aboutsummaryrefslogtreecommitdiffstats
path: root/fs/ecryptfs/messaging.c
diff options
context:
space:
mode:
authorTrond Myklebust <Trond.Myklebust@netapp.com>2007-02-13 01:43:25 -0500
committerTrond Myklebust <Trond.Myklebust@netapp.com>2007-02-13 01:43:25 -0500
commitd9bc125caf592b7d081021f32ce5b717efdf70c8 (patch)
tree263b7066ba22ddce21db610c0300f6eaac6f2064 /fs/ecryptfs/messaging.c
parent43d78ef2ba5bec26d0315859e8324bfc0be23766 (diff)
parentec2f9d1331f658433411c58077871e1eef4ee1b4 (diff)
Merge branch 'master' of /home/trondmy/kernel/linux-2.6/
Conflicts: net/sunrpc/auth_gss/gss_krb5_crypto.c net/sunrpc/auth_gss/gss_spkm3_token.c net/sunrpc/clnt.c Merge with mainline and fix conflicts.
Diffstat (limited to 'fs/ecryptfs/messaging.c')
-rw-r--r--fs/ecryptfs/messaging.c515
1 files changed, 515 insertions, 0 deletions
diff --git a/fs/ecryptfs/messaging.c b/fs/ecryptfs/messaging.c
new file mode 100644
index 000000000000..47d7e7b611f7
--- /dev/null
+++ b/fs/ecryptfs/messaging.c
@@ -0,0 +1,515 @@
1/**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 2004-2006 International Business Machines Corp.
5 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6 * Tyler Hicks <tyhicks@ou.edu>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20 * 02111-1307, USA.
21 */
22
23#include "ecryptfs_kernel.h"
24
25static LIST_HEAD(ecryptfs_msg_ctx_free_list);
26static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
27static struct mutex ecryptfs_msg_ctx_lists_mux;
28
29static struct hlist_head *ecryptfs_daemon_id_hash;
30static struct mutex ecryptfs_daemon_id_hash_mux;
31static int ecryptfs_hash_buckets;
32#define ecryptfs_uid_hash(uid) \
33 hash_long((unsigned long)uid, ecryptfs_hash_buckets)
34
35static unsigned int ecryptfs_msg_counter;
36static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
37
38/**
39 * ecryptfs_acquire_free_msg_ctx
40 * @msg_ctx: The context that was acquired from the free list
41 *
42 * Acquires a context element from the free list and locks the mutex
43 * on the context. Returns zero on success; non-zero on error or upon
44 * failure to acquire a free context element. Be sure to lock the
45 * list mutex before calling.
46 */
47static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
48{
49 struct list_head *p;
50 int rc;
51
52 if (list_empty(&ecryptfs_msg_ctx_free_list)) {
53 ecryptfs_printk(KERN_WARNING, "The eCryptfs free "
54 "context list is empty. It may be helpful to "
55 "specify the ecryptfs_message_buf_len "
56 "parameter to be greater than the current "
57 "value of [%d]\n", ecryptfs_message_buf_len);
58 rc = -ENOMEM;
59 goto out;
60 }
61 list_for_each(p, &ecryptfs_msg_ctx_free_list) {
62 *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
63 if (mutex_trylock(&(*msg_ctx)->mux)) {
64 (*msg_ctx)->task = current;
65 rc = 0;
66 goto out;
67 }
68 }
69 rc = -ENOMEM;
70out:
71 return rc;
72}
73
74/**
75 * ecryptfs_msg_ctx_free_to_alloc
76 * @msg_ctx: The context to move from the free list to the alloc list
77 *
78 * Be sure to lock the list mutex and the context mutex before
79 * calling.
80 */
81static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
82{
83 list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
84 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
85 msg_ctx->counter = ++ecryptfs_msg_counter;
86}
87
88/**
89 * ecryptfs_msg_ctx_alloc_to_free
90 * @msg_ctx: The context to move from the alloc list to the free list
91 *
92 * Be sure to lock the list mutex and the context mutex before
93 * calling.
94 */
95static void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
96{
97 list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
98 if (msg_ctx->msg)
99 kfree(msg_ctx->msg);
100 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
101}
102
103/**
104 * ecryptfs_find_daemon_id
105 * @uid: The user id which maps to the desired daemon id
106 * @id: If return value is zero, points to the desired daemon id
107 * pointer
108 *
109 * Search the hash list for the given user id. Returns zero if the
110 * user id exists in the list; non-zero otherwise. The daemon id hash
111 * mutex should be held before calling this function.
