diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/buffer.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/buffer.c')
-rw-r--r-- | fs/buffer.c | 3152 |
1 files changed, 3152 insertions, 0 deletions
diff --git a/fs/buffer.c b/fs/buffer.c new file mode 100644 index 000000000000..f961605a904b --- /dev/null +++ b/fs/buffer.c | |||
@@ -0,0 +1,3152 @@ | |||
1 | /* | ||
2 | * linux/fs/buffer.c | ||
3 | * | ||
4 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds | ||
5 | */ | ||
6 | |||
7 | /* | ||
8 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 | ||
9 | * | ||
10 | * Removed a lot of unnecessary code and simplified things now that | ||
11 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 | ||
12 | * | ||
13 | * Speed up hash, lru, and free list operations. Use gfp() for allocating | ||
14 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM | ||
15 | * | ||
16 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK | ||
17 | * | ||
18 | * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> | ||
19 | */ | ||
20 | |||
21 | #include <linux/config.h> | ||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/syscalls.h> | ||
24 | #include <linux/fs.h> | ||
25 | #include <linux/mm.h> | ||
26 | #include <linux/percpu.h> | ||
27 | #include <linux/slab.h> | ||
28 | #include <linux/smp_lock.h> | ||
29 | #include <linux/blkdev.h> | ||
30 | #include <linux/file.h> | ||
31 | #include <linux/quotaops.h> | ||
32 | #include <linux/highmem.h> | ||
33 | #include <linux/module.h> | ||
34 | #include <linux/writeback.h> | ||
35 | #include <linux/hash.h> | ||
36 | #include <linux/suspend.h> | ||
37 | #include <linux/buffer_head.h> | ||
38 | #include <linux/bio.h> | ||
39 | #include <linux/notifier.h> | ||
40 | #include <linux/cpu.h> | ||
41 | #include <linux/bitops.h> | ||
42 | #include <linux/mpage.h> | ||
43 | |||
44 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); | ||
45 | static void invalidate_bh_lrus(void); | ||
46 | |||
47 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) | ||
48 | |||
49 | inline void | ||
50 | init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) | ||
51 | { | ||
52 | bh->b_end_io = handler; | ||
53 | bh->b_private = private; | ||
54 | } | ||
55 | |||
56 | static int sync_buffer(void *word) | ||
57 | { | ||
58 | struct block_device *bd; | ||
59 | struct buffer_head *bh | ||
60 | = container_of(word, struct buffer_head, b_state); | ||
61 | |||
62 | smp_mb(); | ||
63 | bd = bh->b_bdev; | ||
64 | if (bd) | ||
65 | blk_run_address_space(bd->bd_inode->i_mapping); | ||
66 | io_schedule(); | ||
67 | return 0; | ||
68 | } | ||
69 | |||
70 | void fastcall __lock_buffer(struct buffer_head *bh) | ||
71 | { | ||
72 | wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, | ||
73 | TASK_UNINTERRUPTIBLE); | ||
74 | } | ||
75 | EXPORT_SYMBOL(__lock_buffer); | ||
76 | |||
77 | void fastcall unlock_buffer(struct buffer_head *bh) | ||
78 | { | ||
79 | clear_buffer_locked(bh); | ||
80 | smp_mb__after_clear_bit(); | ||
81 | wake_up_bit(&bh->b_state, BH_Lock); | ||
82 | } | ||
83 | |||
84 | /* | ||
85 | * Block until a buffer comes unlocked. This doesn't stop it | ||
86 | * from becoming locked again - you have to lock it yourself | ||
87 | * if you want to preserve its state. | ||
88 | */ | ||
89 | void __wait_on_buffer(struct buffer_head * bh) | ||
90 | { | ||
91 | wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); | ||
92 | } | ||
93 | |||
94 | static void | ||
95 | __clear_page_buffers(struct page *page) | ||
96 | { | ||
97 | ClearPagePrivate(page); | ||
98 | page->private = 0; | ||
99 | page_cache_release(page); | ||
100 | } | ||
101 | |||
102 | static void buffer_io_error(struct buffer_head *bh) | ||
103 | { | ||
104 | char b[BDEVNAME_SIZE]; | ||
105 | |||
106 | printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", | ||
107 | bdevname(bh->b_bdev, b), | ||
108 | (unsigned long long)bh->b_blocknr); | ||
109 | } | ||
110 | |||
111 | /* | ||
112 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and | ||
113 | * unlock the buffer. This is what ll_rw_block uses too. | ||
114 | */ | ||
115 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) | ||
116 | { | ||
117 | if (uptodate) { | ||
118 | set_buffer_uptodate(bh); | ||
119 | } else { | ||
120 | /* This happens, due to failed READA attempts. */ | ||
121 | clear_buffer_uptodate(bh); | ||
122 | } | ||
123 | unlock_buffer(bh); | ||
124 | put_bh(bh); | ||
125 | } | ||
126 | |||
127 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) | ||
128 | { | ||
129 | char b[BDEVNAME_SIZE]; | ||
130 | |||
131 | if (uptodate) { | ||
132 | set_buffer_uptodate(bh); | ||
133 | } else { | ||
134 | if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { | ||
135 | buffer_io_error(bh); | ||
136 | printk(KERN_WARNING "lost page write due to " | ||
137 | "I/O error on %s\n", | ||
138 | bdevname(bh->b_bdev, b)); | ||
139 | } | ||
140 | set_buffer_write_io_error(bh); | ||
141 | clear_buffer_uptodate(bh); | ||
142 | } | ||
143 | unlock_buffer(bh); | ||
144 | put_bh(bh); | ||
145 | } | ||
146 | |||
147 | /* | ||
148 | * Write out and wait upon all the dirty data associated with a block | ||
149 | * device via its mapping. Does not take the superblock lock. | ||
150 | */ | ||
151 | int sync_blockdev(struct block_device *bdev) | ||
152 | { | ||
153 | int ret = 0; | ||
154 | |||
155 | if (bdev) { | ||
156 | int err; | ||
157 | |||
158 | ret = filemap_fdatawrite(bdev->bd_inode->i_mapping); | ||
159 | err = filemap_fdatawait(bdev->bd_inode->i_mapping); | ||
160 | if (!ret) | ||
161 | ret = err; | ||
162 | } | ||
163 | return ret; | ||
164 | } | ||
165 | EXPORT_SYMBOL(sync_blockdev); | ||
166 | |||
167 | /* | ||
168 | * Write out and wait upon all dirty data associated with this | ||
169 | * superblock. Filesystem data as well as the underlying block | ||
170 | * device. Takes the superblock lock. | ||
171 | */ | ||
172 | int fsync_super(struct super_block *sb) | ||
173 | { | ||
174 | sync_inodes_sb(sb, 0); | ||
175 | DQUOT_SYNC(sb); | ||
176 | lock_super(sb); | ||
177 | if (sb->s_dirt && sb->s_op->write_super) | ||
178 | sb->s_op->write_super(sb); | ||
179 | unlock_super(sb); | ||
180 | if (sb->s_op->sync_fs) | ||
181 | sb->s_op->sync_fs(sb, 1); | ||
182 | sync_blockdev(sb->s_bdev); | ||
183 | sync_inodes_sb(sb, 1); | ||
184 | |||
185 | return sync_blockdev(sb->s_bdev); | ||
186 | } | ||
187 | |||
188 | /* | ||
189 | * Write out and wait upon all dirty data associated with this | ||
190 | * device. Filesystem data as well as the underlying block | ||
191 | * device. Takes the superblock lock. | ||
192 | */ | ||
193 | int fsync_bdev(struct block_device *bdev) | ||
194 | { | ||
195 | struct super_block *sb = get_super(bdev); | ||
196 | if (sb) { | ||
197 | int res = fsync_super(sb); | ||
198 | drop_super(sb); | ||
199 | return res; | ||
200 | } | ||
201 | return sync_blockdev(bdev); | ||
202 | } | ||
203 | |||
204 | /** | ||
205 | * freeze_bdev -- lock a filesystem and force it into a consistent state | ||
206 | * @bdev: blockdevice to lock | ||
207 | * | ||
208 | * This takes the block device bd_mount_sem to make sure no new mounts | ||
209 | * happen on bdev until thaw_bdev() is called. | ||
210 | * If a superblock is found on this device, we take the s_umount semaphore | ||
211 | * on it to make sure nobody unmounts until the snapshot creation is done. | ||
212 | */ | ||
213 | struct super_block *freeze_bdev(struct block_device *bdev) | ||
214 | { | ||
215 | struct super_block *sb; | ||
216 | |||
217 | down(&bdev->bd_mount_sem); | ||
218 | sb = get_super(bdev); | ||
219 | if (sb && !(sb->s_flags & MS_RDONLY)) { | ||
220 | sb->s_frozen = SB_FREEZE_WRITE; | ||
221 | wmb(); | ||
222 | |||
223 | sync_inodes_sb(sb, 0); | ||
224 | DQUOT_SYNC(sb); | ||
225 | |||
226 | lock_super(sb); | ||
227 | if (sb->s_dirt && sb->s_op->write_super) | ||
228 | sb->s_op->write_super(sb); | ||
229 | unlock_super(sb); | ||
230 | |||
231 | if (sb->s_op->sync_fs) | ||
232 | sb->s_op->sync_fs(sb, 1); | ||
233 | |||
234 | sync_blockdev(sb->s_bdev); | ||
235 | sync_inodes_sb(sb, 1); | ||
236 | |||
237 | sb->s_frozen = SB_FREEZE_TRANS; | ||
238 | wmb(); | ||
239 | |||
240 | sync_blockdev(sb->s_bdev); | ||
241 | |||
242 | if (sb->s_op->write_super_lockfs) | ||
243 | sb->s_op->write_super_lockfs(sb); | ||
244 | } | ||
245 | |||
246 | sync_blockdev(bdev); | ||
247 | return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ | ||
248 | } | ||
249 | EXPORT_SYMBOL(freeze_bdev); | ||
250 | |||
251 | /** | ||
252 | * thaw_bdev -- unlock filesystem | ||
253 | * @bdev: blockdevice to unlock | ||
254 | * @sb: associated superblock | ||
255 | * | ||
256 | * Unlocks the filesystem and marks it writeable again after freeze_bdev(). | ||
257 | */ | ||
258 | void thaw_bdev(struct block_device *bdev, struct super_block *sb) | ||
259 | { | ||
260 | if (sb) { | ||
261 | BUG_ON(sb->s_bdev != bdev); | ||
262 | |||
263 | if (sb->s_op->unlockfs) | ||
264 | sb->s_op->unlockfs(sb); | ||
265 | sb->s_frozen = SB_UNFROZEN; | ||
266 | wmb(); | ||
267 | wake_up(&sb->s_wait_unfrozen); | ||
268 | drop_super(sb); | ||
269 | } | ||
270 | |||
271 | up(&bdev->bd_mount_sem); | ||
272 | } | ||
273 | EXPORT_SYMBOL(thaw_bdev); | ||
274 | |||
275 | /* | ||
276 | * sync everything. Start out by waking pdflush, because that writes back | ||
277 | * all queues in parallel. | ||
278 | */ | ||
279 | static void do_sync(unsigned long wait) | ||
280 | { | ||
281 | wakeup_bdflush(0); | ||
282 | sync_inodes(0); /* All mappings, inodes and their blockdevs */ | ||
283 | DQUOT_SYNC(NULL); | ||
284 | sync_supers(); /* Write the superblocks */ | ||
285 | sync_filesystems(0); /* Start syncing the filesystems */ | ||
286 | sync_filesystems(wait); /* Waitingly sync the filesystems */ | ||
287 | sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */ | ||
288 | if (!wait) | ||
289 | printk("Emergency Sync complete\n"); | ||
290 | if (unlikely(laptop_mode)) | ||
291 | laptop_sync_completion(); | ||
292 | } | ||
293 | |||
294 | asmlinkage long sys_sync(void) | ||
295 | { | ||
296 | do_sync(1); | ||
297 | return 0; | ||
298 | } | ||
299 | |||
300 | void emergency_sync(void) | ||
301 | { | ||
302 | pdflush_operation(do_sync, 0); | ||
303 | } | ||
304 | |||
305 | /* | ||
306 | * Generic function to fsync a file. | ||
307 | * | ||
308 | * filp may be NULL if called via the msync of a vma. | ||
309 | */ | ||
310 | |||
311 | int file_fsync(struct file *filp, struct dentry *dentry, int datasync) | ||
312 | { | ||
313 | struct inode * inode = dentry->d_inode; | ||
314 | struct super_block * sb; | ||
315 | int ret, err; | ||
316 | |||
317 | /* sync the inode to buffers */ | ||
318 | ret = write_inode_now(inode, 0); | ||
319 | |||
320 | /* sync the superblock to buffers */ | ||
321 | sb = inode->i_sb; | ||
322 | lock_super(sb); | ||
323 | if (sb->s_op->write_super) | ||
324 | sb->s_op->write_super(sb); | ||
325 | unlock_super(sb); | ||
326 | |||
327 | /* .. finally sync the buffers to disk */ | ||
328 | err = sync_blockdev(sb->s_bdev); | ||
329 | if (!ret) | ||
330 | ret = err; | ||
331 | return ret; | ||
332 | } | ||
333 | |||
334 | asmlinkage long sys_fsync(unsigned int fd) | ||
335 | { | ||
336 | struct file * file; | ||
337 | struct address_space *mapping; | ||
338 | int ret, err; | ||
339 | |||
340 | ret = -EBADF; | ||
341 | file = fget(fd); | ||
342 | if (!file) | ||
343 | goto out; | ||
344 | |||
345 | mapping = file->f_mapping; | ||
346 | |||
347 | ret = -EINVAL; | ||
348 | if (!file->f_op || !file->f_op->fsync) { | ||
349 | /* Why? We can still call filemap_fdatawrite */ | ||
350 | goto out_putf; | ||
351 | } | ||
352 | |||
353 | current->flags |= PF_SYNCWRITE; | ||
354 | ret = filemap_fdatawrite(mapping); | ||
355 | |||
356 | /* | ||
357 | * We need to protect against concurrent writers, | ||
358 | * which could cause livelocks in fsync_buffers_list | ||
359 | */ | ||
360 | down(&mapping->host->i_sem); | ||
361 | err = file->f_op->fsync(file, file->f_dentry, 0); | ||
362 | if (!ret) | ||
363 | ret = err; | ||
364 | up(&mapping->host->i_sem); | ||
365 | err = filemap_fdatawait(mapping); | ||
366 | if (!ret) | ||
367 | ret = err; | ||
368 | current->flags &= ~PF_SYNCWRITE; | ||
369 | |||
370 | out_putf: | ||
371 | fput(file); | ||
372 | out: | ||
373 | return ret; | ||
374 | } | ||
375 | |||
376 | asmlinkage long sys_fdatasync(unsigned int fd) | ||
377 | { | ||
378 | struct file * file; | ||
379 | struct address_space *mapping; | ||
380 | int ret, err; | ||
381 | |||
382 | ret = -EBADF; | ||
383 | file = fget(fd); | ||
384 | if (!file) | ||
385 | goto out; | ||
386 | |||
387 | ret = -EINVAL; | ||
388 | if (!file->f_op || !file->f_op->fsync) | ||
389 | goto out_putf; | ||
390 | |||
391 | mapping = file->f_mapping; | ||
392 | |||
393 | current->flags |= PF_SYNCWRITE; | ||
394 | ret = filemap_fdatawrite(mapping); | ||
395 | down(&mapping->host->i_sem); | ||
396 | err = file->f_op->fsync(file, file->f_dentry, 1); | ||
397 | if (!ret) | ||
398 | ret = err; | ||
399 | up(&mapping->host->i_sem); | ||
400 | err = filemap_fdatawait(mapping); | ||
401 | if (!ret) | ||
402 | ret = err; | ||
403 | current->flags &= ~PF_SYNCWRITE; | ||
404 | |||
405 | out_putf: | ||
406 | fput(file); | ||
407 | out: | ||
408 | return ret; | ||
409 | } | ||
410 | |||
411 | /* | ||
412 | * Various filesystems appear to want __find_get_block to be non-blocking. | ||
413 | * But it's the page lock which protects the buffers. To get around this, | ||
414 | * we get exclusion from try_to_free_buffers with the blockdev mapping's | ||
415 | * private_lock. | ||
416 | * | ||
417 | * Hack idea: for the blockdev mapping, i_bufferlist_lock contention | ||
418 | * may be quite high. This code could TryLock the page, and if that | ||
419 | * succeeds, there is no need to take private_lock. (But if | ||
420 | * private_lock is contended then so is mapping->tree_lock). | ||
421 | */ | ||
422 | static struct buffer_head * | ||
423 | __find_get_block_slow(struct block_device *bdev, sector_t block, int unused) | ||
424 | { | ||
425 | struct inode *bd_inode = bdev->bd_inode; | ||
426 | struct address_space *bd_mapping = bd_inode->i_mapping; | ||
427 | struct buffer_head *ret = NULL; | ||
428 | pgoff_t index; | ||
429 | struct buffer_head *bh; | ||
430 | struct buffer_head *head; | ||
431 | struct page *page; | ||
432 | int all_mapped = 1; | ||
433 | |||
434 | index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); | ||
