DUP_FILE_NAME_INDEX_PRESENT = const_cpu_to_le32(0x10000000),
830 /* Note, this is a copy of the corresponding bit from the mft record,
831 telling us whether this is a directory or not, i.e. whether it has
832 an index root attribute or not. */
833 FILE_ATTR_DUP_VIEW_INDEX_PRESENT = const_cpu_to_le32(0x20000000),
834 /* Note, this is a copy of the corresponding bit from the mft record,
835 telling us whether this file has a view index present (eg. object id
836 index, quota index, one of the security indexes or the encrypting
837 file system related indexes). */
838};
839
840typedef le32 FILE_ATTR_FLAGS;
841
842/*
843 * NOTE on times in NTFS: All times are in MS standard time format, i.e. they
844 * are the number of 100-nanosecond intervals since 1st January 1601, 00:00:00
845 * universal coordinated time (UTC). (In Linux time starts 1st January 1970,
846 * 00:00:00 UTC and is stored as the number of 1-second intervals since then.)
847 */
848
849/*
850 * Attribute: Standard information (0x10).
851 *
852 * NOTE: Always resident.
853 * NOTE: Present in all base file records on a volume.
854 * NOTE: There is conflicting information about the meaning of each of the time
855 * fields but the meaning as defined below has been verified to be
856 * correct by practical experimentation on Windows NT4 SP6a and is hence
857 * assumed to be the one and only correct interpretation.
858 */
859typedef struct {
860/*Ofs*/
861/* 0*/ sle64 creation_time; /* Time file was created. Updated when
862 a filename is changed(?). */
863/* 8*/ sle64 last_data_change_time; /* Time the data attribute was last
864 modified. */
865/* 16*/ sle64 last_mft_change_time; /* Time this mft record was last
866 modified. */
867/* 24*/ sle64 last_access_time; /* Approximate time when the file was
868 last accessed (obviously this is not
869 updated on read-only volumes). In
870 Windows this is only updated when
871 accessed if some time delta has
872 passed since the last update. Also,
873 last access times updates can be
874 disabled altogether for speed. */
875/* 32*/ FILE_ATTR_FLAGS file_attributes; /* Flags describing the file. */
876/* 36*/ union {
877 /* NTFS 1.2 */
878 struct {
879 /* 36*/ u8 reserved12[12]; /* Reserved/alignment to 8-byte
880 boundary. */
881 } __attribute__ ((__packed__)) v1;
882 /* sizeof() = 48 bytes */
883 /* NTFS 3.x */
884 struct {
885/*
886 * If a volume has been upgraded from a previous NTFS version, then these
887 * fields are present only if the file has been accessed since the upgrade.
888 * Recognize the difference by comparing the length of the resident attribute
889 * value. If it is 48, then the following fields are missing. If it is 72 then
890 * the fields are present. Maybe just check like this:
891 * if (resident.ValueLength < sizeof(STANDARD_INFORMATION)) {
892 * Assume NTFS 1.2- format.
893 * If (volume version is 3.x)
894 * Upgrade attribute to NTFS 3.x format.
895 * else
896 * Use NTFS 1.2- format for access.
897 * } else
898 * Use NTFS 3.x format for access.
899 * Only problem is that it might be legal to set the length of the value to
900 * arbitrarily large values thus spoiling this check. - But chkdsk probably
901 * views that as a corruption, assuming that it behaves like this for all
902 * attributes.
903 */
904 /* 36*/ le32 maximum_versions; /* Maximum allowed versions for
905 file. Zero if version numbering is disabled. */
906 /* 40*/ le32 version_number; /* This file's version (if any).
907 Set to zero if maximum_versions is zero. */
908 /* 44*/ le32 class_id; /* Class id from bidirectional
909 class id index (?). */
910 /* 48*/ le32 owner_id; /* Owner_id of the user owning
911 the file. Translate via $Q index in FILE_Extend
912 /$Quota to the quota control entry for the user
913 owning the file. Zero if quotas are disabled. */
914 /* 52*/ le32 security_id; /* Security_id for the file.
915 Translate via $SII index and $SDS data stream
916 in FILE_Secure to the security descriptor. */
917 /* 56*/ le64 quota_charged; /* Byte size of the charge to
918 the quota for all streams of the file. Note: Is
919 zero if quotas are disabled. */
920 /* 64*/ le64 usn; /* Last update sequence number
921 of the file. This is a direct index into the
922 change (aka usn) journal file. It is zero if
923 the usn journal is disabled.
924 NOTE: To disable the journal need to delete
925 the journal file itself and to then walk the
926 whole mft and set all Usn entries in all mft
927 records to zero! (This can take a while!)
928 The journal is FILE_Extend/$UsnJrnl. Win2k
929 will recreate the journal and initiate
930 logging if necessary when mounting the
931 partition. This, in contrast to disabling the
932 journal is a very fast process, so the user
933 won't even notice it. */
934 } __attribute__ ((__packed__)) v3;
935 /* sizeof() = 72 bytes (NTFS 3.x) */
936 } __attribute__ ((__packed__)) ver;
937} __attribute__ ((__packed__)) STANDARD_INFORMATION;
938
939/*
940 * Attribute: Attribute list (0x20).
941 *
942 * - Can be either resident or non-resident.
943 * - Value consists of a sequence of variable length, 8-byte aligned,
944 * ATTR_LIST_ENTRY records.
945 * - The list is not terminated by anything at all! The only way to know when
946 * the end is reached is to keep track of the current offset and compare it to
947 * the attribute value size.
948 * - The attribute list attribute contains one entry for each attribute of
949 * the file in which the list is located, except for the list attribute
950 * itself. The list is sorted: first by attribute type, second by attribute
951 * name (if present), third by instance number. The extents of one
952 * non-resident attribute (if present) immediately follow after the initial
953 * extent. They are ordered by lowest_vcn and have their instace set to zero.
954 * It is not allowed to have two attributes with all sorting keys equal.
955 * - Further restrictions:
956 * - If not resident, the vcn to lcn mapping array has to fit inside the
957 * base mft record.
958 * - The attribute list attribute value has a maximum size of 256kb. This
959 * is imposed by the Windows cache manager.
960 * - Attribute lists are only used when the attributes of mft record do not
961 * fit inside the mft record despite all attributes (that can be made
962 * non-resident) having been made non-resident. This can happen e.g. when:
963 * - File has a large number of hard links (lots of file name
964 * attributes present).
965 * - The mapping pairs array of some non-resident attribute becomes so
966 * large due to fragmentation that it overflows the mft record.
967 * - The security descriptor is very complex (not applicable to
968 * NTFS 3.0 volumes).
969 * - There are many named streams.
970 */
971typedef struct {
972/*Ofs*/
973/* 0*/ ATTR_TYPE type; /* Type of referenced attribute. */
974/* 4*/ le16 length; /* Byte size of this entry (8-byte aligned). */
975/* 6*/ u8 name_length; /* Size in Unicode chars of the name of the
976 attribute or 0 if unnamed. */
977/* 7*/ u8 name_offset; /* Byte offset to beginning of attribute name
978 (always set this to where the name would
979 start even if unnamed). */
980/* 8*/ leVCN lowest_vcn; /* Lowest virtual cluster number of this portion
981 of the attribute value. This is usually 0. It
982 is non-zero for the case where one attribute
983 does not fit into one mft record and thus
984 several mft records are allocated to hold
985 this attribute. In the latter case, each mft
986 record holds one extent of the attribute and
987 there is one attribute list entry for each
988 extent. NOTE: This is DEFINITELY a signed
989 value! The windows driver uses cmp, followed
990 by jg when comparing this, thus it treats it
991 as signed. */
992/* 16*/ leMFT_REF mft_reference;/* The reference of the mft record holding
993 the ATTR_RECORD for this portion of the
994 attribute value. */
995/* 24*/ le16 instance; /* If lowest_vcn = 0, the instance of the
996 attribute being referenced; otherwise 0. */
997/* 26*/ ntfschar name[0]; /* Use when creating only. When reading use
998 name_offset to determine the location of the
999 name. */
1000/* sizeof() = 26 + (attribute_name_length * 2) bytes */
1001} __attribute__ ((__packed__)) ATTR_LIST_ENTRY;
1002
1003/*
1004 * The maximum allowed length for a file name.
1005 */
1006#define MAXIMUM_FILE_NAME_LENGTH 255
1007
1008/*
1009 * Possible namespaces for filenames in ntfs (8-bit).
1010 */
1011enum {
1012 FILE_NAME_POSIX = 0x00,
1013 /* This is the largest namespace. It is case sensitive and allows all
1014 Unicode characters except for: '\0' and '/'. Beware that in
1015 WinNT/2k files which eg have the same name except for their case
1016 will not be distinguished by the standard utilities and thus a "del
1017 filename" will delete both "filename" and "fileName" without
1018 warning. */
1019 FILE_NAME_WIN32 = 0x01,
1020 /* The standard WinNT/2k NTFS long filenames. Case insensitive. All
1021 Unicode chars except: '\0', '"', '*', '/', ':', '<', '>', '?', '\',
1022 and '|'. Further, names cannot end with a '.' or a space. */
1023 FILE_NAME_DOS = 0x02,
1024 /* The standard DOS filenames (8.3 format). Uppercase only. All 8-bit
1025 characters greater space, except: '"', '*', '+', ',', '/', ':', ';',
1026 '<', '=', '>', '?', and '\'. */
1027 FILE_NAME_WIN32_AND_DOS = 0x03,
1028 /* 3 means that both the Win32 and the DOS filenames are identical and
1029 hence have been saved in this single filename record. */
1030} __attribute__ ((__packed__));
1031
1032typedef u8 FILE_NAME_TYPE_FLAGS;
1033
1034/*
1035 * Attribute: Filename (0x30).
