diff options
author | Chris Mason <chris.mason@oracle.com> | 2008-11-19 15:59:28 -0500 |
---|---|---|
committer | Chris Mason <chris.mason@oracle.com> | 2008-11-19 15:59:28 -0500 |
commit | ae20a6afec1cf21919d97303f2d8b737eac5acc7 (patch) | |
tree | a4ddf02d4f19bdee1119dcc8a0f54edb40fb5986 /fs/btrfs/volumes.c | |
parent | 9bf1a2445f3c569098b8de7097ca324e65abecc2 (diff) | |
parent | 07103a3cdb24099324a11be1f35279b463cdfc31 (diff) |
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
Diffstat (limited to 'fs/btrfs/volumes.c')
-rw-r--r-- | fs/btrfs/volumes.c | 3117 |
1 files changed, 3117 insertions, 0 deletions
diff --git a/fs/btrfs/volumes.c b/fs/btrfs/volumes.c new file mode 100644 index 000000000000..ecf0633ab8cc --- /dev/null +++ b/fs/btrfs/volumes.c | |||
@@ -0,0 +1,3117 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Oracle. All rights reserved. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public | ||
6 | * License v2 as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public | ||
14 | * License along with this program; if not, write to the | ||
15 | * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
16 | * Boston, MA 021110-1307, USA. | ||
17 | */ | ||
18 | #include <linux/sched.h> | ||
19 | #include <linux/bio.h> | ||
20 | #include <linux/buffer_head.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/random.h> | ||
23 | #include <asm/div64.h> | ||
24 | #include "ctree.h" | ||
25 | #include "extent_map.h" | ||
26 | #include "disk-io.h" | ||
27 | #include "transaction.h" | ||
28 | #include "print-tree.h" | ||
29 | #include "volumes.h" | ||
30 | #include "async-thread.h" | ||
31 | |||
32 | struct map_lookup { | ||
33 | u64 type; | ||
34 | int io_align; | ||
35 | int io_width; | ||
36 | int stripe_len; | ||
37 | int sector_size; | ||
38 | int num_stripes; | ||
39 | int sub_stripes; | ||
40 | struct btrfs_bio_stripe stripes[]; | ||
41 | }; | ||
42 | |||
43 | static int init_first_rw_device(struct btrfs_trans_handle *trans, | ||
44 | struct btrfs_root *root, | ||
45 | struct btrfs_device *device); | ||
46 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root); | ||
47 | |||
48 | |||
49 | #define map_lookup_size(n) (sizeof(struct map_lookup) + \ | ||
50 | (sizeof(struct btrfs_bio_stripe) * (n))) | ||
51 | |||
52 | static DEFINE_MUTEX(uuid_mutex); | ||
53 | static LIST_HEAD(fs_uuids); | ||
54 | |||
55 | void btrfs_lock_volumes(void) | ||
56 | { | ||
57 | mutex_lock(&uuid_mutex); | ||
58 | } | ||
59 | |||
60 | void btrfs_unlock_volumes(void) | ||
61 | { | ||
62 | mutex_unlock(&uuid_mutex); | ||
63 | } | ||
64 | |||
65 | static void lock_chunks(struct btrfs_root *root) | ||
66 | { | ||
67 | mutex_lock(&root->fs_info->chunk_mutex); | ||
68 | } | ||
69 | |||
70 | static void unlock_chunks(struct btrfs_root *root) | ||
71 | { | ||
72 | mutex_unlock(&root->fs_info->chunk_mutex); | ||
73 | } | ||
74 | |||
75 | int btrfs_cleanup_fs_uuids(void) | ||
76 | { | ||
77 | struct btrfs_fs_devices *fs_devices; | ||
78 | struct btrfs_device *dev; | ||
79 | |||
80 | while (!list_empty(&fs_uuids)) { | ||
81 | fs_devices = list_entry(fs_uuids.next, | ||
82 | struct btrfs_fs_devices, list); | ||
83 | list_del(&fs_devices->list); | ||
84 | while(!list_empty(&fs_devices->devices)) { | ||
85 | dev = list_entry(fs_devices->devices.next, | ||
86 | struct btrfs_device, dev_list); | ||
87 | if (dev->bdev) { | ||
88 | close_bdev_excl(dev->bdev); | ||
89 | fs_devices->open_devices--; | ||
90 | } | ||
91 | fs_devices->num_devices--; | ||