435 | page = find_get_page(bd_mapping, index); | ||
436 | if (!page) | ||
437 | goto out; | ||
438 | |||
439 | spin_lock(&bd_mapping->private_lock); | ||
440 | if (!page_has_buffers(page)) | ||
441 | goto out_unlock; | ||
442 | head = page_buffers(page); | ||
443 | bh = head; | ||
444 | do { | ||
445 | if (bh->b_blocknr == block) { | ||
446 | ret = bh; | ||
447 | get_bh(bh); | ||
448 | goto out_unlock; | ||
449 | } | ||
450 | if (!buffer_mapped(bh)) | ||
451 | all_mapped = 0; | ||
452 | bh = bh->b_this_page; | ||
453 | } while (bh != head); | ||
454 | |||
455 | /* we might be here because some of the buffers on this page are | ||
456 | * not mapped. This is due to various races between | ||
457 | * file io on the block device and getblk. It gets dealt with | ||
458 | * elsewhere, don't buffer_error if we had some unmapped buffers | ||
459 | */ | ||
460 | if (all_mapped) { | ||
461 | printk("__find_get_block_slow() failed. " | ||
462 | "block=%llu, b_blocknr=%llu\n", | ||
463 | (unsigned long long)block, (unsigned long long)bh->b_blocknr); | ||
464 | printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size); | ||
465 | printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); | ||
466 | } | ||
467 | out_unlock: | ||
468 | spin_unlock(&bd_mapping->private_lock); | ||
469 | page_cache_release(page); | ||
470 | out: | ||
471 | return ret; | ||
472 | } | ||
473 | |||
474 | /* If invalidate_buffers() will trash dirty buffers, it means some kind | ||
475 | of fs corruption is going on. Trashing dirty data always imply losing | ||
476 | information that was supposed to be just stored on the physical layer | ||
477 | by the user. | ||
478 | |||
479 | Thus invalidate_buffers in general usage is not allwowed to trash | ||
480 | dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to | ||
481 | be preserved. These buffers are simply skipped. | ||
482 | |||
483 | We also skip buffers which are still in use. For example this can | ||
484 | happen if a userspace program is reading the block device. | ||
485 | |||
486 | NOTE: In the case where the user removed a removable-media-disk even if | ||
487 | there's still dirty data not synced on disk (due a bug in the device driver | ||
488 | or due an error of the user), by not destroying the dirty buffers we could | ||
489 | generate corruption also on the next media inserted, thus a parameter is | ||
490 | necessary to handle this case in the most safe way possible (trying | ||
491 | to not corrupt also the new disk inserted with the data belonging to | ||
492 | the old now corrupted disk). Also for the ramdisk the natural thing | ||
493 | to do in order to release the ramdisk memory is to destroy dirty buffers. | ||
494 | |||
495 | These are two special cases. Normal usage imply the device driver | ||
496 | to issue a sync on the device (without waiting I/O completion) and | ||
497 | then an invalidate_buffers call that doesn't trash dirty buffers. | ||
498 | |||
499 | For handling cache coherency with the blkdev pagecache the 'update' case | ||
500 | is been introduced. It is needed to re-read from disk any pinned | ||
501 | buffer. NOTE: re-reading from disk is destructive so we can do it only | ||
502 | when we assume nobody is changing the buffercache under our I/O and when | ||
503 | we think the disk contains more recent information than the buffercache. | ||
504 | The update == 1 pass marks the buffers we need to update, the update == 2 | ||
505 | pass does the actual I/O. */ | ||
506 | void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers) | ||
507 | { | ||
508 | invalidate_bh_lrus(); | ||
509 | /* | ||
510 | * FIXME: what about destroy_dirty_buffers? | ||
511 | * We really want to use invalidate_inode_pages2() for | ||
512 | * that, but not until that's cleaned up. | ||
513 | */ | ||
514 | invalidate_inode_pages(bdev->bd_inode->i_mapping); | ||
515 | } | ||
516 | |||
517 | /* | ||
518 | * Kick pdflush then try to free up some ZONE_NORMAL memory. | ||
519 | */ | ||
520 | static void free_more_memory(void) | ||
521 | { | ||
522 | struct zone **zones; | ||
523 | pg_data_t *pgdat; | ||
524 | |||
525 | wakeup_bdflush(1024); | ||
526 | yield(); | ||
527 | |||
528 | for_each_pgdat(pgdat) { | ||
529 | zones = pgdat->node_zonelists[GFP_NOFS&GFP_ZONEMASK].zones; | ||
530 | if (*zones) | ||
531 | try_to_free_pages(zones, GFP_NOFS, 0); | ||
532 | } | ||
533 | } | ||
534 | |||
535 | /* | ||
536 | * I/O completion handler for block_read_full_page() - pages | ||
537 | * which come unlocked at the end of I/O. | ||
538 | */ | ||
539 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) | ||
540 | { | ||
541 | static DEFINE_SPINLOCK(page_uptodate_lock); | ||
542 | unsigned long flags; | ||
543 | struct buffer_head *tmp; | ||
544 | struct page *page; | ||
545 | int page_uptodate = 1; | ||
546 | |||
547 | BUG_ON(!buffer_async_read(bh)); | ||
548 | |||
549 | page = bh->b_page; | ||
550 | if (uptodate) { | ||
551 | set_buffer_uptodate(bh); | ||
552 | } else { | ||
553 | clear_buffer_uptodate(bh); | ||
554 | if (printk_ratelimit()) | ||
555 | buffer_io_error(bh); | ||
556 | SetPageError(page); | ||
557 | } | ||
558 | |||
559 | /* | ||
560 | * Be _very_ careful from here on. Bad things can happen if | ||
561 | * two buffer heads end IO at almost the same time and both | ||
562 | * decide that the page is now completely done. | ||
563 | */ | ||
564 | spin_lock_irqsave(&page_uptodate_lock, flags); | ||
565 | clear_buffer_async_read(bh); | ||
566 | unlock_buffer(bh); | ||
567 | tmp = bh; | ||
568 | do { | ||
569 | if (!buffer_uptodate(tmp)) | ||
570 | page_uptodate = 0; | ||
571 | if (buffer_async_read(tmp)) { | ||
572 | BUG_ON(!buffer_locked(tmp)); | ||
573 | goto still_busy; | ||
574 | } | ||
575 | tmp = tmp->b_this_page; | ||
576 | } while (tmp != bh); | ||
577 | spin_unlock_irqrestore(&page_uptodate_lock, flags); | ||
578 | |||
579 | /* | ||
580 | * If none of the buffers had errors and they are all | ||
581 | * uptodate then we can set the page uptodate. | ||
582 | */ | ||
583 | if (page_uptodate && !PageError(page)) | ||
584 | SetPageUptodate(page); | ||
585 | unlock_page(page); | ||
586 | return; | ||
587 | |||
588 | still_busy: | ||
589 | spin_unlock_irqrestore(&page_uptodate_lock, flags); | ||
590 | return; | ||
591 | } | ||
592 | |||
593 | /* | ||
594 | * Completion handler for block_write_full_page() - pages which are unlocked | ||
595 | * during I/O, and which have PageWriteback cleared upon I/O completion. | ||
596 | */ | ||
597 | void end_buffer_async_write(struct buffer_head *bh, int uptodate) | ||
598 | { | ||
599 | char b[BDEVNAME_SIZE]; | ||
600 | static DEFINE_SPINLOCK(page_uptodate_lock); | ||
601 | unsigned long flags; | ||
602 | struct buffer_head *tmp; | ||
603 | struct page *page; | ||
604 | |||
605 | BUG_ON(!buffer_async_write(bh)); | ||
606 | |||
607 | page = bh->b_page; | ||
608 | if (uptodate) { | ||
609 | set_buffer_uptodate(bh); | ||
610 | } else { | ||
611 | if (printk_ratelimit()) { | ||
612 | buffer_io_error(bh); | ||
613 | printk(KERN_WARNING "lost page write due to " | ||
614 | "I/O error on %s\n", | ||
615 | bdevname(bh->b_bdev, b)); | ||
616 | } | ||
617 | set_bit(AS_EIO, &page->mapping->flags); | ||
618 | clear_buffer_uptodate(bh); | ||
619 | SetPageError(page); | ||
620 | } | ||
621 | |||
622 | spin_lock_irqsave(&page_uptodate_lock, flags); | ||
623 | clear_buffer_async_write(bh); | ||
624 | unlock_buffer(bh); | ||
625 | tmp = bh->b_this_page; | ||
626 | while (tmp != bh) { | ||
627 | if (buffer_async_write(tmp)) { | ||
628 | BUG_ON(!buffer_locked(tmp)); | ||
629 | goto still_busy; | ||
630 | } | ||
631 | tmp = tmp->b_this_page; | ||
632 | } | ||
633 | spin_unlock_irqrestore(&page_uptodate_lock, flags); | ||
634 | end_page_writeback(page); | ||
635 | return; | ||
636 | |||
637 | still_busy: | ||
638 | spin_unlock_irqrestore(&page_uptodate_lock, flags); | ||
639 | return; | ||
640 | } | ||
641 | |||
642 | /* | ||
643 | * If a page's buffers are under async readin (end_buffer_async_read | ||
644 | * completion) then there is a possibility that another thread of | ||
645 | * control could lock one of the buffers after it has completed | ||
646 | * but while some of the other buffers have not completed. This | ||
647 | * locked buffer would confuse end_buffer_async_read() into not unlocking | ||
648 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() | ||
649 | * that this buffer is not under async I/O. | ||
650 | * | ||
651 | * The page comes unlocked when it has no locked buffer_async buffers | ||
652 | * left. | ||
653 | * | ||
654 | * PageLocked prevents anyone starting new async I/O reads any of | ||
655 | * the buffers. | ||
656 | * | ||
657 | * PageWriteback is used to prevent simultaneous writeout of the same | ||
658 | * page. | ||
659 | * | ||
660 | * PageLocked prevents anyone from starting writeback of a page which is | ||
661 | * under read I/O (PageWriteback is only ever set against a locked page). | ||
662 | */ | ||
663 | static void mark_buffer_async_read(struct buffer_head *bh) | ||
664 | { | ||
665 | bh->b_end_io = end_buffer_async_read; | ||
666 | set_buffer_async_read(bh); | ||
667 | } | ||
668 | |||
669 | void mark_buffer_async_write(struct buffer_head *bh) | ||
670 | { | ||
671 | bh->b_end_io = end_buffer_async_write; | ||
672 | set_buffer_async_write(bh); | ||
673 | } | ||
674 | EXPORT_SYMBOL(mark_buffer_async_write); | ||
675 | |||
676 | |||
677 | /* | ||
678 | * fs/buffer.c contains helper functions for buffer-backed address space's | ||
679 | * fsync functions. A common requirement for buffer-based filesystems is | ||
680 | * that certain data from the backing blockdev needs to be written out for | ||
681 | * a successful fsync(). For example, ext2 indirect blocks need to be | ||
682 | * written back and waited upon before fsync() returns. | ||
683 | * | ||
684 | * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), | ||
685 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the | ||
686 | * management of a list of dependent buffers at ->i_mapping->private_list. | ||
687 | * | ||
688 | * Locking is a little subtle: try_to_free_buffers() will remove buffers | ||
689 | * from their controlling inode's queue when they are being freed. But | ||
690 | * try_to_free_buffers() will be operating against the *blockdev* mapping | ||
691 | * at the time, not against the S_ISREG file which depends on those buffers. | ||
692 | * So the locking for private_list is via the private_lock in the address_space | ||
693 | * which backs the buffers. Which is different from the address_space | ||
694 | * against which the buffers are listed. So for a particular address_space, | ||
695 | * mapping->private_lock does *not* protect mapping->private_list! In fact, | ||
696 | * mapping->private_list will always be protected by the backing blockdev's | ||
697 | * ->private_lock. | ||
698 | * | ||
699 | * Which introduces a requirement: all buffers on an address_space's | ||
700 | * ->private_list must be from the same address_space: the blockdev's. | ||
701 | * | ||
702 | * address_spaces which do not place buffers at ->private_list via these | ||
703 | * utility functions are free to use private_lock and private_list for | ||
704 | * whatever they want. The only requirement is that list_empty(private_list) | ||
705 | * be true at clear_inode() time. | ||
706 | * | ||
707 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The | ||
708 | * filesystems should do that. invalidate_inode_buffers() should just go | ||
709 | * BUG_ON(!list_empty). | ||
710 | * | ||
711 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should | ||
712 | * take an address_space, not an inode. And it should be called | ||
713 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being | ||
714 | * queued up. | ||
715 | * | ||
716 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the | ||
717 | * list if it is already on a list. Because if the buffer is on a list, | ||
718 | * it *must* already be on the right one. If not, the filesystem is being | ||
719 | * silly. This will save a ton of locking. But first we have to ensure | ||
720 | * that buffers are taken *off* the old inode's list when they are freed | ||
721 | * (presumably in truncate). That requires careful auditing of all | ||
722 | * filesystems (do it inside bforget()). It could also be done by bringing | ||
723 | * b_inode back. | ||
724 | */ | ||
725 | |||
726 | /* | ||
727 | * The buffer's backing address_space's private_lock must be held | ||
728 | */ | ||
729 | static inline void __remove_assoc_queue(struct buffer_head *bh) | ||
730 | { | ||
731 | list_del_init(&bh->b_assoc_buffers); | ||
732 | } | ||
733 | |||
734 | int inode_has_buffers(struct inode *inode) | ||
735 | { | ||
736 | return !list_empty(&inode->i_data.private_list); | ||
737 | } | ||
738 | |||
739 | /* | ||
740 | * osync is designed to support O_SYNC io. It waits synchronously for | ||
741 | * all already-submitted IO to complete, but does not queue any new | ||
742 | * writes to the disk. | ||
743 | * | ||
744 | * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as | ||
745 | * you dirty the buffers, and then use osync_inode_buffers to wait for | ||
746 | * completion. Any other dirty buffers which are not yet queued for | ||
747 | * write will not be flushed to disk by the osync. | ||
748 | */ | ||
749 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) | ||
750 | { | ||
751 | struct buffer_head *bh; | ||
752 | struct list_head *p; | ||
753 | int err = 0; | ||
754 | |||
755 | spin_lock(lock); | ||
756 | repeat: | ||
757 | list_for_each_prev(p, list) { | ||
758 | bh = BH_ENTRY(p); | ||
759 | if (buffer_locked(bh)) { | ||
760 | get_bh(bh); | ||
761 | spin_unlock(lock); | ||
762 | wait_on_buffer(bh); | ||
763 | if (!buffer_uptodate(bh)) | ||
764 | err = -EIO; | ||
765 | brelse(bh); | ||
766 | spin_lock(lock); | ||
767 | goto repeat; | ||
768 | } | ||
769 | } | ||
770 | spin_unlock(lock); | ||
771 | return err; | ||
772 | } | ||
773 | |||
774 | /** | ||
775 | * sync_mapping_buffers - write out and wait upon a mapping's "associated" | ||
776 | * buffers | ||
777 | * @buffer_mapping - the mapping which backs the buffers' data | ||
778 | * @mapping - the mapping which wants those buffers written | ||
779 | * | ||
780 | * Starts I/O against the buffers at mapping->private_list, and waits upon | ||
781 | * that I/O. | ||