1036 *
1037 * NOTE: Always resident.
1038 * NOTE: All fields, except the parent_directory, are only updated when the
1039 * filename is changed. Until then, they just become out of sync with
1040 * reality and the more up to date values are present in the standard
1041 * information attribute.
1042 * NOTE: There is conflicting information about the meaning of each of the time
1043 * fields but the meaning as defined below has been verified to be
1044 * correct by practical experimentation on Windows NT4 SP6a and is hence
1045 * assumed to be the one and only correct interpretation.
1046 */
1047typedef struct {
1048/*hex ofs*/
1049/* 0*/ leMFT_REF parent_directory; /* Directory this filename is
1050 referenced from. */
1051/* 8*/ sle64 creation_time; /* Time file was created. */
1052/* 10*/ sle64 last_data_change_time; /* Time the data attribute was last
1053 modified. */
1054/* 18*/ sle64 last_mft_change_time; /* Time this mft record was last
1055 modified. */
1056/* 20*/ sle64 last_access_time; /* Time this mft record was last
1057 accessed. */
1058/* 28*/ sle64 allocated_size; /* Byte size of allocated space for the
1059 data attribute. NOTE: Is a multiple
1060 of the cluster size. */
1061/* 30*/ sle64 data_size; /* Byte size of actual data in data
1062 attribute. */
1063/* 38*/ FILE_ATTR_FLAGS file_attributes; /* Flags describing the file. */
1064/* 3c*/ union {
1065 /* 3c*/ struct {
1066 /* 3c*/ le16 packed_ea_size; /* Size of the buffer needed to
1067 pack the extended attributes
1068 (EAs), if such are present.*/
1069 /* 3e*/ le16 reserved; /* Reserved for alignment. */
1070 } __attribute__ ((__packed__)) ea;
1071 /* 3c*/ struct {
1072 /* 3c*/ le32 reparse_point_tag; /* Type of reparse point,
1073 present only in reparse
1074 points and only if there are
1075 no EAs. */
1076 } __attribute__ ((__packed__)) rp;
1077 } __attribute__ ((__packed__)) type;
1078/* 40*/ u8 file_name_length; /* Length of file name in
1079 (Unicode) characters. */
1080/* 41*/ FILE_NAME_TYPE_FLAGS file_name_type; /* Namespace of the file name.*/
1081/* 42*/ ntfschar file_name[0]; /* File name in Unicode. */
1082} __attribute__ ((__packed__)) FILE_NAME_ATTR;
1083
1084/*
1085 * GUID structures store globally unique identifiers (GUID). A GUID is a
1086 * 128-bit value consisting of one group of eight hexadecimal digits, followed
1087 * by three groups of four hexadecimal digits each, followed by one group of
1088 * twelve hexadecimal digits. GUIDs are Microsoft's implementation of the
1089 * distributed computing environment (DCE) universally unique identifier (UUID).
1090 * Example of a GUID:
1091 * 1F010768-5A73-BC91-0010A52216A7
1092 */
1093typedef struct {
1094 le32 data1; /* The first eight hexadecimal digits of the GUID. */
1095 le16 data2; /* The first group of four hexadecimal digits. */
1096 le16 data3; /* The second group of four hexadecimal digits. */
1097 u8 data4[8]; /* The first two bytes are the third group of four
1098 hexadecimal digits. The remaining six bytes are the
1099 final 12 hexadecimal digits. */
1100} __attribute__ ((__packed__)) GUID;
1101
1102/*
1103 * FILE_Extend/$ObjId contains an index named $O. This index contains all
1104 * object_ids present on the volume as the index keys and the corresponding
1105 * mft_record numbers as the index entry data parts. The data part (defined
1106 * below) also contains three other object_ids:
1107 * birth_volume_id - object_id of FILE_Volume on which the file was first
1108 * created. Optional (i.e. can be zero).
1109 * birth_object_id - object_id of file when it was first created. Usually
1110 * equals the object_id. Optional (i.e. can be zero).
1111 * domain_id - Reserved (always zero).
1112 */
1113typedef struct {
1114 leMFT_REF mft_reference;/* Mft record containing the object_id in
1115 the index entry key. */
1116 union {
1117 struct {
1118 GUID birth_volume_id;
1119 GUID birth_object_id;
1120 GUID domain_id;
1121 } __attribute__ ((__packed__)) origin;
1122 u8 extended_info[48];
1123 } __attribute__ ((__packed__)) opt;
1124} __attribute__ ((__packed__)) OBJ_ID_INDEX_DATA;
1125
1126/*
1127 * Attribute: Object id (NTFS 3.0+) (0x40).
1128 *
1129 * NOTE: Always resident.
1130 */
1131typedef struct {
1132 GUID object_id; /* Unique id assigned to the
1133 file.*/
1134 /* The following fields are optional. The attribute value size is 16
1135 bytes, i.e. sizeof(GUID), if these are not present at all. Note,
1136 the entries can be present but one or more (or all) can be zero
1137 meaning that that particular value(s) is(are) not defined. */
1138 union {
1139 struct {
1140 GUID birth_volume_id; /* Unique id of volume on which
1141 the file was first created.*/
1142 GUID birth_object_id; /* Unique id of file when it was
1143 first created. */
1144 GUID domain_id; /* Reserved, zero. */
1145 } __attribute__ ((__packed__)) origin;
1146 u8 extended_info[48];
1147 } __attribute__ ((__packed__)) opt;
1148} __attribute__ ((__packed__)) OBJECT_ID_ATTR;
1149
1150/*
1151 * The pre-defined IDENTIFIER_AUTHORITIES used as SID_IDENTIFIER_AUTHORITY in
1152 * the SID structure (see below).
1153 */
1154//typedef enum { /* SID string prefix. */
1155// SECURITY_NULL_SID_AUTHORITY = {0, 0, 0, 0, 0, 0}, /* S-1-0 */
1156// SECURITY_WORLD_SID_AUTHORITY = {0, 0, 0, 0, 0, 1}, /* S-1-1 */
1157// SECURITY_LOCAL_SID_AUTHORITY = {0, 0, 0, 0, 0, 2}, /* S-1-2 */
1158// SECURITY_CREATOR_SID_AUTHORITY = {0, 0, 0, 0, 0, 3}, /* S-1-3 */
1159// SECURITY_NON_UNIQUE_AUTHORITY = {0, 0, 0, 0, 0, 4}, /* S-1-4 */
1160// SECURITY_NT_SID_AUTHORITY = {0, 0, 0, 0, 0, 5}, /* S-1-5 */
1161//} IDENTIFIER_AUTHORITIES;
1162
1163/*
1164 * These relative identifiers (RIDs) are used with the above identifier
1165 * authorities to make up universal well-known SIDs.
1166 *
1167 * Note: The relative identifier (RID) refers to the portion of a SID, which
1168 * identifies a user or group in relation to the authority that issued the SID.
1169 * For example, the universal well-known SID Creator Owner ID (S-1-3-0) is
1170 * made up of the identifier authority SECURITY_CREATOR_SID_AUTHORITY (3) and
1171 * the relative identifier SECURITY_CREATOR_OWNER_RID (0).
1172 */
1173typedef enum { /* Identifier authority. */
1174 SECURITY_NULL_RID = 0, /* S-1-0 */
1175 SECURITY_WORLD_RID = 0, /* S-1-1 */
1176 SECURITY_LOCAL_RID = 0, /* S-1-2 */
1177
1178 SECURITY_CREATOR_OWNER_RID = 0, /* S-1-3 */
1179 SECURITY_CREATOR_GROUP_RID = 1, /* S-1-3 */
1180
1181 SECURITY_CREATOR_OWNER_SERVER_RID = 2, /* S-1-3 */
1182 SECURITY_CREATOR_GROUP_SERVER_RID = 3, /* S-1-3 */
1183
1184 SECURITY_DIALUP_RID = 1,
1185 SECURITY_NETWORK_RID = 2,
1186 SECURITY_BATCH_RID = 3,
1187 SECURITY_INTERACTIVE_RID = 4,
1188 SECURITY_SERVICE_RID = 6,
1189 SECURITY_ANONYMOUS_LOGON_RID = 7,
1190 SECURITY_PROXY_RID = 8,
1191 SECURITY_ENTERPRISE_CONTROLLERS_RID=9,
1192 SECURITY_SERVER_LOGON_RID = 9,
1193 SECURITY_PRINCIPAL_SELF_RID = 0xa,
1194 SECURITY_AUTHENTICATED_USER_RID = 0xb,
1195 SECURITY_RESTRICTED_CODE_RID = 0xc,
1196 SECURITY_TERMINAL_SERVER_RID = 0xd,
1197
1198 SECURITY_LOGON_IDS_RID = 5,
1199 SECURITY_LOGON_IDS_RID_COUNT = 3,
1200
1201 SECURITY_LOCAL_SYSTEM_RID = 0x12,
1202
1203 SECURITY_NT_NON_UNIQUE = 0x15,
1204
1205 SECURITY_BUILTIN_DOMAIN_RID = 0x20,
1206
1207 /*
1208 * Well-known domain relative sub-authority values (RIDs).
