diff options
author | Andrew Victor <andrew@sanpeople.com> | 2005-02-09 04:09:05 -0500 |
---|---|---|
committer | Thomas Gleixner <tglx@mtd.linutronix.de> | 2005-05-23 06:27:09 -0400 |
commit | 3be36675d41a30ed3b192f92684f1417aa0f8bfe (patch) | |
tree | da8395bb14ffef19e551c509c47d16b52fb536d9 /fs/jffs2/wbuf.c | |
parent | 045e9a5d51ced27bfcbdb78071534ce6fd36b33d (diff) |
[JFFS2] Core changes required to support JFFS2-on-Dataflash devices.
DataFlash page-sizes are not a power of two (they're multiples of 528
bytes). There are a few places in JFFS2 code where sector_size is used
as a bitmask. A new macro (SECTOR_ADDR) was defined to calculate these
sector addresses. For non-DataFlash devices, the original (faster)
bitmask operation is still used.
In scan.c, the EMPTY_SCAN_SIZE was a constant of 1024.
Since this could be larger than the sector size of the DataFlash, this
is now basically set to MIN(sector_size, 1024).
Addition of a jffs2_is_writebuffered() macro.
Signed-off-by: Andrew Victor <andrew@sanpeople.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'fs/jffs2/wbuf.c')
-rw-r--r-- | fs/jffs2/wbuf.c | 63 |
1 files changed, 31 insertions, 32 deletions
diff --git a/fs/jffs2/wbuf.c b/fs/jffs2/wbuf.c index 79414abadd5e..894dea88678d 100644 --- a/fs/jffs2/wbuf.c +++ b/fs/jffs2/wbuf.c | |||
@@ -9,7 +9,7 @@ | |||
9 | * | 9 | * |
10 | * For licensing information, see the file 'LICENCE' in this directory. | 10 | * For licensing information, see the file 'LICENCE' in this directory. |
11 | * | 11 | * |
12 | * $Id: wbuf.c,v 1.86 2005/02/05 18:23:37 hammache Exp $ | 12 | * $Id: wbuf.c,v 1.87 2005/02/09 09:09:02 pavlov Exp $ |
13 | * | 13 | * |
14 | */ | 14 | */ |
15 | 15 | ||
@@ -415,9 +415,9 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) | |||
415 | int ret; | 415 | int ret; |
416 | size_t retlen; | 416 | size_t retlen; |
417 | 417 | ||
418 | /* Nothing to do if not NAND flash. In particular, we shouldn't | 418 | /* Nothing to do if not write-buffering the flash. In particular, we shouldn't |
419 | del_timer() the timer we never initialised. */ | 419 | del_timer() the timer we never initialised. */ |
420 | if (jffs2_can_mark_obsolete(c)) | 420 | if (!jffs2_is_writebuffered(c)) |
421 | return 0; | 421 | return 0; |
422 | 422 | ||
423 | if (!down_trylock(&c->alloc_sem)) { | 423 | if (!down_trylock(&c->alloc_sem)) { |
@@ -426,7 +426,7 @@ static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) | |||
426 | BUG(); | 426 | BUG(); |
427 | } | 427 | } |
428 | 428 | ||
429 | if(!c->wbuf || !c->wbuf_len) | 429 | if (!c->wbuf_len) /* already checked c->wbuf above */ |
430 | return 0; | 430 | return 0; |
431 | 431 | ||
432 | /* claim remaining space on the page | 432 | /* claim remaining space on the page |
@@ -620,7 +620,7 @@ int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsig | |||
620 | uint32_t outvec_to = to; | 620 | uint32_t outvec_to = to; |
621 | 621 | ||
622 | /* If not NAND flash, don't bother */ | 622 | /* If not NAND flash, don't bother */ |
623 | if (!c->wbuf) | 623 | if (!jffs2_is_writebuffered(c)) |
624 | return jffs2_flash_direct_writev(c, invecs, count, to, retlen); | 624 | return jffs2_flash_direct_writev(c, invecs, count, to, retlen); |
625 | 625 | ||
626 | down_write(&c->wbuf_sem); | 626 | down_write(&c->wbuf_sem); |
@@ -649,7 +649,7 @@ int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsig | |||
649 | erase block. Anything else, and you die. | 649 | erase block. Anything else, and you die. |
650 | New block starts at xxx000c (0-b = block header) | 650 | New block starts at xxx000c (0-b = block header) |
651 | */ | 651 | */ |
652 | if ( (to & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) { | 652 | if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { |
653 | /* It's a write to a new block */ | 653 | /* It's a write to a new block */ |