782 | * | ||
783 | * Basically, this is a convenience function for fsync(). @buffer_mapping is | ||
784 | * the blockdev which "owns" the buffers and @mapping is a file or directory | ||
785 | * which needs those buffers to be written for a successful fsync(). | ||
786 | */ | ||
787 | int sync_mapping_buffers(struct address_space *mapping) | ||
788 | { | ||
789 | struct address_space *buffer_mapping = mapping->assoc_mapping; | ||
790 | |||
791 | if (buffer_mapping == NULL || list_empty(&mapping->private_list)) | ||
792 | return 0; | ||
793 | |||
794 | return fsync_buffers_list(&buffer_mapping->private_lock, | ||
795 | &mapping->private_list); | ||
796 | } | ||
797 | EXPORT_SYMBOL(sync_mapping_buffers); | ||
798 | |||
799 | /* | ||
800 | * Called when we've recently written block `bblock', and it is known that | ||
801 | * `bblock' was for a buffer_boundary() buffer. This means that the block at | ||
802 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's | ||
803 | * dirty, schedule it for IO. So that indirects merge nicely with their data. | ||
804 | */ | ||
805 | void write_boundary_block(struct block_device *bdev, | ||
806 | sector_t bblock, unsigned blocksize) | ||
807 | { | ||
808 | struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); | ||
809 | if (bh) { | ||
810 | if (buffer_dirty(bh)) | ||
811 | ll_rw_block(WRITE, 1, &bh); | ||
812 | put_bh(bh); | ||
813 | } | ||
814 | } | ||
815 | |||
816 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) | ||
817 | { | ||
818 | struct address_space *mapping = inode->i_mapping; | ||
819 | struct address_space *buffer_mapping = bh->b_page->mapping; | ||
820 | |||
821 | mark_buffer_dirty(bh); | ||
822 | if (!mapping->assoc_mapping) { | ||
823 | mapping->assoc_mapping = buffer_mapping; | ||
824 | } else { | ||
825 | if (mapping->assoc_mapping != buffer_mapping) | ||
826 | BUG(); | ||
827 | } | ||
828 | if (list_empty(&bh->b_assoc_buffers)) { | ||
829 | spin_lock(&buffer_mapping->private_lock); | ||
830 | list_move_tail(&bh->b_assoc_buffers, | ||
831 | &mapping->private_list); | ||
832 | spin_unlock(&buffer_mapping->private_lock); | ||
833 | } | ||
834 | } | ||
835 | EXPORT_SYMBOL(mark_buffer_dirty_inode); | ||
836 | |||
837 | /* | ||
838 | * Add a page to the dirty page list. | ||
839 | * | ||
840 | * It is a sad fact of life that this function is called from several places | ||
841 | * deeply under spinlocking. It may not sleep. | ||
842 | * | ||
843 | * If the page has buffers, the uptodate buffers are set dirty, to preserve | ||
844 | * dirty-state coherency between the page and the buffers. It the page does | ||
845 | * not have buffers then when they are later attached they will all be set | ||
846 | * dirty. | ||
847 | * | ||
848 | * The buffers are dirtied before the page is dirtied. There's a small race | ||
849 | * window in which a writepage caller may see the page cleanness but not the | ||
850 | * buffer dirtiness. That's fine. If this code were to set the page dirty | ||
851 | * before the buffers, a concurrent writepage caller could clear the page dirty | ||
852 | * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean | ||
853 | * page on the dirty page list. | ||
854 | * | ||
855 | * We use private_lock to lock against try_to_free_buffers while using the | ||
856 | * page's buffer list. Also use this to protect against clean buffers being | ||
857 | * added to the page after it was set dirty. | ||
858 | * | ||
859 | * FIXME: may need to call ->reservepage here as well. That's rather up to the | ||
860 | * address_space though. | ||
861 | */ | ||
862 | int __set_page_dirty_buffers(struct page *page) | ||
863 | { | ||
864 | struct address_space * const mapping = page->mapping; | ||
865 | |||
866 | spin_lock(&mapping->private_lock); | ||
867 | if (page_has_buffers(page)) { | ||
868 | struct buffer_head *head = page_buffers(page); | ||
869 | struct buffer_head *bh = head; | ||
870 | |||
871 | do { | ||
872 | set_buffer_dirty(bh); | ||
873 | bh = bh->b_this_page; | ||
874 | } while (bh != head); | ||
875 | } | ||
876 | spin_unlock(&mapping->private_lock); | ||
877 | |||
878 | if (!TestSetPageDirty(page)) { | ||
879 | write_lock_irq(&mapping->tree_lock); | ||
880 | if (page->mapping) { /* Race with truncate? */ | ||
881 | if (mapping_cap_account_dirty(mapping)) | ||
882 | inc_page_state(nr_dirty); | ||
883 | radix_tree_tag_set(&mapping->page_tree, | ||
884 | page_index(page), | ||
885 | PAGECACHE_TAG_DIRTY); | ||
886 | } | ||
887 | write_unlock_irq(&mapping->tree_lock); | ||
888 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | ||
889 | } | ||
890 | |||
891 | return 0; | ||
892 | } | ||
893 | EXPORT_SYMBOL(__set_page_dirty_buffers); | ||
894 | |||
895 | /* | ||
896 | * Write out and wait upon a list of buffers. | ||
897 | * | ||
898 | * We have conflicting pressures: we want to make sure that all | ||
899 | * initially dirty buffers get waited on, but that any subsequently | ||
900 | * dirtied buffers don't. After all, we don't want fsync to last | ||
901 | * forever if somebody is actively writing to the file. | ||
902 | * | ||
903 | * Do this in two main stages: first we copy dirty buffers to a | ||
904 | * temporary inode list, queueing the writes as we go. Then we clean | ||
905 | * up, waiting for those writes to complete. | ||
906 | * | ||
907 | * During this second stage, any subsequent updates to the file may end | ||
908 | * up refiling the buffer on the original inode's dirty list again, so | ||
909 | * there is a chance we will end up with a buffer queued for write but | ||
910 | * not yet completed on that list. So, as a final cleanup we go through | ||
911 | * the osync code to catch these locked, dirty buffers without requeuing | ||
912 | * any newly dirty buffers for write. | ||
913 | */ | ||
914 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) | ||
915 | { | ||
916 | struct buffer_head *bh; | ||
917 | struct list_head tmp; | ||
918 | int err = 0, err2; | ||
919 | |||
920 | INIT_LIST_HEAD(&tmp); | ||
921 | |||
922 | spin_lock(lock); | ||
923 | while (!list_empty(list)) { | ||
924 | bh = BH_ENTRY(list->next); | ||
925 | list_del_init(&bh->b_assoc_buffers); | ||
926 | if (buffer_dirty(bh) || buffer_locked(bh)) { | ||
927 | list_add(&bh->b_assoc_buffers, &tmp); | ||
928 | if (buffer_dirty(bh)) { | ||
929 | get_bh(bh); | ||
930 | spin_unlock(lock); | ||
931 | /* | ||
932 | * Ensure any pending I/O completes so that | ||
933 | * ll_rw_block() actually writes the current | ||
934 | * contents - it is a noop if I/O is still in | ||
935 | * flight on potentially older contents. | ||
936 | */ | ||
937 | wait_on_buffer(bh); | ||
938 | ll_rw_block(WRITE, 1, &bh); | ||
939 | brelse(bh); | ||
940 | spin_lock(lock); | ||
941 | } | ||
942 | } | ||
943 | } | ||
944 | |||
945 | while (!list_empty(&tmp)) { | ||
946 | bh = BH_ENTRY(tmp.prev); | ||
947 | __remove_assoc_queue(bh); | ||
948 | get_bh(bh); | ||
949 | spin_unlock(lock); | ||
950 | wait_on_buffer(bh); | ||
951 | if (!buffer_uptodate(bh)) | ||
952 | err = -EIO; | ||
953 | brelse(bh); | ||
954 | spin_lock(lock); | ||
955 | } | ||
956 | |||
957 | spin_unlock(lock); | ||
958 | err2 = osync_buffers_list(lock, list); | ||
959 | if (err) | ||
960 | return err; | ||
961 | else | ||
962 | return err2; | ||
963 | } | ||
964 | |||
965 | /* | ||
966 | * Invalidate any and all dirty buffers on a given inode. We are | ||
967 | * probably unmounting the fs, but that doesn't mean we have already | ||
968 | * done a sync(). Just drop the buffers from the inode list. | ||
969 | * | ||
970 | * NOTE: we take the inode's blockdev's mapping's private_lock. Which | ||
971 | * assumes that all the buffers are against the blockdev. Not true | ||
972 | * for reiserfs. | ||
973 | */ | ||
974 | void invalidate_inode_buffers(struct inode *inode) | ||
975 | { | ||
976 | if (inode_has_buffers(inode)) { | ||
977 | struct address_space *mapping = &inode->i_data; | ||
978 | struct list_head *list = &mapping->private_list; | ||
979 | struct address_space *buffer_mapping = mapping->assoc_mapping; | ||
980 | |||
981 | spin_lock(&buffer_mapping->private_lock); | ||
982 | while (!list_empty(list)) | ||
983 | __remove_assoc_queue(BH_ENTRY(list->next)); | ||
984 | spin_unlock(&buffer_mapping->private_lock); | ||
985 | } | ||
986 | } | ||
987 | |||
988 | /* | ||
989 | * Remove any clean buffers from the inode's buffer list. This is called | ||
990 | * when we're trying to free the inode itself. Those buffers can pin it. | ||
991 | * | ||
992 | * Returns true if all buffers were removed. | ||
993 | */ | ||
994 | int remove_inode_buffers(struct inode *inode) | ||
995 | { | ||
996 | int ret = 1; | ||
997 | |||
998 | if (inode_has_buffers(inode)) { | ||
999 | struct address_space *mapping = &inode->i_data; | ||
1000 | struct list_head *list = &mapping->private_list; | ||
1001 | struct address_space *buffer_mapping = mapping->assoc_mapping; | ||
1002 | |||
1003 | spin_lock(&buffer_mapping->private_lock); | ||
1004 | while (!list_empty(list)) { | ||
1005 | struct buffer_head *bh = BH_ENTRY(list->next); | ||
1006 | if (buffer_dirty(bh)) { | ||
1007 | ret = 0; | ||
1008 | break; | ||
1009 | } | ||
1010 | __remove_assoc_queue(bh); | ||
1011 | } | ||
1012 | spin_unlock(&buffer_mapping->private_lock); | ||
1013 | } | ||
1014 | return ret; | ||
1015 | } | ||
1016 | |||
1017 | /* | ||
1018 | * Create the appropriate buffers when given a page for data area and | ||
1019 | * the size of each buffer.. Use the bh->b_this_page linked list to | ||
1020 | * follow the buffers created. Return NULL if unable to create more | ||
1021 | * buffers. | ||
1022 | * | ||
1023 | * The retry flag is used to differentiate async IO (paging, swapping) | ||
1024 | * which may not fail from ordinary buffer allocations. | ||
1025 | */ | ||
1026 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, | ||
1027 | int retry) | ||
1028 | { | ||
1029 | struct buffer_head *bh, *head; | ||
1030 | long offset; | ||
1031 | |||
1032 | try_again: | ||
1033 | head = NULL; | ||
1034 | offset = PAGE_SIZE; | ||
1035 | while ((offset -= size) >= 0) { | ||
1036 | bh = alloc_buffer_head(GFP_NOFS); | ||
1037 | if (!bh) | ||
1038 | goto no_grow; | ||
1039 | |||
1040 | bh->b_bdev = NULL; | ||
1041 | bh->b_this_page = head; | ||
1042 | bh->b_blocknr = -1; | ||
1043 | head = bh; | ||
1044 | |||
1045 | bh->b_state = 0; | ||
1046 | atomic_set(&bh->b_count, 0); | ||
1047 | bh->b_size = size; | ||
1048 | |||
1049 | /* Link the buffer to its page */ | ||
1050 | set_bh_page(bh, page, offset); | ||
1051 | |||
1052 | bh->b_end_io = NULL; | ||
1053 | } | ||
1054 | return head; | ||
1055 | /* | ||
1056 | * In case anything failed, we just free everything we got. | ||
1057 | */ | ||
1058 | no_grow: | ||
1059 | if (head) { | ||
1060 | do { | ||
1061 | bh = head; | ||
1062 | head = head->b_this_page; | ||
1063 | free_buffer_head(bh); | ||
1064 | } while (head); | ||
1065 | } | ||
1066 | |||
1067 | /* | ||
1068 | * Return failure for non-async IO requests. Async IO requests | ||
1069 | * are not allowed to fail, so we have to wait until buffer heads | ||
1070 | * become available. But we don't want tasks sleeping with | ||
1071 | * partially complete buffers, so all were released above. | ||
1072 | */ | ||
1073 | if (!retry) | ||
1074 | return NULL; | ||
1075 | |||
1076 | /* We're _really_ low on memory. Now we just | ||
1077 | * wait for old buffer heads to become free due to | ||
1078 | * finishing IO. Since this is an async request and | ||
1079 | * the reserve list is empty, we're sure there are | ||
1080 | * async buffer heads in use. | ||
1081 | */ | ||
1082 | free_more_memory(); | ||
1083 | goto try_again; | ||
1084 | } | ||
1085 | EXPORT_SYMBOL_GPL(alloc_page_buffers); | ||
1086 | |||
1087 | static inline void | ||
1088 | link_dev_buffers(struct page *page, struct buffer_head *head) | ||
1089 | { | ||
1090 | struct buffer_head *bh, *tail; | ||
1091 | |||
1092 | bh = head; | ||
1093 | do { | ||
1094 | tail = bh; | ||
1095 | bh = bh->b_this_page; | ||
1096 | } while (bh); | ||
1097 | tail->b_this_page = head; | ||
1098 | attach_page_buffers(page, head); | ||
1099 | } | ||
1100 | |||
1101 | /* | ||
1102 | * Initialise the state of a blockdev page's buffers. | ||
1103 | */ | ||
1104 | static void | ||
1105 | init_page_buffers(struct page *page, struct block_device *bdev, | ||
1106 | sector_t block, int size) | ||
1107 | { | ||
1108 | struct buffer_head *head = page_buffers(page); | ||
1109 | struct buffer_head *bh = head; | ||
1110 | int uptodate = PageUptodate(page); | ||
1111 | |||
1112 | do { | ||
1113 | if (!buffer_mapped(bh)) { | ||
1114 | init_buffer(bh, NULL, NULL); | ||
1115 | bh->b_bdev = bdev; | ||
1116 | bh->b_blocknr = block; | ||
1117 | if (uptodate) | ||
1118 | set_buffer_uptodate(bh); | ||
1119 | set_buffer_mapped(bh); | ||
1120 | } | ||
1121 | block++; | ||
1122 | bh = bh->b_this_page; | ||
1123 | } while (bh != head); | ||
1124 | } | ||
1125 | |||
1126 | /* | ||
1127 | * Create the page-cache page that contains the requested block. | ||
1128 | * | ||
1129 | * This is user purely for blockdev mappings. | ||
1130 | */ | ||
1131 | static struct page * | ||
1132 | grow_dev_page(struct block_device *bdev, sector_t block, | ||
1133 | pgoff_t index, int size) | ||
1134 | { | ||
1135 | struct inode *inode = bdev->bd_inode; | ||
1136 | struct page *page; | ||
1137 | struct buffer_head *bh; | ||
1138 | |||
1139 | page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); | ||
1140 | if (!page) | ||
1141 | return NULL; | ||
1142 | |||
1143 | if (!PageLocked(page)) | ||
1144 | BUG(); | ||
1145 | |||
1146 | if (page_has_buffers(page)) { | ||
1147 | bh = page_buffers(page); | ||
1148 | if (bh->b_size == size) { | ||
1149 | init_page_buffers(page, bdev, block, size); | ||
1150 | return page; | ||
1151 | } | ||
1152 | if (!try_to_free_buffers(page)) | ||
1153 | goto failed; | ||
1154 | } | ||
1155 | |||
1156 | /* | ||
1157 | * Allocate some buffers for this page | ||
1158 | */ | ||
1159 | bh = alloc_page_buffers(page, size, 0); | ||
1160 | if (!bh) | ||
1161 | goto failed; | ||
1162 | |||
1163 | /* | ||
1164 | * Link the page to the buffers and initialise them. Take the | ||
1165 | * lock to be atomic wrt __find_get_block(), which does not | ||
1166 | * run under the page lock. | ||
1167 | */ | ||
1168 | spin_lock(&inode->i_mapping->private_lock); | ||
1169 | link_dev_buffers(page, bh); | ||