1209 */
1210
1211 /* Users. */
1212 DOMAIN_USER_RID_ADMIN = 0x1f4,
1213 DOMAIN_USER_RID_GUEST = 0x1f5,
1214 DOMAIN_USER_RID_KRBTGT = 0x1f6,
1215
1216 /* Groups. */
1217 DOMAIN_GROUP_RID_ADMINS = 0x200,
1218 DOMAIN_GROUP_RID_USERS = 0x201,
1219 DOMAIN_GROUP_RID_GUESTS = 0x202,
1220 DOMAIN_GROUP_RID_COMPUTERS = 0x203,
1221 DOMAIN_GROUP_RID_CONTROLLERS = 0x204,
1222 DOMAIN_GROUP_RID_CERT_ADMINS = 0x205,
1223 DOMAIN_GROUP_RID_SCHEMA_ADMINS = 0x206,
1224 DOMAIN_GROUP_RID_ENTERPRISE_ADMINS= 0x207,
1225 DOMAIN_GROUP_RID_POLICY_ADMINS = 0x208,
1226
1227 /* Aliases. */
1228 DOMAIN_ALIAS_RID_ADMINS = 0x220,
1229 DOMAIN_ALIAS_RID_USERS = 0x221,
1230 DOMAIN_ALIAS_RID_GUESTS = 0x222,
1231 DOMAIN_ALIAS_RID_POWER_USERS = 0x223,
1232
1233 DOMAIN_ALIAS_RID_ACCOUNT_OPS = 0x224,
1234 DOMAIN_ALIAS_RID_SYSTEM_OPS = 0x225,
1235 DOMAIN_ALIAS_RID_PRINT_OPS = 0x226,
1236 DOMAIN_ALIAS_RID_BACKUP_OPS = 0x227,
1237
1238 DOMAIN_ALIAS_RID_REPLICATOR = 0x228,
1239 DOMAIN_ALIAS_RID_RAS_SERVERS = 0x229,
1240 DOMAIN_ALIAS_RID_PREW2KCOMPACCESS = 0x22a,
1241} RELATIVE_IDENTIFIERS;
1242
1243/*
1244 * The universal well-known SIDs:
1245 *
1246 * NULL_SID S-1-0-0
1247 * WORLD_SID S-1-1-0
1248 * LOCAL_SID S-1-2-0
1249 * CREATOR_OWNER_SID S-1-3-0
1250 * CREATOR_GROUP_SID S-1-3-1
1251 * CREATOR_OWNER_SERVER_SID S-1-3-2
1252 * CREATOR_GROUP_SERVER_SID S-1-3-3
1253 *
1254 * (Non-unique IDs) S-1-4
1255 *
1256 * NT well-known SIDs:
1257 *
1258 * NT_AUTHORITY_SID S-1-5
1259 * DIALUP_SID S-1-5-1
1260 *
1261 * NETWORD_SID S-1-5-2
1262 * BATCH_SID S-1-5-3
1263 * INTERACTIVE_SID S-1-5-4
1264 * SERVICE_SID S-1-5-6
1265 * ANONYMOUS_LOGON_SID S-1-5-7 (aka null logon session)
1266 * PROXY_SID S-1-5-8
1267 * SERVER_LOGON_SID S-1-5-9 (aka domain controller account)
1268 * SELF_SID S-1-5-10 (self RID)
1269 * AUTHENTICATED_USER_SID S-1-5-11
1270 * RESTRICTED_CODE_SID S-1-5-12 (running restricted code)
1271 * TERMINAL_SERVER_SID S-1-5-13 (running on terminal server)
1272 *
1273 * (Logon IDs) S-1-5-5-X-Y
1274 *
1275 * (NT non-unique IDs) S-1-5-0x15-...
1276 *
1277 * (Built-in domain) S-1-5-0x20
1278 */
1279
1280/*
1281 * The SID_IDENTIFIER_AUTHORITY is a 48-bit value used in the SID structure.
1282 *
1283 * NOTE: This is stored as a big endian number, hence the high_part comes
1284 * before the low_part.
1285 */
1286typedef union {
1287 struct {
1288 u16 high_part; /* High 16-bits. */
1289 u32 low_part; /* Low 32-bits. */
1290 } __attribute__ ((__packed__)) parts;
1291 u8 value[6]; /* Value as individual bytes. */
1292} __attribute__ ((__packed__)) SID_IDENTIFIER_AUTHORITY;
1293
1294/*
1295 * The SID structure is a variable-length structure used to uniquely identify
1296 * users or groups. SID stands for security identifier.
1297 *
1298 * The standard textual representation of the SID is of the form:
1299 * S-R-I-S-S...
1300 * Where:
1301 * - The first "S" is the literal character 'S' identifying the following
1302 * digits as a SID.
1303 * - R is the revision level of the SID expressed as a sequence of digits
1304 * either in decimal or hexadecimal (if the later, prefixed by "0x").
1305 * - I is the 48-bit identifier_authority, expressed as digits as R above.
1306 * - S... is one or more sub_authority values, expressed as digits as above.
1307 *
1308 * Example SID; the domain-relative SID of the local Administrators group on
1309 * Windows NT/2k:
1310 * S-1-5-32-544
1311 * This translates to a SID with:
1312 * revision = 1,
1313 * sub_authority_count = 2,
1314 * identifier_authority = {0,0,0,0,0,5}, // SECURITY_NT_AUTHORITY
1315 * sub_authority[0] = 32, // SECURITY_BUILTIN_DOMAIN_RID
1316 * sub_authority[1] = 544 // DOMAIN_ALIAS_RID_ADMINS
1317 */
1318typedef struct {
1319 u8 revision;
1320 u8 sub_authority_count;
1321 SID_IDENTIFIER_AUTHORITY identifier_authority;
1322 le32 sub_authority[1]; /* At least one sub_authority. */
1323} __attribute__ ((__packed__)) SID;
1324
1325/*
1326 * Current constants for SIDs.
1327 */
1328typedef enum {
1329 SID_REVISION = 1, /* Current revision level. */
1330 SID_MAX_SUB_AUTHORITIES = 15, /* Maximum number of those. */
1331 SID_RECOMMENDED_SUB_AUTHORITIES = 1, /* Will change to around 6 in
1332 a future revision. */
1333} SID_CONSTANTS;
1334
1335/*
1336 * The predefined ACE types (8-bit, see below).
1337 */
1338enum {
1339 ACCESS_MIN_MS_ACE_TYPE = 0,
1340 ACCESS_ALLOWED_ACE_TYPE = 0,
1341 ACCESS_DENIED_ACE_TYPE = 1,
1342 SYSTEM_AUDIT_ACE_TYPE = 2,
1343 SYSTEM_ALARM_ACE_TYPE = 3, /* Not implemented as of Win2k. */
1344 ACCESS_MAX_MS_V2_ACE_TYPE = 3,
1345
1346 ACCESS_ALLOWED_COMPOUND_ACE_TYPE= 4,
1347 ACCESS_MAX_MS_V3_ACE_TYPE = 4,
1348
1349 /* The following are Win2k only. */
1350 ACCESS_MIN_MS_OBJECT_ACE_TYPE = 5,
1351 ACCESS_ALLOWED_OBJECT_ACE_TYPE = 5,
1352 ACCESS_DENIED_OBJECT_ACE_TYPE = 6,
1353 SYSTEM_AUDIT_OBJECT_ACE_TYPE = 7,
1354 SYSTEM_ALARM_OBJECT_ACE_TYPE = 8,
1355 ACCESS_MAX_MS_OBJECT_ACE_TYPE = 8,
1356
1357 ACCESS_MAX_MS_V4_ACE_TYPE = 8,
1358
1359 /* This one is for WinNT/2k. */
1360 ACCESS_MAX_MS_ACE_TYPE = 8,
1361} __attribute__ ((__packed__));
1362
1363typedef u8 ACE_TYPES;
1364
1365/*
1366 * The ACE flags (8-bit) for audit and inheritance (see below).
1367 *
1368 * SUCCESSFUL_ACCESS_ACE_FLAG is only used with system audit and alarm ACE
1369 * types to indicate that a message is generated (in Windows!) for successful
1370 * accesses.
1371 *
1372 * FAILED_ACCESS_ACE_FLAG is only used with system audit and alarm ACE types
1373 * to indicate that a message is generated (in Windows!) for failed accesses.
1374 */
1375enum {
1376 /* The inheritance flags. */
1377 OBJECT_INHERIT_ACE = 0x01,
1378 CONTAINER_INHERIT_ACE = 0x02,
1379 NO_PROPAGATE_INHERIT_ACE = 0x04,
1380 INHERIT_ONLY_ACE = 0x08,
1381 INHERITED_ACE = 0x10, /* Win2k only. */
1382 VALID_INHERIT_FLAGS = 0x1f,
1383
1384 /* The audit flags. */
1385 SUCCESSFUL_ACCESS_ACE_FLAG = 0x40,
1386 FAILED_ACCESS_ACE_FLAG = 0x80,
1387} __attribute__ ((__packed__));
1388
1389typedef u8 ACE_FLAGS;
1390
1391/*
1392 * An ACE is an access-control entry in an access-control list (ACL).
1393 * An ACE defines access to an object for a specific user or group or defines
1394 * the types of access that generate system-administration messages or alarms
1395 * for a specific user or group. The user or group is identified by a security
1396 * identifier (SID).
1397 *
1398 * Each ACE starts with an ACE_HEADER structure (aligned on 4-byte boundary),
1399 * which specifies the type and size of the ACE. The format of the subsequent
1400 * data depends on the ACE type.
1401 */
1402typedef struct {
1403/*Ofs*/
1404/* 0*/ ACE_TYPES type; /* Type of the ACE. */
1405/* 1*/ ACE_FLAGS flags; /* Flags describing the ACE. */
1406/* 2*/ le16 size; /* Size in bytes of the ACE. */
1407} __attribute__ ((__packed__)) ACE_HEADER;
1408
1409/*
1410 * The access mask (32-bit). Defines the access rights.
1411 *
1412 * The specific rights (bits 0 to 15). These depend on the type of the object
1413 * being secured by the ACE.
