aboutsummaryrefslogtreecommitdiffstats
path: root/fs/buffer.c
diff options
context:
space:
mode:
authorMel Gorman <mgorman@suse.de>2013-07-03 18:02:05 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2013-07-03 19:07:29 -0400
commitb45972265f823ed01eae0867a176320071665787 (patch)
treeded8dcb801e71fe10e38c715a91571c745c563b5 /fs/buffer.c
parentd04e8acd03e5c3421ef18e3da7bc88d56179ca42 (diff)
mm: vmscan: take page buffers dirty and locked state into account
Page reclaim keeps track of dirty and under writeback pages and uses it to determine if wait_iff_congested() should stall or if kswapd should begin writing back pages. This fails to account for buffer pages that can be under writeback but not PageWriteback which is the case for filesystems like ext3 ordered mode. Furthermore, PageDirty buffer pages can have all the buffers clean and writepage does no IO so it should not be accounted as congested. This patch adds an address_space operation that filesystems may optionally use to check if a page is really dirty or really under writeback. An implementation is provided for for buffer_heads is added and used for block operations and ext3 in ordered mode. By default the page flags are obeyed. Credit goes to Jan Kara for identifying that the page flags alone are not sufficient for ext3 and sanity checking a number of ideas on how the problem could be addressed. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu> Cc: Zlatko Calusic <zcalusic@bitsync.net> Cc: dormando <dormando@rydia.net> Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'fs/buffer.c')
-rw-r--r--fs/buffer.c34
1 files changed, 34 insertions, 0 deletions
diff --git a/fs/buffer.c b/fs/buffer.c
index f93392e2df12..4d7433534f5c 100644
--- a/fs/buffer.c
+++ b/fs/buffer.c
@@ -83,6 +83,40 @@ void unlock_buffer(struct buffer_head *bh)
83EXPORT_SYMBOL(unlock_buffer); 83EXPORT_SYMBOL(unlock_buffer);
84 84
85/* 85/*
86 * Returns if the page has dirty or writeback buffers. If all the buffers
87 * are unlocked and clean then the PageDirty information is stale. If
88 * any of the pages are locked, it is assumed they are locked for IO.
89 */
90void buffer_check_dirty_writeback(struct page *page,
91 bool *dirty, bool *writeback)
92{
93 struct buffer_head *head, *bh;
94 *dirty = false;
95 *writeback = false;
96
97 BUG_ON(!PageLocked(page));
98
99 if (!page_has_buffers(page))
100 return;
101
102 if (PageWriteback(page))
103 *writeback = true;
104
105 head = page_buffers(page);
106 bh = head;
107 do {
108 if (buffer_locked(bh))
109 *writeback = true;
110
111 if (buffer_dirty(bh))
112 *dirty = true;
113
114 bh = bh->b_this_page;
115 } while (bh != head);
116}
117EXPORT_SYMBOL(buffer_check_dirty_writeback);
118
119/*
86 * Block until a buffer comes unlocked. This doesn't stop it 120 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself 121 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state. 122 * if you want to preserve its state.