diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/jffs2/nodemgmt.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/jffs2/nodemgmt.c')
-rw-r--r-- | fs/jffs2/nodemgmt.c | 838 |
1 files changed, 838 insertions, 0 deletions
diff --git a/fs/jffs2/nodemgmt.c b/fs/jffs2/nodemgmt.c new file mode 100644 index 000000000000..2651135bdf42 --- /dev/null +++ b/fs/jffs2/nodemgmt.c | |||
@@ -0,0 +1,838 @@ | |||
1 | /* | ||
2 | * JFFS2 -- Journalling Flash File System, Version 2. | ||
3 | * | ||
4 | * Copyright (C) 2001-2003 Red Hat, Inc. | ||
5 | * | ||
6 | * Created by David Woodhouse <dwmw2@infradead.org> | ||
7 | * | ||
8 | * For licensing information, see the file 'LICENCE' in this directory. | ||
9 | * | ||
10 | * $Id: nodemgmt.c,v 1.115 2004/11/22 11:07:21 dwmw2 Exp $ | ||
11 | * | ||
12 | */ | ||
13 | |||
14 | #include <linux/kernel.h> | ||
15 | #include <linux/slab.h> | ||
16 | #include <linux/mtd/mtd.h> | ||
17 | #include <linux/compiler.h> | ||
18 | #include <linux/sched.h> /* For cond_resched() */ | ||
19 | #include "nodelist.h" | ||
20 | |||
21 | /** | ||
22 | * jffs2_reserve_space - request physical space to write nodes to flash | ||
23 | * @c: superblock info | ||
24 | * @minsize: Minimum acceptable size of allocation | ||
25 | * @ofs: Returned value of node offset | ||
26 | * @len: Returned value of allocation length | ||
27 | * @prio: Allocation type - ALLOC_{NORMAL,DELETION} | ||
28 | * | ||
29 | * Requests a block of physical space on the flash. Returns zero for success | ||
30 | * and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC | ||
31 | * or other error if appropriate. | ||
32 | * | ||
33 | * If it returns zero, jffs2_reserve_space() also downs the per-filesystem | ||
34 | * allocation semaphore, to prevent more than one allocation from being | ||
35 | * active at any time. The semaphore is later released by jffs2_commit_allocation() | ||
36 | * | ||
37 | * jffs2_reserve_space() may trigger garbage collection in order to make room | ||
38 | * for the requested allocation. | ||
39 | */ | ||
40 | |||
41 | static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len); | ||
42 | |||
43 | int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio) | ||
44 | { | ||
45 | int ret = -EAGAIN; | ||
46 | int blocksneeded = c->resv_blocks_write; | ||
47 | /* align it */ | ||
48 | minsize = PAD(minsize); | ||
49 | |||
50 | D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize)); | ||
51 | down(&c->alloc_sem); | ||
52 | |||
53 | D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n")); | ||
54 | |||
55 | spin_lock(&c->erase_completion_lock); | ||
56 | |||
57 | /* this needs a little more thought (true <tglx> :)) */ | ||
58 | while(ret == -EAGAIN) { | ||
59 | while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) { | ||
60 | int ret; | ||
61 | uint32_t dirty, avail; | ||
62 | |||
63 | /* calculate real dirty size | ||
64 | * dirty_size contains blocks on erase_pending_list | ||
65 | * those blocks are counted in c->nr_erasing_blocks. | ||
66 | * If one block is actually erased, it is not longer counted as dirty_space | ||
67 | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it | ||
68 | * with c->nr_erasing_blocks * c->sector_size again. | ||
69 | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks | ||
70 | * This helps us to force gc and pick eventually a clean block to spread the load. | ||
71 | * We add unchecked_size here, as we hopefully will find some space to use. | ||
72 | * This will affect the sum only once, as gc first finishes checking | ||
73 | * of nodes. | ||
74 | */ | ||
75 | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size; | ||
76 | if (dirty < c->nospc_dirty_size) { | ||
77 | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { | ||
78 | printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"); | ||
79 | break; | ||
80 | } | ||
81 | D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n", | ||
82 | dirty, c->unchecked_size, c->sector_size)); | ||
83 | |||
84 | spin_unlock(&c->erase_completion_lock); | ||
85 | up(&c->alloc_sem); | ||
86 | return -ENOSPC; | ||
87 | } | ||
88 | |||
89 | /* Calc possibly available space. Possibly available means that we | ||
90 | * don't know, if unchecked size contains obsoleted nodes, which could give us some | ||
91 | * more usable space. This will affect the sum only once, as gc first finishes checking | ||