1414 */
1415enum {
1416 /* Specific rights for files and directories are as follows: */
1417
1418 /* Right to read data from the file. (FILE) */
1419 FILE_READ_DATA = const_cpu_to_le32(0x00000001),
1420 /* Right to list contents of a directory. (DIRECTORY) */
1421 FILE_LIST_DIRECTORY = const_cpu_to_le32(0x00000001),
1422
1423 /* Right to write data to the file. (FILE) */
1424 FILE_WRITE_DATA = const_cpu_to_le32(0x00000002),
1425 /* Right to create a file in the directory. (DIRECTORY) */
1426 FILE_ADD_FILE = const_cpu_to_le32(0x00000002),
1427
1428 /* Right to append data to the file. (FILE) */
1429 FILE_APPEND_DATA = const_cpu_to_le32(0x00000004),
1430 /* Right to create a subdirectory. (DIRECTORY) */
1431 FILE_ADD_SUBDIRECTORY = const_cpu_to_le32(0x00000004),
1432
1433 /* Right to read extended attributes. (FILE/DIRECTORY) */
1434 FILE_READ_EA = const_cpu_to_le32(0x00000008),
1435
1436 /* Right to write extended attributes. (FILE/DIRECTORY) */
1437 FILE_WRITE_EA = const_cpu_to_le32(0x00000010),
1438
1439 /* Right to execute a file. (FILE) */
1440 FILE_EXECUTE = const_cpu_to_le32(0x00000020),
1441 /* Right to traverse the directory. (DIRECTORY) */
1442 FILE_TRAVERSE = const_cpu_to_le32(0x00000020),
1443
1444 /*
1445 * Right to delete a directory and all the files it contains (its
1446 * children), even if the files are read-only. (DIRECTORY)
1447 */
1448 FILE_DELETE_CHILD = const_cpu_to_le32(0x00000040),
1449
1450 /* Right to read file attributes. (FILE/DIRECTORY) */
1451 FILE_READ_ATTRIBUTES = const_cpu_to_le32(0x00000080),
1452
1453 /* Right to change file attributes. (FILE/DIRECTORY) */
1454 FILE_WRITE_ATTRIBUTES = const_cpu_to_le32(0x00000100),
1455
1456 /*
1457 * The standard rights (bits 16 to 23). These are independent of the
1458 * type of object being secured.
1459 */
1460
1461 /* Right to delete the object. */
1462 DELETE = const_cpu_to_le32(0x00010000),
1463
1464 /*
1465 * Right to read the information in the object's security descriptor,
1466 * not including the information in the SACL, i.e. right to read the
1467 * security descriptor and owner.
1468 */
1469 READ_CONTROL = const_cpu_to_le32(0x00020000),
1470
1471 /* Right to modify the DACL in the object's security descriptor. */
1472 WRITE_DAC = const_cpu_to_le32(0x00040000),
1473
1474 /* Right to change the owner in the object's security descriptor. */
1475 WRITE_OWNER = const_cpu_to_le32(0x00080000),
1476
1477 /*
1478 * Right to use the object for synchronization. Enables a process to
1479 * wait until the object is in the signalled state. Some object types
1480 * do not support this access right.
1481 */
1482 SYNCHRONIZE = const_cpu_to_le32(0x00100000),
1483
1484 /*
1485 * The following STANDARD_RIGHTS_* are combinations of the above for
1486 * convenience and are defined by the Win32 API.
1487 */
1488
1489 /* These are currently defined to READ_CONTROL. */
1490 STANDARD_RIGHTS_READ = const_cpu_to_le32(0x00020000),
1491 STANDARD_RIGHTS_WRITE = const_cpu_to_le32(0x00020000),
1492 STANDARD_RIGHTS_EXECUTE = const_cpu_to_le32(0x00020000),
1493
1494 /* Combines DELETE, READ_CONTROL, WRITE_DAC, and WRITE_OWNER access. */
1495 STANDARD_RIGHTS_REQUIRED = const_cpu_to_le32(0x000f0000),
1496
1497 /*
1498 * Combines DELETE, READ_CONTROL, WRITE_DAC, WRITE_OWNER, and
1499 * SYNCHRONIZE access.
1500 */
1501 STANDARD_RIGHTS_ALL = const_cpu_to_le32(0x001f0000),
1502
1503 /*
1504 * The access system ACL and maximum allowed access types (bits 24 to
1505 * 25, bits 26 to 27 are reserved).
1506 */
1507 ACCESS_SYSTEM_SECURITY = const_cpu_to_le32(0x01000000),
1508 MAXIMUM_ALLOWED = const_cpu_to_le32(0x02000000),
1509
1510 /*
1511 * The generic rights (bits 28 to 31). These map onto the standard and
1512 * specific rights.
1513 */
1514
1515 /* Read, write, and execute access. */
1516 GENERIC_ALL = const_cpu_to_le32(0x10000000),
1517
1518 /* Execute access. */
1519 GENERIC_EXECUTE = const_cpu_to_le32(0x20000000),
1520
1521 /*
1522 * Write access. For files, this maps onto:
1523 * FILE_APPEND_DATA | FILE_WRITE_ATTRIBUTES | FILE_WRITE_DATA |
1524 * FILE_WRITE_EA | STANDARD_RIGHTS_WRITE | SYNCHRONIZE
1525 * For directories, the mapping has the same numerical value. See
1526 * above for the descriptions of the rights granted.
1527 */
1528 GENERIC_WRITE = const_cpu_to_le32(0x40000000),
1529
1530 /*
1531 * Read access. For files, this maps onto:
1532 * FILE_READ_ATTRIBUTES | FILE_READ_DATA | FILE_READ_EA |
1533 * STANDARD_RIGHTS_READ | SYNCHRONIZE
1534 * For directories, the mapping has the same numberical value. See
1535 * above for the descriptions of the rights granted.
1536 */
1537 GENERIC_READ = const_cpu_to_le32(0x80000000),
1538};
1539
1540typedef le32 ACCESS_MASK;
1541
1542/*
1543 * The generic mapping array. Used to denote the mapping of each generic
1544 * access right to a specific access mask.
1545 *
1546 * FIXME: What exactly is this and what is it for? (AIA)
1547 */
1548typedef struct {
1549 ACCESS_MASK generic_read;
1550 ACCESS_MASK generic_write;
1551 ACCESS_MASK generic_execute;
1552 ACCESS_MASK generic_all;
1553} __attribute__ ((__packed__)) GENERIC_MAPPING;
1554
1555/*
1556 * The predefined ACE type structures are as defined below.
1557 */
1558
1559/*
1560 * ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, SYSTEM_AUDIT_ACE, SYSTEM_ALARM_ACE
1561 */
1562typedef struct {
1563/* 0 ACE_HEADER; -- Unfolded here as gcc doesn't like unnamed structs. */
1564 ACE_TYPES type; /* Type of the ACE. */
1565 ACE_FLAGS flags; /* Flags describing the ACE. */
1566 le16 size; /* Size in bytes of the ACE. */
1567/* 4*/ ACCESS_MASK mask; /* Access mask associated with the ACE. */
1568
1569/* 8*/ SID sid; /* The SID associated with the ACE. */
1570} __attribute__ ((__packed__)) ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE,
1571 SYSTEM_AUDIT_ACE, SYSTEM_ALARM_ACE;
1572
1573/*
1574 * The object ACE flags (32-bit).
1575 */
1576enum {
1577 ACE_OBJECT_TYPE_PRESENT = const_cpu_to_le32(1),
1578 ACE_INHERITED_OBJECT_TYPE_PRESENT = const_cpu_to_le32(2),
1579};
1580
1581typedef le32 OBJECT_ACE_FLAGS;
1582
1583typedef struct {
1584/* 0 ACE_HEADER; -- Unfolded here as gcc doesn't like unnamed structs. */
1585 ACE_TYPES type; /* Type of the ACE. */
1586 ACE_FLAGS flags; /* Flags describing the ACE. */
1587 le16 size; /* Size in bytes of the ACE. */
1588/* 4*/ ACCESS_MASK mask; /* Access mask associated with the ACE. */
1589
1590/* 8*/ OBJECT_ACE_FLAGS object_flags; /* Flags describing the object ACE. */
1591/* 12*/ GUID object_type;
1592/* 28*/ GUID inherited_object_type;
1593
1594/* 44*/ SID sid; /* The SID associated with the ACE. */
1595} __attribute__ ((__packed__)) ACCESS_ALLOWED_OBJECT_ACE,
1596 ACCESS_DENIED_OBJECT_ACE,
1597 SYSTEM_AUDIT_OBJECT_ACE,
1598 SYSTEM_ALARM_OBJECT_ACE;
1599
1600/*
1601 * An ACL is an access-control list (ACL).
1602 * An ACL starts with an ACL header structure, which specifies the size of
1603 * the ACL and the number of ACEs it contains. The ACL header is followed by
1604 * zero or more access control entries (ACEs). The ACL as well as each ACE
1605 * are aligned on 4-byte boundaries.
1606 */
1607typedef struct {
1608 u8 revision; /* Revision of this ACL. */
1609 u8 alignment1;
1610 le16 size; /* Allocated space in bytes for ACL. Includes this
1611 header, the ACEs and the remaining free space. */
1612 le16 ace_count; /* Number of ACEs in the ACL. */
1613 le16 alignment2;
1614/* sizeof() = 8 bytes */
1615} __attribute__ ((__packed__)) ACL;
1616
1617/*
1618 * Current constants for ACLs.
1619 */
1620typedef enum {
1621 /* Current revision. */
1622 ACL_REVISION = 2,
1623 ACL_REVISION_DS = 4,
1624
1625 /* History of revisions. */
1626 ACL_REVISION1 = 1,
1627 MIN_ACL_REVISION = 2,
1628 ACL_REVISION2 = 2,
1629 ACL_REVISION3 = 3,
1630 ACL_REVISION4 = 4,
1631 MAX_ACL_REVISION = 4,
1632} ACL_CONSTANTS;
1633
1634/*
1635 * The security descriptor control flags (16-bit).