1170 | init_page_buffers(page, bdev, block, size); | ||
1171 | spin_unlock(&inode->i_mapping->private_lock); | ||
1172 | return page; | ||
1173 | |||
1174 | failed: | ||
1175 | BUG(); | ||
1176 | unlock_page(page); | ||
1177 | page_cache_release(page); | ||
1178 | return NULL; | ||
1179 | } | ||
1180 | |||
1181 | /* | ||
1182 | * Create buffers for the specified block device block's page. If | ||
1183 | * that page was dirty, the buffers are set dirty also. | ||
1184 | * | ||
1185 | * Except that's a bug. Attaching dirty buffers to a dirty | ||
1186 | * blockdev's page can result in filesystem corruption, because | ||
1187 | * some of those buffers may be aliases of filesystem data. | ||
1188 | * grow_dev_page() will go BUG() if this happens. | ||
1189 | */ | ||
1190 | static inline int | ||
1191 | grow_buffers(struct block_device *bdev, sector_t block, int size) | ||
1192 | { | ||
1193 | struct page *page; | ||
1194 | pgoff_t index; | ||
1195 | int sizebits; | ||
1196 | |||
1197 | sizebits = -1; | ||
1198 | do { | ||
1199 | sizebits++; | ||
1200 | } while ((size << sizebits) < PAGE_SIZE); | ||
1201 | |||
1202 | index = block >> sizebits; | ||
1203 | block = index << sizebits; | ||
1204 | |||
1205 | /* Create a page with the proper size buffers.. */ | ||
1206 | page = grow_dev_page(bdev, block, index, size); | ||
1207 | if (!page) | ||
1208 | return 0; | ||
1209 | unlock_page(page); | ||
1210 | page_cache_release(page); | ||
1211 | return 1; | ||
1212 | } | ||
1213 | |||
1214 | struct buffer_head * | ||
1215 | __getblk_slow(struct block_device *bdev, sector_t block, int size) | ||
1216 | { | ||
1217 | /* Size must be multiple of hard sectorsize */ | ||
1218 | if (unlikely(size & (bdev_hardsect_size(bdev)-1) || | ||
1219 | (size < 512 || size > PAGE_SIZE))) { | ||
1220 | printk(KERN_ERR "getblk(): invalid block size %d requested\n", | ||
1221 | size); | ||
1222 | printk(KERN_ERR "hardsect size: %d\n", | ||
1223 | bdev_hardsect_size(bdev)); | ||
1224 | |||
1225 | dump_stack(); | ||
1226 | return NULL; | ||
1227 | } | ||
1228 | |||
1229 | for (;;) { | ||
1230 | struct buffer_head * bh; | ||
1231 | |||
1232 | bh = __find_get_block(bdev, block, size); | ||
1233 | if (bh) | ||
1234 | return bh; | ||
1235 | |||
1236 | if (!grow_buffers(bdev, block, size)) | ||
1237 | free_more_memory(); | ||
1238 | } | ||
1239 | } | ||
1240 | |||
1241 | /* | ||
1242 | * The relationship between dirty buffers and dirty pages: | ||
1243 | * | ||
1244 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and | ||
1245 | * the page is tagged dirty in its radix tree. | ||
1246 | * | ||
1247 | * At all times, the dirtiness of the buffers represents the dirtiness of | ||
1248 | * subsections of the page. If the page has buffers, the page dirty bit is | ||
1249 | * merely a hint about the true dirty state. | ||
1250 | * | ||
1251 | * When a page is set dirty in its entirety, all its buffers are marked dirty | ||
1252 | * (if the page has buffers). | ||
1253 | * | ||
1254 | * When a buffer is marked dirty, its page is dirtied, but the page's other | ||
1255 | * buffers are not. | ||
1256 | * | ||
1257 | * Also. When blockdev buffers are explicitly read with bread(), they | ||
1258 | * individually become uptodate. But their backing page remains not | ||
1259 | * uptodate - even if all of its buffers are uptodate. A subsequent | ||
1260 | * block_read_full_page() against that page will discover all the uptodate | ||
1261 | * buffers, will set the page uptodate and will perform no I/O. | ||
1262 | */ | ||
1263 | |||
1264 | /** | ||
1265 | * mark_buffer_dirty - mark a buffer_head as needing writeout | ||
1266 | * | ||
1267 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set its | ||
1268 | * backing page dirty, then tag the page as dirty in its address_space's radix | ||
1269 | * tree and then attach the address_space's inode to its superblock's dirty | ||
1270 | * inode list. | ||
1271 | * | ||
1272 | * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, | ||
1273 | * mapping->tree_lock and the global inode_lock. | ||
1274 | */ | ||
1275 | void fastcall mark_buffer_dirty(struct buffer_head *bh) | ||
1276 | { | ||
1277 | if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) | ||
1278 | __set_page_dirty_nobuffers(bh->b_page); | ||
1279 | } | ||
1280 | |||
1281 | /* | ||
1282 | * Decrement a buffer_head's reference count. If all buffers against a page | ||
1283 | * have zero reference count, are clean and unlocked, and if the page is clean | ||
1284 | * and unlocked then try_to_free_buffers() may strip the buffers from the page | ||
1285 | * in preparation for freeing it (sometimes, rarely, buffers are removed from | ||
1286 | * a page but it ends up not being freed, and buffers may later be reattached). | ||
1287 | */ | ||
1288 | void __brelse(struct buffer_head * buf) | ||
1289 | { | ||
1290 | if (atomic_read(&buf->b_count)) { | ||
1291 | put_bh(buf); | ||
1292 | return; | ||
1293 | } | ||
1294 | printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); | ||
1295 | WARN_ON(1); | ||
1296 | } | ||
1297 | |||
1298 | /* | ||
1299 | * bforget() is like brelse(), except it discards any | ||
1300 | * potentially dirty data. | ||
1301 | */ | ||
1302 | void __bforget(struct buffer_head *bh) | ||
1303 | { | ||
1304 | clear_buffer_dirty(bh); | ||
1305 | if (!list_empty(&bh->b_assoc_buffers)) { | ||
1306 | struct address_space *buffer_mapping = bh->b_page->mapping; | ||
1307 | |||
1308 | spin_lock(&buffer_mapping->private_lock); | ||
1309 | list_del_init(&bh->b_assoc_buffers); | ||
1310 | spin_unlock(&buffer_mapping->private_lock); | ||
1311 | } | ||
1312 | __brelse(bh); | ||
1313 | } | ||
1314 | |||
1315 | static struct buffer_head *__bread_slow(struct buffer_head *bh) | ||
1316 | { | ||
1317 | lock_buffer(bh); | ||
1318 | if (buffer_uptodate(bh)) { | ||
1319 | unlock_buffer(bh); | ||
1320 | return bh; | ||
1321 | } else { | ||
1322 | get_bh(bh); | ||
1323 | bh->b_end_io = end_buffer_read_sync; | ||
1324 | submit_bh(READ, bh); | ||
1325 | wait_on_buffer(bh); | ||
1326 | if (buffer_uptodate(bh)) | ||
1327 | return bh; | ||
1328 | } | ||
1329 | brelse(bh); | ||
1330 | return NULL; | ||
1331 | } | ||
1332 | |||
1333 | /* | ||
1334 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). | ||
1335 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their | ||
1336 | * refcount elevated by one when they're in an LRU. A buffer can only appear | ||
1337 | * once in a particular CPU's LRU. A single buffer can be present in multiple | ||
1338 | * CPU's LRUs at the same time. | ||
1339 | * | ||
1340 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and | ||
1341 | * sb_find_get_block(). | ||
1342 | * | ||
1343 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use | ||
1344 | * a local interrupt disable for that. | ||
1345 | */ | ||
1346 | |||
1347 | #define BH_LRU_SIZE 8 | ||
1348 | |||
1349 | struct bh_lru { | ||
1350 | struct buffer_head *bhs[BH_LRU_SIZE]; | ||
1351 | }; | ||
1352 | |||
1353 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; | ||
1354 | |||
1355 | #ifdef CONFIG_SMP | ||
1356 | #define bh_lru_lock() local_irq_disable() | ||
1357 | #define bh_lru_unlock() local_irq_enable() | ||
1358 | #else | ||
1359 | #define bh_lru_lock() preempt_disable() | ||
1360 | #define bh_lru_unlock() preempt_enable() | ||
1361 | #endif | ||
1362 | |||
1363 | static inline void check_irqs_on(void) | ||
1364 | { | ||
1365 | #ifdef irqs_disabled | ||
1366 | BUG_ON(irqs_disabled()); | ||
1367 | #endif | ||
1368 | } | ||
1369 | |||
1370 | /* | ||
1371 | * The LRU management algorithm is dopey-but-simple. Sorry. | ||
1372 | */ | ||
1373 | static void bh_lru_install(struct buffer_head *bh) | ||
1374 | { | ||
1375 | struct buffer_head *evictee = NULL; | ||
1376 | struct bh_lru *lru; | ||
1377 | |||
1378 | check_irqs_on(); | ||
1379 | bh_lru_lock(); | ||
1380 | lru = &__get_cpu_var(bh_lrus); | ||
1381 | if (lru->bhs[0] != bh) { | ||
1382 | struct buffer_head *bhs[BH_LRU_SIZE]; | ||
1383 | int in; | ||
1384 | int out = 0; | ||
1385 | |||
1386 | get_bh(bh); | ||
1387 | bhs[out++] = bh; | ||
1388 | for (in = 0; in < BH_LRU_SIZE; in++) { | ||
1389 | struct buffer_head *bh2 = lru->bhs[in]; | ||
1390 | |||
1391 | if (bh2 == bh) { | ||
1392 | __brelse(bh2); | ||
1393 | } else { | ||
1394 | if (out >= BH_LRU_SIZE) { | ||
1395 | BUG_ON(evictee != NULL); | ||
1396 | evictee = bh2; | ||
1397 | } else { | ||
1398 | bhs[out++] = bh2; | ||
1399 | } | ||
1400 | } | ||
1401 | } | ||
1402 | while (out < BH_LRU_SIZE) | ||
1403 | bhs[out++] = NULL; | ||
1404 | memcpy(lru->bhs, bhs, sizeof(bhs)); | ||
1405 | } | ||
1406 | bh_lru_unlock(); | ||
1407 | |||
1408 | if (evictee) | ||
1409 | __brelse(evictee); | ||
1410 | } | ||
1411 | |||
1412 | /* | ||
1413 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. | ||
1414 | */ | ||
1415 | static inline struct buffer_head * | ||
1416 | lookup_bh_lru(struct block_device *bdev, sector_t block, int size) | ||
1417 | { | ||
1418 | struct buffer_head *ret = NULL; | ||
1419 | struct bh_lru *lru; | ||
1420 | int i; | ||
1421 | |||
1422 | check_irqs_on(); | ||
1423 | bh_lru_lock(); | ||
1424 | lru = &__get_cpu_var(bh_lrus); | ||
1425 | for (i = 0; i < BH_LRU_SIZE; i++) { | ||
1426 | struct buffer_head *bh = lru->bhs[i]; | ||
1427 | |||
1428 | if (bh && bh->b_bdev == bdev && | ||
1429 | bh->b_blocknr == block && bh->b_size == size) { | ||
1430 | if (i) { | ||
1431 | while (i) { | ||
1432 | lru->bhs[i] = lru->bhs[i - 1]; | ||
1433 | i--; | ||
1434 | } | ||
1435 | lru->bhs[0] = bh; | ||
1436 | } | ||
1437 | get_bh(bh); | ||
1438 | ret = bh; | ||
1439 | break; | ||
1440 | } | ||
1441 | } | ||
1442 | bh_lru_unlock(); | ||
1443 | return ret; | ||
1444 | } | ||
1445 | |||
1446 | /* | ||
1447 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh | ||
1448 | * it in the LRU and mark it as accessed. If it is not present then return | ||
1449 | * NULL | ||
1450 | */ | ||
1451 | struct buffer_head * | ||
1452 | __find_get_block(struct block_device *bdev, sector_t block, int size) | ||
1453 | { | ||
1454 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); | ||
1455 | |||
1456 | if (bh == NULL) { | ||
1457 | bh = __find_get_block_slow(bdev, block, size); | ||
1458 | if (bh) | ||
1459 | bh_lru_install(bh); | ||
1460 | } | ||
1461 | if (bh) | ||
1462 | touch_buffer(bh); | ||
1463 | return bh; | ||
1464 | } | ||
1465 | EXPORT_SYMBOL(__find_get_block); | ||
1466 | |||
1467 | /* | ||
1468 | * __getblk will locate (and, if necessary, create) the buffer_head | ||
1469 | * which corresponds to the passed block_device, block and size. The | ||
1470 | * returned buffer has its reference count incremented. | ||
1471 | * | ||
1472 | * __getblk() cannot fail - it just keeps trying. If you pass it an | ||
1473 | * illegal block number, __getblk() will happily return a buffer_head | ||
1474 | * which represents the non-existent block. Very weird. | ||
1475 | * | ||
1476 | * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() | ||
1477 | * attempt is failing. FIXME, perhaps? | ||
1478 | */ | ||
1479 | struct buffer_head * | ||
1480 | __getblk(struct block_device *bdev, sector_t block, int size) | ||
1481 | { | ||
1482 | struct buffer_head *bh = __find_get_block(bdev, block, size); | ||
1483 | |||
1484 | might_sleep(); | ||
1485 | if (bh == NULL) | ||
1486 | bh = __getblk_slow(bdev, block, size); | ||
1487 | return bh; | ||
1488 | } | ||
1489 | EXPORT_SYMBOL(__getblk); | ||
1490 | |||
1491 | /* | ||
1492 | * Do async read-ahead on a buffer.. | ||
1493 | */ | ||
1494 | void __breadahead(struct block_device *bdev, sector_t block, int size) | ||
1495 | { | ||
1496 | struct buffer_head *bh = __getblk(bdev, block, size); | ||
1497 | ll_rw_block(READA, 1, &bh); | ||
1498 | brelse(bh); | ||
1499 | } | ||
1500 | EXPORT_SYMBOL(__breadahead); | ||
1501 | |||
1502 | /** | ||
1503 | * __bread() - reads a specified block and returns the bh | ||
1504 | * @block: number of block | ||
1505 | * @size: size (in bytes) to read | ||
1506 | * | ||
1507 | * Reads a specified block, and returns buffer head that contains it. | ||
1508 | * It returns NULL if the block was unreadable. | ||
1509 | */ | ||
1510 | struct buffer_head * | ||
1511 | __bread(struct block_device *bdev, sector_t block, int size) | ||
1512 | { | ||
1513 | struct buffer_head *bh = __getblk(bdev, block, size); | ||
1514 | |||
1515 | if (!buffer_uptodate(bh)) | ||
1516 | bh = __bread_slow(bh); | ||
1517 | return bh; | ||
1518 | } | ||
1519 | EXPORT_SYMBOL(__bread); | ||
1520 | |||
1521 | /* | ||
1522 | * invalidate_bh_lrus() is called rarely - but not only at unmount. | ||
1523 | * This doesn't race because it runs in each cpu either in irq | ||
1524 | * or with preempt disabled. | ||
1525 | */ | ||
1526 | static void invalidate_bh_lru(void *arg) | ||
1527 | { | ||
1528 | struct bh_lru *b = &get_cpu_var(bh_lrus); | ||
1529 | int i; | ||
1530 | |||
1531 | for (i = 0; i < BH_LRU_SIZE; i++) { | ||
1532 | brelse(b->bhs[i]); | ||
1533 | b->bhs[i] = NULL; | ||
1534 | } | ||
1535 | put_cpu_var(bh_lrus); | ||
1536 | } | ||
1537 | |||
1538 | static void invalidate_bh_lrus(void) | ||
1539 | { | ||
1540 | on_each_cpu(invalidate_bh_lru, NULL, 1, 1); | ||
1541 | } | ||
1542 | |||
1543 | void set_bh_page(struct buffer_head *bh, | ||
1544 | struct page *page, unsigned long offset) | ||
1545 | { | ||
1546 | bh->b_page = page; | ||
1547 | if (offset >= PAGE_SIZE) | ||
1548 | BUG(); | ||
1549 | if (PageHighMem(page)) | ||
1550 | /* | ||
1551 | * This catches illegal uses and preserves the offset: | ||
1552 | */ | ||
1553 | bh->b_data = (char *)(0 + offset); | ||
1554 | else | ||
1555 | bh->b_data = page_address(page) + offset; | ||
1556 | } | ||
1557 | EXPORT_SYMBOL(set_bh_page); | ||
1558 | |||
1559 | /* | ||
1560 | * Called when truncating a buffer on a page completely. | ||
1561 | */ | ||
1562 | static inline void discard_buffer(struct buffer_head * bh) | ||
1563 | { | ||
1564 | lock_buffer(bh); | ||
1565 | clear_buffer_dirty(bh); | ||
1566 | bh->b_bdev = NULL; | ||
1567 | clear_buffer_mapped(bh); | ||
1568 | clear_buffer_req(bh); | ||
1569 | clear_buffer_new(bh); | ||
1570 | clear_buffer_delay(bh); | ||
1571 | unlock_buffer(bh); | ||
1572 | } | ||
1573 | |||
1574 | /** | ||
1575 | * try_to_release_page() - release old fs-specific metadata on a page | ||
1576 | * | ||
1577 | * @page: the page which the kernel is trying to free | ||
1578 | * @gfp_mask: memory allocation flags (and I/O mode) | ||