92 | * of nodes. | ||
93 | + Return -ENOSPC, if the maximum possibly available space is less or equal than | ||
94 | * blocksneeded * sector_size. | ||
95 | * This blocks endless gc looping on a filesystem, which is nearly full, even if | ||
96 | * the check above passes. | ||
97 | */ | ||
98 | avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size; | ||
99 | if ( (avail / c->sector_size) <= blocksneeded) { | ||
100 | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { | ||
101 | printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"); | ||
102 | break; | ||
103 | } | ||
104 | |||
105 | D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n", | ||
106 | avail, blocksneeded * c->sector_size)); | ||
107 | spin_unlock(&c->erase_completion_lock); | ||
108 | up(&c->alloc_sem); | ||
109 | return -ENOSPC; | ||
110 | } | ||
111 | |||
112 | up(&c->alloc_sem); | ||
113 | |||
114 | D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n", | ||
115 | c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size, | ||
116 | c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size)); | ||
117 | spin_unlock(&c->erase_completion_lock); | ||
118 | |||
119 | ret = jffs2_garbage_collect_pass(c); | ||
120 | if (ret) | ||
121 | return ret; | ||
122 | |||
123 | cond_resched(); | ||
124 | |||
125 | if (signal_pending(current)) | ||
126 | return -EINTR; | ||
127 | |||
128 | down(&c->alloc_sem); | ||
129 | spin_lock(&c->erase_completion_lock); | ||
130 | } | ||
131 | |||
132 | ret = jffs2_do_reserve_space(c, minsize, ofs, len); | ||
133 | if (ret) { | ||
134 | D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret)); | ||
135 | } | ||
136 | } | ||
137 | spin_unlock(&c->erase_completion_lock); | ||
138 | if (ret) | ||
139 | up(&c->alloc_sem); | ||
140 | return ret; | ||
141 | } | ||
142 | |||
143 | int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len) | ||
144 | { | ||
145 | int ret = -EAGAIN; | ||
146 | minsize = PAD(minsize); | ||
147 | |||
148 | D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize)); | ||
149 | |||
150 | spin_lock(&c->erase_completion_lock); | ||
151 | while(ret == -EAGAIN) { | ||
152 | ret = jffs2_do_reserve_space(c, minsize, ofs, len); | ||
153 | if (ret) { | ||
154 | D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret)); | ||
155 | } | ||
156 | } | ||
157 | spin_unlock(&c->erase_completion_lock); | ||
158 | return ret; | ||
159 | } | ||
160 | |||
161 | /* Called with alloc sem _and_ erase_completion_lock */ | ||
162 | static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len) | ||
163 | { | ||
164 | struct jffs2_eraseblock *jeb = c->nextblock; | ||
165 | |||
166 | restart: | ||
167 | if (jeb && minsize > jeb->free_size) { | ||
168 | /* Skip the end of this block and file it as having some dirty space */ | ||
169 | /* If there's a pending write to it, flush now */ | ||
170 | if (jffs2_wbuf_dirty(c)) { | ||
171 | spin_unlock(&c->erase_completion_lock); | ||
172 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); | ||
173 | jffs2_flush_wbuf_pad(c); | ||
174 | spin_lock(&c->erase_completion_lock); | ||
175 | jeb = c->nextblock; | ||
176 | goto restart; | ||
177 | } | ||
178 | c->wasted_size += jeb->free_size; | ||
179 | c->free_size -= jeb->free_size; | ||
180 | jeb->wasted_size += jeb->free_size; | ||
181 | jeb->free_size = 0; | ||
182 | |||
183 | /* Check, if we have a dirty block now, or if it was dirty already */ | ||
184 | if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) { | ||
185 | c->dirty_size += jeb->wasted_size; | ||
186 | c->wasted_size -= jeb->wasted_size; | ||
187 | jeb->dirty_size += jeb->wasted_size; | ||
188 | jeb->wasted_size = 0; | ||
189 | if (VERYDIRTY(c, jeb->dirty_size)) { | ||
190 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | ||
191 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | ||
192 | list_add_tail(&jeb->list, &c->very_dirty_list); | ||
193 | } else { | ||
194 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | ||
195 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | ||
196 | list_add_tail(&jeb->list, &c->dirty_list); | ||
197 | } | ||
198 | } else { | ||
199 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | ||
200 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | ||
201 | list_add_tail(&jeb->list, &c->clean_list); | ||
202 | } | ||
203 | c->nextblock = jeb = NULL; | ||
204 | } | ||