1636 *
1637 * SE_OWNER_DEFAULTED - This boolean flag, when set, indicates that the SID
1638 * pointed to by the Owner field was provided by a defaulting mechanism
1639 * rather than explicitly provided by the original provider of the
1640 * security descriptor. This may affect the treatment of the SID with
1641 * respect to inheritence of an owner.
1642 *
1643 * SE_GROUP_DEFAULTED - This boolean flag, when set, indicates that the SID in
1644 * the Group field was provided by a defaulting mechanism rather than
1645 * explicitly provided by the original provider of the security
1646 * descriptor. This may affect the treatment of the SID with respect to
1647 * inheritence of a primary group.
1648 *
1649 * SE_DACL_PRESENT - This boolean flag, when set, indicates that the security
1650 * descriptor contains a discretionary ACL. If this flag is set and the
1651 * Dacl field of the SECURITY_DESCRIPTOR is null, then a null ACL is
1652 * explicitly being specified.
1653 *
1654 * SE_DACL_DEFAULTED - This boolean flag, when set, indicates that the ACL
1655 * pointed to by the Dacl field was provided by a defaulting mechanism
1656 * rather than explicitly provided by the original provider of the
1657 * security descriptor. This may affect the treatment of the ACL with
1658 * respect to inheritence of an ACL. This flag is ignored if the
1659 * DaclPresent flag is not set.
1660 *
1661 * SE_SACL_PRESENT - This boolean flag, when set, indicates that the security
1662 * descriptor contains a system ACL pointed to by the Sacl field. If this
1663 * flag is set and the Sacl field of the SECURITY_DESCRIPTOR is null, then
1664 * an empty (but present) ACL is being specified.
1665 *
1666 * SE_SACL_DEFAULTED - This boolean flag, when set, indicates that the ACL
1667 * pointed to by the Sacl field was provided by a defaulting mechanism
1668 * rather than explicitly provided by the original provider of the
1669 * security descriptor. This may affect the treatment of the ACL with
1670 * respect to inheritence of an ACL. This flag is ignored if the
1671 * SaclPresent flag is not set.
1672 *
1673 * SE_SELF_RELATIVE - This boolean flag, when set, indicates that the security
1674 * descriptor is in self-relative form. In this form, all fields of the
1675 * security descriptor are contiguous in memory and all pointer fields are
1676 * expressed as offsets from the beginning of the security descriptor.
1677 */
1678enum {
1679 SE_OWNER_DEFAULTED = const_cpu_to_le16(0x0001),
1680 SE_GROUP_DEFAULTED = const_cpu_to_le16(0x0002),
1681 SE_DACL_PRESENT = const_cpu_to_le16(0x0004),
1682 SE_DACL_DEFAULTED = const_cpu_to_le16(0x0008),
1683
1684 SE_SACL_PRESENT = const_cpu_to_le16(0x0010),
1685 SE_SACL_DEFAULTED = const_cpu_to_le16(0x0020),
1686
1687 SE_DACL_AUTO_INHERIT_REQ = const_cpu_to_le16(0x0100),
1688 SE_SACL_AUTO_INHERIT_REQ = const_cpu_to_le16(0x0200),
1689 SE_DACL_AUTO_INHERITED = const_cpu_to_le16(0x0400),
1690 SE_SACL_AUTO_INHERITED = const_cpu_to_le16(0x0800),
1691
1692 SE_DACL_PROTECTED = const_cpu_to_le16(0x1000),
1693 SE_SACL_PROTECTED = const_cpu_to_le16(0x2000),
1694 SE_RM_CONTROL_VALID = const_cpu_to_le16(0x4000),
1695 SE_SELF_RELATIVE = const_cpu_to_le16(0x8000)
1696} __attribute__ ((__packed__));
1697
1698typedef le16 SECURITY_DESCRIPTOR_CONTROL;
1699
1700/*
1701 * Self-relative security descriptor. Contains the owner and group SIDs as well
1702 * as the sacl and dacl ACLs inside the security descriptor itself.
1703 */
1704typedef struct {
1705 u8 revision; /* Revision level of the security descriptor. */
1706 u8 alignment;
1707 SECURITY_DESCRIPTOR_CONTROL control; /* Flags qualifying the type of
1708 the descriptor as well as the following fields. */
1709 le32 owner; /* Byte offset to a SID representing an object's
1710 owner. If this is NULL, no owner SID is present in
1711 the descriptor. */
1712 le32 group; /* Byte offset to a SID representing an object's
1713 primary group. If this is NULL, no primary group
1714 SID is present in the descriptor. */
1715 le32 sacl; /* Byte offset to a system ACL. Only valid, if
1716 SE_SACL_PRESENT is set in the control field. If
1717 SE_SACL_PRESENT is set but sacl is NULL, a NULL ACL
1718 is specified. */
1719 le32 dacl; /* Byte offset to a discretionary ACL. Only valid, if
1720 SE_DACL_PRESENT is set in the control field. If
1721 SE_DACL_PRESENT is set but dacl is NULL, a NULL ACL
1722 (unconditionally granting access) is specified. */
1723/* sizeof() = 0x14 bytes */
1724} __attribute__ ((__packed__)) SECURITY_DESCRIPTOR_RELATIVE;
1725
1726/*
1727 * Absolute security descriptor. Does not contain the owner and group SIDs, nor
1728 * the sacl and dacl ACLs inside the security descriptor. Instead, it contains
1729 * pointers to these structures in memory. Obviously, absolute security
1730 * descriptors are only useful for in memory representations of security
1731 * descriptors. On disk, a self-relative security descriptor is used.
1732 */
1733typedef struct {
1734 u8 revision; /* Revision level of the security descriptor. */
1735 u8 alignment;
1736 SECURITY_DESCRIPTOR_CONTROL control; /* Flags qualifying the type of
1737 the descriptor as well as the following fields. */
1738 SID *owner; /* Points to a SID representing an object's owner. If
1739 this is NULL, no owner SID is present in the
1740 descriptor. */
1741 SID *group; /* Points to a SID representing an object's primary
1742 group. If this is NULL, no primary group SID is
1743 present in the descriptor. */
1744 ACL *sacl; /* Points to a system ACL. Only valid, if
1745 SE_SACL_PRESENT is set in the control field. If
1746 SE_SACL_PRESENT is set but sacl is NULL, a NULL ACL
1747 is specified. */
1748 ACL *dacl; /* Points to a discretionary ACL. Only valid, if
1749 SE_DACL_PRESENT is set in the control field. If
1750 SE_DACL_PRESENT is set but dacl is NULL, a NULL ACL
1751 (unconditionally granting access) is specified. */
1752} __attribute__ ((__packed__)) SECURITY_DESCRIPTOR;
1753
1754/*
1755 * Current constants for security descriptors.
1756 */
1757typedef enum {
1758 /* Current revision. */
1759 SECURITY_DESCRIPTOR_REVISION = 1,
1760 SECURITY_DESCRIPTOR_REVISION1 = 1,
1761
1762 /* The sizes of both the absolute and relative security descriptors is
1763 the same as pointers, at least on ia32 architecture are 32-bit. */
1764 SECURITY_DESCRIPTOR_MIN_LENGTH = sizeof(SECURITY_DESCRIPTOR),
1765} SECURITY_DESCRIPTOR_CONSTANTS;
1766
1767/*
1768 * Attribute: Security descriptor (0x50). A standard self-relative security
1769 * descriptor.
1770 *
1771 * NOTE: Can be resident or non-resident.
1772 * NOTE: Not used in NTFS 3.0+, as security descriptors are stored centrally
1773 * in FILE_Secure and the correct descriptor is found using the security_id
1774 * from the standard information attribute.
1775 */
1776typedef SECURITY_DESCRIPTOR_RELATIVE SECURITY_DESCRIPTOR_ATTR;
1777
1778/*
1779 * On NTFS 3.0+, all security descriptors are stored in FILE_Secure. Only one
1780 * referenced instance of each unique security descriptor is stored.
1781 *
1782 * FILE_Secure contains no unnamed data attribute, i.e. it has zero length. It
1783 * does, however, contain two indexes ($SDH and $SII) as well as a named data
1784 * stream ($SDS).
1785 *
1786 * Every unique security descriptor is assigned a unique security identifier
1787 * (security_id, not to be confused with a SID). The security_id is unique for
1788 * the NTFS volume and is used as an index into the $SII index, which maps
1789 * security_ids to the security descriptor's storage location within the $SDS
1790 * data attribute. The $SII index is sorted by ascending security_id.
1791 *
1792 * A simple hash is computed from each security descriptor. This hash is used
1793 * as an index into the $SDH index, which maps security descriptor hashes to
1794 * the security descriptor's storage location within the $SDS data attribute.
1795 * The $SDH index is sorted by security descriptor hash and is stored in a B+
1796 * tree. When searching $SDH (with the intent of determining whether or not a
1797 * new security descriptor is already present in the $SDS data stream), if a
1798 * matching hash is found, but the security descriptors do not match, the
1799 * search in the $SDH index is continued, searching for a next matching hash.
1800 *
1801 * When a precise match is found, the security_id coresponding to the security
1802 * descriptor in the $SDS attribute is read from the found $SDH index entry and
1803 * is stored in the $STANDARD_INFORMATION attribute of the file/directory to
1804 * which the security descriptor is being applied. The $STANDARD_INFORMATION
1805 * attribute is present in all base mft records (i.e. in all files and
1806 * directories).