654 | if (c->wbuf_len) { | 654 | if (c->wbuf_len) { |
655 | D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); | 655 | D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); |
@@ -847,7 +847,7 @@ int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *r | |||
847 | { | 847 | { |
848 | struct kvec vecs[1]; | 848 | struct kvec vecs[1]; |
849 | 849 | ||
850 | if (jffs2_can_mark_obsolete(c)) | 850 | if (!jffs2_is_writebuffered(c)) |
851 | return c->mtd->write(c->mtd, ofs, len, retlen, buf); | 851 | return c->mtd->write(c->mtd, ofs, len, retlen, buf); |
852 | 852 | ||
853 | vecs[0].iov_base = (unsigned char *) buf; | 853 | vecs[0].iov_base = (unsigned char *) buf; |
@@ -863,38 +863,37 @@ int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *re | |||
863 | loff_t orbf = 0, owbf = 0, lwbf = 0; | 863 | loff_t orbf = 0, owbf = 0, lwbf = 0; |
864 | int ret; | 864 | int ret; |
865 | 865 | ||
866 | /* Read flash */ | 866 | if (!jffs2_is_writebuffered(c)) |
867 | if (!jffs2_can_mark_obsolete(c)) { | ||
868 | |||
869 | if (jffs2_cleanmarker_oob(c)) | ||
870 | ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo); | ||
871 | else | ||
872 | ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); | ||
873 | |||
874 | if ( (ret == -EBADMSG) && (*retlen == len) ) { | ||
875 | printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", | ||
876 | len, ofs); | ||
877 | /* | ||
878 | * We have the raw data without ECC correction in the buffer, maybe | ||
879 | * we are lucky and all data or parts are correct. We check the node. | ||
880 | * If data are corrupted node check will sort it out. | ||
881 | * We keep this block, it will fail on write or erase and the we | ||
882 | * mark it bad. Or should we do that now? But we should give him a chance. | ||
883 | * Maybe we had a system crash or power loss before the ecc write or | ||
884 | * a erase was completed. | ||
885 | * So we return success. :) | ||
886 | */ | ||
887 | ret = 0; | ||
888 | } | ||
889 | } else | ||
890 | return c->mtd->read(c->mtd, ofs, len, retlen, buf); | 867 | return c->mtd->read(c->mtd, ofs, len, retlen, buf); |
891 | 868 | ||
869 | /* Read flash */ | ||
870 | if (jffs2_cleanmarker_oob(c)) | ||
871 | ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo); | ||
872 | else | ||
873 | ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); | ||
874 | |||
875 | if ( (ret == -EBADMSG) && (*retlen == len) ) { | ||
876 | printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", | ||
877 | len, ofs); | ||
878 | /* | ||
879 | * We have the raw data without ECC correction in the buffer, maybe | ||
880 | * we are lucky and all data or parts are correct. We check the node. | ||
881 | * If data are corrupted node check will sort it out. | ||
882 | * We keep this block, it will fail on write or erase and the we | ||
883 | * mark it bad. Or should we do that now? But we should give him a chance. | ||
884 | * Maybe we had a system crash or power loss before the ecc write or | ||
885 | * a erase was completed. | ||
886 | * So we return success. :) | ||
887 | */ | ||
888 | ret = 0; | ||
889 | } | ||
890 | |||
892 | /* if no writebuffer available or write buffer empty, return */ | 891 | /* if no writebuffer available or write buffer empty, return */ |
893 | if (!c->wbuf_pagesize || !c->wbuf_len) | 892 | if (!c->wbuf_pagesize || !c->wbuf_len) |
894 | return ret;; | 893 | return ret;; |
895 | 894 | ||
896 | /* if we read in a different block, return */ | 895 | /* if we read in a different block, return */ |
897 | if ( (ofs & ~(c->sector_size-1)) != (c->wbuf_ofs & ~(c->sector_size-1)) ) | 896 | if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) |
898 | return ret; | 897 | return ret; |
899 | 898 | ||
900 | /* Lock only if we have reason to believe wbuf contains relevant data, | 899 | /* Lock only if we have reason to believe wbuf contains relevant data, |