1579 | * | ||
1580 | * The address_space is to try to release any data against the page | ||
1581 | * (presumably at page->private). If the release was successful, return `1'. | ||
1582 | * Otherwise return zero. | ||
1583 | * | ||
1584 | * The @gfp_mask argument specifies whether I/O may be performed to release | ||
1585 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). | ||
1586 | * | ||
1587 | * NOTE: @gfp_mask may go away, and this function may become non-blocking. | ||
1588 | */ | ||
1589 | int try_to_release_page(struct page *page, int gfp_mask) | ||
1590 | { | ||
1591 | struct address_space * const mapping = page->mapping; | ||
1592 | |||
1593 | BUG_ON(!PageLocked(page)); | ||
1594 | if (PageWriteback(page)) | ||
1595 | return 0; | ||
1596 | |||
1597 | if (mapping && mapping->a_ops->releasepage) | ||
1598 | return mapping->a_ops->releasepage(page, gfp_mask); | ||
1599 | return try_to_free_buffers(page); | ||
1600 | } | ||
1601 | EXPORT_SYMBOL(try_to_release_page); | ||
1602 | |||
1603 | /** | ||
1604 | * block_invalidatepage - invalidate part of all of a buffer-backed page | ||
1605 | * | ||
1606 | * @page: the page which is affected | ||
1607 | * @offset: the index of the truncation point | ||
1608 | * | ||
1609 | * block_invalidatepage() is called when all or part of the page has become | ||
1610 | * invalidatedby a truncate operation. | ||
1611 | * | ||
1612 | * block_invalidatepage() does not have to release all buffers, but it must | ||
1613 | * ensure that no dirty buffer is left outside @offset and that no I/O | ||
1614 | * is underway against any of the blocks which are outside the truncation | ||
1615 | * point. Because the caller is about to free (and possibly reuse) those | ||
1616 | * blocks on-disk. | ||
1617 | */ | ||
1618 | int block_invalidatepage(struct page *page, unsigned long offset) | ||
1619 | { | ||
1620 | struct buffer_head *head, *bh, *next; | ||
1621 | unsigned int curr_off = 0; | ||
1622 | int ret = 1; | ||
1623 | |||
1624 | BUG_ON(!PageLocked(page)); | ||
1625 | if (!page_has_buffers(page)) | ||
1626 | goto out; | ||
1627 | |||
1628 | head = page_buffers(page); | ||
1629 | bh = head; | ||
1630 | do { | ||
1631 | unsigned int next_off = curr_off + bh->b_size; | ||
1632 | next = bh->b_this_page; | ||
1633 | |||
1634 | /* | ||
1635 | * is this block fully invalidated? | ||
1636 | */ | ||
1637 | if (offset <= curr_off) | ||
1638 | discard_buffer(bh); | ||
1639 | curr_off = next_off; | ||
1640 | bh = next; | ||
1641 | } while (bh != head); | ||
1642 | |||
1643 | /* | ||
1644 | * We release buffers only if the entire page is being invalidated. | ||
1645 | * The get_block cached value has been unconditionally invalidated, | ||
1646 | * so real IO is not possible anymore. | ||
1647 | */ | ||
1648 | if (offset == 0) | ||
1649 | ret = try_to_release_page(page, 0); | ||
1650 | out: | ||
1651 | return ret; | ||
1652 | } | ||
1653 | EXPORT_SYMBOL(block_invalidatepage); | ||
1654 | |||
1655 | /* | ||
1656 | * We attach and possibly dirty the buffers atomically wrt | ||
1657 | * __set_page_dirty_buffers() via private_lock. try_to_free_buffers | ||
1658 | * is already excluded via the page lock. | ||
1659 | */ | ||
1660 | void create_empty_buffers(struct page *page, | ||
1661 | unsigned long blocksize, unsigned long b_state) | ||
1662 | { | ||
1663 | struct buffer_head *bh, *head, *tail; | ||
1664 | |||
1665 | head = alloc_page_buffers(page, blocksize, 1); | ||
1666 | bh = head; | ||
1667 | do { | ||
1668 | bh->b_state |= b_state; | ||
1669 | tail = bh; | ||
1670 | bh = bh->b_this_page; | ||
1671 | } while (bh); | ||
1672 | tail->b_this_page = head; | ||
1673 | |||
1674 | spin_lock(&page->mapping->private_lock); | ||
1675 | if (PageUptodate(page) || PageDirty(page)) { | ||
1676 | bh = head; | ||
1677 | do { | ||
1678 | if (PageDirty(page)) | ||
1679 | set_buffer_dirty(bh); | ||
1680 | if (PageUptodate(page)) | ||
1681 | set_buffer_uptodate(bh); | ||
1682 | bh = bh->b_this_page; | ||
1683 | } while (bh != head); | ||
1684 | } | ||
1685 | attach_page_buffers(page, head); | ||
1686 | spin_unlock(&page->mapping->private_lock); | ||
1687 | } | ||
1688 | EXPORT_SYMBOL(create_empty_buffers); | ||
1689 | |||
1690 | /* | ||
1691 | * We are taking a block for data and we don't want any output from any | ||
1692 | * buffer-cache aliases starting from return from that function and | ||
1693 | * until the moment when something will explicitly mark the buffer | ||
1694 | * dirty (hopefully that will not happen until we will free that block ;-) | ||
1695 | * We don't even need to mark it not-uptodate - nobody can expect | ||
1696 | * anything from a newly allocated buffer anyway. We used to used | ||
1697 | * unmap_buffer() for such invalidation, but that was wrong. We definitely | ||
1698 | * don't want to mark the alias unmapped, for example - it would confuse | ||
1699 | * anyone who might pick it with bread() afterwards... | ||
1700 | * | ||
1701 | * Also.. Note that bforget() doesn't lock the buffer. So there can | ||
1702 | * be writeout I/O going on against recently-freed buffers. We don't | ||
1703 | * wait on that I/O in bforget() - it's more efficient to wait on the I/O | ||
1704 | * only if we really need to. That happens here. | ||
1705 | */ | ||
1706 | void unmap_underlying_metadata(struct block_device *bdev, sector_t block) | ||
1707 | { | ||
1708 | struct buffer_head *old_bh; | ||
1709 | |||
1710 | might_sleep(); | ||
1711 | |||
1712 | old_bh = __find_get_block_slow(bdev, block, 0); | ||
1713 | if (old_bh) { | ||
1714 | clear_buffer_dirty(old_bh); | ||
1715 | wait_on_buffer(old_bh); | ||
1716 | clear_buffer_req(old_bh); | ||
1717 | __brelse(old_bh); | ||
1718 | } | ||
1719 | } | ||
1720 | EXPORT_SYMBOL(unmap_underlying_metadata); | ||
1721 | |||
1722 | /* | ||
1723 | * NOTE! All mapped/uptodate combinations are valid: | ||
1724 | * | ||
1725 | * Mapped Uptodate Meaning | ||
1726 | * | ||
1727 | * No No "unknown" - must do get_block() | ||
1728 | * No Yes "hole" - zero-filled | ||
1729 | * Yes No "allocated" - allocated on disk, not read in | ||
1730 | * Yes Yes "valid" - allocated and up-to-date in memory. | ||
1731 | * | ||
1732 | * "Dirty" is valid only with the last case (mapped+uptodate). | ||
1733 | */ | ||
1734 | |||
1735 | /* | ||
1736 | * While block_write_full_page is writing back the dirty buffers under | ||
1737 | * the page lock, whoever dirtied the buffers may decide to clean them | ||
1738 | * again at any time. We handle that by only looking at the buffer | ||
1739 | * state inside lock_buffer(). | ||
1740 | * | ||
1741 | * If block_write_full_page() is called for regular writeback | ||
1742 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a | ||
1743 | * locked buffer. This only can happen if someone has written the buffer | ||
1744 | * directly, with submit_bh(). At the address_space level PageWriteback | ||
1745 | * prevents this contention from occurring. | ||
1746 | */ | ||
1747 | static int __block_write_full_page(struct inode *inode, struct page *page, | ||
1748 | get_block_t *get_block, struct writeback_control *wbc) | ||
1749 | { | ||
1750 | int err; | ||
1751 | sector_t block; | ||
1752 | sector_t last_block; | ||
1753 | struct buffer_head *bh, *head; | ||
1754 | int nr_underway = 0; | ||
1755 | |||
1756 | BUG_ON(!PageLocked(page)); | ||
1757 | |||
1758 | last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; | ||
1759 | |||
1760 | if (!page_has_buffers(page)) { | ||
1761 | create_empty_buffers(page, 1 << inode->i_blkbits, | ||
1762 | (1 << BH_Dirty)|(1 << BH_Uptodate)); | ||
1763 | } | ||
1764 | |||
1765 | /* | ||
1766 | * Be very careful. We have no exclusion from __set_page_dirty_buffers | ||
1767 | * here, and the (potentially unmapped) buffers may become dirty at | ||
1768 | * any time. If a buffer becomes dirty here after we've inspected it | ||
1769 | * then we just miss that fact, and the page stays dirty. | ||
1770 | * | ||
1771 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; | ||
1772 | * handle that here by just cleaning them. | ||
1773 | */ | ||
1774 | |||
1775 | block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | ||
1776 | head = page_buffers(page); | ||
1777 | bh = head; | ||
1778 | |||
1779 | /* | ||
1780 | * Get all the dirty buffers mapped to disk addresses and | ||
1781 | * handle any aliases from the underlying blockdev's mapping. | ||
1782 | */ | ||
1783 | do { | ||
1784 | if (block > last_block) { | ||
1785 | /* | ||
1786 | * mapped buffers outside i_size will occur, because | ||
1787 | * this page can be outside i_size when there is a | ||
1788 | * truncate in progress. | ||
1789 | */ | ||
1790 | /* | ||
1791 | * The buffer was zeroed by block_write_full_page() | ||
1792 | */ | ||
1793 | clear_buffer_dirty(bh); | ||
1794 | set_buffer_uptodate(bh); | ||
1795 | } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { | ||
1796 | err = get_block(inode, block, bh, 1); | ||
1797 | if (err) | ||
1798 | goto recover; | ||
1799 | if (buffer_new(bh)) { | ||
1800 | /* blockdev mappings never come here */ | ||
1801 | clear_buffer_new(bh); | ||
1802 | unmap_underlying_metadata(bh->b_bdev, | ||
1803 | bh->b_blocknr); | ||
1804 | } | ||
1805 | } | ||
1806 | bh = bh->b_this_page; | ||
1807 | block++; | ||
1808 | } while (bh != head); | ||
1809 | |||
1810 | do { | ||
1811 | get_bh(bh); | ||
1812 | if (!buffer_mapped(bh)) | ||
1813 | continue; | ||
1814 | /* | ||
1815 | * If it's a fully non-blocking write attempt and we cannot | ||
1816 | * lock the buffer then redirty the page. Note that this can | ||
1817 | * potentially cause a busy-wait loop from pdflush and kswapd | ||
1818 | * activity, but those code paths have their own higher-level | ||
1819 | * throttling. | ||
1820 | */ | ||
1821 | if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { | ||
1822 | lock_buffer(bh); | ||
1823 | } else if (test_set_buffer_locked(bh)) { | ||
1824 | redirty_page_for_writepage(wbc, page); | ||
1825 | continue; | ||
1826 | } | ||
1827 | if (test_clear_buffer_dirty(bh)) { | ||
1828 | mark_buffer_async_write(bh); | ||
1829 | } else { | ||
1830 | unlock_buffer(bh); | ||
1831 | } | ||
1832 | } while ((bh = bh->b_this_page) != head); | ||
1833 | |||
1834 | /* | ||
1835 | * The page and its buffers are protected by PageWriteback(), so we can | ||
1836 | * drop the bh refcounts early. | ||
1837 | */ | ||
1838 | BUG_ON(PageWriteback(page)); | ||
1839 | set_page_writeback(page); | ||
1840 | unlock_page(page); | ||
1841 | |||
1842 | do { | ||
1843 | struct buffer_head *next = bh->b_this_page; | ||
1844 | if (buffer_async_write(bh)) { | ||
1845 | submit_bh(WRITE, bh); | ||
1846 | nr_underway++; | ||
1847 | } | ||
1848 | put_bh(bh); | ||
1849 | bh = next; | ||
1850 | } while (bh != head); | ||
1851 | |||
1852 | err = 0; | ||
1853 | done: | ||
1854 | if (nr_underway == 0) { | ||
1855 | /* | ||
1856 | * The page was marked dirty, but the buffers were | ||
1857 | * clean. Someone wrote them back by hand with | ||
1858 | * ll_rw_block/submit_bh. A rare case. | ||
1859 | */ | ||
1860 | int uptodate = 1; | ||
1861 | do { | ||
1862 | if (!buffer_uptodate(bh)) { | ||
1863 | uptodate = 0; | ||
1864 | break; | ||
1865 | } | ||
1866 | bh = bh->b_this_page; | ||
1867 | } while (bh != head); | ||
1868 | if (uptodate) | ||
1869 | SetPageUptodate(page); | ||
1870 | end_page_writeback(page); | ||
1871 | /* | ||
1872 | * The page and buffer_heads can be released at any time from | ||
1873 | * here on. | ||
1874 | */ | ||
1875 | wbc->pages_skipped++; /* We didn't write this page */ | ||
1876 | } | ||
1877 | return err; | ||
1878 | |||
1879 | recover: | ||
1880 | /* | ||
1881 | * ENOSPC, or some other error. We may already have added some | ||
1882 | * blocks to the file, so we need to write these out to avoid | ||
1883 | * exposing stale data. | ||
1884 | * The page is currently locked and not marked for writeback | ||
1885 | */ | ||
1886 | bh = head; | ||
1887 | /* Recovery: lock and submit the mapped buffers */ | ||
1888 | do { | ||
1889 | get_bh(bh); | ||
1890 | if (buffer_mapped(bh) && buffer_dirty(bh)) { | ||
1891 | lock_buffer(bh); | ||
1892 | mark_buffer_async_write(bh); | ||
1893 | } else { | ||
1894 | /* | ||
1895 | * The buffer may have been set dirty during | ||
1896 | * attachment to a dirty page. | ||
1897 | */ | ||
1898 | clear_buffer_dirty(bh); | ||
1899 | } | ||
1900 | } while ((bh = bh->b_this_page) != head); | ||
1901 | SetPageError(page); | ||
1902 | BUG_ON(PageWriteback(page)); | ||
1903 | set_page_writeback(page); | ||
1904 | unlock_page(page); | ||
1905 | do { | ||
1906 | struct buffer_head *next = bh->b_this_page; | ||
1907 | if (buffer_async_write(bh)) { | ||
1908 | clear_buffer_dirty(bh); | ||
1909 | submit_bh(WRITE, bh); | ||
1910 | nr_underway++; | ||
1911 | } | ||
1912 | put_bh(bh); | ||
1913 | bh = next; | ||
1914 | } while (bh != head); | ||
1915 | goto done; | ||
1916 | } | ||
1917 | |||
1918 | static int __block_prepare_write(struct inode *inode, struct page *page, | ||
1919 | unsigned from, unsigned to, get_block_t *get_block) | ||
1920 | { | ||
1921 | unsigned block_start, block_end; | ||
1922 | sector_t block; | ||
1923 | int err = 0; | ||
1924 | unsigned blocksize, bbits; | ||
1925 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; | ||
1926 | |||
1927 | BUG_ON(!PageLocked(page)); | ||
1928 | BUG_ON(from > PAGE_CACHE_SIZE); | ||
1929 | BUG_ON(to > PAGE_CACHE_SIZE); | ||
1930 | BUG_ON(from > to); | ||
1931 | |||
1932 | blocksize = 1 << inode->i_blkbits; | ||
1933 | if (!page_has_buffers(page)) | ||
1934 | create_empty_buffers(page, blocksize, 0); | ||
1935 | head = page_buffers(page); | ||
1936 | |||
1937 | bbits = inode->i_blkbits; | ||
1938 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); | ||
1939 | |||
1940 | for(bh = head, block_start = 0; bh != head || !block_start; | ||
1941 | block++, block_start=block_end, bh = bh->b_this_page) { | ||
1942 | block_end = block_start + blocksize; | ||
1943 | if (block_end <= from || block_start >= to) { | ||
1944 | if (PageUptodate(page)) { | ||
1945 | if (!buffer_uptodate(bh)) | ||
1946 | set_buffer_uptodate(bh); | ||
1947 | } | ||
1948 | continue; | ||
1949 | } | ||
1950 | if (buffer_new(bh)) | ||
1951 | clear_buffer_new(bh); | ||
1952 | if (!buffer_mapped(bh)) { | ||
1953 | err = get_block(inode, block, bh, 1); | ||
1954 | if (err) | ||
1955 | goto out; | ||
1956 | if (buffer_new(bh)) { | ||
