diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/ext3/balloc.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/ext3/balloc.c')
-rw-r--r-- | fs/ext3/balloc.c | 1600 |
1 files changed, 1600 insertions, 0 deletions
diff --git a/fs/ext3/balloc.c b/fs/ext3/balloc.c new file mode 100644 index 000000000000..ccd632fcc6d8 --- /dev/null +++ b/fs/ext3/balloc.c | |||
@@ -0,0 +1,1600 @@ | |||
1 | /* | ||
2 | * linux/fs/ext3/balloc.c | ||
3 | * | ||
4 | * Copyright (C) 1992, 1993, 1994, 1995 | ||
5 | * Remy Card (card@masi.ibp.fr) | ||
6 | * Laboratoire MASI - Institut Blaise Pascal | ||
7 | * Universite Pierre et Marie Curie (Paris VI) | ||
8 | * | ||
9 | * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993 | ||
10 | * Big-endian to little-endian byte-swapping/bitmaps by | ||
11 | * David S. Miller (davem@caip.rutgers.edu), 1995 | ||
12 | */ | ||
13 | |||
14 | #include <linux/config.h> | ||
15 | #include <linux/time.h> | ||
16 | #include <linux/fs.h> | ||
17 | #include <linux/jbd.h> | ||
18 | #include <linux/ext3_fs.h> | ||
19 | #include <linux/ext3_jbd.h> | ||
20 | #include <linux/quotaops.h> | ||
21 | #include <linux/buffer_head.h> | ||
22 | |||
23 | /* | ||
24 | * balloc.c contains the blocks allocation and deallocation routines | ||
25 | */ | ||
26 | |||
27 | /* | ||
28 | * The free blocks are managed by bitmaps. A file system contains several | ||
29 | * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap | ||
30 | * block for inodes, N blocks for the inode table and data blocks. | ||
31 | * | ||
32 | * The file system contains group descriptors which are located after the | ||
33 | * super block. Each descriptor contains the number of the bitmap block and | ||
34 | * the free blocks count in the block. The descriptors are loaded in memory | ||
35 | * when a file system is mounted (see ext3_read_super). | ||
36 | */ | ||
37 | |||
38 | |||
39 | #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1) | ||
40 | |||
41 | struct ext3_group_desc * ext3_get_group_desc(struct super_block * sb, | ||
42 | unsigned int block_group, | ||
43 | struct buffer_head ** bh) | ||
44 | { | ||
45 | unsigned long group_desc; | ||
46 | unsigned long offset; | ||
47 | struct ext3_group_desc * desc; | ||
48 | struct ext3_sb_info *sbi = EXT3_SB(sb); | ||
49 | |||
50 | if (block_group >= sbi->s_groups_count) { | ||
51 | ext3_error (sb, "ext3_get_group_desc", | ||
52 | "block_group >= groups_count - " | ||
53 | "block_group = %d, groups_count = %lu", | ||
54 | block_group, sbi->s_groups_count); | ||
55 | |||
56 | return NULL; | ||
57 | } | ||
58 | smp_rmb(); | ||
59 | |||
60 | group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb); | ||
61 | offset = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1); | ||
62 | if (!sbi->s_group_desc[group_desc]) { | ||
63 | ext3_error (sb, "ext3_get_group_desc", | ||
64 | "Group descriptor not loaded - " | ||
65 | "block_group = %d, group_desc = %lu, desc = %lu", | ||
66 | block_group, group_desc, offset); | ||
67 | return NULL; | ||
68 | } | ||
69 | |||
70 | desc = (struct ext3_group_desc *) sbi->s_group_desc[group_desc]->b_data; | ||
71 | if (bh) | ||
72 | *bh = sbi->s_group_desc[group_desc]; | ||
73 | return desc + offset; | ||
74 | } | ||
75 | |||
76 | /* | ||
77 | * Read the bitmap for a given block_group, reading into the specified | ||
78 | * slot in the superblock's bitmap cache. | ||
79 | * | ||
80 | * Return buffer_head on success or NULL in case of failure. | ||
81 | */ | ||
82 | static struct buffer_head * | ||
83 | read_block_bitmap(struct super_block *sb, unsigned int block_group) | ||
84 | { | ||
85 | struct ext3_group_desc * desc; | ||
86 | struct buffer_head * bh = NULL; | ||
87 | |||
88 | desc = ext3_get_group_desc (sb, block_group, NULL); | ||
89 | if (!desc) | ||
90 | goto error_out; | ||
91 | bh = sb_bread(sb, le32_to_cpu(desc->bg_block_bitmap)); | ||
92 | if (!bh) | ||
93 | ext3_error (sb, "read_block_bitmap", | ||
94 | "Cannot read block bitmap - " | ||
95 | "block_group = %d, block_bitmap = %u", | ||
96 | block_group, le32_to_cpu(desc->bg_block_bitmap)); | ||
97 | error_out: | ||
98 | return bh; | ||
99 | } | ||
100 | /* | ||
101 | * The reservation window structure operations | ||
102 | * -------------------------------------------- | ||
103 | * Operations include: | ||
104 | * dump, find, add, remove, is_empty, find_next_reservable_window, etc. | ||
105 | * | ||
106 | * We use sorted double linked list for the per-filesystem reservation | ||
107 | * window list. (like in vm_region). | ||
108 | * | ||
109 | * Initially, we keep those small operations in the abstract functions, | ||
110 | * so later if we need a better searching tree than double linked-list, | ||
111 | * we could easily switch to that without changing too much | ||
112 | * code. | ||
113 | */ | ||
114 | #if 0 | ||
115 | static void __rsv_window_dump(struct rb_root *root, int verbose, | ||
116 | const char *fn) | ||
117 | { | ||
118 | struct rb_node *n; | ||
119 | struct ext3_reserve_window_node *rsv, *prev; | ||
120 | int bad; | ||
121 | |||
122 | restart: | ||
123 | n = rb_first(root); | ||
124 | bad = 0; | ||
125 | prev = NULL; | ||
126 | |||
127 | printk("Block Allocation Reservation Windows Map (%s):\n", fn); | ||
128 | while (n) { | ||
129 | rsv = list_entry(n, struct ext3_reserve_window_node, rsv_node); | ||
130 | if (verbose) | ||
131 | printk("reservation window 0x%p " | ||
132 | "start: %d, end: %d\n", | ||
133 | rsv, rsv->rsv_start, rsv->rsv_end); | ||
134 | if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) { | ||
135 | printk("Bad reservation %p (start >= end)\n", | ||
136 | rsv); | ||
137 | bad = 1; | ||
138 | } | ||
139 | if (prev && prev->rsv_end >= rsv->rsv_start) { | ||
140 | printk("Bad reservation %p (prev->end >= start)\n", | ||
141 | rsv); | ||
142 | bad = 1; | ||
143 | } | ||
144 | if (bad) { | ||
145 | if (!verbose) { | ||
146 | printk("Restarting reservation walk in verbose mode\n"); | ||
147 | verbose = 1; | ||
148 | goto restart; | ||
149 | } | ||
150 | } | ||
151 | n = rb_next(n); | ||
152 | prev = rsv; | ||
153 | } | ||
154 | printk("Window map complete.\n"); | ||
155 | if (bad) | ||
156 | BUG(); | ||
157 | } | ||
158 | #define rsv_window_dump(root, verbose) \ | ||
159 | __rsv_window_dump((root), (verbose), __FUNCTION__) | ||
160 | #else | ||
161 | #define rsv_window_dump(root, verbose) do {} while (0) | ||
162 | #endif | ||
163 | |||
164 | static int | ||
165 | goal_in_my_reservation(struct ext3_reserve_window *rsv, int goal, | ||
166 | unsigned int group, struct super_block * sb) | ||
167 | { | ||
168 | unsigned long group_first_block, group_last_block; | ||
169 | |||
170 | group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) + | ||
171 | group * EXT3_BLOCKS_PER_GROUP(sb); | ||
172 | group_last_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1; | ||
173 | |||
174 | if ((rsv->_rsv_start > group_last_block) || | ||
175 | (rsv->_rsv_end < group_first_block)) | ||
176 | return 0; | ||
177 | if ((goal >= 0) && ((goal + group_first_block < rsv->_rsv_start) | ||
178 | || (goal + group_first_block > rsv->_rsv_end))) | ||
179 | return 0; | ||
180 | return 1; | ||
181 | } | ||
182 | |||
183 | /* | ||
184 | * Find the reserved window which includes the goal, or the previous one | ||
185 | * if the goal is not in any window. | ||
186 | * Returns NULL if there are no windows or if all windows start after the goal. | ||
187 | */ | ||
188 | static struct ext3_reserve_window_node * | ||
189 | search_reserve_window(struct rb_root *root, unsigned long goal) | ||
190 | { | ||
191 | struct rb_node *n = root->rb_node; | ||
192 | struct ext3_reserve_window_node *rsv; | ||
193 | |||
194 | if (!n) | ||
195 | return NULL; | ||
196 | |||
197 | do { | ||
198 | rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node); | ||
199 | |||