92 | if (dev->writeable) | ||
93 | fs_devices->rw_devices--; | ||
94 | list_del(&dev->dev_list); | ||
95 | list_del(&dev->dev_alloc_list); | ||
96 | kfree(dev->name); | ||
97 | kfree(dev); | ||
98 | } | ||
99 | WARN_ON(fs_devices->num_devices); | ||
100 | WARN_ON(fs_devices->open_devices); | ||
101 | WARN_ON(fs_devices->rw_devices); | ||
102 | kfree(fs_devices); | ||
103 | } | ||
104 | return 0; | ||
105 | } | ||
106 | |||
107 | static noinline struct btrfs_device *__find_device(struct list_head *head, | ||
108 | u64 devid, u8 *uuid) | ||
109 | { | ||
110 | struct btrfs_device *dev; | ||
111 | struct list_head *cur; | ||
112 | |||
113 | list_for_each(cur, head) { | ||
114 | dev = list_entry(cur, struct btrfs_device, dev_list); | ||
115 | if (dev->devid == devid && | ||
116 | (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { | ||
117 | return dev; | ||
118 | } | ||
119 | } | ||
120 | return NULL; | ||
121 | } | ||
122 | |||
123 | static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) | ||
124 | { | ||
125 | struct list_head *cur; | ||
126 | struct btrfs_fs_devices *fs_devices; | ||
127 | |||
128 | list_for_each(cur, &fs_uuids) { | ||
129 | fs_devices = list_entry(cur, struct btrfs_fs_devices, list); | ||
130 | if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) | ||
131 | return fs_devices; | ||
132 | } | ||
133 | return NULL; | ||
134 | } | ||
135 | |||
136 | /* | ||
137 | * we try to collect pending bios for a device so we don't get a large | ||
138 | * number of procs sending bios down to the same device. This greatly | ||
139 | * improves the schedulers ability to collect and merge the bios. | ||
140 | * | ||
141 | * But, it also turns into a long list of bios to process and that is sure | ||
142 | * to eventually make the worker thread block. The solution here is to | ||
143 | * make some progress and then put this work struct back at the end of | ||
144 | * the list if the block device is congested. This way, multiple devices | ||
145 | * can make progress from a single worker thread. | ||
146 | */ | ||
147 | static int noinline run_scheduled_bios(struct btrfs_device *device) | ||
148 | { | ||
149 | struct bio *pending; | ||
150 | struct backing_dev_info *bdi; | ||
151 | struct btrfs_fs_info *fs_info; | ||
152 | struct bio *tail; | ||
153 | struct bio *cur; | ||
154 | int again = 0; | ||
155 | unsigned long num_run = 0; | ||
156 | unsigned long limit; | ||
157 | |||
158 | bdi = device->bdev->bd_inode->i_mapping->backing_dev_info; | ||
159 | fs_info = device->dev_root->fs_info; | ||
160 | limit = btrfs_async_submit_limit(fs_info); | ||
161 | limit = limit * 2 / 3; | ||
162 | |||
163 | loop: | ||
164 | spin_lock(&device->io_lock); | ||
165 | |||
166 | /* take all the bios off the list at once and process them | ||
167 | * later on (without the lock held). But, remember the | ||
168 | * tail and other pointers so the bios can be properly reinserted | ||
169 | * into the list if we hit congestion | ||
170 | */ | ||
171 | pending = device->pending_bios; | ||
172 | tail = device->pending_bio_tail; | ||
173 | WARN_ON(pending && !tail); | ||
174 | device->pending_bios = NULL; | ||
175 | device->pending_bio_tail = NULL; | ||
176 | |||
177 | /* | ||
178 | * if pending was null this time around, no bios need processing | ||
179 | * at all and we can stop. Otherwise it'll loop back up again | ||
180 | * and do an additional check so no bios are missed. | ||
181 | * | ||
182 | * device->running_pending is used to synchronize with the | ||