1957 | clear_buffer_new(bh); | ||
1958 | unmap_underlying_metadata(bh->b_bdev, | ||
1959 | bh->b_blocknr); | ||
1960 | if (PageUptodate(page)) { | ||
1961 | set_buffer_uptodate(bh); | ||
1962 | continue; | ||
1963 | } | ||
1964 | if (block_end > to || block_start < from) { | ||
1965 | void *kaddr; | ||
1966 | |||
1967 | kaddr = kmap_atomic(page, KM_USER0); | ||
1968 | if (block_end > to) | ||
1969 | memset(kaddr+to, 0, | ||
1970 | block_end-to); | ||
1971 | if (block_start < from) | ||
1972 | memset(kaddr+block_start, | ||
1973 | 0, from-block_start); | ||
1974 | flush_dcache_page(page); | ||
1975 | kunmap_atomic(kaddr, KM_USER0); | ||
1976 | } | ||
1977 | continue; | ||
1978 | } | ||
1979 | } | ||
1980 | if (PageUptodate(page)) { | ||
1981 | if (!buffer_uptodate(bh)) | ||
1982 | set_buffer_uptodate(bh); | ||
1983 | continue; | ||
1984 | } | ||
1985 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | ||
1986 | (block_start < from || block_end > to)) { | ||
1987 | ll_rw_block(READ, 1, &bh); | ||
1988 | *wait_bh++=bh; | ||
1989 | } | ||
1990 | } | ||
1991 | /* | ||
1992 | * If we issued read requests - let them complete. | ||
1993 | */ | ||
1994 | while(wait_bh > wait) { | ||
1995 | wait_on_buffer(*--wait_bh); | ||
1996 | if (!buffer_uptodate(*wait_bh)) | ||
1997 | return -EIO; | ||
1998 | } | ||
1999 | return 0; | ||
2000 | out: | ||
2001 | /* | ||
2002 | * Zero out any newly allocated blocks to avoid exposing stale | ||
2003 | * data. If BH_New is set, we know that the block was newly | ||
2004 | * allocated in the above loop. | ||
2005 | */ | ||
2006 | bh = head; | ||
2007 | block_start = 0; | ||
2008 | do { | ||
2009 | block_end = block_start+blocksize; | ||
2010 | if (block_end <= from) | ||
2011 | goto next_bh; | ||
2012 | if (block_start >= to) | ||
2013 | break; | ||
2014 | if (buffer_new(bh)) { | ||
2015 | void *kaddr; | ||
2016 | |||
2017 | clear_buffer_new(bh); | ||
2018 | kaddr = kmap_atomic(page, KM_USER0); | ||
2019 | memset(kaddr+block_start, 0, bh->b_size); | ||
2020 | kunmap_atomic(kaddr, KM_USER0); | ||
2021 | set_buffer_uptodate(bh); | ||
2022 | mark_buffer_dirty(bh); | ||
2023 | } | ||
2024 | next_bh: | ||
2025 | block_start = block_end; | ||
2026 | bh = bh->b_this_page; | ||
2027 | } while (bh != head); | ||
2028 | return err; | ||
2029 | } | ||
2030 | |||
2031 | static int __block_commit_write(struct inode *inode, struct page *page, | ||
2032 | unsigned from, unsigned to) | ||
2033 | { | ||
2034 | unsigned block_start, block_end; | ||
2035 | int partial = 0; | ||
2036 | unsigned blocksize; | ||
2037 | struct buffer_head *bh, *head; | ||
2038 | |||
2039 | blocksize = 1 << inode->i_blkbits; | ||
2040 | |||
2041 | for(bh = head = page_buffers(page), block_start = 0; | ||
2042 | bh != head || !block_start; | ||
2043 | block_start=block_end, bh = bh->b_this_page) { | ||
2044 | block_end = block_start + blocksize; | ||
2045 | if (block_end <= from || block_start >= to) { | ||
2046 | if (!buffer_uptodate(bh)) | ||
2047 | partial = 1; | ||
2048 | } else { | ||
2049 | set_buffer_uptodate(bh); | ||
2050 | mark_buffer_dirty(bh); | ||
2051 | } | ||
2052 | } | ||
2053 | |||
2054 | /* | ||
2055 | * If this is a partial write which happened to make all buffers | ||
2056 | * uptodate then we can optimize away a bogus readpage() for | ||
2057 | * the next read(). Here we 'discover' whether the page went | ||
2058 | * uptodate as a result of this (potentially partial) write. | ||
2059 | */ | ||
2060 | if (!partial) | ||
2061 | SetPageUptodate(page); | ||
2062 | return 0; | ||
2063 | } | ||
2064 | |||
2065 | /* | ||
2066 | * Generic "read page" function for block devices that have the normal | ||
2067 | * get_block functionality. This is most of the block device filesystems. | ||
2068 | * Reads the page asynchronously --- the unlock_buffer() and | ||
2069 | * set/clear_buffer_uptodate() functions propagate buffer state into the | ||
2070 | * page struct once IO has completed. | ||
2071 | */ | ||
2072 | int block_read_full_page(struct page *page, get_block_t *get_block) | ||
2073 | { | ||
2074 | struct inode *inode = page->mapping->host; | ||
2075 | sector_t iblock, lblock; | ||
2076 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; | ||
2077 | unsigned int blocksize; | ||
2078 | int nr, i; | ||
2079 | int fully_mapped = 1; | ||
2080 | |||
2081 | if (!PageLocked(page)) | ||
2082 | PAGE_BUG(page); | ||
2083 | blocksize = 1 << inode->i_blkbits; | ||
2084 | if (!page_has_buffers(page)) | ||
2085 | create_empty_buffers(page, blocksize, 0); | ||
2086 | head = page_buffers(page); | ||
2087 | |||
2088 | iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | ||
2089 | lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; | ||
2090 | bh = head; | ||
2091 | nr = 0; | ||
2092 | i = 0; | ||
2093 | |||
2094 | do { | ||
2095 | if (buffer_uptodate(bh)) | ||
2096 | continue; | ||
2097 | |||
2098 | if (!buffer_mapped(bh)) { | ||
2099 | fully_mapped = 0; | ||
2100 | if (iblock < lblock) { | ||
2101 | if (get_block(inode, iblock, bh, 0)) | ||
2102 | SetPageError(page); | ||
2103 | } | ||
2104 | if (!buffer_mapped(bh)) { | ||
2105 | void *kaddr = kmap_atomic(page, KM_USER0); | ||
2106 | memset(kaddr + i * blocksize, 0, blocksize); | ||
2107 | flush_dcache_page(page); | ||
2108 | kunmap_atomic(kaddr, KM_USER0); | ||
2109 | set_buffer_uptodate(bh); | ||
2110 | continue; | ||
2111 | } | ||
2112 | /* | ||
2113 | * get_block() might have updated the buffer | ||
2114 | * synchronously | ||
2115 | */ | ||
2116 | if (buffer_uptodate(bh)) | ||
2117 | continue; | ||
2118 | } | ||
2119 | arr[nr++] = bh; | ||
2120 | } while (i++, iblock++, (bh = bh->b_this_page) != head); | ||
2121 | |||
2122 | if (fully_mapped) | ||
2123 | SetPageMappedToDisk(page); | ||
2124 | |||
2125 | if (!nr) { | ||
2126 | /* | ||
2127 | * All buffers are uptodate - we can set the page uptodate | ||
2128 | * as well. But not if get_block() returned an error. | ||
2129 | */ | ||
2130 | if (!PageError(page)) | ||
2131 | SetPageUptodate(page); | ||
2132 | unlock_page(page); | ||
2133 | return 0; | ||
2134 | } | ||
2135 | |||
2136 | /* Stage two: lock the buffers */ | ||
2137 | for (i = 0; i < nr; i++) { | ||
2138 | bh = arr[i]; | ||
2139 | lock_buffer(bh); | ||
2140 | mark_buffer_async_read(bh); | ||
2141 | } | ||
2142 | |||
2143 | /* | ||
2144 | * Stage 3: start the IO. Check for uptodateness | ||
2145 | * inside the buffer lock in case another process reading | ||
2146 | * the underlying blockdev brought it uptodate (the sct fix). | ||
2147 | */ | ||
2148 | for (i = 0; i < nr; i++) { | ||
2149 | bh = arr[i]; | ||
2150 | if (buffer_uptodate(bh)) | ||
2151 | end_buffer_async_read(bh, 1); | ||
2152 | else | ||
2153 | submit_bh(READ, bh); | ||
2154 | } | ||
2155 | return 0; | ||
2156 | } | ||
2157 | |||
2158 | /* utility function for filesystems that need to do work on expanding | ||
2159 | * truncates. Uses prepare/commit_write to allow the filesystem to | ||
2160 | * deal with the hole. | ||
2161 | */ | ||
2162 | int generic_cont_expand(struct inode *inode, loff_t size) | ||
2163 | { | ||
2164 | struct address_space *mapping = inode->i_mapping; | ||
2165 | struct page *page; | ||
2166 | unsigned long index, offset, limit; | ||
2167 | int err; | ||
2168 | |||
2169 | err = -EFBIG; | ||
2170 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | ||
2171 | if (limit != RLIM_INFINITY && size > (loff_t)limit) { | ||
2172 | send_sig(SIGXFSZ, current, 0); | ||
2173 | goto out; | ||
2174 | } | ||
2175 | if (size > inode->i_sb->s_maxbytes) | ||
2176 | goto out; | ||
2177 | |||
2178 | offset = (size & (PAGE_CACHE_SIZE-1)); /* Within page */ | ||
2179 | |||
2180 | /* ugh. in prepare/commit_write, if from==to==start of block, we | ||
2181 | ** skip the prepare. make sure we never send an offset for the start | ||
2182 | ** of a block | ||
2183 | */ | ||
2184 | if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { | ||
2185 | offset++; | ||
2186 | } | ||
2187 | index = size >> PAGE_CACHE_SHIFT; | ||
2188 | err = -ENOMEM; | ||
2189 | page = grab_cache_page(mapping, index); | ||
2190 | if (!page) | ||
2191 | goto out; | ||
2192 | err = mapping->a_ops->prepare_write(NULL, page, offset, offset); | ||
2193 | if (!err) { | ||
2194 | err = mapping->a_ops->commit_write(NULL, page, offset, offset); | ||
2195 | } | ||
2196 | unlock_page(page); | ||
2197 | page_cache_release(page); | ||
2198 | if (err > 0) | ||
2199 | err = 0; | ||
2200 | out: | ||
2201 | return err; | ||
2202 | } | ||
2203 | |||
2204 | /* | ||
2205 | * For moronic filesystems that do not allow holes in file. | ||
2206 | * We may have to extend the file. | ||
2207 | */ | ||
2208 | |||
2209 | int cont_prepare_write(struct page *page, unsigned offset, | ||
2210 | unsigned to, get_block_t *get_block, loff_t *bytes) | ||
2211 | { | ||
2212 | struct address_space *mapping = page->mapping; | ||
2213 | struct inode *inode = mapping->host; | ||
2214 | struct page *new_page; | ||
2215 | pgoff_t pgpos; | ||
2216 | long status; | ||
2217 | unsigned zerofrom; | ||
2218 | unsigned blocksize = 1 << inode->i_blkbits; | ||
2219 | void *kaddr; | ||
2220 | |||
2221 | while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { | ||
2222 | status = -ENOMEM; | ||
2223 | new_page = grab_cache_page(mapping, pgpos); | ||
2224 | if (!new_page) | ||
2225 | goto out; | ||
2226 | /* we might sleep */ | ||
2227 | if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { | ||
2228 | unlock_page(new_page); | ||
2229 | page_cache_release(new_page); | ||
2230 | continue; | ||
2231 | } | ||
2232 | zerofrom = *bytes & ~PAGE_CACHE_MASK; | ||
2233 | if (zerofrom & (blocksize-1)) { | ||
2234 | *bytes |= (blocksize-1); | ||
2235 | (*bytes)++; | ||
2236 | } | ||
2237 | status = __block_prepare_write(inode, new_page, zerofrom, | ||
2238 | PAGE_CACHE_SIZE, get_block); | ||
2239 | if (status) | ||
2240 | goto out_unmap; | ||
2241 | kaddr = kmap_atomic(new_page, KM_USER0); | ||
2242 | memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom); | ||
2243 | flush_dcache_page(new_page); | ||
2244 | kunmap_atomic(kaddr, KM_USER0); | ||
2245 | generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); | ||
2246 | unlock_page(new_page); | ||
2247 | page_cache_release(new_page); | ||
2248 | } | ||
2249 | |||
2250 | if (page->index < pgpos) { | ||
2251 | /* completely inside the area */ | ||
2252 | zerofrom = offset; | ||
2253 | } else { | ||
2254 | /* page covers the boundary, find the boundary offset */ | ||
2255 | zerofrom = *bytes & ~PAGE_CACHE_MASK; | ||
2256 | |||
2257 | /* if we will expand the thing last block will be filled */ | ||
2258 | if (to > zerofrom && (zerofrom & (blocksize-1))) { | ||
2259 | *bytes |= (blocksize-1); | ||
2260 | (*bytes)++; | ||
2261 | } | ||
2262 | |||
2263 | /* starting below the boundary? Nothing to zero out */ | ||
2264 | if (offset <= zerofrom) | ||
2265 | zerofrom = offset; | ||
2266 | } | ||
2267 | status = __block_prepare_write(inode, page, zerofrom, to, get_block); | ||
2268 | if (status) | ||
2269 | goto out1; | ||
2270 | if (zerofrom < offset) { | ||
2271 | kaddr = kmap_atomic(page, KM_USER0); | ||
2272 | memset(kaddr+zerofrom, 0, offset-zerofrom); | ||
2273 | flush_dcache_page(page); | ||
2274 | kunmap_atomic(kaddr, KM_USER0); | ||
2275 | __block_commit_write(inode, page, zerofrom, offset); | ||
2276 | } | ||
2277 | return 0; | ||
2278 | out1: | ||
2279 | ClearPageUptodate(page); | ||
2280 | return status; | ||
2281 | |||
2282 | out_unmap: | ||
2283 | ClearPageUptodate(new_page); | ||
2284 | unlock_page(new_page); | ||
2285 | page_cache_release(new_page); | ||
2286 | out: | ||
2287 | return status; | ||
2288 | } | ||
2289 | |||
2290 | int block_prepare_write(struct page *page, unsigned from, unsigned to, | ||
2291 | get_block_t *get_block) | ||
2292 | { | ||
2293 | struct inode *inode = page->mapping->host; | ||
2294 | int err = __block_prepare_write(inode, page, from, to, get_block); | ||
2295 | if (err) | ||
2296 | ClearPageUptodate(page); | ||
2297 | return err; | ||
2298 | } | ||
2299 | |||
2300 | int block_commit_write(struct page *page, unsigned from, unsigned to) | ||
2301 | { | ||
2302 | struct inode *inode = page->mapping->host; | ||
2303 | __block_commit_write(inode,page,from,to); | ||
2304 | return 0; | ||
2305 | } | ||
2306 | |||
2307 | int generic_commit_write(struct file *file, struct page *page, | ||
2308 | unsigned from, unsigned to) | ||
2309 | { | ||
2310 | struct inode *inode = page->mapping->host; | ||
2311 | loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | ||
2312 | __block_commit_write(inode,page,from,to); | ||
2313 | /* | ||
2314 | * No need to use i_size_read() here, the i_size | ||
2315 | * cannot change under us because we hold i_sem. | ||
2316 | */ | ||
2317 | if (pos > inode->i_size) { | ||
2318 | i_size_write(inode, pos); | ||
2319 | mark_inode_dirty(inode); | ||
2320 | } | ||
2321 | return 0; | ||
2322 | } | ||
2323 | |||
2324 | |||
2325 | /* | ||
2326 | * nobh_prepare_write()'s prereads are special: the buffer_heads are freed | ||
2327 | * immediately, while under the page lock. So it needs a special end_io | ||
2328 | * handler which does not touch the bh after unlocking it. | ||
2329 | * | ||
2330 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but | ||
2331 | * a race there is benign: unlock_buffer() only use the bh's address for | ||
2332 | * hashing after unlocking the buffer, so it doesn't actually touch the bh | ||
2333 | * itself. | ||
2334 | */ | ||
2335 | static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) | ||
2336 | { | ||
2337 | if (uptodate) { | ||
2338 | set_buffer_uptodate(bh); | ||
2339 | } else { | ||
2340 | /* This happens, due to failed READA attempts. */ | ||
2341 | clear_buffer_uptodate(bh); | ||
2342 | } | ||
2343 | unlock_buffer(bh); | ||
2344 | } | ||
2345 | |||
2346 | /* | ||
2347 | * On entry, the page is fully not uptodate. | ||
2348 | * On exit the page is fully uptodate in the areas outside (from,to) | ||
2349 | */ | ||
2350 | int nobh_prepare_write(struct page *page, unsigned from, unsigned to, | ||
2351 | get_block_t *get_block) | ||
2352 | { | ||
2353 | struct inode *inode = page->mapping->host; | ||
2354 | const unsigned blkbits = inode->i_blkbits; | ||
2355 | const unsigned blocksize = 1 << blkbits; | ||
2356 | struct buffer_head map_bh; | ||
2357 | struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; | ||
2358 | unsigned block_in_page; | ||