112 */
113static int ecryptfs_find_daemon_id(uid_t uid, struct ecryptfs_daemon_id **id)
114{
115 struct hlist_node *elem;
116 int rc;
117
118 hlist_for_each_entry(*id, elem,
119 &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)],
120 id_chain) {
121 if ((*id)->uid == uid) {
122 rc = 0;
123 goto out;
124 }
125 }
126 rc = -EINVAL;
127out:
128 return rc;
129}
130
131static int ecryptfs_send_raw_message(unsigned int transport, u16 msg_type,
132 pid_t pid)
133{
134 int rc;
135
136 switch(transport) {
137 case ECRYPTFS_TRANSPORT_NETLINK:
138 rc = ecryptfs_send_netlink(NULL, 0, NULL, msg_type, 0, pid);
139 break;
140 case ECRYPTFS_TRANSPORT_CONNECTOR:
141 case ECRYPTFS_TRANSPORT_RELAYFS:
142 default:
143 rc = -ENOSYS;
144 }
145 return rc;
146}
147
148/**
149 * ecryptfs_process_helo
150 * @transport: The underlying transport (netlink, etc.)
151 * @uid: The user ID owner of the message
152 * @pid: The process ID for the userspace program that sent the
153 * message
154 *
155 * Adds the uid and pid values to the daemon id hash. If a uid
156 * already has a daemon pid registered, the daemon will be
157 * unregistered before the new daemon id is put into the hash list.
158 * Returns zero after adding a new daemon id to the hash list;
159 * non-zero otherwise.
160 */
161int ecryptfs_process_helo(unsigned int transport, uid_t uid, pid_t pid)
162{
163 struct ecryptfs_daemon_id *new_id;
164 struct ecryptfs_daemon_id *old_id;
165 int rc;
166
167 mutex_lock(&ecryptfs_daemon_id_hash_mux);
168 new_id = kmalloc(sizeof(*new_id), GFP_KERNEL);
169 if (!new_id) {
170 rc = -ENOMEM;
171 ecryptfs_printk(KERN_ERR, "Failed to allocate memory; unable "
172 "to register daemon [%d] for user\n", pid, uid);
173 goto unlock;
174 }
175 if (!ecryptfs_find_daemon_id(uid, &old_id)) {
176 printk(KERN_WARNING "Received request from user [%d] "
177 "to register daemon [%d]; unregistering daemon "
178 "[%d]\n", uid, pid, old_id->pid);
179 hlist_del(&old_id->id_chain);
180 rc = ecryptfs_send_raw_message(transport, ECRYPTFS_NLMSG_QUIT,
181 old_id->pid);
182 if (rc)
183 printk(KERN_WARNING "Failed to send QUIT "
184 "message to daemon [%d]; rc = [%d]\n",
185 old_id->pid, rc);
186 kfree(old_id);
187 }
188 new_id->uid = uid;
189 new_id->pid = pid;
190 hlist_add_head(&new_id->id_chain,
191 &ecryptfs_daemon_id_hash[ecryptfs_uid_hash(uid)]);
192 rc = 0;
193unlock:
194 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
195 return rc;
196}
197
198/**
199 * ecryptfs_process_quit
200 * @uid: The user ID owner of the message
201 * @pid: The process ID for the userspace program that sent the
202 * message
203 *
204 * Deletes the corresponding daemon id for the given uid and pid, if
205 * it is the registered that is requesting the deletion. Returns zero
206 * after deleting the desired daemon id; non-zero otherwise.
207 */
208int ecryptfs_process_quit(uid_t uid, pid_t pid)
209{
210 struct ecryptfs_daemon_id *id;
211 int rc;
212
213 mutex_lock(&ecryptfs_daemon_id_hash_mux);
214 if (ecryptfs_find_daemon_id(uid, &id)) {
215 rc = -EINVAL;
216 ecryptfs_printk(KERN_ERR, "Received request from user [%d] to "
217 "unregister unrecognized daemon [%d]\n", uid,
218 pid);
219 goto unlock;
220 }
221 if (id->pid != pid) {
222 rc = -EINVAL;
223 ecryptfs_printk(KERN_WARNING, "Received request from user [%d] "
224 "with pid [%d] to unregister daemon [%d]\n",
225 uid, pid, id->pid);
226 goto unlock;
227 }
228 hlist_del(&id->id_chain);
229 kfree(id);
230 rc = 0;
231unlock:
232 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
233 return rc;
234}
235
236/**
237 * ecryptfs_process_reponse
238 * @msg: The ecryptfs message received; the caller should sanity check
239 * msg->data_len
240 * @pid: The process ID of the userspace application that sent the
241 * message
242 * @seq: The sequence number of the message
243 *
244 * Processes a response message after sending a operation request to
245 * userspace. Returns zero upon delivery to desired context element;
246 * non-zero upon delivery failure or error.