183 | * schedule_bio code. | ||
184 | */ | ||
185 | if (pending) { | ||
186 | again = 1; | ||
187 | device->running_pending = 1; | ||
188 | } else { | ||
189 | again = 0; | ||
190 | device->running_pending = 0; | ||
191 | } | ||
192 | spin_unlock(&device->io_lock); | ||
193 | |||
194 | while(pending) { | ||
195 | cur = pending; | ||
196 | pending = pending->bi_next; | ||
197 | cur->bi_next = NULL; | ||
198 | atomic_dec(&fs_info->nr_async_bios); | ||
199 | |||
200 | if (atomic_read(&fs_info->nr_async_bios) < limit && | ||
201 | waitqueue_active(&fs_info->async_submit_wait)) | ||
202 | wake_up(&fs_info->async_submit_wait); | ||
203 | |||
204 | BUG_ON(atomic_read(&cur->bi_cnt) == 0); | ||
205 | bio_get(cur); | ||
206 | submit_bio(cur->bi_rw, cur); | ||
207 | bio_put(cur); | ||
208 | num_run++; | ||
209 | |||
210 | /* | ||
211 | * we made progress, there is more work to do and the bdi | ||
212 | * is now congested. Back off and let other work structs | ||
213 | * run instead | ||
214 | */ | ||
215 | if (pending && bdi_write_congested(bdi) && | ||
216 | fs_info->fs_devices->open_devices > 1) { | ||
217 | struct bio *old_head; | ||
218 | |||
219 | spin_lock(&device->io_lock); | ||
220 | |||
221 | old_head = device->pending_bios; | ||
222 | device->pending_bios = pending; | ||
223 | if (device->pending_bio_tail) | ||
224 | tail->bi_next = old_head; | ||
225 | else | ||
226 | device->pending_bio_tail = tail; | ||
227 | |||
228 | spin_unlock(&device->io_lock); | ||
229 | btrfs_requeue_work(&device->work); | ||
230 | goto done; | ||
231 | } | ||
232 | } | ||
233 | if (again) | ||
234 | goto loop; | ||
235 | done: | ||
236 | return 0; | ||
237 | } | ||
238 | |||
239 | void pending_bios_fn(struct btrfs_work *work) | ||
240 | { | ||
241 | struct btrfs_device *device; | ||
242 | |||
243 | device = container_of(work, struct btrfs_device, work); | ||
244 | run_scheduled_bios(device); | ||
245 | } | ||
246 | |||
247 | static noinline int device_list_add(const char *path, | ||
248 | struct btrfs_super_block *disk_super, | ||
249 | u64 devid, struct btrfs_fs_devices **fs_devices_ret) | ||
250 | { | ||
251 | struct btrfs_device *device; | ||
252 | struct btrfs_fs_devices *fs_devices; | ||
253 | u64 found_transid = btrfs_super_generation(disk_super); | ||
254 | |||
255 | fs_devices = find_fsid(disk_super->fsid); | ||
256 | if (!fs_devices) { | ||
257 | fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | ||
258 | if (!fs_devices) | ||
259 | return -ENOMEM; | ||
260 | INIT_LIST_HEAD(&fs_devices->devices); | ||
261 | INIT_LIST_HEAD(&fs_devices->alloc_list); | ||
262 | list_add(&fs_devices->list, &fs_uuids); | ||
263 | memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); | ||
264 | fs_devices->latest_devid = devid; | ||
265 | fs_devices->latest_trans = found_transid; | ||
266 | device = NULL; | ||
267 | } else { | ||
268 | device = __find_device(&fs_devices->devices, devid, | ||
269 | disk_super->dev_item.uuid); | ||
270 | } | ||
271 | if (!device) { | ||
272 | if (fs_devices->opened) | ||
273 | return -EBUSY; | ||
274 | |||
275 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
276 | if (!device) { | ||
277 | /* we can safely leave the fs_devices entry around */ | ||
278 | return -ENOMEM; | ||
279 | } | ||
280 | device->devid = devid; | ||
281 | device->work.func = pending_bios_fn; | ||
282 | memcpy(device->uuid, disk_super->dev_item.uuid, | ||
283 | BTRFS_UUID_SIZE); | ||
284 | device->barriers = 1; | ||