1807 *
1808 * If a match is not found, the security descriptor is assigned a new unique
1809 * security_id and is added to the $SDS data attribute. Then, entries
1810 * referencing the this security descriptor in the $SDS data attribute are
1811 * added to the $SDH and $SII indexes.
1812 *
1813 * Note: Entries are never deleted from FILE_Secure, even if nothing
1814 * references an entry any more.
1815 */
1816
1817/*
1818 * This header precedes each security descriptor in the $SDS data stream.
1819 * This is also the index entry data part of both the $SII and $SDH indexes.
1820 */
1821typedef struct {
1822 le32 hash; /* Hash of the security descriptor. */
1823 le32 security_id; /* The security_id assigned to the descriptor. */
1824 le64 offset; /* Byte offset of this entry in the $SDS stream. */
1825 le32 length; /* Size in bytes of this entry in $SDS stream. */
1826} __attribute__ ((__packed__)) SECURITY_DESCRIPTOR_HEADER;
1827
1828/*
1829 * The $SDS data stream contains the security descriptors, aligned on 16-byte
1830 * boundaries, sorted by security_id in a B+ tree. Security descriptors cannot
1831 * cross 256kib boundaries (this restriction is imposed by the Windows cache
1832 * manager). Each security descriptor is contained in a SDS_ENTRY structure.
1833 * Also, each security descriptor is stored twice in the $SDS stream with a
1834 * fixed offset of 0x40000 bytes (256kib, the Windows cache manager's max size)
1835 * between them; i.e. if a SDS_ENTRY specifies an offset of 0x51d0, then the
1836 * the first copy of the security descriptor will be at offset 0x51d0 in the
1837 * $SDS data stream and the second copy will be at offset 0x451d0.
1838 */
1839typedef struct {
1840/*Ofs*/
1841/* 0 SECURITY_DESCRIPTOR_HEADER; -- Unfolded here as gcc doesn't like
1842 unnamed structs. */
1843 le32 hash; /* Hash of the security descriptor. */
1844 le32 security_id; /* The security_id assigned to the descriptor. */
1845 le64 offset; /* Byte offset of this entry in the $SDS stream. */
1846 le32 length; /* Size in bytes of this entry in $SDS stream. */
1847/* 20*/ SECURITY_DESCRIPTOR_RELATIVE sid; /* The self-relative security
1848 descriptor. */
1849} __attribute__ ((__packed__)) SDS_ENTRY;
1850
1851/*
1852 * The index entry key used in the $SII index. The collation type is
1853 * COLLATION_NTOFS_ULONG.
1854 */
1855typedef struct {
1856 le32 security_id; /* The security_id assigned to the descriptor. */
1857} __attribute__ ((__packed__)) SII_INDEX_KEY;
1858
1859/*
1860 * The index entry key used in the $SDH index. The keys are sorted first by
1861 * hash and then by security_id. The collation rule is
1862 * COLLATION_NTOFS_SECURITY_HASH.
1863 */
1864typedef struct {
1865 le32 hash; /* Hash of the security descriptor. */
1866 le32 security_id; /* The security_id assigned to the descriptor. */
1867} __attribute__ ((__packed__)) SDH_INDEX_KEY;
1868
1869/*
1870 * Attribute: Volume name (0x60).
1871 *
1872 * NOTE: Always resident.
1873 * NOTE: Present only in FILE_Volume.
1874 */
1875typedef struct {
1876 ntfschar name[0]; /* The name of the volume in Unicode. */
1877} __attribute__ ((__packed__)) VOLUME_NAME;
1878
1879/*
1880 * Possible flags for the volume (16-bit).
1881 */
1882enum {
1883 VOLUME_IS_DIRTY = const_cpu_to_le16(0x0001),
1884 VOLUME_RESIZE_LOG_FILE = const_cpu_to_le16(0x0002),
1885 VOLUME_UPGRADE_ON_MOUNT = const_cpu_to_le16(0x0004),
1886 VOLUME_MOUNTED_ON_NT4 = const_cpu_to_le16(0x0008),
1887
1888 VOLUME_DELETE_USN_UNDERWAY = const_cpu_to_le16(0x0010),
1889 VOLUME_REPAIR_OBJECT_ID = const_cpu_to_le16(0x0020),
1890
1891 VOLUME_MODIFIED_BY_CHKDSK = const_cpu_to_le16(0x8000),
1892
1893 VOLUME_FLAGS_MASK = const_cpu_to_le16(0x803f),
1894
1895 /* To make our life easier when checking if we must mount read-only. */
1896 VOLUME_MUST_MOUNT_RO_MASK = const_cpu_to_le16(0x8037),
1897} __attribute__ ((__packed__));
1898
1899typedef le16 VOLUME_FLAGS;
1900
1901/*
1902 * Attribute: Volume information (0x70).
1903 *
1904 * NOTE: Always resident.
1905 * NOTE: Present only in FILE_Volume.
1906 * NOTE: Windows 2000 uses NTFS 3.0 while Windows NT4 service pack 6a uses
1907 * NTFS 1.2. I haven't personally seen other values yet.
1908 */
1909typedef struct {
1910 le64 reserved; /* Not used (yet?). */
1911 u8 major_ver; /* Major version of the ntfs format. */
1912 u8 minor_ver; /* Minor version of the ntfs format. */
1913 VOLUME_FLAGS flags; /* Bit array of VOLUME_* flags. */
1914} __attribute__ ((__packed__)) VOLUME_INFORMATION;
1915
1916/*
1917 * Attribute: Data attribute (0x80).
1918 *
1919 * NOTE: Can be resident or non-resident.
1920 *
1921 * Data contents of a file (i.e. the unnamed stream) or of a named stream.
1922 */
1923typedef struct {
1924 u8 data[0]; /* The file's data contents. */
1925} __attribute__ ((__packed__)) DATA_ATTR;
1926
1927/*
1928 * Index header flags (8-bit).
1929 */
1930enum {
1931 /*
1932 * When index header is in an index root attribute:
1933 */
1934 SMALL_INDEX = 0, /* The index is small enough to fit inside the index
1935 root attribute and there is no index allocation
1936 attribute present. */
1937 LARGE_INDEX = 1, /* The index is too large to fit in the index root
1938 attribute and/or an index allocation attribute is
1939 present. */
1940 /*
1941 * When index header is in an index block, i.e. is part of index
1942 * allocation attribute:
1943 */
1944 LEAF_NODE = 0, /* This is a leaf node, i.e. there are no more nodes
1945 branching off it. */
1946 INDEX_NODE = 1, /* This node indexes other nodes, i.e. it is not a leaf
1947 node. */
1948 NODE_MASK = 1, /* Mask for accessing the *_NODE bits. */
1949} __attribute__ ((__packed__));
1950
1951typedef u8 INDEX_HEADER_FLAGS;
1952
1953/*
1954 * This is the header for indexes, describing the INDEX_ENTRY records, which
1955 * follow the INDEX_HEADER. Together the index header and the index entries
1956 * make up a complete index.
1957 *
1958 * IMPORTANT NOTE: The offset, length and size structure members are counted
1959 * relative to the start of the index header structure and not relative to the
1960 * start of the index root or index allocation structures themselves.
1961 */
1962typedef struct {
1963 le32 entries_offset; /* Byte offset to first INDEX_ENTRY
1964 aligned to 8-byte boundary. */
1965 le32 index_length; /* Data size of the index in bytes,
1966 i.e. bytes used from allocated
1967 size, aligned to 8-byte boundary. */
1968 le32 allocated_size; /* Byte size of this index (block),
1969 multiple of 8 bytes. */
1970 /* NOTE: For the index root attribute, the above two numbers are always
1971 equal, as the attribute is resident and it is resized as needed. In
1972 the case of the index allocation attribute the attribute is not
1973 resident and hence the allocated_size is a fixed value and must
1974 equal the index_block_size specified by the INDEX_ROOT attribute
1975 corresponding to the INDEX_ALLOCATION attribute this INDEX_BLOCK
1976 belongs to. */
1977 INDEX_HEADER_FLAGS flags; /* Bit field of INDEX_HEADER_FLAGS. */
1978 u8 reserved[3]; /* Reserved/align to 8-byte boundary. */
1979} __attribute__ ((__packed__)) INDEX_HEADER;
1980
1981/*
1982 * Attribute: Index root (0x90).
1983 *
1984 * NOTE: Always resident.
1985 *
1986 * This is followed by a sequence of index entries (INDEX_ENTRY structures)
1987 * as described by the index header.
1988 *
1989 * When a directory is small enough to fit inside the index root then this
1990 * is the only attribute describing the directory. When the directory is too
1991 * large to fit in the index root, on the other hand, two aditional attributes
1992 * are present: an index allocation attribute, containing sub-nodes of the B+
1993 * directory tree (see below), and a bitmap attribute, describing which virtual
1994 * cluster numbers (vcns) in the index allocation attribute are in use by an
1995 * index block.
1996 *
1997 * NOTE: The root directory (FILE_root) contains an entry for itself. Other
1998 * dircetories do not contain entries for themselves, though.
1999 */
2000typedef struct {
2001 ATTR_TYPE type; /* Type of the indexed attribute. Is
2002 $FILE_NAME for directories, zero
2003 for view indexes. No other values
2004 allowed. */
2005 COLLATION_RULE collation_rule; /* Collation rule used to sort the
2006 index entries. If type is $FILE_NAME,
2007 this must be COLLATION_FILE_NAME. */
2008 le32 index_block_size; /* Size of each index block in bytes (in
2009 the index allocation attribute). */
2010 u8 clusters_per_index_block; /* Cluster size of each index block (in
2011 the index allocation attribute), when
2012 an index block is >= than a cluster,
2013 otherwise this will be the log of
2014 the size (like how the encoding of
2015 the mft record size and the index
2016 record size found in the boot sector
2017 work). Has to be a power of 2. */
2018 u8 reserved[3]; /* Reserved/align to 8-byte boundary. */
2019 INDEX_HEADER index; /* Index header describing the
2020 following index entries. */
2021} __attribute__ ((__packed__)) INDEX_ROOT;
2022
2023/*
2024 * Attribute: Index allocation (0xa0).