200 | if (goal < rsv->rsv_start) | ||
201 | n = n->rb_left; | ||
202 | else if (goal > rsv->rsv_end) | ||
203 | n = n->rb_right; | ||
204 | else | ||
205 | return rsv; | ||
206 | } while (n); | ||
207 | /* | ||
208 | * We've fallen off the end of the tree: the goal wasn't inside | ||
209 | * any particular node. OK, the previous node must be to one | ||
210 | * side of the interval containing the goal. If it's the RHS, | ||
211 | * we need to back up one. | ||
212 | */ | ||
213 | if (rsv->rsv_start > goal) { | ||
214 | n = rb_prev(&rsv->rsv_node); | ||
215 | rsv = rb_entry(n, struct ext3_reserve_window_node, rsv_node); | ||
216 | } | ||
217 | return rsv; | ||
218 | } | ||
219 | |||
220 | void ext3_rsv_window_add(struct super_block *sb, | ||
221 | struct ext3_reserve_window_node *rsv) | ||
222 | { | ||
223 | struct rb_root *root = &EXT3_SB(sb)->s_rsv_window_root; | ||
224 | struct rb_node *node = &rsv->rsv_node; | ||
225 | unsigned int start = rsv->rsv_start; | ||
226 | |||
227 | struct rb_node ** p = &root->rb_node; | ||
228 | struct rb_node * parent = NULL; | ||
229 | struct ext3_reserve_window_node *this; | ||
230 | |||
231 | while (*p) | ||
232 | { | ||
233 | parent = *p; | ||
234 | this = rb_entry(parent, struct ext3_reserve_window_node, rsv_node); | ||
235 | |||
236 | if (start < this->rsv_start) | ||
237 | p = &(*p)->rb_left; | ||
238 | else if (start > this->rsv_end) | ||
239 | p = &(*p)->rb_right; | ||
240 | else | ||
241 | BUG(); | ||
242 | } | ||
243 | |||
244 | rb_link_node(node, parent, p); | ||
245 | rb_insert_color(node, root); | ||
246 | } | ||
247 | |||
248 | static void rsv_window_remove(struct super_block *sb, | ||
249 | struct ext3_reserve_window_node *rsv) | ||
250 | { | ||
251 | rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED; | ||
252 | rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED; | ||
253 | rsv->rsv_alloc_hit = 0; | ||
254 | rb_erase(&rsv->rsv_node, &EXT3_SB(sb)->s_rsv_window_root); | ||
255 | } | ||
256 | |||
257 | static inline int rsv_is_empty(struct ext3_reserve_window *rsv) | ||
258 | { | ||
259 | /* a valid reservation end block could not be 0 */ | ||
260 | return (rsv->_rsv_end == EXT3_RESERVE_WINDOW_NOT_ALLOCATED); | ||
261 | } | ||
262 | void ext3_init_block_alloc_info(struct inode *inode) | ||
263 | { | ||
264 | struct ext3_inode_info *ei = EXT3_I(inode); | ||
265 | struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info; | ||
266 | struct super_block *sb = inode->i_sb; | ||
267 | |||
268 | block_i = kmalloc(sizeof(*block_i), GFP_NOFS); | ||
269 | if (block_i) { | ||
270 | struct ext3_reserve_window_node *rsv = &block_i->rsv_window_node; | ||
271 | |||
272 | rsv->rsv_start = EXT3_RESERVE_WINDOW_NOT_ALLOCATED; | ||
273 | rsv->rsv_end = EXT3_RESERVE_WINDOW_NOT_ALLOCATED; | ||
274 | |||
275 | /* | ||
276 | * if filesystem is mounted with NORESERVATION, the goal | ||
277 | * reservation window size is set to zero to indicate | ||
278 | * block reservation is off | ||
279 | */ | ||
280 | if (!test_opt(sb, RESERVATION)) | ||
281 | rsv->rsv_goal_size = 0; | ||
282 | else | ||
283 | rsv->rsv_goal_size = EXT3_DEFAULT_RESERVE_BLOCKS; | ||
284 | rsv->rsv_alloc_hit = 0; | ||
285 | block_i->last_alloc_logical_block = 0; | ||
286 | block_i->last_alloc_physical_block = 0; | ||
287 | } | ||
288 | ei->i_block_alloc_info = block_i; | ||
289 | } | ||
290 | |||
291 | void ext3_discard_reservation(struct inode *inode) | ||
292 | { | ||
293 | struct ext3_inode_info *ei = EXT3_I(inode); | ||
294 | struct ext3_block_alloc_info *block_i = ei->i_block_alloc_info; | ||
295 | struct ext3_reserve_window_node *rsv; | ||
296 | spinlock_t *rsv_lock = &EXT3_SB(inode->i_sb)->s_rsv_window_lock; | ||
297 | |||
298 | if (!block_i) | ||
299 | return; | ||
300 | |||
301 | rsv = &block_i->rsv_window_node; | ||
302 | if (!rsv_is_empty(&rsv->rsv_window)) { | ||
303 | spin_lock(rsv_lock); | ||
304 | if (!rsv_is_empty(&rsv->rsv_window)) | ||
305 | rsv_window_remove(inode->i_sb, rsv); | ||
306 | spin_unlock(rsv_lock); | ||
307 | } | ||
308 | } | ||
309 | |||
310 | /* Free given blocks, update quota and i_blocks field */ | ||
311 | void ext3_free_blocks_sb(handle_t *handle, struct super_block *sb, | ||
312 | unsigned long block, unsigned long count, | ||
313 | int *pdquot_freed_blocks) | ||
314 | { | ||
315 | struct buffer_head *bitmap_bh = NULL; | ||
316 | struct buffer_head *gd_bh; | ||
317 | unsigned long block_group; | ||
318 | unsigned long bit; | ||
319 | unsigned long i; | ||
320 | unsigned long overflow; | ||
321 | struct ext3_group_desc * desc; | ||
322 | struct ext3_super_block * es; | ||
323 | struct ext3_sb_info *sbi; | ||
324 | int err = 0, ret; | ||
325 | unsigned group_freed; | ||
326 | |||
327 | *pdquot_freed_blocks = 0; | ||
328 | sbi = EXT3_SB(sb); | ||
329 | es = sbi->s_es; | ||
330 | if (block < le32_to_cpu(es->s_first_data_block) || | ||
331 | block + count < block || | ||
332 | block + count > le32_to_cpu(es->s_blocks_count)) { | ||
333 | ext3_error (sb, "ext3_free_blocks", | ||
334 | "Freeing blocks not in datazone - " | ||
335 | "block = %lu, count = %lu", block, count); | ||
336 | goto error_return; | ||
337 | } | ||
338 | |||
339 | ext3_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1); | ||
340 | |||
341 | do_more: | ||
342 | overflow = 0; | ||
343 | block_group = (block - le32_to_cpu(es->s_first_data_block)) / | ||
344 | EXT3_BLOCKS_PER_GROUP(sb); | ||
345 | bit = (block - le32_to_cpu(es->s_first_data_block)) % | ||
346 | EXT3_BLOCKS_PER_GROUP(sb); | ||
347 | /* | ||
348 | * Check to see if we are freeing blocks across a group | ||
349 | * boundary. | ||
350 | */ | ||
351 | if (bit + count > EXT3_BLOCKS_PER_GROUP(sb)) { | ||
352 | overflow = bit + count - EXT3_BLOCKS_PER_GROUP(sb); | ||
353 | count -= overflow; | ||
354 | } | ||
355 | brelse(bitmap_bh); | ||
356 | bitmap_bh = read_block_bitmap(sb, block_group); | ||
357 | if (!bitmap_bh) | ||
358 | goto error_return; | ||
359 | desc = ext3_get_group_desc (sb, block_group, &gd_bh); | ||
360 | if (!desc) | ||
361 | goto error_return; | ||
362 | |||
363 | if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) || | ||
364 | in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) || | ||
365 | in_range (block, le32_to_cpu(desc->bg_inode_table), | ||
366 | sbi->s_itb_per_group) || | ||
367 | in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table), | ||
368 | sbi->s_itb_per_group)) | ||
369 | ext3_error (sb, "ext3_free_blocks", | ||
370 | "Freeing blocks in system zones - " | ||
371 | "Block = %lu, count = %lu", | ||
372 | block, count); | ||
373 | |||
374 | /* | ||
375 | * We are about to start releasing blocks in the bitmap, | ||
376 | * so we need undo access. | ||
377 | */ | ||
378 | /* @@@ check errors */ | ||
379 | BUFFER_TRACE(bitmap_bh, "getting undo access"); | ||
380 | err = ext3_journal_get_undo_access(handle, bitmap_bh); | ||
381 | if (err) | ||
382 | goto error_return; | ||
383 | |||
384 | /* | ||
385 | * We are about to modify some metadata. Call the journal APIs | ||
386 | * to unshare ->b_data if a currently-committing transaction is | ||
387 | * using it | ||
388 | */ | ||
389 | BUFFER_TRACE(gd_bh, "get_write_access"); | ||
390 | err = ext3_journal_get_write_access(handle, gd_bh); | ||
391 | if (err) | ||
392 | goto error_return; | ||
393 | |||
394 | jbd_lock_bh_state(bitmap_bh); | ||
395 | |||
396 | for (i = 0, group_freed = 0; i < count; i++) { | ||
397 | /* | ||
398 | * An HJ special. This is expensive... | ||
399 | */ | ||
400 | #ifdef CONFIG_JBD_DEBUG | ||
401 | jbd_unlock_bh_state(bitmap_bh); | ||
402 | { | ||
403 | struct buffer_head *debug_bh; | ||
404 | debug_bh = sb_find_get_block(sb, block + i); | ||
405 | if (debug_bh) { | ||
406 | BUFFER_TRACE(debug_bh, "Deleted!"); | ||
407 | if (!bh2jh(bitmap_bh)->b_committed_data) | ||
408 | BUFFER_TRACE(debug_bh, | ||