205 | |||
206 | if (!jeb) { | ||
207 | struct list_head *next; | ||
208 | /* Take the next block off the 'free' list */ | ||
209 | |||
210 | if (list_empty(&c->free_list)) { | ||
211 | |||
212 | if (!c->nr_erasing_blocks && | ||
213 | !list_empty(&c->erasable_list)) { | ||
214 | struct jffs2_eraseblock *ejeb; | ||
215 | |||
216 | ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list); | ||
217 | list_del(&ejeb->list); | ||
218 | list_add_tail(&ejeb->list, &c->erase_pending_list); | ||
219 | c->nr_erasing_blocks++; | ||
220 | jffs2_erase_pending_trigger(c); | ||
221 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n", | ||
222 | ejeb->offset)); | ||
223 | } | ||
224 | |||
225 | if (!c->nr_erasing_blocks && | ||
226 | !list_empty(&c->erasable_pending_wbuf_list)) { | ||
227 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); | ||
228 | /* c->nextblock is NULL, no update to c->nextblock allowed */ | ||
229 | spin_unlock(&c->erase_completion_lock); | ||
230 | jffs2_flush_wbuf_pad(c); | ||
231 | spin_lock(&c->erase_completion_lock); | ||
232 | /* Have another go. It'll be on the erasable_list now */ | ||
233 | return -EAGAIN; | ||
234 | } | ||
235 | |||
236 | if (!c->nr_erasing_blocks) { | ||
237 | /* Ouch. We're in GC, or we wouldn't have got here. | ||
238 | And there's no space left. At all. */ | ||
239 | printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", | ||
240 | c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no", | ||
241 | list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no"); | ||
242 | return -ENOSPC; | ||
243 | } | ||
244 | |||
245 | spin_unlock(&c->erase_completion_lock); | ||
246 | /* Don't wait for it; just erase one right now */ | ||
247 | jffs2_erase_pending_blocks(c, 1); | ||
248 | spin_lock(&c->erase_completion_lock); | ||
249 | |||
250 | /* An erase may have failed, decreasing the | ||
251 | amount of free space available. So we must | ||
252 | restart from the beginning */ | ||
253 | return -EAGAIN; | ||
254 | } | ||
255 | |||
256 | next = c->free_list.next; | ||
257 | list_del(next); | ||
258 | c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list); | ||
259 | c->nr_free_blocks--; | ||
260 | |||
261 | if (jeb->free_size != c->sector_size - c->cleanmarker_size) { | ||
262 | printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size); | ||
263 | goto restart; | ||
264 | } | ||
265 | } | ||
266 | /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has | ||
267 | enough space */ | ||
268 | *ofs = jeb->offset + (c->sector_size - jeb->free_size); | ||
269 | *len = jeb->free_size; | ||
270 | |||
271 | if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size && | ||
272 | !jeb->first_node->next_in_ino) { | ||
273 | /* Only node in it beforehand was a CLEANMARKER node (we think). | ||
274 | So mark it obsolete now that there's going to be another node | ||
275 | in the block. This will reduce used_size to zero but We've | ||
276 | already set c->nextblock so that jffs2_mark_node_obsolete() | ||
277 | won't try to refile it to the dirty_list. | ||
278 | */ | ||
279 | spin_unlock(&c->erase_completion_lock); | ||
280 | jffs2_mark_node_obsolete(c, jeb->first_node); | ||
281 | spin_lock(&c->erase_completion_lock); | ||
282 | } | ||
283 | |||
284 | D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs)); | ||
285 | return 0; | ||
286 | } | ||
287 | |||
288 | /** | ||
289 | * jffs2_add_physical_node_ref - add a physical node reference to the list | ||
290 | * @c: superblock info | ||
291 | * @new: new node reference to add | ||
292 | * @len: length of this physical node | ||
293 | * @dirty: dirty flag for new node | ||
294 | * | ||
295 | * Should only be used to report nodes for which space has been allocated | ||
296 | * by jffs2_reserve_space. | ||
297 | * | ||
298 | * Must be called with the alloc_sem held. | ||
299 | */ | ||
300 | |||
301 | int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new) | ||
302 | { | ||
303 | struct jffs2_eraseblock *jeb; | ||
304 | uint32_t len; | ||
305 | |||
306 | jeb = &c->blocks[new->flash_offset / c->sector_size]; | ||
307 | len = ref_totlen(c, jeb, new); | ||
308 | |||
309 | D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len)); | ||
310 | #if 1 | ||
311 | if (jeb != c->nextblock || (ref_offset(new)) != jeb->offset + (c->sector_size - jeb->free_size)) { | ||
