diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/cifs/md5.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/cifs/md5.c')
-rw-r--r-- | fs/cifs/md5.c | 363 |
1 files changed, 363 insertions, 0 deletions
diff --git a/fs/cifs/md5.c b/fs/cifs/md5.c new file mode 100644 index 000000000000..7aa23490541f --- /dev/null +++ b/fs/cifs/md5.c | |||
@@ -0,0 +1,363 @@ | |||
1 | /* | ||
2 | * This code implements the MD5 message-digest algorithm. | ||
3 | * The algorithm is due to Ron Rivest. This code was | ||
4 | * written by Colin Plumb in 1993, no copyright is claimed. | ||
5 | * This code is in the public domain; do with it what you wish. | ||
6 | * | ||
7 | * Equivalent code is available from RSA Data Security, Inc. | ||
8 | * This code has been tested against that, and is equivalent, | ||
9 | * except that you don't need to include two pages of legalese | ||
10 | * with every copy. | ||
11 | * | ||
12 | * To compute the message digest of a chunk of bytes, declare an | ||
13 | * MD5Context structure, pass it to MD5Init, call MD5Update as | ||
14 | * needed on buffers full of bytes, and then call MD5Final, which | ||
15 | * will fill a supplied 16-byte array with the digest. | ||
16 | */ | ||
17 | |||
18 | /* This code slightly modified to fit into Samba by | ||
19 | abartlet@samba.org Jun 2001 | ||
20 | and to fit the cifs vfs by | ||
21 | Steve French sfrench@us.ibm.com */ | ||
22 | |||
23 | #include <linux/string.h> | ||
24 | #include "md5.h" | ||
25 | |||
26 | static void MD5Transform(__u32 buf[4], __u32 const in[16]); | ||
27 | |||
28 | /* | ||
29 | * Note: this code is harmless on little-endian machines. | ||
30 | */ | ||
31 | static void | ||
32 | byteReverse(unsigned char *buf, unsigned longs) | ||
33 | { | ||
34 | __u32 t; | ||
35 | do { | ||
36 | t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | | ||
37 | ((unsigned) buf[1] << 8 | buf[0]); | ||
38 | *(__u32 *) buf = t; | ||
39 | buf += 4; | ||
40 | } while (--longs); | ||
41 | } | ||
42 | |||
43 | /* | ||
44 | * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious | ||
45 | * initialization constants. | ||
46 | */ | ||
47 | void | ||
48 | MD5Init(struct MD5Context *ctx) | ||
49 | { | ||
50 | ctx->buf[0] = 0x67452301; | ||
51 | ctx->buf[1] = 0xefcdab89; | ||
52 | ctx->buf[2] = 0x98badcfe; | ||
53 | ctx->buf[3] = 0x10325476; | ||
54 | |||
55 | ctx->bits[0] = 0; | ||
56 | ctx->bits[1] = 0; | ||
57 | } | ||
58 | |||
59 | /* | ||
60 | * Update context to reflect the concatenation of another buffer full | ||
61 | * of bytes. | ||
62 | */ | ||
63 | void | ||
64 | MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) | ||
65 | { | ||
66 | register __u32 t; | ||
67 | |||
68 | /* Update bitcount */ | ||
69 | |||
70 | t = ctx->bits[0]; | ||
71 | if ((ctx->bits[0] = t + ((__u32) len << 3)) < t) | ||
72 | ctx->bits[1]++; /* Carry from low to high */ | ||
73 | ctx->bits[1] += len >> 29; | ||
74 | |||
75 | t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ | ||
76 | |||
77 | /* Handle any leading odd-sized chunks */ | ||
78 | |||
79 | if (t) { | ||
80 | unsigned char *p = (unsigned char *) ctx->in + t; | ||
81 | |||
82 | t = 64 - t; | ||
83 | if (len < t) { | ||
84 | memmove(p, buf, len); | ||
85 | return; | ||
86 | } | ||
87 | memmove(p, buf, t); | ||
88 | byteReverse(ctx->in, 16); | ||
89 | MD5Transform(ctx->buf, (__u32 *) ctx->in); | ||
90 | buf += t; | ||
91 | len -= t; | ||
92 | } | ||
93 | /* Process data in 64-byte chunks */ | ||
94 | |||
95 | while (len >= 64) { | ||
96 | memmove(ctx->in, buf, 64); | ||
97 | byteReverse(ctx->in, 16); | ||
98 | MD5Transform(ctx->buf, (__u32 *) ctx->in); | ||
99 | buf += 64; | ||
100 | len -= 64; | ||
101 | } | ||
102 | |||
103 | /* Handle any remaining bytes of data. */ | ||
104 | |||
105 | memmove(ctx->in, buf, len); | ||
106 | } | ||
107 | |||
108 | /* | ||
109 | * Final wrapup - pad to 64-byte boundary with the bit pattern | ||
110 | * 1 0* (64-bit count of bits processed, MSB-first) | ||
111 | */ | ||
112 | void | ||
113 | MD5Final(unsigned char digest[16], struct MD5Context *ctx) | ||
114 | { | ||
115 | unsigned int count; | ||
116 | unsigned char *p; | ||
117 | |||
118 | /* Compute number of bytes mod 64 */ | ||
119 | count = (ctx->bits[0] >> 3) & 0x3F; | ||
120 | |||
121 | /* Set the first char of padding to 0x80. This is safe since there is | ||
122 | always at least one byte free */ | ||
123 | p = ctx->in + count; | ||
124 | *p++ = 0x80; | ||
125 | |||
126 | /* Bytes of padding needed to make 64 bytes */ | ||
127 | count = 64 - 1 - count; | ||
128 | |||
129 | /* Pad out to 56 mod 64 */ | ||
130 | if (count < 8) { | ||
131 | /* Two lots of padding: Pad the first block to 64 bytes */ | ||
132 | memset(p, 0, count); | ||
133 | byteReverse(ctx->in, 16); | ||
134 | MD5Transform(ctx->buf, (__u32 *) ctx->in); | ||
135 | |||
136 | /* Now fill the next block with 56 bytes */ | ||
137 | memset(ctx->in, 0, 56); | ||
138 | } else { | ||
139 | /* Pad block to 56 bytes */ | ||
140 | memset(p, 0, count - 8); | ||
141 | } | ||
142 | byteReverse(ctx->in, 14); | ||