409 | "No commited data in bitmap"); | ||
410 | BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap"); | ||
411 | __brelse(debug_bh); | ||
412 | } | ||
413 | } | ||
414 | jbd_lock_bh_state(bitmap_bh); | ||
415 | #endif | ||
416 | if (need_resched()) { | ||
417 | jbd_unlock_bh_state(bitmap_bh); | ||
418 | cond_resched(); | ||
419 | jbd_lock_bh_state(bitmap_bh); | ||
420 | } | ||
421 | /* @@@ This prevents newly-allocated data from being | ||
422 | * freed and then reallocated within the same | ||
423 | * transaction. | ||
424 | * | ||
425 | * Ideally we would want to allow that to happen, but to | ||
426 | * do so requires making journal_forget() capable of | ||
427 | * revoking the queued write of a data block, which | ||
428 | * implies blocking on the journal lock. *forget() | ||
429 | * cannot block due to truncate races. | ||
430 | * | ||
431 | * Eventually we can fix this by making journal_forget() | ||
432 | * return a status indicating whether or not it was able | ||
433 | * to revoke the buffer. On successful revoke, it is | ||
434 | * safe not to set the allocation bit in the committed | ||
435 | * bitmap, because we know that there is no outstanding | ||
436 | * activity on the buffer any more and so it is safe to | ||
437 | * reallocate it. | ||
438 | */ | ||
439 | BUFFER_TRACE(bitmap_bh, "set in b_committed_data"); | ||
440 | J_ASSERT_BH(bitmap_bh, | ||
441 | bh2jh(bitmap_bh)->b_committed_data != NULL); | ||
442 | ext3_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i, | ||
443 | bh2jh(bitmap_bh)->b_committed_data); | ||
444 | |||
445 | /* | ||
446 | * We clear the bit in the bitmap after setting the committed | ||
447 | * data bit, because this is the reverse order to that which | ||
448 | * the allocator uses. | ||
449 | */ | ||
450 | BUFFER_TRACE(bitmap_bh, "clear bit"); | ||
451 | if (!ext3_clear_bit_atomic(sb_bgl_lock(sbi, block_group), | ||
452 | bit + i, bitmap_bh->b_data)) { | ||
453 | jbd_unlock_bh_state(bitmap_bh); | ||
454 | ext3_error(sb, __FUNCTION__, | ||
455 | "bit already cleared for block %lu", block + i); | ||
456 | jbd_lock_bh_state(bitmap_bh); | ||
457 | BUFFER_TRACE(bitmap_bh, "bit already cleared"); | ||
458 | } else { | ||
459 | group_freed++; | ||
460 | } | ||
461 | } | ||
462 | jbd_unlock_bh_state(bitmap_bh); | ||
463 | |||
464 | spin_lock(sb_bgl_lock(sbi, block_group)); | ||
465 | desc->bg_free_blocks_count = | ||
466 | cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) + | ||
467 | group_freed); | ||
468 | spin_unlock(sb_bgl_lock(sbi, block_group)); | ||
469 | percpu_counter_mod(&sbi->s_freeblocks_counter, count); | ||
470 | |||
471 | /* We dirtied the bitmap block */ | ||
472 | BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); | ||
473 | err = ext3_journal_dirty_metadata(handle, bitmap_bh); | ||
474 | |||
475 | /* And the group descriptor block */ | ||
476 | BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); | ||
477 | ret = ext3_journal_dirty_metadata(handle, gd_bh); | ||
478 | if (!err) err = ret; | ||
479 | *pdquot_freed_blocks += group_freed; | ||
480 | |||
481 | if (overflow && !err) { | ||
482 | block += count; | ||
483 | count = overflow; | ||
484 | goto do_more; | ||
485 | } | ||
486 | sb->s_dirt = 1; | ||
487 | error_return: | ||
488 | brelse(bitmap_bh); | ||
489 | ext3_std_error(sb, err); | ||
490 | return; | ||
491 | } | ||
492 | |||
493 | /* Free given blocks, update quota and i_blocks field */ | ||
494 | void ext3_free_blocks(handle_t *handle, struct inode *inode, | ||
495 | unsigned long block, unsigned long count) | ||
496 | { | ||
497 | struct super_block * sb; | ||
498 | int dquot_freed_blocks; | ||
499 | |||
500 | sb = inode->i_sb; | ||
501 | if (!sb) { | ||
502 | printk ("ext3_free_blocks: nonexistent device"); | ||
503 | return; | ||
504 | } | ||
505 | ext3_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks); | ||
506 | if (dquot_freed_blocks) | ||
507 | DQUOT_FREE_BLOCK(inode, dquot_freed_blocks); | ||
508 | return; | ||
509 | } | ||
510 | |||
511 | /* | ||
512 | * For ext3 allocations, we must not reuse any blocks which are | ||
513 | * allocated in the bitmap buffer's "last committed data" copy. This | ||
514 | * prevents deletes from freeing up the page for reuse until we have | ||
515 | * committed the delete transaction. | ||
516 | * | ||
517 | * If we didn't do this, then deleting something and reallocating it as | ||
518 | * data would allow the old block to be overwritten before the | ||
519 | * transaction committed (because we force data to disk before commit). | ||
520 | * This would lead to corruption if we crashed between overwriting the | ||
521 | * data and committing the delete. | ||
522 | * | ||
523 | * @@@ We may want to make this allocation behaviour conditional on | ||
524 | * data-writes at some point, and disable it for metadata allocations or | ||
525 | * sync-data inodes. | ||
526 | */ | ||
527 | static int ext3_test_allocatable(int nr, struct buffer_head *bh) | ||
528 | { | ||
529 | int ret; | ||
530 | struct journal_head *jh = bh2jh(bh); | ||
531 | |||
532 | if (ext3_test_bit(nr, bh->b_data)) | ||
533 | return 0; | ||
534 | |||
535 | jbd_lock_bh_state(bh); | ||
536 | if (!jh->b_committed_data) | ||
537 | ret = 1; | ||
538 | else | ||
539 | ret = !ext3_test_bit(nr, jh->b_committed_data); | ||
540 | jbd_unlock_bh_state(bh); | ||
541 | return ret; | ||
542 | } | ||
543 | |||
544 | static int | ||
545 | bitmap_search_next_usable_block(int start, struct buffer_head *bh, | ||
546 | int maxblocks) | ||
547 | { | ||
548 | int next; | ||
549 | struct journal_head *jh = bh2jh(bh); | ||
550 | |||
551 | /* | ||
552 | * The bitmap search --- search forward alternately through the actual | ||
553 | * bitmap and the last-committed copy until we find a bit free in | ||
554 | * both | ||
555 | */ | ||
556 | while (start < maxblocks) { | ||
557 | next = ext3_find_next_zero_bit(bh->b_data, maxblocks, start); | ||
558 | if (next >= maxblocks) | ||
559 | return -1; | ||
560 | if (ext3_test_allocatable(next, bh)) | ||
561 | return next; | ||
562 | jbd_lock_bh_state(bh); | ||
563 | if (jh->b_committed_data) | ||
564 | start = ext3_find_next_zero_bit(jh->b_committed_data, | ||
565 | maxblocks, next); | ||
566 | jbd_unlock_bh_state(bh); | ||
567 | } | ||
568 | return -1; | ||
569 | } | ||
570 | |||
571 | /* | ||
572 | * Find an allocatable block in a bitmap. We honour both the bitmap and | ||
573 | * its last-committed copy (if that exists), and perform the "most | ||
574 | * appropriate allocation" algorithm of looking for a free block near | ||
575 | * the initial goal; then for a free byte somewhere in the bitmap; then | ||
576 | * for any free bit in the bitmap. | ||
577 | */ | ||
578 | static int | ||
579 | find_next_usable_block(int start, struct buffer_head *bh, int maxblocks) | ||
580 | { | ||
581 | int here, next; | ||
582 | char *p, *r; | ||
583 | |||
584 | if (start > 0) { | ||
585 | /* | ||
586 | * The goal was occupied; search forward for a free | ||
587 | * block within the next XX blocks. | ||
588 | * | ||
589 | * end_goal is more or less random, but it has to be | ||
590 | * less than EXT3_BLOCKS_PER_GROUP. Aligning up to the | ||
591 | * next 64-bit boundary is simple.. | ||
592 | */ | ||
593 | int end_goal = (start + 63) & ~63; | ||
594 | if (end_goal > maxblocks) | ||
595 | end_goal = maxblocks; | ||
596 | here = ext3_find_next_zero_bit(bh->b_data, end_goal, start); | ||
597 | if (here < end_goal && ext3_test_allocatable(here, bh)) | ||
598 | return here; | ||
599 | ext3_debug("Bit not found near goal\n"); | ||
600 | } | ||
601 | |||
602 | here = start; | ||
603 | if (here < 0) | ||
604 | here = 0; | ||
605 | |||
606 | p = ((char *)bh->b_data) + (here >> 3); | ||
607 | r = memscan(p, 0, (maxblocks - here + 7) >> 3); | ||
608 | next = (r - ((char *)bh->b_data)) << 3; | ||
609 | |||