285 | spin_lock_init(&device->io_lock); | ||
286 | device->name = kstrdup(path, GFP_NOFS); | ||
287 | if (!device->name) { | ||
288 | kfree(device); | ||
289 | return -ENOMEM; | ||
290 | } | ||
291 | INIT_LIST_HEAD(&device->dev_alloc_list); | ||
292 | list_add(&device->dev_list, &fs_devices->devices); | ||
293 | device->fs_devices = fs_devices; | ||
294 | fs_devices->num_devices++; | ||
295 | } | ||
296 | |||
297 | if (found_transid > fs_devices->latest_trans) { | ||
298 | fs_devices->latest_devid = devid; | ||
299 | fs_devices->latest_trans = found_transid; | ||
300 | } | ||
301 | *fs_devices_ret = fs_devices; | ||
302 | return 0; | ||
303 | } | ||
304 | |||
305 | int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices) | ||
306 | { | ||
307 | struct list_head *tmp; | ||
308 | struct list_head *cur; | ||
309 | struct btrfs_device *device; | ||
310 | int seed_devices = 0; | ||
311 | |||
312 | mutex_lock(&uuid_mutex); | ||
313 | again: | ||
314 | list_for_each_safe(cur, tmp, &fs_devices->devices) { | ||
315 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
316 | if (device->in_fs_metadata) | ||
317 | continue; | ||
318 | |||
319 | if (device->bdev) { | ||
320 | close_bdev_excl(device->bdev); | ||
321 | device->bdev = NULL; | ||
322 | fs_devices->open_devices--; | ||
323 | } | ||
324 | if (device->writeable) { | ||
325 | list_del_init(&device->dev_alloc_list); | ||
326 | device->writeable = 0; | ||
327 | fs_devices->rw_devices--; | ||
328 | } | ||
329 | if (!seed_devices) { | ||
330 | list_del_init(&device->dev_list); | ||
331 | fs_devices->num_devices--; | ||
332 | kfree(device->name); | ||
333 | kfree(device); | ||
334 | } | ||
335 | } | ||
336 | |||
337 | if (fs_devices->seed) { | ||
338 | fs_devices = fs_devices->seed; | ||
339 | seed_devices = 1; | ||
340 | goto again; | ||
341 | } | ||
342 | |||
343 | mutex_unlock(&uuid_mutex); | ||
344 | return 0; | ||
345 | } | ||
346 | |||
347 | static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | ||
348 | { | ||
349 | struct btrfs_fs_devices *seed_devices; | ||
350 | struct list_head *cur; | ||
351 | struct btrfs_device *device; | ||
352 | again: | ||
353 | if (--fs_devices->opened > 0) | ||
354 | return 0; | ||
355 | |||
356 | list_for_each(cur, &fs_devices->devices) { | ||
357 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
358 | if (device->bdev) { | ||
359 | close_bdev_excl(device->bdev); | ||
360 | fs_devices->open_devices--; | ||
361 | } | ||
362 | if (device->writeable) { | ||
363 | list_del_init(&device->dev_alloc_list); | ||
364 | fs_devices->rw_devices--; | ||
365 | } | ||
366 | |||
367 | device->bdev = NULL; | ||
368 | device->writeable = 0; | ||
369 | device->in_fs_metadata = 0; | ||
370 | } | ||
371 | fs_devices->opened = 0; | ||
372 | fs_devices->seeding = 0; | ||
373 | fs_devices->sprouted = 0; | ||
374 | |||
375 | seed_devices = fs_devices->seed; | ||
376 | fs_devices->seed = NULL; | ||
377 | if (seed_devices) { | ||
378 | fs_devices = seed_devices; | ||
379 | goto again; | ||
380 | } | ||
381 | return 0; | ||
382 | } | ||
383 | |||
384 | int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) | ||
385 | { | ||
386 | int ret; | ||
387 | |||
388 | mutex_lock(&uuid_mutex); | ||
389 | ret = __btrfs_close_devices(fs_devices); | ||
390 | mutex_unlock(&uuid_mutex); | ||
391 | return ret; | ||
392 | } | ||
393 | |||
394 | int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, void *holder) | ||
395 | { | ||
396 | struct block_device *bdev; | ||