247 */
248int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t uid,
249 pid_t pid, u32 seq)
250{
251 struct ecryptfs_daemon_id *id;
252 struct ecryptfs_msg_ctx *msg_ctx;
253 int msg_size;
254 int rc;
255
256 if (msg->index >= ecryptfs_message_buf_len) {
257 rc = -EINVAL;
258 ecryptfs_printk(KERN_ERR, "Attempt to reference "
259 "context buffer at index [%d]; maximum "
260 "allowable is [%d]\n", msg->index,
261 (ecryptfs_message_buf_len - 1));
262 goto out;
263 }
264 msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
265 mutex_lock(&msg_ctx->mux);
266 if (ecryptfs_find_daemon_id(msg_ctx->task->euid, &id)) {
267 rc = -EBADMSG;
268 ecryptfs_printk(KERN_WARNING, "User [%d] received a "
269 "message response from process [%d] but does "
270 "not have a registered daemon\n",
271 msg_ctx->task->euid, pid);
272 goto wake_up;
273 }
274 if (msg_ctx->task->euid != uid) {
275 rc = -EBADMSG;
276 ecryptfs_printk(KERN_WARNING, "Received message from user "
277 "[%d]; expected message from user [%d]\n",
278 uid, msg_ctx->task->euid);
279 goto unlock;
280 }
281 if (id->pid != pid) {
282 rc = -EBADMSG;
283 ecryptfs_printk(KERN_ERR, "User [%d] received a "
284 "message response from an unrecognized "
285 "process [%d]\n", msg_ctx->task->euid, pid);
286 goto unlock;
287 }
288 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
289 rc = -EINVAL;
290 ecryptfs_printk(KERN_WARNING, "Desired context element is not "
291 "pending a response\n");
292 goto unlock;
293 } else if (msg_ctx->counter != seq) {
294 rc = -EINVAL;
295 ecryptfs_printk(KERN_WARNING, "Invalid message sequence; "
296 "expected [%d]; received [%d]\n",
297 msg_ctx->counter, seq);
298 goto unlock;
299 }
300 msg_size = sizeof(*msg) + msg->data_len;
301 msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
302 if (!msg_ctx->msg) {
303 rc = -ENOMEM;
304 ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
305 goto unlock;
306 }
307 memcpy(msg_ctx->msg, msg, msg_size);
308 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
309 rc = 0;
310wake_up:
311 wake_up_process(msg_ctx->task);
312unlock:
313 mutex_unlock(&msg_ctx->mux);
314out:
315 return rc;
316}
317
318/**
319 * ecryptfs_send_message
320 * @transport: The transport over which to send the message (i.e.,
321 * netlink)
322 * @data: The data to send
323 * @data_len: The length of data
324 * @msg_ctx: The message context allocated for the send
325 */
326int ecryptfs_send_message(unsigned int transport, char *data, int data_len,
327 struct ecryptfs_msg_ctx **msg_ctx)
328{
329 struct ecryptfs_daemon_id *id;
330 int rc;
331
332 mutex_lock(&ecryptfs_daemon_id_hash_mux);
333 if (ecryptfs_find_daemon_id(current->euid, &id)) {
334 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
335 rc = -ENOTCONN;
336 ecryptfs_printk(KERN_ERR, "User [%d] does not have a daemon "
337 "registered\n", current->euid);
338 goto out;
339 }
340 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
341 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
342 rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
343 if (rc) {
344 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
345 ecryptfs_printk(KERN_WARNING, "Could not claim a free "
346 "context element\n");
347 goto out;
348 }
349 ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
350 mutex_unlock(&(*msg_ctx)->mux);
351 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
352 switch (transport) {
353 case ECRYPTFS_TRANSPORT_NETLINK:
354 rc = ecryptfs_send_netlink(data, data_len, *msg_ctx,
355 ECRYPTFS_NLMSG_REQUEST, 0, id->pid);
356 break;
357 case ECRYPTFS_TRANSPORT_CONNECTOR:
358 case ECRYPTFS_TRANSPORT_RELAYFS:
359 default:
360 rc = -ENOSYS;
361 }
362 if (rc) {
363 printk(KERN_ERR "Error attempting to send message to userspace "
364 "daemon; rc = [%d]\n", rc);
365 }
366out:
367 return rc;
368}
369
370/**
371 * ecryptfs_wait_for_response
372 * @msg_ctx: The context that was assigned when sending a message
373 * @msg: The incoming message from userspace; not set if rc != 0
374 *
375 * Sleeps until awaken by ecryptfs_receive_message or until the amount
376 * of time exceeds ecryptfs_message_wait_timeout. If zero is
377 * returned, msg will point to a valid message from userspace; a
378 * non-zero value is returned upon failure to receive a message or an
379 * error occurs.