610 | if (next < maxblocks && next >= start && ext3_test_allocatable(next, bh)) | ||
611 | return next; | ||
612 | |||
613 | /* | ||
614 | * The bitmap search --- search forward alternately through the actual | ||
615 | * bitmap and the last-committed copy until we find a bit free in | ||
616 | * both | ||
617 | */ | ||
618 | here = bitmap_search_next_usable_block(here, bh, maxblocks); | ||
619 | return here; | ||
620 | } | ||
621 | |||
622 | /* | ||
623 | * We think we can allocate this block in this bitmap. Try to set the bit. | ||
624 | * If that succeeds then check that nobody has allocated and then freed the | ||
625 | * block since we saw that is was not marked in b_committed_data. If it _was_ | ||
626 | * allocated and freed then clear the bit in the bitmap again and return | ||
627 | * zero (failure). | ||
628 | */ | ||
629 | static inline int | ||
630 | claim_block(spinlock_t *lock, int block, struct buffer_head *bh) | ||
631 | { | ||
632 | struct journal_head *jh = bh2jh(bh); | ||
633 | int ret; | ||
634 | |||
635 | if (ext3_set_bit_atomic(lock, block, bh->b_data)) | ||
636 | return 0; | ||
637 | jbd_lock_bh_state(bh); | ||
638 | if (jh->b_committed_data && ext3_test_bit(block,jh->b_committed_data)) { | ||
639 | ext3_clear_bit_atomic(lock, block, bh->b_data); | ||
640 | ret = 0; | ||
641 | } else { | ||
642 | ret = 1; | ||
643 | } | ||
644 | jbd_unlock_bh_state(bh); | ||
645 | return ret; | ||
646 | } | ||
647 | |||
648 | /* | ||
649 | * If we failed to allocate the desired block then we may end up crossing to a | ||
650 | * new bitmap. In that case we must release write access to the old one via | ||
651 | * ext3_journal_release_buffer(), else we'll run out of credits. | ||
652 | */ | ||
653 | static int | ||
654 | ext3_try_to_allocate(struct super_block *sb, handle_t *handle, int group, | ||
655 | struct buffer_head *bitmap_bh, int goal, struct ext3_reserve_window *my_rsv) | ||
656 | { | ||
657 | int group_first_block, start, end; | ||
658 | |||
659 | /* we do allocation within the reservation window if we have a window */ | ||
660 | if (my_rsv) { | ||
661 | group_first_block = | ||
662 | le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) + | ||
663 | group * EXT3_BLOCKS_PER_GROUP(sb); | ||
664 | if (my_rsv->_rsv_start >= group_first_block) | ||
665 | start = my_rsv->_rsv_start - group_first_block; | ||
666 | else | ||
667 | /* reservation window cross group boundary */ | ||
668 | start = 0; | ||
669 | end = my_rsv->_rsv_end - group_first_block + 1; | ||
670 | if (end > EXT3_BLOCKS_PER_GROUP(sb)) | ||
671 | /* reservation window crosses group boundary */ | ||
672 | end = EXT3_BLOCKS_PER_GROUP(sb); | ||
673 | if ((start <= goal) && (goal < end)) | ||
674 | start = goal; | ||
675 | else | ||
676 | goal = -1; | ||
677 | } else { | ||
678 | if (goal > 0) | ||
679 | start = goal; | ||
680 | else | ||
681 | start = 0; | ||
682 | end = EXT3_BLOCKS_PER_GROUP(sb); | ||
683 | } | ||
684 | |||
685 | BUG_ON(start > EXT3_BLOCKS_PER_GROUP(sb)); | ||
686 | |||
687 | repeat: | ||
688 | if (goal < 0 || !ext3_test_allocatable(goal, bitmap_bh)) { | ||
689 | goal = find_next_usable_block(start, bitmap_bh, end); | ||
690 | if (goal < 0) | ||
691 | goto fail_access; | ||
692 | if (!my_rsv) { | ||
693 | int i; | ||
694 | |||
695 | for (i = 0; i < 7 && goal > start && | ||
696 | ext3_test_allocatable(goal - 1, | ||
697 | bitmap_bh); | ||
698 | i++, goal--) | ||
699 | ; | ||
700 | } | ||
701 | } | ||
702 | start = goal; | ||
703 | |||
704 | if (!claim_block(sb_bgl_lock(EXT3_SB(sb), group), goal, bitmap_bh)) { | ||
705 | /* | ||
706 | * The block was allocated by another thread, or it was | ||
707 | * allocated and then freed by another thread | ||
708 | */ | ||
709 | start++; | ||
710 | goal++; | ||
711 | if (start >= end) | ||
712 | goto fail_access; | ||
713 | goto repeat; | ||
714 | } | ||
715 | return goal; | ||
716 | fail_access: | ||
717 | return -1; | ||
718 | } | ||
719 | |||
720 | /** | ||
721 | * find_next_reservable_window(): | ||
722 | * find a reservable space within the given range. | ||
723 | * It does not allocate the reservation window for now: | ||
724 | * alloc_new_reservation() will do the work later. | ||
725 | * | ||
726 | * @search_head: the head of the searching list; | ||
727 | * This is not necessarily the list head of the whole filesystem | ||
728 | * | ||
729 | * We have both head and start_block to assist the search | ||
730 | * for the reservable space. The list starts from head, | ||
731 | * but we will shift to the place where start_block is, | ||
732 | * then start from there, when looking for a reservable space. | ||
733 | * | ||
734 | * @size: the target new reservation window size | ||
735 | * | ||
736 | * @group_first_block: the first block we consider to start | ||
737 | * the real search from | ||
738 | * | ||
739 | * @last_block: | ||
740 | * the maximum block number that our goal reservable space | ||
741 | * could start from. This is normally the last block in this | ||
742 | * group. The search will end when we found the start of next | ||
743 | * possible reservable space is out of this boundary. | ||
744 | * This could handle the cross boundary reservation window | ||
745 | * request. | ||
746 | * | ||
747 | * basically we search from the given range, rather than the whole | ||
748 | * reservation double linked list, (start_block, last_block) | ||
749 | * to find a free region that is of my size and has not | ||
750 | * been reserved. | ||
751 | * | ||
752 | * on succeed, it returns the reservation window to be appended to. | ||
753 | * failed, return NULL. | ||
754 | */ | ||
755 | static struct ext3_reserve_window_node *find_next_reservable_window( | ||
756 | struct ext3_reserve_window_node *search_head, | ||
757 | unsigned long size, int *start_block, | ||
758 | int last_block) | ||
759 | { | ||
760 | struct rb_node *next; | ||
761 | struct ext3_reserve_window_node *rsv, *prev; | ||
762 | int cur; | ||
763 | |||
764 | /* TODO: make the start of the reservation window byte-aligned */ | ||
765 | /* cur = *start_block & ~7;*/ | ||
766 | cur = *start_block; | ||
767 | rsv = search_head; | ||
768 | if (!rsv) | ||
769 | return NULL; | ||
770 | |||
771 | while (1) { | ||
772 | if (cur <= rsv->rsv_end) | ||
773 | cur = rsv->rsv_end + 1; | ||
774 | |||
775 | /* TODO? | ||
776 | * in the case we could not find a reservable space | ||
777 | * that is what is expected, during the re-search, we could | ||
778 | * remember what's the largest reservable space we could have | ||
779 | * and return that one. | ||
780 | * | ||
781 | * For now it will fail if we could not find the reservable | ||
782 | * space with expected-size (or more)... | ||
783 | */ | ||
784 | if (cur > last_block) | ||
785 | return NULL; /* fail */ | ||
786 | |||
787 | prev = rsv; | ||
788 | next = rb_next(&rsv->rsv_node); | ||
789 | rsv = list_entry(next, struct ext3_reserve_window_node, rsv_node); | ||
790 | |||
791 | /* | ||
792 | * Reached the last reservation, we can just append to the | ||
793 | * previous one. | ||
794 | */ | ||
795 | if (!next) | ||
796 | break; | ||
797 | |||
798 | if (cur + size <= rsv->rsv_start) { | ||
799 | /* | ||
800 | * Found a reserveable space big enough. We could | ||
801 | * have a reservation across the group boundary here | ||
802 | */ | ||
803 | break; | ||
804 | } | ||
805 | } | ||
806 | /* | ||
807 | * we come here either : | ||
808 | * when we reach the end of the whole list, | ||
809 | * and there is empty reservable space after last entry in the list. | ||
810 | * append it to the end of the list. | ||
811 | * | ||
812 | * or we found one reservable space in the middle of the list, | ||
813 | * return the reservation window that we could append to. | ||
814 | * succeed. | ||
815 | */ | ||
816 | *start_block = cur; | ||
817 | return prev; | ||
818 | } | ||
819 | |||