397 | struct list_head *head = &fs_devices->devices; | ||
398 | struct list_head *cur; | ||
399 | struct btrfs_device *device; | ||
400 | struct block_device *latest_bdev = NULL; | ||
401 | struct buffer_head *bh; | ||
402 | struct btrfs_super_block *disk_super; | ||
403 | u64 latest_devid = 0; | ||
404 | u64 latest_transid = 0; | ||
405 | u64 devid; | ||
406 | int seeding = 1; | ||
407 | int ret = 0; | ||
408 | |||
409 | list_for_each(cur, head) { | ||
410 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
411 | if (device->bdev) | ||
412 | continue; | ||
413 | if (!device->name) | ||
414 | continue; | ||
415 | |||
416 | bdev = open_bdev_excl(device->name, MS_RDONLY, holder); | ||
417 | if (IS_ERR(bdev)) { | ||
418 | printk("open %s failed\n", device->name); | ||
419 | goto error; | ||
420 | } | ||
421 | set_blocksize(bdev, 4096); | ||
422 | |||
423 | bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096); | ||
424 | if (!bh) | ||
425 | goto error_close; | ||
426 | |||
427 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
428 | if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, | ||
429 | sizeof(disk_super->magic))) | ||
430 | goto error_brelse; | ||
431 | |||
432 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
433 | if (devid != device->devid) | ||
434 | goto error_brelse; | ||
435 | |||
436 | if (memcmp(device->uuid, disk_super->dev_item.uuid, | ||
437 | BTRFS_UUID_SIZE)) | ||
438 | goto error_brelse; | ||
439 | |||
440 | device->generation = btrfs_super_generation(disk_super); | ||
441 | if (!latest_transid || device->generation > latest_transid) { | ||
442 | latest_devid = devid; | ||
443 | latest_transid = device->generation; | ||
444 | latest_bdev = bdev; | ||
445 | } | ||
446 | |||
447 | if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { | ||
448 | device->writeable = 0; | ||
449 | } else { | ||
450 | device->writeable = !bdev_read_only(bdev); | ||
451 | seeding = 0; | ||
452 | } | ||
453 | |||
454 | device->bdev = bdev; | ||
455 | device->in_fs_metadata = 0; | ||
456 | fs_devices->open_devices++; | ||
457 | if (device->writeable) { | ||
458 | fs_devices->rw_devices++; | ||
459 | list_add(&device->dev_alloc_list, | ||
460 | &fs_devices->alloc_list); | ||
461 | } | ||
462 | continue; | ||
463 | |||
464 | error_brelse: | ||
465 | brelse(bh); | ||
466 | error_close: | ||
467 | close_bdev_excl(bdev); | ||
468 | error: | ||
469 | continue; | ||
470 | } | ||
471 | if (fs_devices->open_devices == 0) { | ||
472 | ret = -EIO; | ||
473 | goto out; | ||
474 | } | ||
475 | fs_devices->seeding = seeding; | ||
476 | fs_devices->opened = 1; | ||
477 | fs_devices->latest_bdev = latest_bdev; | ||
478 | fs_devices->latest_devid = latest_devid; | ||
479 | fs_devices->latest_trans = latest_transid; | ||
480 | fs_devices->total_rw_bytes = 0; | ||
481 | out: | ||
482 | return ret; | ||
483 | } | ||
484 | |||
485 | int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, | ||
486 | int flags, void *holder) | ||
487 | { | ||
488 | int ret; | ||
489 | |||
490 | mutex_lock(&uuid_mutex); | ||
491 | if (fs_devices->opened) { | ||
492 | if (fs_devices->sprouted) { | ||
493 | ret = -EBUSY; | ||
494 | } else { | ||
495 | fs_devices->opened++; | ||
496 | ret = 0; | ||
497 | } | ||
498 | } else { | ||
499 | ret = __btrfs_open_devices(fs_devices, holder); | ||
500 | } | ||
501 | mutex_unlock(&uuid_mutex); | ||
502 | return ret; | ||
503 | } | ||
504 | |||
505 | int btrfs_scan_one_device(const char *path, int flags, void *holder, | ||