312 | printk(KERN_WARNING "argh. node added in wrong place\n"); | ||
313 | jffs2_free_raw_node_ref(new); | ||
314 | return -EINVAL; | ||
315 | } | ||
316 | #endif | ||
317 | spin_lock(&c->erase_completion_lock); | ||
318 | |||
319 | if (!jeb->first_node) | ||
320 | jeb->first_node = new; | ||
321 | if (jeb->last_node) | ||
322 | jeb->last_node->next_phys = new; | ||
323 | jeb->last_node = new; | ||
324 | |||
325 | jeb->free_size -= len; | ||
326 | c->free_size -= len; | ||
327 | if (ref_obsolete(new)) { | ||
328 | jeb->dirty_size += len; | ||
329 | c->dirty_size += len; | ||
330 | } else { | ||
331 | jeb->used_size += len; | ||
332 | c->used_size += len; | ||
333 | } | ||
334 | |||
335 | if (!jeb->free_size && !jeb->dirty_size) { | ||
336 | /* If it lives on the dirty_list, jffs2_reserve_space will put it there */ | ||
337 | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | ||
338 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | ||
339 | if (jffs2_wbuf_dirty(c)) { | ||
340 | /* Flush the last write in the block if it's outstanding */ | ||
341 | spin_unlock(&c->erase_completion_lock); | ||
342 | jffs2_flush_wbuf_pad(c); | ||
343 | spin_lock(&c->erase_completion_lock); | ||
344 | } | ||
345 | |||
346 | list_add_tail(&jeb->list, &c->clean_list); | ||
347 | c->nextblock = NULL; | ||
348 | } | ||
349 | ACCT_SANITY_CHECK(c,jeb); | ||
350 | D1(ACCT_PARANOIA_CHECK(jeb)); | ||
351 | |||
352 | spin_unlock(&c->erase_completion_lock); | ||
353 | |||
354 | return 0; | ||
355 | } | ||
356 | |||
357 | |||
358 | void jffs2_complete_reservation(struct jffs2_sb_info *c) | ||
359 | { | ||
360 | D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n")); | ||
361 | jffs2_garbage_collect_trigger(c); | ||
362 | up(&c->alloc_sem); | ||
363 | } | ||
364 | |||
365 | static inline int on_list(struct list_head *obj, struct list_head *head) | ||
366 | { | ||
367 | struct list_head *this; | ||
368 | |||
369 | list_for_each(this, head) { | ||
370 | if (this == obj) { | ||
371 | D1(printk("%p is on list at %p\n", obj, head)); | ||
372 | return 1; | ||
373 | |||
374 | } | ||
375 | } | ||
376 | return 0; | ||
377 | } | ||
378 | |||
379 | void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref) | ||
380 | { | ||
381 | struct jffs2_eraseblock *jeb; | ||
382 | int blocknr; | ||
383 | struct jffs2_unknown_node n; | ||
384 | int ret, addedsize; | ||
385 | size_t retlen; | ||
386 | |||
387 | if(!ref) { | ||
388 | printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n"); | ||
389 | return; | ||
390 | } | ||
391 | if (ref_obsolete(ref)) { | ||
392 | D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref))); | ||
393 | return; | ||
394 | } | ||
395 | blocknr = ref->flash_offset / c->sector_size; | ||
396 | if (blocknr >= c->nr_blocks) { | ||
397 | printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset); | ||
398 | BUG(); | ||
399 | } | ||
400 | jeb = &c->blocks[blocknr]; | ||
401 | |||
402 | if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) && | ||
403 | !(c->flags & JFFS2_SB_FLAG_MOUNTING)) { | ||
404 | /* Hm. This may confuse static lock analysis. If any of the above | ||
405 | three conditions is false, we're going to return from this | ||
406 | function without actually obliterating any nodes or freeing | ||
407 | any jffs2_raw_node_refs. So we don't need to stop erases from | ||
408 | happening, or protect against people holding an obsolete | ||
409 | jffs2_raw_node_ref without the erase_completion_lock. */ | ||
410 | down(&c->erase_free_sem); | ||
411 | } | ||
412 | |||
413 | spin_lock(&c->erase_completion_lock); | ||
414 | |||
415 | if (ref_flags(ref) == REF_UNCHECKED) { | ||
416 | D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) { | ||
417 | printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n", | ||
418 | ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); | ||
419 | BUG(); | ||
420 | }) | ||
421 | D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); | ||
422 | jeb->unchecked_size -= ref_totlen(c, jeb, ref); | ||
423 | c->unchecked_size -= ref_totlen(c, jeb, ref); | ||
424 | } else { | ||
425 | D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) { | ||
426 | printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n", | ||
427 | ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); | ||
428 | BUG(); | ||
429 | }) | ||
430 | D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); | ||