2359 | unsigned block_start; | ||
2360 | sector_t block_in_file; | ||
2361 | char *kaddr; | ||
2362 | int nr_reads = 0; | ||
2363 | int i; | ||
2364 | int ret = 0; | ||
2365 | int is_mapped_to_disk = 1; | ||
2366 | int dirtied_it = 0; | ||
2367 | |||
2368 | if (PageMappedToDisk(page)) | ||
2369 | return 0; | ||
2370 | |||
2371 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); | ||
2372 | map_bh.b_page = page; | ||
2373 | |||
2374 | /* | ||
2375 | * We loop across all blocks in the page, whether or not they are | ||
2376 | * part of the affected region. This is so we can discover if the | ||
2377 | * page is fully mapped-to-disk. | ||
2378 | */ | ||
2379 | for (block_start = 0, block_in_page = 0; | ||
2380 | block_start < PAGE_CACHE_SIZE; | ||
2381 | block_in_page++, block_start += blocksize) { | ||
2382 | unsigned block_end = block_start + blocksize; | ||
2383 | int create; | ||
2384 | |||
2385 | map_bh.b_state = 0; | ||
2386 | create = 1; | ||
2387 | if (block_start >= to) | ||
2388 | create = 0; | ||
2389 | ret = get_block(inode, block_in_file + block_in_page, | ||
2390 | &map_bh, create); | ||
2391 | if (ret) | ||
2392 | goto failed; | ||
2393 | if (!buffer_mapped(&map_bh)) | ||
2394 | is_mapped_to_disk = 0; | ||
2395 | if (buffer_new(&map_bh)) | ||
2396 | unmap_underlying_metadata(map_bh.b_bdev, | ||
2397 | map_bh.b_blocknr); | ||
2398 | if (PageUptodate(page)) | ||
2399 | continue; | ||
2400 | if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { | ||
2401 | kaddr = kmap_atomic(page, KM_USER0); | ||
2402 | if (block_start < from) { | ||
2403 | memset(kaddr+block_start, 0, from-block_start); | ||
2404 | dirtied_it = 1; | ||
2405 | } | ||
2406 | if (block_end > to) { | ||
2407 | memset(kaddr + to, 0, block_end - to); | ||
2408 | dirtied_it = 1; | ||
2409 | } | ||
2410 | flush_dcache_page(page); | ||
2411 | kunmap_atomic(kaddr, KM_USER0); | ||
2412 | continue; | ||
2413 | } | ||
2414 | if (buffer_uptodate(&map_bh)) | ||
2415 | continue; /* reiserfs does this */ | ||
2416 | if (block_start < from || block_end > to) { | ||
2417 | struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); | ||
2418 | |||
2419 | if (!bh) { | ||
2420 | ret = -ENOMEM; | ||
2421 | goto failed; | ||
2422 | } | ||
2423 | bh->b_state = map_bh.b_state; | ||
2424 | atomic_set(&bh->b_count, 0); | ||
2425 | bh->b_this_page = NULL; | ||
2426 | bh->b_page = page; | ||
2427 | bh->b_blocknr = map_bh.b_blocknr; | ||
2428 | bh->b_size = blocksize; | ||
2429 | bh->b_data = (char *)(long)block_start; | ||
2430 | bh->b_bdev = map_bh.b_bdev; | ||
2431 | bh->b_private = NULL; | ||
2432 | read_bh[nr_reads++] = bh; | ||
2433 | } | ||
2434 | } | ||
2435 | |||
2436 | if (nr_reads) { | ||
2437 | struct buffer_head *bh; | ||
2438 | |||
2439 | /* | ||
2440 | * The page is locked, so these buffers are protected from | ||
2441 | * any VM or truncate activity. Hence we don't need to care | ||
2442 | * for the buffer_head refcounts. | ||
2443 | */ | ||
2444 | for (i = 0; i < nr_reads; i++) { | ||
2445 | bh = read_bh[i]; | ||
2446 | lock_buffer(bh); | ||
2447 | bh->b_end_io = end_buffer_read_nobh; | ||
2448 | submit_bh(READ, bh); | ||
2449 | } | ||
2450 | for (i = 0; i < nr_reads; i++) { | ||
2451 | bh = read_bh[i]; | ||
2452 | wait_on_buffer(bh); | ||
2453 | if (!buffer_uptodate(bh)) | ||
2454 | ret = -EIO; | ||
2455 | free_buffer_head(bh); | ||
2456 | read_bh[i] = NULL; | ||
2457 | } | ||
2458 | if (ret) | ||
2459 | goto failed; | ||
2460 | } | ||
2461 | |||
2462 | if (is_mapped_to_disk) | ||
2463 | SetPageMappedToDisk(page); | ||
2464 | SetPageUptodate(page); | ||
2465 | |||
2466 | /* | ||
2467 | * Setting the page dirty here isn't necessary for the prepare_write | ||
2468 | * function - commit_write will do that. But if/when this function is | ||
2469 | * used within the pagefault handler to ensure that all mmapped pages | ||
2470 | * have backing space in the filesystem, we will need to dirty the page | ||
2471 | * if its contents were altered. | ||
2472 | */ | ||
2473 | if (dirtied_it) | ||
2474 | set_page_dirty(page); | ||
2475 | |||
2476 | return 0; | ||
2477 | |||
2478 | failed: | ||
2479 | for (i = 0; i < nr_reads; i++) { | ||
2480 | if (read_bh[i]) | ||
2481 | free_buffer_head(read_bh[i]); | ||
2482 | } | ||
2483 | |||
2484 | /* | ||
2485 | * Error recovery is pretty slack. Clear the page and mark it dirty | ||
2486 | * so we'll later zero out any blocks which _were_ allocated. | ||
2487 | */ | ||
2488 | kaddr = kmap_atomic(page, KM_USER0); | ||
2489 | memset(kaddr, 0, PAGE_CACHE_SIZE); | ||
2490 | kunmap_atomic(kaddr, KM_USER0); | ||
2491 | SetPageUptodate(page); | ||
2492 | set_page_dirty(page); | ||
2493 | return ret; | ||
2494 | } | ||
2495 | EXPORT_SYMBOL(nobh_prepare_write); | ||
2496 | |||
2497 | int nobh_commit_write(struct file *file, struct page *page, | ||
2498 | unsigned from, unsigned to) | ||
2499 | { | ||
2500 | struct inode *inode = page->mapping->host; | ||
2501 | loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | ||
2502 | |||
2503 | set_page_dirty(page); | ||
2504 | if (pos > inode->i_size) { | ||
2505 | i_size_write(inode, pos); | ||
2506 | mark_inode_dirty(inode); | ||
2507 | } | ||
2508 | return 0; | ||
2509 | } | ||
2510 | EXPORT_SYMBOL(nobh_commit_write); | ||
2511 | |||
2512 | /* | ||
2513 | * nobh_writepage() - based on block_full_write_page() except | ||
2514 | * that it tries to operate without attaching bufferheads to | ||
2515 | * the page. | ||
2516 | */ | ||
2517 | int nobh_writepage(struct page *page, get_block_t *get_block, | ||
2518 | struct writeback_control *wbc) | ||
2519 | { | ||
2520 | struct inode * const inode = page->mapping->host; | ||
2521 | loff_t i_size = i_size_read(inode); | ||
2522 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | ||
2523 | unsigned offset; | ||
2524 | void *kaddr; | ||
2525 | int ret; | ||
2526 | |||
2527 | /* Is the page fully inside i_size? */ | ||
2528 | if (page->index < end_index) | ||
2529 | goto out; | ||
2530 | |||
2531 | /* Is the page fully outside i_size? (truncate in progress) */ | ||
2532 | offset = i_size & (PAGE_CACHE_SIZE-1); | ||
2533 | if (page->index >= end_index+1 || !offset) { | ||
2534 | /* | ||
2535 | * The page may have dirty, unmapped buffers. For example, | ||
2536 | * they may have been added in ext3_writepage(). Make them | ||
2537 | * freeable here, so the page does not leak. | ||
2538 | */ | ||
2539 | #if 0 | ||
2540 | /* Not really sure about this - do we need this ? */ | ||
2541 | if (page->mapping->a_ops->invalidatepage) | ||
2542 | page->mapping->a_ops->invalidatepage(page, offset); | ||
2543 | #endif | ||
2544 | unlock_page(page); | ||
2545 | return 0; /* don't care */ | ||
2546 | } | ||
2547 | |||
2548 | /* | ||
2549 | * The page straddles i_size. It must be zeroed out on each and every | ||
2550 | * writepage invocation because it may be mmapped. "A file is mapped | ||
2551 | * in multiples of the page size. For a file that is not a multiple of | ||
2552 | * the page size, the remaining memory is zeroed when mapped, and | ||
2553 | * writes to that region are not written out to the file." | ||
2554 | */ | ||
2555 | kaddr = kmap_atomic(page, KM_USER0); | ||
2556 | memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); | ||
2557 | flush_dcache_page(page); | ||
2558 | kunmap_atomic(kaddr, KM_USER0); | ||
2559 | out: | ||
2560 | ret = mpage_writepage(page, get_block, wbc); | ||
2561 | if (ret == -EAGAIN) | ||
2562 | ret = __block_write_full_page(inode, page, get_block, wbc); | ||
2563 | return ret; | ||
2564 | } | ||
2565 | EXPORT_SYMBOL(nobh_writepage); | ||
2566 | |||
2567 | /* | ||
2568 | * This function assumes that ->prepare_write() uses nobh_prepare_write(). | ||
2569 | */ | ||
2570 | int nobh_truncate_page(struct address_space *mapping, loff_t from) | ||
2571 | { | ||
2572 | struct inode *inode = mapping->host; | ||
2573 | unsigned blocksize = 1 << inode->i_blkbits; | ||
2574 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | ||
2575 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | ||
2576 | unsigned to; | ||
2577 | struct page *page; | ||
2578 | struct address_space_operations *a_ops = mapping->a_ops; | ||
2579 | char *kaddr; | ||
2580 | int ret = 0; | ||
2581 | |||
2582 | if ((offset & (blocksize - 1)) == 0) | ||
2583 | goto out; | ||
2584 | |||
2585 | ret = -ENOMEM; | ||
2586 | page = grab_cache_page(mapping, index); | ||
2587 | if (!page) | ||
2588 | goto out; | ||
2589 | |||
2590 | to = (offset + blocksize) & ~(blocksize - 1); | ||
2591 | ret = a_ops->prepare_write(NULL, page, offset, to); | ||
2592 | if (ret == 0) { | ||
2593 | kaddr = kmap_atomic(page, KM_USER0); | ||
2594 | memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); | ||
2595 | flush_dcache_page(page); | ||
2596 | kunmap_atomic(kaddr, KM_USER0); | ||
2597 | set_page_dirty(page); | ||
2598 | } | ||
2599 | unlock_page(page); | ||
2600 | page_cache_release(page); | ||
2601 | out: | ||
2602 | return ret; | ||
2603 | } | ||
2604 | EXPORT_SYMBOL(nobh_truncate_page); | ||
2605 | |||
2606 | int block_truncate_page(struct address_space *mapping, | ||
2607 | loff_t from, get_block_t *get_block) | ||
2608 | { | ||
2609 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | ||
2610 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | ||
2611 | unsigned blocksize; | ||
2612 | pgoff_t iblock; | ||
2613 | unsigned length, pos; | ||
2614 | struct inode *inode = mapping->host; | ||
2615 | struct page *page; | ||
2616 | struct buffer_head *bh; | ||
2617 | void *kaddr; | ||
2618 | int err; | ||
2619 | |||
2620 | blocksize = 1 << inode->i_blkbits; | ||
2621 | length = offset & (blocksize - 1); | ||
2622 | |||
2623 | /* Block boundary? Nothing to do */ | ||
2624 | if (!length) | ||
2625 | return 0; | ||
2626 | |||
2627 | length = blocksize - length; | ||
2628 | iblock = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | ||
2629 | |||
2630 | page = grab_cache_page(mapping, index); | ||
2631 | err = -ENOMEM; | ||
2632 | if (!page) | ||
2633 | goto out; | ||
2634 | |||
2635 | if (!page_has_buffers(page)) | ||
2636 | create_empty_buffers(page, blocksize, 0); | ||
2637 | |||
2638 | /* Find the buffer that contains "offset" */ | ||
2639 | bh = page_buffers(page); | ||
2640 | pos = blocksize; | ||
2641 | while (offset >= pos) { | ||
2642 | bh = bh->b_this_page; | ||
2643 | iblock++; | ||
2644 | pos += blocksize; | ||
2645 | } | ||
2646 | |||
2647 | err = 0; | ||
2648 | if (!buffer_mapped(bh)) { | ||
2649 | err = get_block(inode, iblock, bh, 0); | ||
2650 | if (err) | ||
2651 | goto unlock; | ||
2652 | /* unmapped? It's a hole - nothing to do */ | ||
2653 | if (!buffer_mapped(bh)) | ||
2654 | goto unlock; | ||
2655 | } | ||
2656 | |||
2657 | /* Ok, it's mapped. Make sure it's up-to-date */ | ||
2658 | if (PageUptodate(page)) | ||
2659 | set_buffer_uptodate(bh); | ||
2660 | |||
2661 | if (!buffer_uptodate(bh) && !buffer_delay(bh)) { | ||
2662 | err = -EIO; | ||
2663 | ll_rw_block(READ, 1, &bh); | ||
2664 | wait_on_buffer(bh); | ||
2665 | /* Uhhuh. Read error. Complain and punt. */ | ||
2666 | if (!buffer_uptodate(bh)) | ||
2667 | goto unlock; | ||
2668 | } | ||
2669 | |||
2670 | kaddr = kmap_atomic(page, KM_USER0); | ||
2671 | memset(kaddr + offset, 0, length); | ||
2672 | flush_dcache_page(page); | ||
2673 | kunmap_atomic(kaddr, KM_USER0); | ||
2674 | |||
2675 | mark_buffer_dirty(bh); | ||
2676 | err = 0; | ||
2677 | |||
2678 | unlock: | ||
2679 | unlock_page(page); | ||
2680 | page_cache_release(page); | ||
2681 | out: | ||
2682 | return err; | ||
2683 | } | ||
2684 | |||
2685 | /* | ||
2686 | * The generic ->writepage function for buffer-backed address_spaces | ||
2687 | */ | ||
2688 | int block_write_full_page(struct page *page, get_block_t *get_block, | ||
2689 | struct writeback_control *wbc) | ||
2690 | { | ||
2691 | struct inode * const inode = page->mapping->host; | ||
2692 | loff_t i_size = i_size_read(inode); | ||
2693 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | ||
2694 | unsigned offset; | ||
2695 | void *kaddr; | ||
2696 | |||
2697 | /* Is the page fully inside i_size? */ | ||
2698 | if (page->index < end_index) | ||
2699 | return __block_write_full_page(inode, page, get_block, wbc); | ||
2700 | |||
2701 | /* Is the page fully outside i_size? (truncate in progress) */ | ||
2702 | offset = i_size & (PAGE_CACHE_SIZE-1); | ||
2703 | if (page->index >= end_index+1 || !offset) { | ||
2704 | /* | ||
2705 | * The page may have dirty, unmapped buffers. For example, | ||
2706 | * they may have been added in ext3_writepage(). Make them | ||
2707 | * freeable here, so the page does not leak. | ||
2708 | */ | ||
2709 | block_invalidatepage(page, 0); | ||
2710 | unlock_page(page); | ||
2711 | return 0; /* don't care */ | ||
2712 | } | ||
2713 | |||
2714 | /* | ||
2715 | * The page straddles i_size. It must be zeroed out on each and every | ||
2716 | * writepage invokation because it may be mmapped. "A file is mapped | ||
2717 | * in multiples of the page size. For a file that is not a multiple of | ||
2718 | * the page size, the remaining memory is zeroed when mapped, and | ||
2719 | * writes to that region are not written out to the file." | ||
2720 | */ | ||
2721 | kaddr = kmap_atomic(page, KM_USER0); | ||
2722 | memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); | ||
2723 | flush_dcache_page(page); | ||
2724 | kunmap_atomic(kaddr, KM_USER0); | ||
2725 | return __block_write_full_page(inode, page, get_block, wbc); | ||
2726 | } | ||
2727 | |||
2728 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, | ||
2729 | get_block_t *get_block) | ||
2730 | { | ||
2731 | struct buffer_head tmp; | ||
2732 | struct inode *inode = mapping->host; | ||
2733 | tmp.b_state = 0; | ||
2734 | tmp.b_blocknr = 0; | ||
2735 | get_block(inode, block, &tmp, 0); | ||
2736 | return tmp.b_blocknr; | ||
2737 | } | ||
2738 | |||
2739 | static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) | ||
2740 | { | ||
2741 | struct buffer_head *bh = bio->bi_private; | ||
2742 | |||
2743 | if (bio->bi_size) | ||
2744 | return 1; | ||
2745 | |||
2746 | if (err == -EOPNOTSUPP) { | ||
2747 | set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); | ||
2748 | set_bit(BH_Eopnotsupp, &bh->b_state); | ||
2749 | } | ||
2750 | |||
2751 | bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); | ||
2752 | bio_put(bio); | ||
2753 | return 0; | ||
2754 | } | ||
2755 | |||