143 | |||
144 | /* Append length in bits and transform */ | ||
145 | ((__u32 *) ctx->in)[14] = ctx->bits[0]; | ||
146 | ((__u32 *) ctx->in)[15] = ctx->bits[1]; | ||
147 | |||
148 | MD5Transform(ctx->buf, (__u32 *) ctx->in); | ||
149 | byteReverse((unsigned char *) ctx->buf, 4); | ||
150 | memmove(digest, ctx->buf, 16); | ||
151 | memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ | ||
152 | } | ||
153 | |||
154 | /* The four core functions - F1 is optimized somewhat */ | ||
155 | |||
156 | /* #define F1(x, y, z) (x & y | ~x & z) */ | ||
157 | #define F1(x, y, z) (z ^ (x & (y ^ z))) | ||
158 | #define F2(x, y, z) F1(z, x, y) | ||
159 | #define F3(x, y, z) (x ^ y ^ z) | ||
160 | #define F4(x, y, z) (y ^ (x | ~z)) | ||
161 | |||
162 | /* This is the central step in the MD5 algorithm. */ | ||
163 | #define MD5STEP(f, w, x, y, z, data, s) \ | ||
164 | ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) | ||
165 | |||
166 | /* | ||
167 | * The core of the MD5 algorithm, this alters an existing MD5 hash to | ||
168 | * reflect the addition of 16 longwords of new data. MD5Update blocks | ||
169 | * the data and converts bytes into longwords for this routine. | ||
170 | */ | ||
171 | static void | ||
172 | MD5Transform(__u32 buf[4], __u32 const in[16]) | ||
173 | { | ||
174 | register __u32 a, b, c, d; | ||
175 | |||
176 | a = buf[0]; | ||
177 | b = buf[1]; | ||
178 | c = buf[2]; | ||
179 | d = buf[3]; | ||
180 | |||
181 | MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); | ||
182 | MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); | ||
183 | MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); | ||
184 | MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); | ||
185 | MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); | ||
186 | MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); | ||
187 | MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); | ||
188 | MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); | ||
189 | MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); | ||
190 | MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); | ||
191 | MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); | ||
192 | MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); | ||
193 | MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); | ||
194 | MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); | ||
195 | MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); | ||
196 | MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); | ||
197 | |||
198 | MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); | ||
199 | MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); | ||
200 | MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); | ||
201 | MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); | ||
202 | MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); | ||
203 | MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); | ||
204 | MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); | ||
205 | MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); | ||
206 | MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); | ||
207 | MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); | ||
208 | MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); | ||
209 | MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); | ||
210 | MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); | ||
211 | MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); | ||
212 | MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); | ||
213 | MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); | ||
214 | |||
215 | MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); | ||
216 | MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); | ||
217 | MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); | ||
218 | MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); | ||
219 | MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); | ||
220 | MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); | ||
221 | MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); | ||
222 | MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); | ||
223 | MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); | ||
224 | MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); | ||
225 | MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); | ||
226 | MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); | ||
227 | MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); | ||
228 | MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); | ||
229 | MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); | ||
230 | MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); | ||
231 | |||
232 | MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); | ||
233 | MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); | ||
234 | MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); | ||
235 | MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); | ||