431 | jeb->used_size -= ref_totlen(c, jeb, ref); | ||
432 | c->used_size -= ref_totlen(c, jeb, ref); | ||
433 | } | ||
434 | |||
435 | // Take care, that wasted size is taken into concern | ||
436 | if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) { | ||
437 | D1(printk("Dirtying\n")); | ||
438 | addedsize = ref_totlen(c, jeb, ref); | ||
439 | jeb->dirty_size += ref_totlen(c, jeb, ref); | ||
440 | c->dirty_size += ref_totlen(c, jeb, ref); | ||
441 | |||
442 | /* Convert wasted space to dirty, if not a bad block */ | ||
443 | if (jeb->wasted_size) { | ||
444 | if (on_list(&jeb->list, &c->bad_used_list)) { | ||
445 | D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n", | ||
446 | jeb->offset)); | ||
447 | addedsize = 0; /* To fool the refiling code later */ | ||
448 | } else { | ||
449 | D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n", | ||
450 | jeb->wasted_size, jeb->offset)); | ||
451 | addedsize += jeb->wasted_size; | ||
452 | jeb->dirty_size += jeb->wasted_size; | ||
453 | c->dirty_size += jeb->wasted_size; | ||
454 | c->wasted_size -= jeb->wasted_size; | ||
455 | jeb->wasted_size = 0; | ||
456 | } | ||
457 | } | ||
458 | } else { | ||
459 | D1(printk("Wasting\n")); | ||
460 | addedsize = 0; | ||
461 | jeb->wasted_size += ref_totlen(c, jeb, ref); | ||
462 | c->wasted_size += ref_totlen(c, jeb, ref); | ||
463 | } | ||
464 | ref->flash_offset = ref_offset(ref) | REF_OBSOLETE; | ||
465 | |||
466 | ACCT_SANITY_CHECK(c, jeb); | ||
467 | |||
468 | D1(ACCT_PARANOIA_CHECK(jeb)); | ||
469 | |||
470 | if (c->flags & JFFS2_SB_FLAG_MOUNTING) { | ||
471 | /* Mount in progress. Don't muck about with the block | ||
472 | lists because they're not ready yet, and don't actually | ||
473 | obliterate nodes that look obsolete. If they weren't | ||
474 | marked obsolete on the flash at the time they _became_ | ||
475 | obsolete, there was probably a reason for that. */ | ||
476 | spin_unlock(&c->erase_completion_lock); | ||
477 | /* We didn't lock the erase_free_sem */ | ||
478 | return; | ||
479 | } | ||
480 | |||
481 | if (jeb == c->nextblock) { | ||
482 | D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset)); | ||
483 | } else if (!jeb->used_size && !jeb->unchecked_size) { | ||
484 | if (jeb == c->gcblock) { | ||
485 | D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset)); | ||
486 | c->gcblock = NULL; | ||
487 | } else { | ||
488 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset)); | ||
489 | list_del(&jeb->list); | ||
490 | } | ||
491 | if (jffs2_wbuf_dirty(c)) { | ||
492 | D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n")); | ||
493 | list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list); | ||
494 | } else { | ||
495 | if (jiffies & 127) { | ||
496 | /* Most of the time, we just erase it immediately. Otherwise we | ||
497 | spend ages scanning it on mount, etc. */ | ||
498 | D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); | ||
499 | list_add_tail(&jeb->list, &c->erase_pending_list); | ||
500 | c->nr_erasing_blocks++; | ||
501 | jffs2_erase_pending_trigger(c); | ||
502 | } else { | ||
503 | /* Sometimes, however, we leave it elsewhere so it doesn't get | ||
504 | immediately reused, and we spread the load a bit. */ | ||
505 | D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); | ||
506 | list_add_tail(&jeb->list, &c->erasable_list); | ||
507 | } | ||
508 | } | ||
509 | D1(printk(KERN_DEBUG "Done OK\n")); | ||
510 | } else if (jeb == c->gcblock) { | ||
511 | D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset)); | ||
512 | } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) { | ||
513 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset)); | ||
514 | list_del(&jeb->list); | ||
515 | D1(printk(KERN_DEBUG "...and adding to dirty_list\n")); | ||
516 | list_add_tail(&jeb->list, &c->dirty_list); | ||
517 | } else if (VERYDIRTY(c, jeb->dirty_size) && | ||
518 | !VERYDIRTY(c, jeb->dirty_size - addedsize)) { | ||
519 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset)); | ||
520 | list_del(&jeb->list); | ||
521 | D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n")); | ||
522 | list_add_tail(&jeb->list, &c->very_dirty_list); | ||
523 | } else { | ||
524 | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n", | ||
525 | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | ||
526 | } | ||
527 | |||