2025 *
2026 * NOTE: Always non-resident (doesn't make sense to be resident anyway!).
2027 *
2028 * This is an array of index blocks. Each index block starts with an
2029 * INDEX_BLOCK structure containing an index header, followed by a sequence of
2030 * index entries (INDEX_ENTRY structures), as described by the INDEX_HEADER.
2031 */
2032typedef struct {
2033/* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */
2034 NTFS_RECORD_TYPE magic; /* Magic is "INDX". */
2035 le16 usa_ofs; /* See NTFS_RECORD definition. */
2036 le16 usa_count; /* See NTFS_RECORD definition. */
2037
2038/* 8*/ sle64 lsn; /* $LogFile sequence number of the last
2039 modification of this index block. */
2040/* 16*/ leVCN index_block_vcn; /* Virtual cluster number of the index block.
2041 If the cluster_size on the volume is <= the
2042 index_block_size of the directory,
2043 index_block_vcn counts in units of clusters,
2044 and in units of sectors otherwise. */
2045/* 24*/ INDEX_HEADER index; /* Describes the following index entries. */
2046/* sizeof()= 40 (0x28) bytes */
2047/*
2048 * When creating the index block, we place the update sequence array at this
2049 * offset, i.e. before we start with the index entries. This also makes sense,
2050 * otherwise we could run into problems with the update sequence array
2051 * containing in itself the last two bytes of a sector which would mean that
2052 * multi sector transfer protection wouldn't work. As you can't protect data
2053 * by overwriting it since you then can't get it back...
2054 * When reading use the data from the ntfs record header.
2055 */
2056} __attribute__ ((__packed__)) INDEX_BLOCK;
2057
2058typedef INDEX_BLOCK INDEX_ALLOCATION;
2059
2060/*
2061 * The system file FILE_Extend/$Reparse contains an index named $R listing
2062 * all reparse points on the volume. The index entry keys are as defined
2063 * below. Note, that there is no index data associated with the index entries.
2064 *
2065 * The index entries are sorted by the index key file_id. The collation rule is
2066 * COLLATION_NTOFS_ULONGS. FIXME: Verify whether the reparse_tag is not the
2067 * primary key / is not a key at all. (AIA)
2068 */
2069typedef struct {
2070 le32 reparse_tag; /* Reparse point type (inc. flags). */
2071 leMFT_REF file_id; /* Mft record of the file containing the
2072 reparse point attribute. */
2073} __attribute__ ((__packed__)) REPARSE_INDEX_KEY;
2074
2075/*
2076 * Quota flags (32-bit).
2077 *
2078 * The user quota flags. Names explain meaning.
2079 */
2080enum {
2081 QUOTA_FLAG_DEFAULT_LIMITS = const_cpu_to_le32(0x00000001),
2082 QUOTA_FLAG_LIMIT_REACHED = const_cpu_to_le32(0x00000002),
2083 QUOTA_FLAG_ID_DELETED = const_cpu_to_le32(0x00000004),
2084
2085 QUOTA_FLAG_USER_MASK = const_cpu_to_le32(0x00000007),
2086 /* This is a bit mask for the user quota flags. */
2087
2088 /*
2089 * These flags are only present in the quota defaults index entry, i.e.
2090 * in the entry where owner_id = QUOTA_DEFAULTS_ID.
2091 */
2092 QUOTA_FLAG_TRACKING_ENABLED = const_cpu_to_le32(0x00000010),
2093 QUOTA_FLAG_ENFORCEMENT_ENABLED = const_cpu_to_le32(0x00000020),
2094 QUOTA_FLAG_TRACKING_REQUESTED = const_cpu_to_le32(0x00000040),
2095 QUOTA_FLAG_LOG_THRESHOLD = const_cpu_to_le32(0x00000080),
2096
2097 QUOTA_FLAG_LOG_LIMIT = const_cpu_to_le32(0x00000100),
2098 QUOTA_FLAG_OUT_OF_DATE = const_cpu_to_le32(0x00000200),
2099 QUOTA_FLAG_CORRUPT = const_cpu_to_le32(0x00000400),
2100 QUOTA_FLAG_PENDING_DELETES = const_cpu_to_le32(0x00000800),
2101};
2102
2103typedef le32 QUOTA_FLAGS;
2104
2105/*
2106 * The system file FILE_Extend/$Quota contains two indexes $O and $Q. Quotas
2107 * are on a per volume and per user basis.
2108 *
2109 * The $Q index contains one entry for each existing user_id on the volume. The
2110 * index key is the user_id of the user/group owning this quota control entry,
2111 * i.e. the key is the owner_id. The user_id of the owner of a file, i.e. the
2112 * owner_id, is found in the standard information attribute. The collation rule
2113 * for $Q is COLLATION_NTOFS_ULONG.
2114 *
2115 * The $O index contains one entry for each user/group who has been assigned
2116 * a quota on that volume. The index key holds the SID of the user_id the
2117 * entry belongs to, i.e. the owner_id. The collation rule for $O is
2118 * COLLATION_NTOFS_SID.
2119 *
2120 * The $O index entry data is the user_id of the user corresponding to the SID.
2121 * This user_id is used as an index into $Q to find the quota control entry
2122 * associated with the SID.
2123 *
2124 * The $Q index entry data is the quota control entry and is defined below.
2125 */
2126typedef struct {
2127 le32 version; /* Currently equals 2. */
2128 QUOTA_FLAGS flags; /* Flags describing this quota entry. */
2129 le64 bytes_used; /* How many bytes of the quota are in use. */
2130 sle64 change_time; /* Last time this quota entry was changed. */
2131 sle64 threshold; /* Soft quota (-1 if not limited). */
2132 sle64 limit; /* Hard quota (-1 if not limited). */
2133 sle64 exceeded_time; /* How long the soft quota has been exceeded. */
2134 SID sid; /* The SID of the user/object associated with
2135 this quota entry. Equals zero for the quota
2136 defaults entry (and in fact on a WinXP
2137 volume, it is not present at all). */
2138} __attribute__ ((__packed__)) QUOTA_CONTROL_ENTRY;
2139
2140/*
2141 * Predefined owner_id values (32-bit).
2142 */
2143enum {
2144 QUOTA_INVALID_ID = const_cpu_to_le32(0x00000000),
2145 QUOTA_DEFAULTS_ID = const_cpu_to_le32(0x00000001),
2146 QUOTA_FIRST_USER_ID = const_cpu_to_le32(0x00000100),
2147};
2148
2149/*
2150 * Current constants for quota control entries.
2151 */
2152typedef enum {
2153 /* Current version. */
2154 QUOTA_VERSION = 2,
2155} QUOTA_CONTROL_ENTRY_CONSTANTS;
2156
2157/*
2158 * Index entry flags (16-bit).
2159 */
2160enum {
2161 INDEX_ENTRY_NODE = const_cpu_to_le16(1), /* This entry contains a
2162 sub-node, i.e. a reference to an index block in form of
2163 a virtual cluster number (see below). */
2164 INDEX_ENTRY_END = const_cpu_to_le16(2), /* This signifies the last
2165 entry in an index block. The index entry does not
2166 represent a file but it can point to a sub-node. */
2167
2168 INDEX_ENTRY_SPACE_FILLER = const_cpu_to_le16(0xffff), /* gcc: Force
2169 enum bit width to 16-bit. */
2170} __attribute__ ((__packed__));
2171
2172typedef le16 INDEX_ENTRY_FLAGS;
2173
2174/*
2175 * This the index entry header (see below).
2176 */
2177typedef struct {
2178/* 0*/ union {
2179 struct { /* Only valid when INDEX_ENTRY_END is not set. */
2180 leMFT_REF indexed_file; /* The mft reference of the file
2181 described by this index
2182 entry. Used for directory
2183 indexes. */
2184 } __attribute__ ((__packed__)) dir;
2185 struct { /* Used for views/indexes to find the entry's data. */
2186 le16 data_offset; /* Data byte offset from this
2187 INDEX_ENTRY. Follows the
2188 index key. */
2189 le16 data_length; /* Data length in bytes. */
2190 le32 reservedV; /* Reserved (zero). */
2191 } __attribute__ ((__packed__)) vi;
2192 } __attribute__ ((__packed__)) data;
2193/* 8*/ le16 length; /* Byte size of this index entry, multiple of
2194 8-bytes. */
2195/* 10*/ le16 key_length; /* Byte size of the key value, which is in the
2196 index entry. It follows field reserved. Not
2197 multiple of 8-bytes. */
2198/* 12*/ INDEX_ENTRY_FLAGS flags; /* Bit field of INDEX_ENTRY_* flags. */
2199/* 14*/ le16 reserved; /* Reserved/align to 8-byte boundary. */
2200/* sizeof() = 16 bytes */
2201} __attribute__ ((__packed__)) INDEX_ENTRY_HEADER;
2202
2203/*
2204 * This is an index entry. A sequence of such entries follows each INDEX_HEADER
2205 * structure. Together they make up a complete index. The index follows either
2206 * an index root attribute or an index allocation attribute.
2207 *
2208 * NOTE: Before NTFS 3.0 only filename attributes were indexed.