236 | MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); | ||
237 | MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); | ||
238 | MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); | ||
239 | MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); | ||
240 | MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); | ||
241 | MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); | ||
242 | MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); | ||
243 | MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); | ||
244 | MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); | ||
245 | MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); | ||
246 | MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); | ||
247 | MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); | ||
248 | |||
249 | buf[0] += a; | ||
250 | buf[1] += b; | ||
251 | buf[2] += c; | ||
252 | buf[3] += d; | ||
253 | } | ||
254 | |||
255 | /*********************************************************************** | ||
256 | the rfc 2104 version of hmac_md5 initialisation. | ||
257 | ***********************************************************************/ | ||
258 | void | ||
259 | hmac_md5_init_rfc2104(unsigned char *key, int key_len, | ||
260 | struct HMACMD5Context *ctx) | ||
261 | { | ||
262 | int i; | ||
263 | |||
264 | /* if key is longer than 64 bytes reset it to key=MD5(key) */ | ||
265 | if (key_len > 64) { | ||
266 | unsigned char tk[16]; | ||
267 | struct MD5Context tctx; | ||
268 | |||
269 | MD5Init(&tctx); | ||
270 | MD5Update(&tctx, key, key_len); | ||
271 | MD5Final(tk, &tctx); | ||
272 | |||
273 | key = tk; | ||
274 | key_len = 16; | ||
275 | } | ||
276 | |||
277 | /* start out by storing key in pads */ | ||
278 | memset(ctx->k_ipad, 0, sizeof (ctx->k_ipad)); | ||
279 | memset(ctx->k_opad, 0, sizeof (ctx->k_opad)); | ||
280 | memcpy(ctx->k_ipad, key, key_len); | ||
281 | memcpy(ctx->k_opad, key, key_len); | ||
282 | |||
283 | /* XOR key with ipad and opad values */ | ||
284 | for (i = 0; i < 64; i++) { | ||
285 | ctx->k_ipad[i] ^= 0x36; | ||
286 | ctx->k_opad[i] ^= 0x5c; | ||
287 | } | ||
288 | |||
289 | MD5Init(&ctx->ctx); | ||
290 | MD5Update(&ctx->ctx, ctx->k_ipad, 64); | ||
291 | } | ||
292 | |||
293 | /*********************************************************************** | ||
294 | the microsoft version of hmac_md5 initialisation. | ||
295 | ***********************************************************************/ | ||
296 | void | ||
297 | hmac_md5_init_limK_to_64(const unsigned char *key, int key_len, | ||
298 | struct HMACMD5Context *ctx) | ||
299 | { | ||
300 | int i; | ||
301 | |||
302 | /* if key is longer than 64 bytes truncate it */ | ||
303 | if (key_len > 64) { | ||
304 | key_len = 64; | ||
305 | } | ||
306 | |||
307 | /* start out by storing key in pads */ | ||
308 | memset(ctx->k_ipad, 0, sizeof (ctx->k_ipad)); | ||
309 | memset(ctx->k_opad, 0, sizeof (ctx->k_opad)); | ||
310 | memcpy(ctx->k_ipad, key, key_len); | ||
311 | memcpy(ctx->k_opad, key, key_len); | ||
312 | |||
313 | /* XOR key with ipad and opad values */ | ||
314 | for (i = 0; i < 64; i++) { | ||
315 | ctx->k_ipad[i] ^= 0x36; | ||
316 | ctx->k_opad[i] ^= 0x5c; | ||
317 | } | ||
318 | |||
319 | MD5Init(&ctx->ctx); | ||
320 | MD5Update(&ctx->ctx, ctx->k_ipad, 64); | ||
321 | } | ||
322 | |||
323 | /*********************************************************************** | ||
324 | update hmac_md5 "inner" buffer | ||
325 | ***********************************************************************/ | ||
326 | void | ||
327 | hmac_md5_update(const unsigned char *text, int text_len, | ||
328 | struct HMACMD5Context *ctx) | ||
329 | { | ||
330 | MD5Update(&ctx->ctx, text, text_len); /* then text of datagram */ | ||
331 | } | ||
332 | |||
333 | /*********************************************************************** | ||
334 | finish off hmac_md5 "inner" buffer and generate outer one. | ||
335 | ***********************************************************************/ | ||
336 | void | ||
337 | hmac_md5_final(unsigned char *digest, struct HMACMD5Context *ctx) | ||
338 | { | ||
339 | struct MD5Context ctx_o; | ||
340 | |||
341 | MD5Final(digest, &ctx->ctx); | ||
342 | |||
343 | MD5Init(&ctx_o); | ||
344 | MD5Update(&ctx_o, ctx->k_opad, 64); | ||
345 | MD5Update(&ctx_o, digest, 16); | ||
346 | MD5Final(digest, &ctx_o); | ||
347 | } | ||
348 | |||
349 | /*********************************************************** | ||
350 | single function to calculate an HMAC MD5 digest from data. | ||
351 | use the microsoft hmacmd5 init method because the key is 16 bytes. | ||
352 | ************************************************************/ | ||
353 | void | ||
354 | hmac_md5(unsigned char key[16], unsigned char *data, int data_len, | ||
355 | unsigned char *digest) | ||
356 | { | ||
357 | struct HMACMD5Context ctx; | ||
358 | hmac_md5_init_limK_to_64(key, 16, &ctx); | ||
359 | if (data_len != 0) { | ||
360 | hmac_md5_update(data, data_len, &ctx); | ||
361 | } | ||
362 | hmac_md5_final(digest, &ctx); | ||
363 | } | ||