506 | struct btrfs_fs_devices **fs_devices_ret) | ||
507 | { | ||
508 | struct btrfs_super_block *disk_super; | ||
509 | struct block_device *bdev; | ||
510 | struct buffer_head *bh; | ||
511 | int ret; | ||
512 | u64 devid; | ||
513 | u64 transid; | ||
514 | |||
515 | mutex_lock(&uuid_mutex); | ||
516 | |||
517 | bdev = open_bdev_excl(path, flags, holder); | ||
518 | |||
519 | if (IS_ERR(bdev)) { | ||
520 | ret = PTR_ERR(bdev); | ||
521 | goto error; | ||
522 | } | ||
523 | |||
524 | ret = set_blocksize(bdev, 4096); | ||
525 | if (ret) | ||
526 | goto error_close; | ||
527 | bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096); | ||
528 | if (!bh) { | ||
529 | ret = -EIO; | ||
530 | goto error_close; | ||
531 | } | ||
532 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
533 | if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, | ||
534 | sizeof(disk_super->magic))) { | ||
535 | ret = -EINVAL; | ||
536 | goto error_brelse; | ||
537 | } | ||
538 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
539 | transid = btrfs_super_generation(disk_super); | ||
540 | if (disk_super->label[0]) | ||
541 | printk("device label %s ", disk_super->label); | ||
542 | else { | ||
543 | /* FIXME, make a readl uuid parser */ | ||
544 | printk("device fsid %llx-%llx ", | ||
545 | *(unsigned long long *)disk_super->fsid, | ||
546 | *(unsigned long long *)(disk_super->fsid + 8)); | ||
547 | } | ||
548 | printk("devid %Lu transid %Lu %s\n", devid, transid, path); | ||
549 | ret = device_list_add(path, disk_super, devid, fs_devices_ret); | ||
550 | |||
551 | error_brelse: | ||
552 | brelse(bh); | ||
553 | error_close: | ||
554 | close_bdev_excl(bdev); | ||
555 | error: | ||
556 | mutex_unlock(&uuid_mutex); | ||
557 | return ret; | ||
558 | } | ||
559 | |||
560 | /* | ||
561 | * this uses a pretty simple search, the expectation is that it is | ||
562 | * called very infrequently and that a given device has a small number | ||
563 | * of extents | ||
564 | */ | ||
565 | static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans, | ||
566 | struct btrfs_device *device, | ||
567 | u64 num_bytes, u64 *start) | ||
568 | { | ||
569 | struct btrfs_key key; | ||
570 | struct btrfs_root *root = device->dev_root; | ||
571 | struct btrfs_dev_extent *dev_extent = NULL; | ||
572 | struct btrfs_path *path; | ||
573 | u64 hole_size = 0; | ||
574 | u64 last_byte = 0; | ||
575 | u64 search_start = 0; | ||
576 | u64 search_end = device->total_bytes; | ||
577 | int ret; | ||
578 | int slot = 0; | ||
579 | int start_found; | ||
580 | struct extent_buffer *l; | ||
581 | |||
582 | path = btrfs_alloc_path(); | ||
583 | if (!path) | ||
584 | return -ENOMEM; | ||
585 | path->reada = 2; | ||
586 | start_found = 0; | ||
587 | |||
588 | /* FIXME use last free of some kind */ | ||
589 | |||
590 | /* we don't want to overwrite the superblock on the drive, | ||
591 | * so we make sure to start at an offset of at least 1MB | ||
592 | */ | ||
593 | search_start = max((u64)1024 * 1024, search_start); | ||
594 | |||
595 | if (root->fs_info->alloc_start + num_bytes <= device->total_bytes) | ||
596 | search_start = max(root->fs_info->alloc_start, search_start); | ||
597 | |||
598 | key.objectid = device->devid; | ||
599 | key.offset = search_start; | ||
600 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
601 | ret = btrfs_search_slot(trans, root, &key, path, 0, 0); | ||
602 | if (ret < 0) | ||
603 | goto error; | ||