2209 */
2210typedef struct {
2211/*Ofs*/
2212/* 0 INDEX_ENTRY_HEADER; -- Unfolded here as gcc dislikes unnamed structs. */
2213 union {
2214 struct { /* Only valid when INDEX_ENTRY_END is not set. */
2215 leMFT_REF indexed_file; /* The mft reference of the file
2216 described by this index
2217 entry. Used for directory
2218 indexes. */
2219 } __attribute__ ((__packed__)) dir;
2220 struct { /* Used for views/indexes to find the entry's data. */
2221 le16 data_offset; /* Data byte offset from this
2222 INDEX_ENTRY. Follows the
2223 index key. */
2224 le16 data_length; /* Data length in bytes. */
2225 le32 reservedV; /* Reserved (zero). */
2226 } __attribute__ ((__packed__)) vi;
2227 } __attribute__ ((__packed__)) data;
2228 le16 length; /* Byte size of this index entry, multiple of
2229 8-bytes. */
2230 le16 key_length; /* Byte size of the key value, which is in the
2231 index entry. It follows field reserved. Not
2232 multiple of 8-bytes. */
2233 INDEX_ENTRY_FLAGS flags; /* Bit field of INDEX_ENTRY_* flags. */
2234 le16 reserved; /* Reserved/align to 8-byte boundary. */
2235
2236/* 16*/ union { /* The key of the indexed attribute. NOTE: Only present
2237 if INDEX_ENTRY_END bit in flags is not set. NOTE: On
2238 NTFS versions before 3.0 the only valid key is the
2239 FILE_NAME_ATTR. On NTFS 3.0+ the following
2240 additional index keys are defined: */
2241 FILE_NAME_ATTR file_name;/* $I30 index in directories. */
2242 SII_INDEX_KEY sii; /* $SII index in $Secure. */
2243 SDH_INDEX_KEY sdh; /* $SDH index in $Secure. */
2244 GUID object_id; /* $O index in FILE_Extend/$ObjId: The
2245 object_id of the mft record found in
2246 the data part of the index. */
2247 REPARSE_INDEX_KEY reparse; /* $R index in
2248 FILE_Extend/$Reparse. */
2249 SID sid; /* $O index in FILE_Extend/$Quota:
2250 SID of the owner of the user_id. */
2251 le32 owner_id; /* $Q index in FILE_Extend/$Quota:
2252 user_id of the owner of the quota
2253 control entry in the data part of
2254 the index. */
2255 } __attribute__ ((__packed__)) key;
2256 /* The (optional) index data is inserted here when creating. */
2257 // leVCN vcn; /* If INDEX_ENTRY_NODE bit in flags is set, the last
2258 // eight bytes of this index entry contain the virtual
2259 // cluster number of the index block that holds the
2260 // entries immediately preceding the current entry (the
2261 // vcn references the corresponding cluster in the data
2262 // of the non-resident index allocation attribute). If
2263 // the key_length is zero, then the vcn immediately
2264 // follows the INDEX_ENTRY_HEADER. Regardless of
2265 // key_length, the address of the 8-byte boundary
2266 // alligned vcn of INDEX_ENTRY{_HEADER} *ie is given by
2267 // (char*)ie + le16_to_cpu(ie*)->length) - sizeof(VCN),
2268 // where sizeof(VCN) can be hardcoded as 8 if wanted. */
2269} __attribute__ ((__packed__)) INDEX_ENTRY;
2270
2271/*
2272 * Attribute: Bitmap (0xb0).
2273 *
2274 * Contains an array of bits (aka a bitfield).
2275 *
2276 * When used in conjunction with the index allocation attribute, each bit
2277 * corresponds to one index block within the index allocation attribute. Thus
2278 * the number of bits in the bitmap * index block size / cluster size is the
2279 * number of clusters in the index allocation attribute.
2280 */
2281typedef struct {
2282 u8 bitmap[0]; /* Array of bits. */
2283} __attribute__ ((__packed__)) BITMAP_ATTR;
2284
2285/*
2286 * The reparse point tag defines the type of the reparse point. It also
2287 * includes several flags, which further describe the reparse point.
2288 *
2289 * The reparse point tag is an unsigned 32-bit value divided in three parts:
2290 *
2291 * 1. The least significant 16 bits (i.e. bits 0 to 15) specifiy the type of
2292 * the reparse point.
2293 * 2. The 13 bits after this (i.e. bits 16 to 28) are reserved for future use.
2294 * 3. The most significant three bits are flags describing the reparse point.
2295 * They are defined as follows:
2296 * bit 29: Name surrogate bit. If set, the filename is an alias for
2297 * another object in the system.
2298 * bit 30: High-latency bit. If set, accessing the first byte of data will
2299 * be slow. (E.g. the data is stored on a tape drive.)
2300 * bit 31: Microsoft bit. If set, the tag is owned by Microsoft. User
2301 * defined tags have to use zero here.
2302 *
2303 * These are the predefined reparse point tags:
2304 */
2305enum {
2306 IO_REPARSE_TAG_IS_ALIAS = const_cpu_to_le32(0x20000000),
2307 IO_REPARSE_TAG_IS_HIGH_LATENCY = const_cpu_to_le32(0x40000000),
2308 IO_REPARSE_TAG_IS_MICROSOFT = const_cpu_to_le32(0x80000000),
2309
2310 IO_REPARSE_TAG_RESERVED_ZERO = const_cpu_to_le32(0x00000000),
2311 IO_REPARSE_TAG_RESERVED_ONE = const_cpu_to_le32(0x00000001),
2312 IO_REPARSE_TAG_RESERVED_RANGE = const_cpu_to_le32(0x00000001),
2313
2314 IO_REPARSE_TAG_NSS = const_cpu_to_le32(0x68000005),
2315 IO_REPARSE_TAG_NSS_RECOVER = const_cpu_to_le32(0x68000006),
2316 IO_REPARSE_TAG_SIS = const_cpu_to_le32(0x68000007),
2317 IO_REPARSE_TAG_DFS = const_cpu_to_le32(0x68000008),
2318
2319 IO_REPARSE_TAG_MOUNT_POINT = const_cpu_to_le32(0x88000003),
2320
2321 IO_REPARSE_TAG_HSM = const_cpu_to_le32(0xa8000004),
2322
2323 IO_REPARSE_TAG_SYMBOLIC_LINK = const_cpu_to_le32(0xe8000000),
2324
2325 IO_REPARSE_TAG_VALID_VALUES = const_cpu_to_le32(0xe000ffff),
2326};
2327
2328/*
2329 * Attribute: Reparse point (0xc0).
2330 *
2331 * NOTE: Can be resident or non-resident.
2332 */
2333typedef struct {
2334 le32 reparse_tag; /* Reparse point type (inc. flags). */
2335 le16 reparse_data_length; /* Byte size of reparse data. */
2336 le16 reserved; /* Align to 8-byte boundary. */
2337 u8 reparse_data[0]; /* Meaning depends on reparse_tag. */
2338} __attribute__ ((__packed__)) REPARSE_POINT;
2339
2340/*
2341 * Attribute: Extended attribute (EA) information (0xd0).
2342 *
2343 * NOTE: Always resident. (Is this true???)
2344 */
2345typedef struct {
2346 le16 ea_length; /* Byte size of the packed extended
2347 attributes. */
2348 le16 need_ea_count; /* The number of extended attributes which have
2349 the NEED_EA bit set. */
2350 le32 ea_query_length; /* Byte size of the buffer required to query
2351 the extended attributes when calling
2352 ZwQueryEaFile() in Windows NT/2k. I.e. the
2353 byte size of the unpacked extended
2354 attributes. */
2355} __attribute__ ((__packed__)) EA_INFORMATION;
2356
2357/*
2358 * Extended attribute flags (8-bit).
2359 */
2360enum {
2361 NEED_EA = 0x80
2362} __attribute__ ((__packed__));
2363
2364typedef u8 EA_FLAGS;
2365
2366/*
2367 * Attribute: Extended attribute (EA) (0xe0).
2368 *
2369 * NOTE: Always non-resident. (Is this true?)
2370 *
2371 * Like the attribute list and the index buffer list, the EA attribute value is
2372 * a sequence of EA_ATTR variable length records.
2373 *
2374 * FIXME: It appears weird that the EA name is not unicode. Is it true?
2375 */
2376typedef struct {
2377 le32 next_entry_offset; /* Offset to the next EA_ATTR. */
2378 EA_FLAGS flags; /* Flags describing the EA. */
2379 u8 ea_name_length; /* Length of the name of the EA in bytes. */
2380 le16 ea_value_length; /* Byte size of the EA's value. */
2381 u8 ea_name[0]; /* Name of the EA. */
2382 u8 ea_value[0]; /* The value of the EA. Immediately follows
2383 the name. */
2384} __attribute__ ((__packed__)) EA_ATTR;
2385
2386/*
2387 * Attribute: Property set (0xf0).
2388 *
2389 * Intended to support Native Structure Storage (NSS) - a feature removed from
2390 * NTFS 3.0 during beta testing.
2391 */
2392typedef struct {
2393 /* Irrelevant as feature unused. */
2394} __attribute__ ((__packed__)) PROPERTY_SET;
2395
2396/*
2397 * Attribute: Logged utility stream (0x100).
2398 *
2399 * NOTE: Can be resident or non-resident.
2400 *
2401 * Operations on this attribute are logged to the journal ($LogFile) like
2402 * normal metadata changes.
2403 *
2404 * Used by the Encrypting File System (EFS). All encrypted files have this
2405 * attribute with the name $EFS.
2406 */
2407typedef struct {
2408 /* Can be anything the creator chooses. */
2409 /* EFS uses it as follows: */
2410 // FIXME: Type this info, verifying it along the way. (AIA)
2411} __attribute__ ((__packed__)) LOGGED_UTILITY_STREAM, EFS_ATTR;
2412
2413#endif /* _LINUX_NTFS_LAYOUT_H */