820 | /** | ||
821 | * alloc_new_reservation()--allocate a new reservation window | ||
822 | * | ||
823 | * To make a new reservation, we search part of the filesystem | ||
824 | * reservation list (the list that inside the group). We try to | ||
825 | * allocate a new reservation window near the allocation goal, | ||
826 | * or the beginning of the group, if there is no goal. | ||
827 | * | ||
828 | * We first find a reservable space after the goal, then from | ||
829 | * there, we check the bitmap for the first free block after | ||
830 | * it. If there is no free block until the end of group, then the | ||
831 | * whole group is full, we failed. Otherwise, check if the free | ||
832 | * block is inside the expected reservable space, if so, we | ||
833 | * succeed. | ||
834 | * If the first free block is outside the reservable space, then | ||
835 | * start from the first free block, we search for next available | ||
836 | * space, and go on. | ||
837 | * | ||
838 | * on succeed, a new reservation will be found and inserted into the list | ||
839 | * It contains at least one free block, and it does not overlap with other | ||
840 | * reservation windows. | ||
841 | * | ||
842 | * failed: we failed to find a reservation window in this group | ||
843 | * | ||
844 | * @rsv: the reservation | ||
845 | * | ||
846 | * @goal: The goal (group-relative). It is where the search for a | ||
847 | * free reservable space should start from. | ||
848 | * if we have a goal(goal >0 ), then start from there, | ||
849 | * no goal(goal = -1), we start from the first block | ||
850 | * of the group. | ||
851 | * | ||
852 | * @sb: the super block | ||
853 | * @group: the group we are trying to allocate in | ||
854 | * @bitmap_bh: the block group block bitmap | ||
855 | */ | ||
856 | static int alloc_new_reservation(struct ext3_reserve_window_node *my_rsv, | ||
857 | int goal, struct super_block *sb, | ||
858 | unsigned int group, struct buffer_head *bitmap_bh) | ||
859 | { | ||
860 | struct ext3_reserve_window_node *search_head; | ||
861 | int group_first_block, group_end_block, start_block; | ||
862 | int first_free_block; | ||
863 | int reservable_space_start; | ||
864 | struct ext3_reserve_window_node *prev_rsv; | ||
865 | struct rb_root *fs_rsv_root = &EXT3_SB(sb)->s_rsv_window_root; | ||
866 | unsigned long size; | ||
867 | |||
868 | group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) + | ||
869 | group * EXT3_BLOCKS_PER_GROUP(sb); | ||
870 | group_end_block = group_first_block + EXT3_BLOCKS_PER_GROUP(sb) - 1; | ||
871 | |||
872 | if (goal < 0) | ||
873 | start_block = group_first_block; | ||
874 | else | ||
875 | start_block = goal + group_first_block; | ||
876 | |||
877 | size = my_rsv->rsv_goal_size; | ||
878 | if (!rsv_is_empty(&my_rsv->rsv_window)) { | ||
879 | /* | ||
880 | * if the old reservation is cross group boundary | ||
881 | * and if the goal is inside the old reservation window, | ||
882 | * we will come here when we just failed to allocate from | ||
883 | * the first part of the window. We still have another part | ||
884 | * that belongs to the next group. In this case, there is no | ||
885 | * point to discard our window and try to allocate a new one | ||
886 | * in this group(which will fail). we should | ||
887 | * keep the reservation window, just simply move on. | ||
888 | * | ||
889 | * Maybe we could shift the start block of the reservation | ||
890 | * window to the first block of next group. | ||
891 | */ | ||
892 | |||
893 | if ((my_rsv->rsv_start <= group_end_block) && | ||
894 | (my_rsv->rsv_end > group_end_block) && | ||
895 | (start_block >= my_rsv->rsv_start)) | ||
896 | return -1; | ||
897 | |||
898 | if ((my_rsv->rsv_alloc_hit > | ||
899 | (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) { | ||
900 | /* | ||
901 | * if we previously allocation hit ration is greater than half | ||
902 | * we double the size of reservation window next time | ||
903 | * otherwise keep the same | ||
904 | */ | ||
905 | size = size * 2; | ||
906 | if (size > EXT3_MAX_RESERVE_BLOCKS) | ||
907 | size = EXT3_MAX_RESERVE_BLOCKS; | ||
908 | my_rsv->rsv_goal_size= size; | ||
909 | } | ||
910 | } | ||
911 | /* | ||
912 | * shift the search start to the window near the goal block | ||
913 | */ | ||
914 | search_head = search_reserve_window(fs_rsv_root, start_block); | ||
915 | |||
916 | /* | ||
917 | * find_next_reservable_window() simply finds a reservable window | ||
918 | * inside the given range(start_block, group_end_block). | ||
919 | * | ||
920 | * To make sure the reservation window has a free bit inside it, we | ||
921 | * need to check the bitmap after we found a reservable window. | ||
922 | */ | ||
923 | retry: | ||
924 | prev_rsv = find_next_reservable_window(search_head, size, | ||
925 | &start_block, group_end_block); | ||
926 | if (prev_rsv == NULL) | ||
927 | goto failed; | ||
928 | reservable_space_start = start_block; | ||
929 | /* | ||
930 | * On success, find_next_reservable_window() returns the | ||
931 | * reservation window where there is a reservable space after it. | ||
932 | * Before we reserve this reservable space, we need | ||
933 | * to make sure there is at least a free block inside this region. | ||
934 | * | ||
935 | * searching the first free bit on the block bitmap and copy of | ||
936 | * last committed bitmap alternatively, until we found a allocatable | ||
937 | * block. Search start from the start block of the reservable space | ||
938 | * we just found. | ||
939 | */ | ||
940 | first_free_block = bitmap_search_next_usable_block( | ||
941 | reservable_space_start - group_first_block, | ||
942 | bitmap_bh, group_end_block - group_first_block + 1); | ||
943 | |||
944 | if (first_free_block < 0) { | ||
945 | /* | ||
946 | * no free block left on the bitmap, no point | ||
947 | * to reserve the space. return failed. | ||
948 | */ | ||
949 | goto failed; | ||
950 | } | ||
951 | start_block = first_free_block + group_first_block; | ||
952 | /* | ||
953 | * check if the first free block is within the | ||
954 | * free space we just found | ||
955 | */ | ||
956 | if ((start_block >= reservable_space_start) && | ||
957 | (start_block < reservable_space_start + size)) | ||
958 | goto found_rsv_window; | ||
959 | /* | ||
960 | * if the first free bit we found is out of the reservable space | ||
961 | * this means there is no free block on the reservable space | ||
962 | * we should continue search for next reservable space, | ||
963 | * start from where the free block is, | ||
964 | * we also shift the list head to where we stopped last time | ||
965 | */ | ||
966 | search_head = prev_rsv; | ||
967 | goto retry; | ||
968 | |||
969 | found_rsv_window: | ||
970 | /* | ||
971 | * great! the reservable space contains some free blocks. | ||
972 | * if the search returns that we should add the new | ||
973 | * window just next to where the old window, we don't | ||
974 | * need to remove the old window first then add it to the | ||
975 | * same place, just update the new start and new end. | ||
976 | */ | ||
977 | if (my_rsv != prev_rsv) { | ||
978 | if (!rsv_is_empty(&my_rsv->rsv_window)) | ||
979 | rsv_window_remove(sb, my_rsv); | ||
980 | } | ||
981 | my_rsv->rsv_start = reservable_space_start; | ||
982 | my_rsv->rsv_end = my_rsv->rsv_start + size - 1; | ||
983 | my_rsv->rsv_alloc_hit = 0; | ||
984 | if (my_rsv != prev_rsv) { | ||
985 | ext3_rsv_window_add(sb, my_rsv); | ||
986 | } | ||
987 | return 0; /* succeed */ | ||
988 | failed: | ||
989 | /* | ||
990 | * failed to find a new reservation window in the current | ||
991 | * group, remove the current(stale) reservation window | ||
992 | * if there is any | ||
993 | */ | ||
994 | if (!rsv_is_empty(&my_rsv->rsv_window)) | ||
995 | rsv_window_remove(sb, my_rsv); | ||
996 | return -1; /* failed */ | ||