380 */
381int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
382 struct ecryptfs_message **msg)
383{
384 signed long timeout = ecryptfs_message_wait_timeout * HZ;
385 int rc = 0;
386
387sleep:
388 timeout = schedule_timeout_interruptible(timeout);
389 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
390 mutex_lock(&msg_ctx->mux);
391 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
392 if (timeout) {
393 mutex_unlock(&msg_ctx->mux);
394 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
395 goto sleep;
396 }
397 rc = -ENOMSG;
398 } else {
399 *msg = msg_ctx->msg;
400 msg_ctx->msg = NULL;
401 }
402 ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
403 mutex_unlock(&msg_ctx->mux);
404 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
405 return rc;
406}
407
408int ecryptfs_init_messaging(unsigned int transport)
409{
410 int i;
411 int rc = 0;
412
413 if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
414 ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
415 ecryptfs_printk(KERN_WARNING, "Specified number of users is "
416 "too large, defaulting to [%d] users\n",
417 ecryptfs_number_of_users);
418 }
419 mutex_init(&ecryptfs_daemon_id_hash_mux);
420 mutex_lock(&ecryptfs_daemon_id_hash_mux);
421 ecryptfs_hash_buckets = 0;
422 while (ecryptfs_number_of_users >> ++ecryptfs_hash_buckets);
423 ecryptfs_daemon_id_hash = kmalloc(sizeof(struct hlist_head)
424 * ecryptfs_hash_buckets, GFP_KERNEL);
425 if (!ecryptfs_daemon_id_hash) {
426 rc = -ENOMEM;
427 ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
428 goto out;
429 }
430 for (i = 0; i < ecryptfs_hash_buckets; i++)
431 INIT_HLIST_HEAD(&ecryptfs_daemon_id_hash[i]);
432 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
433
434 ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
435 * ecryptfs_message_buf_len), GFP_KERNEL);
436 if (!ecryptfs_msg_ctx_arr) {
437 rc = -ENOMEM;
438 ecryptfs_printk(KERN_ERR, "Failed to allocate memory\n");
439 goto out;
440 }
441 mutex_init(&ecryptfs_msg_ctx_lists_mux);
442 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
443 ecryptfs_msg_counter = 0;
444 for (i = 0; i < ecryptfs_message_buf_len; i++) {
445 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
446 mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
447 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
448 ecryptfs_msg_ctx_arr[i].index = i;
449 ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
450 ecryptfs_msg_ctx_arr[i].counter = 0;
451 ecryptfs_msg_ctx_arr[i].task = NULL;
452 ecryptfs_msg_ctx_arr[i].msg = NULL;
453 list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
454 &ecryptfs_msg_ctx_free_list);
455 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
456 }
457 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
458 switch(transport) {
459 case ECRYPTFS_TRANSPORT_NETLINK:
460 rc = ecryptfs_init_netlink();
461 if (rc)
462 ecryptfs_release_messaging(transport);
463 break;
464 case ECRYPTFS_TRANSPORT_CONNECTOR:
465 case ECRYPTFS_TRANSPORT_RELAYFS:
466 default:
467 rc = -ENOSYS;
468 }
469out:
470 return rc;
471}
472
473void ecryptfs_release_messaging(unsigned int transport)
474{
475 if (ecryptfs_msg_ctx_arr) {
476 int i;
477
478 mutex_lock(&ecryptfs_msg_ctx_lists_mux);
479 for (i = 0; i < ecryptfs_message_buf_len; i++) {
480 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
481 if (ecryptfs_msg_ctx_arr[i].msg)
482 kfree(ecryptfs_msg_ctx_arr[i].msg);
483 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
484 }
485 kfree(ecryptfs_msg_ctx_arr);
486 mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
487 }
488 if (ecryptfs_daemon_id_hash) {
489 struct hlist_node *elem;
490 struct ecryptfs_daemon_id *id;
491 int i;
492
493 mutex_lock(&ecryptfs_daemon_id_hash_mux);
494 for (i = 0; i < ecryptfs_hash_buckets; i++) {
495 hlist_for_each_entry(id, elem,
496 &ecryptfs_daemon_id_hash[i],
497 id_chain) {
498 hlist_del(elem);
499 kfree(id);
500 }
501 }
502 kfree(ecryptfs_daemon_id_hash);
503 mutex_unlock(&ecryptfs_daemon_id_hash_mux);
504 }
505 switch(transport) {
506 case ECRYPTFS_TRANSPORT_NETLINK:
507 ecryptfs_release_netlink();
508 break;
509 case ECRYPTFS_TRANSPORT_CONNECTOR:
510 case ECRYPTFS_TRANSPORT_RELAYFS:
511 default:
512 break;
513 }
514 return;
515}