528 | spin_unlock(&c->erase_completion_lock); | ||
529 | |||
530 | if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c)) { | ||
531 | /* We didn't lock the erase_free_sem */ | ||
532 | return; | ||
533 | } | ||
534 | |||
535 | /* The erase_free_sem is locked, and has been since before we marked the node obsolete | ||
536 | and potentially put its eraseblock onto the erase_pending_list. Thus, we know that | ||
537 | the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet | ||
538 | by jffs2_free_all_node_refs() in erase.c. Which is nice. */ | ||
539 | |||
540 | D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref))); | ||
541 | ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); | ||
542 | if (ret) { | ||
543 | printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); | ||
544 | goto out_erase_sem; | ||
545 | } | ||
546 | if (retlen != sizeof(n)) { | ||
547 | printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); | ||
548 | goto out_erase_sem; | ||
549 | } | ||
550 | if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) { | ||
551 | printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref)); | ||
552 | goto out_erase_sem; | ||
553 | } | ||
554 | if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) { | ||
555 | D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype))); | ||
556 | goto out_erase_sem; | ||
557 | } | ||
558 | /* XXX FIXME: This is ugly now */ | ||
559 | n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE); | ||
560 | ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); | ||
561 | if (ret) { | ||
562 | printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); | ||
563 | goto out_erase_sem; | ||
564 | } | ||
565 | if (retlen != sizeof(n)) { | ||
566 | printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); | ||
567 | goto out_erase_sem; | ||
568 | } | ||
569 | |||
570 | /* Nodes which have been marked obsolete no longer need to be | ||
571 | associated with any inode. Remove them from the per-inode list. | ||
572 | |||
573 | Note we can't do this for NAND at the moment because we need | ||
574 | obsolete dirent nodes to stay on the lists, because of the | ||
575 | horridness in jffs2_garbage_collect_deletion_dirent(). Also | ||
576 | because we delete the inocache, and on NAND we need that to | ||
577 | stay around until all the nodes are actually erased, in order | ||
578 | to stop us from giving the same inode number to another newly | ||
579 | created inode. */ | ||
580 | if (ref->next_in_ino) { | ||
581 | struct jffs2_inode_cache *ic; | ||
582 | struct jffs2_raw_node_ref **p; | ||
583 | |||
584 | spin_lock(&c->erase_completion_lock); | ||
585 | |||
586 | ic = jffs2_raw_ref_to_ic(ref); | ||
587 | for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino)) | ||
588 | ; | ||
589 | |||
590 | *p = ref->next_in_ino; | ||
591 | ref->next_in_ino = NULL; | ||
592 | |||
593 | if (ic->nodes == (void *)ic) { | ||
594 | D1(printk(KERN_DEBUG "inocache for ino #%u is all gone now. Freeing\n", ic->ino)); | ||
595 | jffs2_del_ino_cache(c, ic); | ||
596 | jffs2_free_inode_cache(ic); | ||
597 | } | ||
598 | |||
599 | spin_unlock(&c->erase_completion_lock); | ||
600 | } | ||
601 | |||
602 | |||
603 | /* Merge with the next node in the physical list, if there is one | ||
604 | and if it's also obsolete and if it doesn't belong to any inode */ | ||
605 | if (ref->next_phys && ref_obsolete(ref->next_phys) && | ||
606 | !ref->next_phys->next_in_ino) { | ||
607 | struct jffs2_raw_node_ref *n = ref->next_phys; | ||
608 | |||
609 | spin_lock(&c->erase_completion_lock); | ||
610 | |||
611 | ref->__totlen += n->__totlen; | ||
612 | ref->next_phys = n->next_phys; | ||
613 | if (jeb->last_node == n) jeb->last_node = ref; | ||
614 | if (jeb->gc_node == n) { | ||
615 | /* gc will be happy continuing gc on this node */ | ||
616 | jeb->gc_node=ref; | ||
617 | } | ||
618 | spin_unlock(&c->erase_completion_lock); | ||
619 | |||
620 | jffs2_free_raw_node_ref(n); | ||
621 | } | ||
622 | |||
623 | /* Also merge with the previous node in the list, if there is one | ||
624 | and that one is obsolete */ | ||
625 | if (ref != jeb->first_node ) { | ||
626 | struct jffs2_raw_node_ref *p = jeb->first_node; | ||
627 | |||
628 | spin_lock(&c->erase_completion_lock); | ||
629 | |||
630 | while (p->next_phys != ref) | ||
631 | p = p->next_phys; | ||
632 | |||
633 | if (ref_obsolete(p) && !ref->next_in_ino) { | ||