997 | } | ||
998 | |||
999 | /* | ||
1000 | * This is the main function used to allocate a new block and its reservation | ||
1001 | * window. | ||
1002 | * | ||
1003 | * Each time when a new block allocation is need, first try to allocate from | ||
1004 | * its own reservation. If it does not have a reservation window, instead of | ||
1005 | * looking for a free bit on bitmap first, then look up the reservation list to | ||
1006 | * see if it is inside somebody else's reservation window, we try to allocate a | ||
1007 | * reservation window for it starting from the goal first. Then do the block | ||
1008 | * allocation within the reservation window. | ||
1009 | * | ||
1010 | * This will avoid keeping on searching the reservation list again and | ||
1011 | * again when someboday is looking for a free block (without | ||
1012 | * reservation), and there are lots of free blocks, but they are all | ||
1013 | * being reserved. | ||
1014 | * | ||
1015 | * We use a sorted double linked list for the per-filesystem reservation list. | ||
1016 | * The insert, remove and find a free space(non-reserved) operations for the | ||
1017 | * sorted double linked list should be fast. | ||
1018 | * | ||
1019 | */ | ||
1020 | static int | ||
1021 | ext3_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle, | ||
1022 | unsigned int group, struct buffer_head *bitmap_bh, | ||
1023 | int goal, struct ext3_reserve_window_node * my_rsv, | ||
1024 | int *errp) | ||
1025 | { | ||
1026 | spinlock_t *rsv_lock; | ||
1027 | unsigned long group_first_block; | ||
1028 | int ret = 0; | ||
1029 | int fatal; | ||
1030 | |||
1031 | *errp = 0; | ||
1032 | |||
1033 | /* | ||
1034 | * Make sure we use undo access for the bitmap, because it is critical | ||
1035 | * that we do the frozen_data COW on bitmap buffers in all cases even | ||
1036 | * if the buffer is in BJ_Forget state in the committing transaction. | ||
1037 | */ | ||
1038 | BUFFER_TRACE(bitmap_bh, "get undo access for new block"); | ||
1039 | fatal = ext3_journal_get_undo_access(handle, bitmap_bh); | ||
1040 | if (fatal) { | ||
1041 | *errp = fatal; | ||
1042 | return -1; | ||
1043 | } | ||
1044 | |||
1045 | /* | ||
1046 | * we don't deal with reservation when | ||
1047 | * filesystem is mounted without reservation | ||
1048 | * or the file is not a regular file | ||
1049 | * or last attempt to allocate a block with reservation turned on failed | ||
1050 | */ | ||
1051 | if (my_rsv == NULL ) { | ||
1052 | ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal, NULL); | ||
1053 | goto out; | ||
1054 | } | ||
1055 | rsv_lock = &EXT3_SB(sb)->s_rsv_window_lock; | ||
1056 | /* | ||
1057 | * goal is a group relative block number (if there is a goal) | ||
1058 | * 0 < goal < EXT3_BLOCKS_PER_GROUP(sb) | ||
1059 | * first block is a filesystem wide block number | ||
1060 | * first block is the block number of the first block in this group | ||
1061 | */ | ||
1062 | group_first_block = le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block) + | ||
1063 | group * EXT3_BLOCKS_PER_GROUP(sb); | ||
1064 | |||
1065 | /* | ||
1066 | * Basically we will allocate a new block from inode's reservation | ||
1067 | * window. | ||
1068 | * | ||
1069 | * We need to allocate a new reservation window, if: | ||
1070 | * a) inode does not have a reservation window; or | ||
1071 | * b) last attempt to allocate a block from existing reservation | ||
1072 | * failed; or | ||
1073 | * c) we come here with a goal and with a reservation window | ||
1074 | * | ||
1075 | * We do not need to allocate a new reservation window if we come here | ||
1076 | * at the beginning with a goal and the goal is inside the window, or | ||
1077 | * we don't have a goal but already have a reservation window. | ||
1078 | * then we could go to allocate from the reservation window directly. | ||
1079 | */ | ||
1080 | while (1) { | ||
1081 | struct ext3_reserve_window rsv_copy; | ||
1082 | |||
1083 | rsv_copy._rsv_start = my_rsv->rsv_start; | ||
1084 | rsv_copy._rsv_end = my_rsv->rsv_end; | ||
1085 | |||
1086 | if (rsv_is_empty(&rsv_copy) || (ret < 0) || | ||
1087 | !goal_in_my_reservation(&rsv_copy, goal, group, sb)) { | ||
1088 | spin_lock(rsv_lock); | ||
1089 | ret = alloc_new_reservation(my_rsv, goal, sb, | ||
1090 | group, bitmap_bh); | ||
1091 | rsv_copy._rsv_start = my_rsv->rsv_start; | ||
1092 | rsv_copy._rsv_end = my_rsv->rsv_end; | ||
1093 | spin_unlock(rsv_lock); | ||
1094 | if (ret < 0) | ||
1095 | break; /* failed */ | ||
1096 | |||
1097 | if (!goal_in_my_reservation(&rsv_copy, goal, group, sb)) | ||
1098 | goal = -1; | ||
1099 | } | ||
1100 | if ((rsv_copy._rsv_start >= group_first_block + EXT3_BLOCKS_PER_GROUP(sb)) | ||
1101 | || (rsv_copy._rsv_end < group_first_block)) | ||
1102 | BUG(); | ||
1103 | ret = ext3_try_to_allocate(sb, handle, group, bitmap_bh, goal, | ||
1104 | &rsv_copy); | ||
1105 | if (ret >= 0) { | ||
1106 | my_rsv->rsv_alloc_hit++; | ||
1107 | break; /* succeed */ | ||
1108 | } | ||
1109 | } | ||
1110 | out: | ||
1111 | if (ret >= 0) { | ||
1112 | BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for " | ||
1113 | "bitmap block"); | ||
1114 | fatal = ext3_journal_dirty_metadata(handle, bitmap_bh); | ||
1115 | if (fatal) { | ||
1116 | *errp = fatal; | ||
1117 | return -1; | ||
1118 | } | ||
1119 | return ret; | ||
1120 | } | ||
1121 | |||
1122 | BUFFER_TRACE(bitmap_bh, "journal_release_buffer"); | ||
1123 | ext3_journal_release_buffer(handle, bitmap_bh); | ||
1124 | return ret; | ||
1125 | } | ||
1126 | |||
1127 | static int ext3_has_free_blocks(struct ext3_sb_info *sbi) | ||
1128 | { | ||
1129 | int free_blocks, root_blocks; | ||
1130 | |||
1131 | free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter); | ||
1132 | root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count); | ||
1133 | if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) && | ||
1134 | sbi->s_resuid != current->fsuid && | ||
1135 | (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) { | ||
1136 | return 0; | ||
1137 | } | ||
1138 | return 1; | ||
1139 | } | ||
1140 | |||
1141 | /* | ||
1142 | * ext3_should_retry_alloc() is called when ENOSPC is returned, and if | ||
1143 | * it is profitable to retry the operation, this function will wait | ||
1144 | * for the current or commiting transaction to complete, and then | ||
1145 | * return TRUE. | ||
1146 | */ | ||
1147 | int ext3_should_retry_alloc(struct super_block *sb, int *retries) | ||
1148 | { | ||
1149 | if (!ext3_has_free_blocks(EXT3_SB(sb)) || (*retries)++ > 3) | ||
1150 | return 0; | ||
1151 | |||
1152 | jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id); | ||
1153 | |||
1154 | return journal_force_commit_nested(EXT3_SB(sb)->s_journal); | ||
1155 | } | ||
1156 | |||
1157 | /* | ||
1158 | * ext3_new_block uses a goal block to assist allocation. If the goal is | ||
1159 | * free, or there is a free block within 32 blocks of the goal, that block | ||
1160 | * is allocated. Otherwise a forward search is made for a free block; within | ||
1161 | * each block group the search first looks for an entire free byte in the block | ||
1162 | * bitmap, and then for any free bit if that fails. | ||
1163 | * This function also updates quota and i_blocks field. | ||
1164 | */ | ||
1165 | int ext3_new_block(handle_t *handle, struct inode *inode, | ||
1166 | unsigned long goal, int *errp) | ||
1167 | { | ||
1168 | struct buffer_head *bitmap_bh = NULL; | ||
1169 | struct buffer_head *gdp_bh; | ||
1170 | int group_no; | ||
1171 | int goal_group; | ||
1172 | int ret_block; | ||
1173 | int bgi; /* blockgroup iteration index */ | ||
1174 | int target_block; | ||
1175 | int fatal = 0, err; | ||
1176 | int performed_allocation = 0; | ||
1177 | int free_blocks; | ||
1178 | struct super_block *sb; | ||
1179 | struct ext3_group_desc *gdp; | ||