604 | ret = btrfs_previous_item(root, path, 0, key.type); | ||
605 | if (ret < 0) | ||
606 | goto error; | ||
607 | l = path->nodes[0]; | ||
608 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | ||
609 | while (1) { | ||
610 | l = path->nodes[0]; | ||
611 | slot = path->slots[0]; | ||
612 | if (slot >= btrfs_header_nritems(l)) { | ||
613 | ret = btrfs_next_leaf(root, path); | ||
614 | if (ret == 0) | ||
615 | continue; | ||
616 | if (ret < 0) | ||
617 | goto error; | ||
618 | no_more_items: | ||
619 | if (!start_found) { | ||
620 | if (search_start >= search_end) { | ||
621 | ret = -ENOSPC; | ||
622 | goto error; | ||
623 | } | ||
624 | *start = search_start; | ||
625 | start_found = 1; | ||
626 | goto check_pending; | ||
627 | } | ||
628 | *start = last_byte > search_start ? | ||
629 | last_byte : search_start; | ||
630 | if (search_end <= *start) { | ||
631 | ret = -ENOSPC; | ||
632 | goto error; | ||
633 | } | ||
634 | goto check_pending; | ||
635 | } | ||
636 | btrfs_item_key_to_cpu(l, &key, slot); | ||
637 | |||
638 | if (key.objectid < device->devid) | ||
639 | goto next; | ||
640 | |||
641 | if (key.objectid > device->devid) | ||
642 | goto no_more_items; | ||
643 | |||
644 | if (key.offset >= search_start && key.offset > last_byte && | ||
645 | start_found) { | ||
646 | if (last_byte < search_start) | ||
647 | last_byte = search_start; | ||
648 | hole_size = key.offset - last_byte; | ||
649 | if (key.offset > last_byte && | ||
650 | hole_size >= num_bytes) { | ||
651 | *start = last_byte; | ||
652 | goto check_pending; | ||
653 | } | ||
654 | } | ||
655 | if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) { | ||
656 | goto next; | ||
657 | } | ||
658 | |||
659 | start_found = 1; | ||
660 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | ||
661 | last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent); | ||
662 | next: | ||
663 | path->slots[0]++; | ||
664 | cond_resched(); | ||
665 | } | ||
666 | check_pending: | ||
667 | /* we have to make sure we didn't find an extent that has already | ||
668 | * been allocated by the map tree or the original allocation | ||
669 | */ | ||
670 | BUG_ON(*start < search_start); | ||
671 | |||
672 | if (*start + num_bytes > search_end) { | ||
673 | ret = -ENOSPC; | ||
674 | goto error; | ||
675 | } | ||
676 | /* check for pending inserts here */ | ||
677 | ret = 0; | ||
678 | |||
679 | error: | ||
680 | btrfs_free_path(path); | ||
681 | return ret; | ||
682 | } | ||
683 | |||
684 | int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, | ||
685 | struct btrfs_device *device, | ||
686 | u64 start) | ||
687 | { | ||
688 | int ret; | ||
689 | struct btrfs_path *path; | ||
690 | struct btrfs_root *root = device->dev_root; | ||
691 | struct btrfs_key key; | ||
692 | struct btrfs_key found_key; | ||
693 | struct extent_buffer *leaf = NULL; | ||
694 | struct btrfs_dev_extent *extent = NULL; | ||
695 | |||
696 | path = btrfs_alloc_path(); | ||
697 | if (!path) | ||
698 | return -ENOMEM; | ||
699 | |||
700 | key.objectid = device->devid; | ||
701 | key.offset = start; | ||
702 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
703 | |||
704 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
705 | if (ret > 0) { | ||
706 | ret = btrfs_previous_item(root, path, key.objectid, | ||
707 | BTRFS_DEV_EXTENT_KEY); | ||
708 | BUG_ON(ret); | ||
709 | leaf = path->nodes[0]; | ||
710 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
711 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