634 | p->__totlen += ref->__totlen; | ||
635 | if (jeb->last_node == ref) { | ||
636 | jeb->last_node = p; | ||
637 | } | ||
638 | if (jeb->gc_node == ref) { | ||
639 | /* gc will be happy continuing gc on this node */ | ||
640 | jeb->gc_node=p; | ||
641 | } | ||
642 | p->next_phys = ref->next_phys; | ||
643 | jffs2_free_raw_node_ref(ref); | ||
644 | } | ||
645 | spin_unlock(&c->erase_completion_lock); | ||
646 | } | ||
647 | out_erase_sem: | ||
648 | up(&c->erase_free_sem); | ||
649 | } | ||
650 | |||
651 | #if CONFIG_JFFS2_FS_DEBUG >= 2 | ||
652 | void jffs2_dump_block_lists(struct jffs2_sb_info *c) | ||
653 | { | ||
654 | |||
655 | |||
656 | printk(KERN_DEBUG "jffs2_dump_block_lists:\n"); | ||
657 | printk(KERN_DEBUG "flash_size: %08x\n", c->flash_size); | ||
658 | printk(KERN_DEBUG "used_size: %08x\n", c->used_size); | ||
659 | printk(KERN_DEBUG "dirty_size: %08x\n", c->dirty_size); | ||
660 | printk(KERN_DEBUG "wasted_size: %08x\n", c->wasted_size); | ||
661 | printk(KERN_DEBUG "unchecked_size: %08x\n", c->unchecked_size); | ||
662 | printk(KERN_DEBUG "free_size: %08x\n", c->free_size); | ||
663 | printk(KERN_DEBUG "erasing_size: %08x\n", c->erasing_size); | ||
664 | printk(KERN_DEBUG "bad_size: %08x\n", c->bad_size); | ||
665 | printk(KERN_DEBUG "sector_size: %08x\n", c->sector_size); | ||
666 | printk(KERN_DEBUG "jffs2_reserved_blocks size: %08x\n",c->sector_size * c->resv_blocks_write); | ||
667 | |||
668 | if (c->nextblock) { | ||
669 | printk(KERN_DEBUG "nextblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
670 | c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->unchecked_size, c->nextblock->free_size); | ||
671 | } else { | ||
672 | printk(KERN_DEBUG "nextblock: NULL\n"); | ||
673 | } | ||
674 | if (c->gcblock) { | ||
675 | printk(KERN_DEBUG "gcblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
676 | c->gcblock->offset, c->gcblock->used_size, c->gcblock->dirty_size, c->gcblock->wasted_size, c->gcblock->unchecked_size, c->gcblock->free_size); | ||
677 | } else { | ||
678 | printk(KERN_DEBUG "gcblock: NULL\n"); | ||
679 | } | ||
680 | if (list_empty(&c->clean_list)) { | ||
681 | printk(KERN_DEBUG "clean_list: empty\n"); | ||
682 | } else { | ||
683 | struct list_head *this; | ||
684 | int numblocks = 0; | ||
685 | uint32_t dirty = 0; | ||
686 | |||
687 | list_for_each(this, &c->clean_list) { | ||
688 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | ||
689 | numblocks ++; | ||
690 | dirty += jeb->wasted_size; | ||
691 | printk(KERN_DEBUG "clean_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | ||
692 | } | ||
693 | printk (KERN_DEBUG "Contains %d blocks with total wasted size %u, average wasted size: %u\n", numblocks, dirty, dirty / numblocks); | ||
694 | } | ||
695 | if (list_empty(&c->very_dirty_list)) { | ||
696 | printk(KERN_DEBUG "very_dirty_list: empty\n"); | ||
697 | } else { | ||
698 | struct list_head *this; | ||
699 | int numblocks = 0; | ||
700 | uint32_t dirty = 0; | ||
701 | |||
702 | list_for_each(this, &c->very_dirty_list) { | ||
703 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | ||
704 | numblocks ++; | ||
705 | dirty += jeb->dirty_size; | ||
706 | printk(KERN_DEBUG "very_dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
707 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | ||
708 | } | ||
709 | printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n", | ||
710 | numblocks, dirty, dirty / numblocks); | ||
711 | } | ||
712 | if (list_empty(&c->dirty_list)) { | ||
713 | printk(KERN_DEBUG "dirty_list: empty\n"); | ||
714 | } else { | ||
715 | struct list_head *this; | ||
716 | int numblocks = 0; | ||
717 | uint32_t dirty = 0; | ||
718 | |||
719 | list_for_each(this, &c->dirty_list) { | ||
720 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | ||
721 | numblocks ++; | ||
722 | dirty += jeb->dirty_size; | ||
723 | printk(KERN_DEBUG "dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
724 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | ||
725 | } | ||
726 | printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n", | ||
727 | numblocks, dirty, dirty / numblocks); | ||
728 | } | ||
729 | if (list_empty(&c->erasable_list)) { | ||
730 | printk(KERN_DEBUG "erasable_list: empty\n"); | ||
731 | } else { | ||
732 | struct list_head *this; | ||
733 | |||
734 | list_for_each(this, &c->erasable_list) { | ||