1180 | struct ext3_super_block *es; | ||
1181 | struct ext3_sb_info *sbi; | ||
1182 | struct ext3_reserve_window_node *my_rsv = NULL; | ||
1183 | struct ext3_block_alloc_info *block_i; | ||
1184 | unsigned short windowsz = 0; | ||
1185 | #ifdef EXT3FS_DEBUG | ||
1186 | static int goal_hits, goal_attempts; | ||
1187 | #endif | ||
1188 | unsigned long ngroups; | ||
1189 | |||
1190 | *errp = -ENOSPC; | ||
1191 | sb = inode->i_sb; | ||
1192 | if (!sb) { | ||
1193 | printk("ext3_new_block: nonexistent device"); | ||
1194 | return 0; | ||
1195 | } | ||
1196 | |||
1197 | /* | ||
1198 | * Check quota for allocation of this block. | ||
1199 | */ | ||
1200 | if (DQUOT_ALLOC_BLOCK(inode, 1)) { | ||
1201 | *errp = -EDQUOT; | ||
1202 | return 0; | ||
1203 | } | ||
1204 | |||
1205 | sbi = EXT3_SB(sb); | ||
1206 | es = EXT3_SB(sb)->s_es; | ||
1207 | ext3_debug("goal=%lu.\n", goal); | ||
1208 | /* | ||
1209 | * Allocate a block from reservation only when | ||
1210 | * filesystem is mounted with reservation(default,-o reservation), and | ||
1211 | * it's a regular file, and | ||
1212 | * the desired window size is greater than 0 (One could use ioctl | ||
1213 | * command EXT3_IOC_SETRSVSZ to set the window size to 0 to turn off | ||
1214 | * reservation on that particular file) | ||
1215 | */ | ||
1216 | block_i = EXT3_I(inode)->i_block_alloc_info; | ||
1217 | if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0)) | ||
1218 | my_rsv = &block_i->rsv_window_node; | ||
1219 | |||
1220 | if (!ext3_has_free_blocks(sbi)) { | ||
1221 | *errp = -ENOSPC; | ||
1222 | goto out; | ||
1223 | } | ||
1224 | |||
1225 | /* | ||
1226 | * First, test whether the goal block is free. | ||
1227 | */ | ||
1228 | if (goal < le32_to_cpu(es->s_first_data_block) || | ||
1229 | goal >= le32_to_cpu(es->s_blocks_count)) | ||
1230 | goal = le32_to_cpu(es->s_first_data_block); | ||
1231 | group_no = (goal - le32_to_cpu(es->s_first_data_block)) / | ||
1232 | EXT3_BLOCKS_PER_GROUP(sb); | ||
1233 | gdp = ext3_get_group_desc(sb, group_no, &gdp_bh); | ||
1234 | if (!gdp) | ||
1235 | goto io_error; | ||
1236 | |||
1237 | goal_group = group_no; | ||
1238 | retry: | ||
1239 | free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); | ||
1240 | /* | ||
1241 | * if there is not enough free blocks to make a new resevation | ||
1242 | * turn off reservation for this allocation | ||
1243 | */ | ||
1244 | if (my_rsv && (free_blocks < windowsz) | ||
1245 | && (rsv_is_empty(&my_rsv->rsv_window))) | ||
1246 | my_rsv = NULL; | ||
1247 | |||
1248 | if (free_blocks > 0) { | ||
1249 | ret_block = ((goal - le32_to_cpu(es->s_first_data_block)) % | ||
1250 | EXT3_BLOCKS_PER_GROUP(sb)); | ||
1251 | bitmap_bh = read_block_bitmap(sb, group_no); | ||
1252 | if (!bitmap_bh) | ||
1253 | goto io_error; | ||
1254 | ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no, | ||
1255 | bitmap_bh, ret_block, my_rsv, &fatal); | ||
1256 | if (fatal) | ||
1257 | goto out; | ||
1258 | if (ret_block >= 0) | ||
1259 | goto allocated; | ||
1260 | } | ||
1261 | |||
1262 | ngroups = EXT3_SB(sb)->s_groups_count; | ||
1263 | smp_rmb(); | ||
1264 | |||
1265 | /* | ||
1266 | * Now search the rest of the groups. We assume that | ||
1267 | * i and gdp correctly point to the last group visited. | ||
1268 | */ | ||
1269 | for (bgi = 0; bgi < ngroups; bgi++) { | ||
1270 | group_no++; | ||
1271 | if (group_no >= ngroups) | ||
1272 | group_no = 0; | ||
1273 | gdp = ext3_get_group_desc(sb, group_no, &gdp_bh); | ||
1274 | if (!gdp) { | ||
1275 | *errp = -EIO; | ||
1276 | goto out; | ||
1277 | } | ||
1278 | free_blocks = le16_to_cpu(gdp->bg_free_blocks_count); | ||
1279 | /* | ||
1280 | * skip this group if the number of | ||
1281 | * free blocks is less than half of the reservation | ||
1282 | * window size. | ||
1283 | */ | ||
1284 | if (free_blocks <= (windowsz/2)) | ||
1285 | continue; | ||
1286 | |||
1287 | brelse(bitmap_bh); | ||
1288 | bitmap_bh = read_block_bitmap(sb, group_no); | ||
1289 | if (!bitmap_bh) | ||
1290 | goto io_error; | ||
1291 | ret_block = ext3_try_to_allocate_with_rsv(sb, handle, group_no, | ||
1292 | bitmap_bh, -1, my_rsv, &fatal); | ||
1293 | if (fatal) | ||
1294 | goto out; | ||
1295 | if (ret_block >= 0) | ||
1296 | goto allocated; | ||
1297 | } | ||
1298 | /* | ||
1299 | * We may end up a bogus ealier ENOSPC error due to | ||
1300 | * filesystem is "full" of reservations, but | ||
1301 | * there maybe indeed free blocks avaliable on disk | ||
1302 | * In this case, we just forget about the reservations | ||
1303 | * just do block allocation as without reservations. | ||
1304 | */ | ||
1305 | if (my_rsv) { | ||
1306 | my_rsv = NULL; | ||
1307 | group_no = goal_group; | ||
1308 | goto retry; | ||
1309 | } | ||
1310 | /* No space left on the device */ | ||
1311 | *errp = -ENOSPC; | ||
1312 | goto out; | ||
1313 | |||
1314 | allocated: | ||
1315 | |||
1316 | ext3_debug("using block group %d(%d)\n", | ||
1317 | group_no, gdp->bg_free_blocks_count); | ||
1318 | |||
1319 | BUFFER_TRACE(gdp_bh, "get_write_access"); | ||
1320 | fatal = ext3_journal_get_write_access(handle, gdp_bh); | ||
1321 | if (fatal) | ||
1322 | goto out; | ||
1323 | |||
1324 | target_block = ret_block + group_no * EXT3_BLOCKS_PER_GROUP(sb) | ||
1325 | + le32_to_cpu(es->s_first_data_block); | ||
1326 | |||
1327 | if (target_block == le32_to_cpu(gdp->bg_block_bitmap) || | ||
1328 | target_block == le32_to_cpu(gdp->bg_inode_bitmap) || | ||
1329 | in_range(target_block, le32_to_cpu(gdp->bg_inode_table), | ||
1330 | EXT3_SB(sb)->s_itb_per_group)) | ||
1331 | ext3_error(sb, "ext3_new_block", | ||
1332 | "Allocating block in system zone - " | ||
1333 | "block = %u", target_block); | ||
1334 | |||
1335 | performed_allocation = 1; | ||
1336 | |||
1337 | #ifdef CONFIG_JBD_DEBUG | ||
1338 | { | ||
1339 | struct buffer_head *debug_bh; | ||
1340 | |||
1341 | /* Record bitmap buffer state in the newly allocated block */ | ||
1342 | debug_bh = sb_find_get_block(sb, target_block); | ||
1343 | if (debug_bh) { | ||
1344 | BUFFER_TRACE(debug_bh, "state when allocated"); | ||
1345 | BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state"); | ||
1346 | brelse(debug_bh); | ||
1347 | } | ||
1348 | } | ||
1349 | jbd_lock_bh_state(bitmap_bh); | ||
1350 | spin_lock(sb_bgl_lock(sbi, group_no)); | ||
1351 | if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) { | ||
1352 | if (ext3_test_bit(ret_block, | ||
1353 | bh2jh(bitmap_bh)->b_committed_data)) { | ||
1354 | printk("%s: block was unexpectedly set in " | ||
1355 | "b_committed_data\n", __FUNCTION__); | ||
1356 | } | ||
1357 | } | ||
1358 | ext3_debug("found bit %d\n", ret_block); | ||
1359 | spin_unlock(sb_bgl_lock(sbi, group_no)); | ||
1360 | jbd_unlock_bh_state(bitmap_bh); | ||
1361 | #endif | ||
1362 | |||
1363 | /* ret_block was blockgroup-relative. Now it becomes fs-relative */ | ||
1364 | ret_block = target_block; | ||
1365 | |||
1366 | if (ret_block >= le32_to_cpu(es->s_blocks_count)) { | ||
1367 | ext3_error(sb, "ext3_new_block", | ||
1368 | "block(%d) >= blocks count(%d) - " | ||
1369 | "block_group = %d, es == %p ", ret_block, | ||
1370 | le32_to_cpu(es->s_blocks_count), group_no, es); | ||
1371 | goto out; | ||
1372 | } | ||
1373 | |||
1374 | /* | ||
1375 | * It is up to the caller to add the new buffer to a journal | ||
1376 | * list of some description. We don't know in advance whether | ||
1377 | * the caller wants to use it as metadata or data. | ||
1378 | */ | ||
1379 | ext3_debug("allocating block %d. Goal hits %d of %d.\n", | ||
1380 | ret_block, goal_hits, goal_attempts); | ||
1381 | |||
1382 | spin_lock(sb_bgl_lock(sbi, group_no)); | ||
1383 | gdp->bg_free_blocks_count = | ||
1384 | cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count) - 1); | ||
1385 | spin_unlock(sb_bgl_lock(sbi, group_no)); | ||
1386 | percpu_counter_mod(&sbi->s_freeblocks_counter, -1); | ||