2756 | int submit_bh(int rw, struct buffer_head * bh) | ||
2757 | { | ||
2758 | struct bio *bio; | ||
2759 | int ret = 0; | ||
2760 | |||
2761 | BUG_ON(!buffer_locked(bh)); | ||
2762 | BUG_ON(!buffer_mapped(bh)); | ||
2763 | BUG_ON(!bh->b_end_io); | ||
2764 | |||
2765 | if (buffer_ordered(bh) && (rw == WRITE)) | ||
2766 | rw = WRITE_BARRIER; | ||
2767 | |||
2768 | /* | ||
2769 | * Only clear out a write error when rewriting, should this | ||
2770 | * include WRITE_SYNC as well? | ||
2771 | */ | ||
2772 | if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) | ||
2773 | clear_buffer_write_io_error(bh); | ||
2774 | |||
2775 | /* | ||
2776 | * from here on down, it's all bio -- do the initial mapping, | ||
2777 | * submit_bio -> generic_make_request may further map this bio around | ||
2778 | */ | ||
2779 | bio = bio_alloc(GFP_NOIO, 1); | ||
2780 | |||
2781 | bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); | ||
2782 | bio->bi_bdev = bh->b_bdev; | ||
2783 | bio->bi_io_vec[0].bv_page = bh->b_page; | ||
2784 | bio->bi_io_vec[0].bv_len = bh->b_size; | ||
2785 | bio->bi_io_vec[0].bv_offset = bh_offset(bh); | ||
2786 | |||
2787 | bio->bi_vcnt = 1; | ||
2788 | bio->bi_idx = 0; | ||
2789 | bio->bi_size = bh->b_size; | ||
2790 | |||
2791 | bio->bi_end_io = end_bio_bh_io_sync; | ||
2792 | bio->bi_private = bh; | ||
2793 | |||
2794 | bio_get(bio); | ||
2795 | submit_bio(rw, bio); | ||
2796 | |||
2797 | if (bio_flagged(bio, BIO_EOPNOTSUPP)) | ||
2798 | ret = -EOPNOTSUPP; | ||
2799 | |||
2800 | bio_put(bio); | ||
2801 | return ret; | ||
2802 | } | ||
2803 | |||
2804 | /** | ||
2805 | * ll_rw_block: low-level access to block devices (DEPRECATED) | ||
2806 | * @rw: whether to %READ or %WRITE or maybe %READA (readahead) | ||
2807 | * @nr: number of &struct buffer_heads in the array | ||
2808 | * @bhs: array of pointers to &struct buffer_head | ||
2809 | * | ||
2810 | * ll_rw_block() takes an array of pointers to &struct buffer_heads, | ||
2811 | * and requests an I/O operation on them, either a %READ or a %WRITE. | ||
2812 | * The third %READA option is described in the documentation for | ||
2813 | * generic_make_request() which ll_rw_block() calls. | ||
2814 | * | ||
2815 | * This function drops any buffer that it cannot get a lock on (with the | ||
2816 | * BH_Lock state bit), any buffer that appears to be clean when doing a | ||
2817 | * write request, and any buffer that appears to be up-to-date when doing | ||
2818 | * read request. Further it marks as clean buffers that are processed for | ||
2819 | * writing (the buffer cache won't assume that they are actually clean until | ||
2820 | * the buffer gets unlocked). | ||
2821 | * | ||
2822 | * ll_rw_block sets b_end_io to simple completion handler that marks | ||
2823 | * the buffer up-to-date (if approriate), unlocks the buffer and wakes | ||
2824 | * any waiters. | ||
2825 | * | ||
2826 | * All of the buffers must be for the same device, and must also be a | ||
2827 | * multiple of the current approved size for the device. | ||
2828 | */ | ||
2829 | void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) | ||
2830 | { | ||
2831 | int i; | ||
2832 | |||
2833 | for (i = 0; i < nr; i++) { | ||
2834 | struct buffer_head *bh = bhs[i]; | ||
2835 | |||
2836 | if (test_set_buffer_locked(bh)) | ||
2837 | continue; | ||
2838 | |||
2839 | get_bh(bh); | ||
2840 | if (rw == WRITE) { | ||
2841 | bh->b_end_io = end_buffer_write_sync; | ||
2842 | if (test_clear_buffer_dirty(bh)) { | ||
2843 | submit_bh(WRITE, bh); | ||
2844 | continue; | ||
2845 | } | ||
2846 | } else { | ||
2847 | bh->b_end_io = end_buffer_read_sync; | ||
2848 | if (!buffer_uptodate(bh)) { | ||
2849 | submit_bh(rw, bh); | ||
2850 | continue; | ||
2851 | } | ||
2852 | } | ||
2853 | unlock_buffer(bh); | ||
2854 | put_bh(bh); | ||
2855 | } | ||
2856 | } | ||
2857 | |||
2858 | /* | ||
2859 | * For a data-integrity writeout, we need to wait upon any in-progress I/O | ||
2860 | * and then start new I/O and then wait upon it. The caller must have a ref on | ||
2861 | * the buffer_head. | ||
2862 | */ | ||
2863 | int sync_dirty_buffer(struct buffer_head *bh) | ||
2864 | { | ||
2865 | int ret = 0; | ||
2866 | |||
2867 | WARN_ON(atomic_read(&bh->b_count) < 1); | ||
2868 | lock_buffer(bh); | ||
2869 | if (test_clear_buffer_dirty(bh)) { | ||
2870 | get_bh(bh); | ||
2871 | bh->b_end_io = end_buffer_write_sync; | ||
2872 | ret = submit_bh(WRITE, bh); | ||
2873 | wait_on_buffer(bh); | ||
2874 | if (buffer_eopnotsupp(bh)) { | ||
2875 | clear_buffer_eopnotsupp(bh); | ||
2876 | ret = -EOPNOTSUPP; | ||
2877 | } | ||
2878 | if (!ret && !buffer_uptodate(bh)) | ||
2879 | ret = -EIO; | ||
2880 | } else { | ||
2881 | unlock_buffer(bh); | ||
2882 | } | ||
2883 | return ret; | ||
2884 | } | ||
2885 | |||
2886 | /* | ||
2887 | * try_to_free_buffers() checks if all the buffers on this particular page | ||
2888 | * are unused, and releases them if so. | ||
2889 | * | ||
2890 | * Exclusion against try_to_free_buffers may be obtained by either | ||
2891 | * locking the page or by holding its mapping's private_lock. | ||
2892 | * | ||
2893 | * If the page is dirty but all the buffers are clean then we need to | ||
2894 | * be sure to mark the page clean as well. This is because the page | ||
2895 | * may be against a block device, and a later reattachment of buffers | ||
2896 | * to a dirty page will set *all* buffers dirty. Which would corrupt | ||
2897 | * filesystem data on the same device. | ||
2898 | * | ||
2899 | * The same applies to regular filesystem pages: if all the buffers are | ||
2900 | * clean then we set the page clean and proceed. To do that, we require | ||
2901 | * total exclusion from __set_page_dirty_buffers(). That is obtained with | ||
2902 | * private_lock. | ||
2903 | * | ||
2904 | * try_to_free_buffers() is non-blocking. | ||
2905 | */ | ||
2906 | static inline int buffer_busy(struct buffer_head *bh) | ||
2907 | { | ||
2908 | return atomic_read(&bh->b_count) | | ||
2909 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); | ||
2910 | } | ||
2911 | |||
2912 | static int | ||
2913 | drop_buffers(struct page *page, struct buffer_head **buffers_to_free) | ||
2914 | { | ||
2915 | struct buffer_head *head = page_buffers(page); | ||
2916 | struct buffer_head *bh; | ||
2917 | |||
2918 | bh = head; | ||
2919 | do { | ||
2920 | if (buffer_write_io_error(bh)) | ||
2921 | set_bit(AS_EIO, &page->mapping->flags); | ||
2922 | if (buffer_busy(bh)) | ||
2923 | goto failed; | ||
2924 | bh = bh->b_this_page; | ||
2925 | } while (bh != head); | ||
2926 | |||
2927 | do { | ||
2928 | struct buffer_head *next = bh->b_this_page; | ||
2929 | |||
2930 | if (!list_empty(&bh->b_assoc_buffers)) | ||
2931 | __remove_assoc_queue(bh); | ||
2932 | bh = next; | ||
2933 | } while (bh != head); | ||
2934 | *buffers_to_free = head; | ||
2935 | __clear_page_buffers(page); | ||
2936 | return 1; | ||
2937 | failed: | ||
2938 | return 0; | ||
2939 | } | ||
2940 | |||
2941 | int try_to_free_buffers(struct page *page) | ||
2942 | { | ||
2943 | struct address_space * const mapping = page->mapping; | ||
2944 | struct buffer_head *buffers_to_free = NULL; | ||
2945 | int ret = 0; | ||
2946 | |||
2947 | BUG_ON(!PageLocked(page)); | ||
2948 | if (PageWriteback(page)) | ||
2949 | return 0; | ||
2950 | |||
2951 | if (mapping == NULL) { /* can this still happen? */ | ||
2952 | ret = drop_buffers(page, &buffers_to_free); | ||
2953 | goto out; | ||
2954 | } | ||
2955 | |||
2956 | spin_lock(&mapping->private_lock); | ||
2957 | ret = drop_buffers(page, &buffers_to_free); | ||
2958 | if (ret) { | ||
2959 | /* | ||
2960 | * If the filesystem writes its buffers by hand (eg ext3) | ||
2961 | * then we can have clean buffers against a dirty page. We | ||
2962 | * clean the page here; otherwise later reattachment of buffers | ||
2963 | * could encounter a non-uptodate page, which is unresolvable. | ||
2964 | * This only applies in the rare case where try_to_free_buffers | ||
2965 | * succeeds but the page is not freed. | ||
2966 | */ | ||
2967 | clear_page_dirty(page); | ||
2968 | } | ||
2969 | spin_unlock(&mapping->private_lock); | ||
2970 | out: | ||
2971 | if (buffers_to_free) { | ||
2972 | struct buffer_head *bh = buffers_to_free; | ||
2973 | |||
2974 | do { | ||
2975 | struct buffer_head *next = bh->b_this_page; | ||
2976 | free_buffer_head(bh); | ||
2977 | bh = next; | ||
2978 | } while (bh != buffers_to_free); | ||
2979 | } | ||
2980 | return ret; | ||
2981 | } | ||
2982 | EXPORT_SYMBOL(try_to_free_buffers); | ||
2983 | |||
2984 | int block_sync_page(struct page *page) | ||
2985 | { | ||
2986 | struct address_space *mapping; | ||
2987 | |||
2988 | smp_mb(); | ||
2989 | mapping = page_mapping(page); | ||
2990 | if (mapping) | ||
2991 | blk_run_backing_dev(mapping->backing_dev_info, page); | ||
2992 | return 0; | ||
2993 | } | ||
2994 | |||
2995 | /* | ||
2996 | * There are no bdflush tunables left. But distributions are | ||
2997 | * still running obsolete flush daemons, so we terminate them here. | ||
2998 | * | ||
2999 | * Use of bdflush() is deprecated and will be removed in a future kernel. | ||
3000 | * The `pdflush' kernel threads fully replace bdflush daemons and this call. | ||
3001 | */ | ||
3002 | asmlinkage long sys_bdflush(int func, long data) | ||
3003 | { | ||
3004 | static int msg_count; | ||
3005 | |||
3006 | if (!capable(CAP_SYS_ADMIN)) | ||
3007 | return -EPERM; | ||
3008 | |||
3009 | if (msg_count < 5) { | ||
3010 | msg_count++; | ||
3011 | printk(KERN_INFO | ||
3012 | "warning: process `%s' used the obsolete bdflush" | ||
3013 | " system call\n", current->comm); | ||
3014 | printk(KERN_INFO "Fix your initscripts?\n"); | ||
3015 | } | ||
3016 | |||
3017 | if (func == 1) | ||
3018 | do_exit(0); | ||
3019 | return 0; | ||
3020 | } | ||
3021 | |||
3022 | /* | ||
3023 | * Buffer-head allocation | ||
3024 | */ | ||
3025 | static kmem_cache_t *bh_cachep; | ||
3026 | |||
3027 | /* | ||
3028 | * Once the number of bh's in the machine exceeds this level, we start | ||
3029 | * stripping them in writeback. | ||
3030 | */ | ||
3031 | static int max_buffer_heads; | ||
3032 | |||
3033 | int buffer_heads_over_limit; | ||
3034 | |||
3035 | struct bh_accounting { | ||
3036 | int nr; /* Number of live bh's */ | ||
3037 | int ratelimit; /* Limit cacheline bouncing */ | ||
3038 | }; | ||
3039 | |||
3040 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; | ||
3041 | |||
3042 | static void recalc_bh_state(void) | ||
3043 | { | ||
3044 | int i; | ||
3045 | int tot = 0; | ||
3046 | |||
3047 | if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) | ||
3048 | return; | ||
3049 | __get_cpu_var(bh_accounting).ratelimit = 0; | ||
3050 | for_each_cpu(i) | ||
3051 | tot += per_cpu(bh_accounting, i).nr; | ||
3052 | buffer_heads_over_limit = (tot > max_buffer_heads); | ||
3053 | } | ||
3054 | |||
3055 | struct buffer_head *alloc_buffer_head(unsigned int __nocast gfp_flags) | ||
3056 | { | ||
3057 | struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); | ||
3058 | if (ret) { | ||
3059 | preempt_disable(); | ||
3060 | __get_cpu_var(bh_accounting).nr++; | ||
3061 | recalc_bh_state(); | ||
3062 | preempt_enable(); | ||
3063 | } | ||
3064 | return ret; | ||
3065 | } | ||
3066 | EXPORT_SYMBOL(alloc_buffer_head); | ||
3067 | |||
3068 | void free_buffer_head(struct buffer_head *bh) | ||
3069 | { | ||
3070 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); | ||
3071 | kmem_cache_free(bh_cachep, bh); | ||
3072 | preempt_disable(); | ||
3073 | __get_cpu_var(bh_accounting).nr--; | ||
3074 | recalc_bh_state(); | ||
3075 | preempt_enable(); | ||
3076 | } | ||
3077 | EXPORT_SYMBOL(free_buffer_head); | ||
3078 | |||
3079 | static void | ||
3080 | init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags) | ||
3081 | { | ||
3082 | if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == | ||
3083 | SLAB_CTOR_CONSTRUCTOR) { | ||
3084 | struct buffer_head * bh = (struct buffer_head *)data; | ||
3085 | |||
3086 | memset(bh, 0, sizeof(*bh)); | ||
3087 | INIT_LIST_HEAD(&bh->b_assoc_buffers); | ||
3088 | } | ||
3089 | } | ||
3090 | |||
3091 | #ifdef CONFIG_HOTPLUG_CPU | ||
3092 | static void buffer_exit_cpu(int cpu) | ||
3093 | { | ||
3094 | int i; | ||
3095 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); | ||
3096 | |||
3097 | for (i = 0; i < BH_LRU_SIZE; i++) { | ||
3098 | brelse(b->bhs[i]); | ||
3099 | b->bhs[i] = NULL; | ||
3100 | } | ||
3101 | } | ||
3102 | |||
3103 | static int buffer_cpu_notify(struct notifier_block *self, | ||
3104 | unsigned long action, void *hcpu) | ||
3105 | { | ||
3106 | if (action == CPU_DEAD) | ||
3107 | buffer_exit_cpu((unsigned long)hcpu); | ||
3108 | return NOTIFY_OK; | ||
3109 | } | ||
3110 | #endif /* CONFIG_HOTPLUG_CPU */ | ||
3111 | |||
3112 | void __init buffer_init(void) | ||
3113 | { | ||
3114 | int nrpages; | ||
3115 | |||
3116 | bh_cachep = kmem_cache_create("buffer_head", | ||
3117 | sizeof(struct buffer_head), 0, | ||
3118 | SLAB_PANIC, init_buffer_head, NULL); | ||
3119 | |||
3120 | /* | ||
3121 | * Limit the bh occupancy to 10% of ZONE_NORMAL | ||
3122 | */ | ||
3123 | nrpages = (nr_free_buffer_pages() * 10) / 100; | ||
3124 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); | ||
3125 | hotcpu_notifier(buffer_cpu_notify, 0); | ||
3126 | } | ||
3127 | |||
3128 | EXPORT_SYMBOL(__bforget); | ||
3129 | EXPORT_SYMBOL(__brelse); | ||
3130 | EXPORT_SYMBOL(__wait_on_buffer); | ||
3131 | EXPORT_SYMBOL(block_commit_write); | ||
3132 | EXPORT_SYMBOL(block_prepare_write); | ||
3133 | EXPORT_SYMBOL(block_read_full_page); | ||
3134 | EXPORT_SYMBOL(block_sync_page); | ||
3135 | EXPORT_SYMBOL(block_truncate_page); | ||
3136 | EXPORT_SYMBOL(block_write_full_page); | ||
3137 | EXPORT_SYMBOL(cont_prepare_write); | ||
3138 | EXPORT_SYMBOL(end_buffer_async_write); | ||
3139 | EXPORT_SYMBOL(end_buffer_read_sync); | ||
3140 | EXPORT_SYMBOL(end_buffer_write_sync); | ||
3141 | EXPORT_SYMBOL(file_fsync); | ||
3142 | EXPORT_SYMBOL(fsync_bdev); | ||
3143 | EXPORT_SYMBOL(generic_block_bmap); | ||
3144 | EXPORT_SYMBOL(generic_commit_write); | ||
3145 | EXPORT_SYMBOL(generic_cont_expand); | ||
3146 | EXPORT_SYMBOL(init_buffer); | ||
3147 | EXPORT_SYMBOL(invalidate_bdev); | ||
3148 | EXPORT_SYMBOL(ll_rw_block); | ||
3149 | EXPORT_SYMBOL(mark_buffer_dirty); | ||
3150 | EXPORT_SYMBOL(submit_bh); | ||
3151 | EXPORT_SYMBOL(sync_dirty_buffer); | ||
3152 | EXPORT_SYMBOL(unlock_buffer); | ||