735 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | ||
736 | printk(KERN_DEBUG "erasable_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
737 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | ||
738 | } | ||
739 | } | ||
740 | if (list_empty(&c->erasing_list)) { | ||
741 | printk(KERN_DEBUG "erasing_list: empty\n"); | ||
742 | } else { | ||
743 | struct list_head *this; | ||
744 | |||
745 | list_for_each(this, &c->erasing_list) { | ||
746 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | ||
747 | printk(KERN_DEBUG "erasing_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
748 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | ||
749 | } | ||
750 | } | ||
751 | if (list_empty(&c->erase_pending_list)) { | ||
752 | printk(KERN_DEBUG "erase_pending_list: empty\n"); | ||
753 | } else { | ||
754 | struct list_head *this; | ||
755 | |||
756 | list_for_each(this, &c->erase_pending_list) { | ||
757 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | ||
758 | printk(KERN_DEBUG "erase_pending_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
759 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | ||
760 | } | ||
761 | } | ||
762 | if (list_empty(&c->erasable_pending_wbuf_list)) { | ||
763 | printk(KERN_DEBUG "erasable_pending_wbuf_list: empty\n"); | ||
764 | } else { | ||
765 | struct list_head *this; | ||
766 | |||
767 | list_for_each(this, &c->erasable_pending_wbuf_list) { | ||
768 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | ||
769 | printk(KERN_DEBUG "erasable_pending_wbuf_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
770 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | ||
771 | } | ||
772 | } | ||
773 | if (list_empty(&c->free_list)) { | ||
774 | printk(KERN_DEBUG "free_list: empty\n"); | ||
775 | } else { | ||
776 | struct list_head *this; | ||
777 | |||
778 | list_for_each(this, &c->free_list) { | ||
779 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | ||
780 | printk(KERN_DEBUG "free_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
781 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | ||
782 | } | ||
783 | } | ||
784 | if (list_empty(&c->bad_list)) { | ||
785 | printk(KERN_DEBUG "bad_list: empty\n"); | ||
786 | } else { | ||
787 | struct list_head *this; | ||
788 | |||
789 | list_for_each(this, &c->bad_list) { | ||
790 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | ||
791 | printk(KERN_DEBUG "bad_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
792 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | ||
793 | } | ||
794 | } | ||
795 | if (list_empty(&c->bad_used_list)) { | ||
796 | printk(KERN_DEBUG "bad_used_list: empty\n"); | ||
797 | } else { | ||
798 | struct list_head *this; | ||
799 | |||
800 | list_for_each(this, &c->bad_used_list) { | ||
801 | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | ||
802 | printk(KERN_DEBUG "bad_used_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | ||
803 | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | ||
804 | } | ||
805 | } | ||
806 | } | ||
807 | #endif /* CONFIG_JFFS2_FS_DEBUG */ | ||
808 | |||
809 | int jffs2_thread_should_wake(struct jffs2_sb_info *c) | ||
810 | { | ||
811 | int ret = 0; | ||
812 | uint32_t dirty; | ||
813 | |||
814 | if (c->unchecked_size) { | ||
815 | D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n", | ||
816 | c->unchecked_size, c->checked_ino)); | ||
817 | return 1; | ||
818 | } | ||
819 | |||
820 | /* dirty_size contains blocks on erase_pending_list | ||
821 | * those blocks are counted in c->nr_erasing_blocks. | ||
822 | * If one block is actually erased, it is not longer counted as dirty_space | ||
823 | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it | ||
824 | * with c->nr_erasing_blocks * c->sector_size again. | ||
825 | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks | ||
826 | * This helps us to force gc and pick eventually a clean block to spread the load. | ||
827 | */ | ||
828 | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size; | ||
829 | |||
830 | if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger && | ||
831 | (dirty > c->nospc_dirty_size)) | ||
832 | ret = 1; | ||
833 | |||
834 | D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n", | ||
835 | c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no")); | ||
836 | |||
837 | return ret; | ||
838 | } | ||