1387 | |||
1388 | BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor"); | ||
1389 | err = ext3_journal_dirty_metadata(handle, gdp_bh); | ||
1390 | if (!fatal) | ||
1391 | fatal = err; | ||
1392 | |||
1393 | sb->s_dirt = 1; | ||
1394 | if (fatal) | ||
1395 | goto out; | ||
1396 | |||
1397 | *errp = 0; | ||
1398 | brelse(bitmap_bh); | ||
1399 | return ret_block; | ||
1400 | |||
1401 | io_error: | ||
1402 | *errp = -EIO; | ||
1403 | out: | ||
1404 | if (fatal) { | ||
1405 | *errp = fatal; | ||
1406 | ext3_std_error(sb, fatal); | ||
1407 | } | ||
1408 | /* | ||
1409 | * Undo the block allocation | ||
1410 | */ | ||
1411 | if (!performed_allocation) | ||
1412 | DQUOT_FREE_BLOCK(inode, 1); | ||
1413 | brelse(bitmap_bh); | ||
1414 | return 0; | ||
1415 | } | ||
1416 | |||
1417 | unsigned long ext3_count_free_blocks(struct super_block *sb) | ||
1418 | { | ||
1419 | unsigned long desc_count; | ||
1420 | struct ext3_group_desc *gdp; | ||
1421 | int i; | ||
1422 | unsigned long ngroups; | ||
1423 | #ifdef EXT3FS_DEBUG | ||
1424 | struct ext3_super_block *es; | ||
1425 | unsigned long bitmap_count, x; | ||
1426 | struct buffer_head *bitmap_bh = NULL; | ||
1427 | |||
1428 | lock_super(sb); | ||
1429 | es = EXT3_SB(sb)->s_es; | ||
1430 | desc_count = 0; | ||
1431 | bitmap_count = 0; | ||
1432 | gdp = NULL; | ||
1433 | for (i = 0; i < EXT3_SB(sb)->s_groups_count; i++) { | ||
1434 | gdp = ext3_get_group_desc(sb, i, NULL); | ||
1435 | if (!gdp) | ||
1436 | continue; | ||
1437 | desc_count += le16_to_cpu(gdp->bg_free_blocks_count); | ||
1438 | brelse(bitmap_bh); | ||
1439 | bitmap_bh = read_block_bitmap(sb, i); | ||
1440 | if (bitmap_bh == NULL) | ||
1441 | continue; | ||
1442 | |||
1443 | x = ext3_count_free(bitmap_bh, sb->s_blocksize); | ||
1444 | printk("group %d: stored = %d, counted = %lu\n", | ||
1445 | i, le16_to_cpu(gdp->bg_free_blocks_count), x); | ||
1446 | bitmap_count += x; | ||
1447 | } | ||
1448 | brelse(bitmap_bh); | ||
1449 | printk("ext3_count_free_blocks: stored = %u, computed = %lu, %lu\n", | ||
1450 | le32_to_cpu(es->s_free_blocks_count), desc_count, bitmap_count); | ||
1451 | unlock_super(sb); | ||
1452 | return bitmap_count; | ||
1453 | #else | ||
1454 | desc_count = 0; | ||
1455 | ngroups = EXT3_SB(sb)->s_groups_count; | ||
1456 | smp_rmb(); | ||
1457 | for (i = 0; i < ngroups; i++) { | ||
1458 | gdp = ext3_get_group_desc(sb, i, NULL); | ||
1459 | if (!gdp) | ||
1460 | continue; | ||
1461 | desc_count += le16_to_cpu(gdp->bg_free_blocks_count); | ||
1462 | } | ||
1463 | |||
1464 | return desc_count; | ||
1465 | #endif | ||
1466 | } | ||
1467 | |||
1468 | static inline int | ||
1469 | block_in_use(unsigned long block, struct super_block *sb, unsigned char *map) | ||
1470 | { | ||
1471 | return ext3_test_bit ((block - | ||
1472 | le32_to_cpu(EXT3_SB(sb)->s_es->s_first_data_block)) % | ||
1473 | EXT3_BLOCKS_PER_GROUP(sb), map); | ||
1474 | } | ||
1475 | |||
1476 | static inline int test_root(int a, int b) | ||
1477 | { | ||
1478 | int num = b; | ||
1479 | |||
1480 | while (a > num) | ||
1481 | num *= b; | ||
1482 | return num == a; | ||
1483 | } | ||
1484 | |||
1485 | static int ext3_group_sparse(int group) | ||
1486 | { | ||
1487 | if (group <= 1) | ||
1488 | return 1; | ||
1489 | if (!(group & 1)) | ||
1490 | return 0; | ||
1491 | return (test_root(group, 7) || test_root(group, 5) || | ||
1492 | test_root(group, 3)); | ||
1493 | } | ||
1494 | |||
1495 | /** | ||
1496 | * ext3_bg_has_super - number of blocks used by the superblock in group | ||
1497 | * @sb: superblock for filesystem | ||
1498 | * @group: group number to check | ||
1499 | * | ||
1500 | * Return the number of blocks used by the superblock (primary or backup) | ||
1501 | * in this group. Currently this will be only 0 or 1. | ||
1502 | */ | ||
1503 | int ext3_bg_has_super(struct super_block *sb, int group) | ||
1504 | { | ||
1505 | if (EXT3_HAS_RO_COMPAT_FEATURE(sb,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER)&& | ||
1506 | !ext3_group_sparse(group)) | ||
1507 | return 0; | ||
1508 | return 1; | ||
1509 | } | ||
1510 | |||
1511 | /** | ||
1512 | * ext3_bg_num_gdb - number of blocks used by the group table in group | ||
1513 | * @sb: superblock for filesystem | ||
1514 | * @group: group number to check | ||
1515 | * | ||
1516 | * Return the number of blocks used by the group descriptor table | ||
1517 | * (primary or backup) in this group. In the future there may be a | ||
1518 | * different number of descriptor blocks in each group. | ||
1519 | */ | ||
1520 | unsigned long ext3_bg_num_gdb(struct super_block *sb, int group) | ||
1521 | { | ||
1522 | if (EXT3_HAS_RO_COMPAT_FEATURE(sb,EXT3_FEATURE_RO_COMPAT_SPARSE_SUPER)&& | ||
1523 | !ext3_group_sparse(group)) | ||
1524 | return 0; | ||
1525 | return EXT3_SB(sb)->s_gdb_count; | ||
1526 | } | ||
1527 | |||
1528 | #ifdef CONFIG_EXT3_CHECK | ||
1529 | /* Called at mount-time, super-block is locked */ | ||
1530 | void ext3_check_blocks_bitmap (struct super_block * sb) | ||
1531 | { | ||
1532 | struct ext3_super_block *es; | ||
1533 | unsigned long desc_count, bitmap_count, x, j; | ||
1534 | unsigned long desc_blocks; | ||
1535 | struct buffer_head *bitmap_bh = NULL; | ||
1536 | struct ext3_group_desc *gdp; | ||
1537 | int i; | ||
1538 | |||
1539 | es = EXT3_SB(sb)->s_es; | ||
1540 | desc_count = 0; | ||
1541 | bitmap_count = 0; | ||
1542 | gdp = NULL; | ||
1543 | for (i = 0; i < EXT3_SB(sb)->s_groups_count; i++) { | ||
1544 | gdp = ext3_get_group_desc (sb, i, NULL); | ||
1545 | if (!gdp) | ||
1546 | continue; | ||
1547 | desc_count += le16_to_cpu(gdp->bg_free_blocks_count); | ||
1548 | brelse(bitmap_bh); | ||
1549 | bitmap_bh = read_block_bitmap(sb, i); | ||
1550 | if (bitmap_bh == NULL) | ||
1551 | continue; | ||
1552 | |||
1553 | if (ext3_bg_has_super(sb, i) && | ||
1554 | !ext3_test_bit(0, bitmap_bh->b_data)) | ||
1555 | ext3_error(sb, __FUNCTION__, | ||
1556 | "Superblock in group %d is marked free", i); | ||
1557 | |||
1558 | desc_blocks = ext3_bg_num_gdb(sb, i); | ||
1559 | for (j = 0; j < desc_blocks; j++) | ||
1560 | if (!ext3_test_bit(j + 1, bitmap_bh->b_data)) | ||
1561 | ext3_error(sb, __FUNCTION__, | ||
1562 | "Descriptor block #%ld in group " | ||
1563 | "%d is marked free", j, i); | ||
1564 | |||
1565 | if (!block_in_use (le32_to_cpu(gdp->bg_block_bitmap), | ||
1566 | sb, bitmap_bh->b_data)) | ||
1567 | ext3_error (sb, "ext3_check_blocks_bitmap", | ||
1568 | "Block bitmap for group %d is marked free", | ||
1569 | i); | ||
1570 | |||
1571 | if (!block_in_use (le32_to_cpu(gdp->bg_inode_bitmap), | ||
1572 | sb, bitmap_bh->b_data)) | ||
1573 | ext3_error (sb, "ext3_check_blocks_bitmap", | ||
1574 | "Inode bitmap for group %d is marked free", | ||
1575 | i); | ||
1576 | |||
1577 | for (j = 0; j < EXT3_SB(sb)->s_itb_per_group; j++) | ||
1578 | if (!block_in_use (le32_to_cpu(gdp->bg_inode_table) + j, | ||
1579 | sb, bitmap_bh->b_data)) | ||
1580 | ext3_error (sb, "ext3_check_blocks_bitmap", | ||
1581 | "Block #%d of the inode table in " | ||
1582 | "group %d is marked free", j, i); | ||
1583 | |||
1584 | x = ext3_count_free(bitmap_bh, sb->s_blocksize); | ||
1585 | if (le16_to_cpu(gdp->bg_free_blocks_count) != x) | ||
1586 | ext3_error (sb, "ext3_check_blocks_bitmap", | ||
1587 | "Wrong free blocks count for group %d, " | ||
1588 | "stored = %d, counted = %lu", i, | ||
1589 | le16_to_cpu(gdp->bg_free_blocks_count), x); | ||
1590 | bitmap_count += x; | ||
1591 | } | ||
1592 | brelse(bitmap_bh); | ||
1593 | if (le32_to_cpu(es->s_free_blocks_count) != bitmap_count) | ||
1594 | ext3_error (sb, "ext3_check_blocks_bitmap", | ||
1595 | "Wrong free blocks count in super block, " | ||
1596 | "stored = %lu, counted = %lu", | ||
1597 | (unsigned long)le32_to_cpu(es->s_free_blocks_count), | ||
1598 | bitmap_count); | ||
1599 | } | ||
1600 | #endif | ||