712 | struct btrfs_dev_extent); | ||
713 | BUG_ON(found_key.offset > start || found_key.offset + | ||
714 | btrfs_dev_extent_length(leaf, extent) < start); | ||
715 | ret = 0; | ||
716 | } else if (ret == 0) { | ||
717 | leaf = path->nodes[0]; | ||
718 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
719 | struct btrfs_dev_extent); | ||
720 | } | ||
721 | BUG_ON(ret); | ||
722 | |||
723 | if (device->bytes_used > 0) | ||
724 | device->bytes_used -= btrfs_dev_extent_length(leaf, extent); | ||
725 | ret = btrfs_del_item(trans, root, path); | ||
726 | BUG_ON(ret); | ||
727 | |||
728 | btrfs_free_path(path); | ||
729 | return ret; | ||
730 | } | ||
731 | |||
732 | int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, | ||
733 | struct btrfs_device *device, | ||
734 | u64 chunk_tree, u64 chunk_objectid, | ||
735 | u64 chunk_offset, u64 start, u64 num_bytes) | ||
736 | { | ||
737 | int ret; | ||
738 | struct btrfs_path *path; | ||
739 | struct btrfs_root *root = device->dev_root; | ||
740 | struct btrfs_dev_extent *extent; | ||
741 | struct extent_buffer *leaf; | ||
742 | struct btrfs_key key; | ||
743 | |||
744 | WARN_ON(!device->in_fs_metadata); | ||
745 | path = btrfs_alloc_path(); | ||
746 | if (!path) | ||
747 | return -ENOMEM; | ||
748 | |||
749 | key.objectid = device->devid; | ||
750 | key.offset = start; | ||
751 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
752 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
753 | sizeof(*extent)); | ||
754 | BUG_ON(ret); | ||
755 | |||
756 | leaf = path->nodes[0]; | ||
757 | extent = btrfs_item_ptr(leaf, path->slots[0], | ||
758 | struct btrfs_dev_extent); | ||
759 | btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); | ||
760 | btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); | ||
761 | btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); | ||
762 | |||
763 | write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, | ||
764 | (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), | ||
765 | BTRFS_UUID_SIZE); | ||
766 | |||
767 | btrfs_set_dev_extent_length(leaf, extent, num_bytes); | ||
768 | btrfs_mark_buffer_dirty(leaf); | ||
769 | btrfs_free_path(path); | ||
770 | return ret; | ||
771 | } | ||
772 | |||
773 | static noinline int find_next_chunk(struct btrfs_root *root, | ||
774 | u64 objectid, u64 *offset) | ||
775 | { | ||
776 | struct btrfs_path *path; | ||
777 | int ret; | ||
778 | struct btrfs_key key; | ||
779 | struct btrfs_chunk *chunk; | ||
780 | struct btrfs_key found_key; | ||
781 | |||
782 | path = btrfs_alloc_path(); | ||
783 | BUG_ON(!path); | ||
784 | |||
785 | key.objectid = objectid; | ||
786 | key.offset = (u64)-1; | ||
787 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
788 | |||
789 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
790 | if (ret < 0) | ||
791 | goto error; | ||
792 | |||
793 | BUG_ON(ret == 0); | ||
794 | |||
795 | ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); | ||
796 | if (ret) { | ||
797 | *offset = 0; | ||
798 | } else { | ||
799 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
800 | path->slots[0]); | ||
801 | if (found_key.objectid != objectid) | ||
802 | *offset = 0; | ||
803 | else { | ||
804 | chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], | ||
805 | struct btrfs_chunk); | ||
806 | *offset = found_key.offset + | ||
807 | btrfs_chunk_length(path->nodes[0], chunk); | ||
808 | } | ||
809 | } | ||
810 | ret = 0; | ||
811 | error: | ||
812 | btrfs_free_path(path); | ||
813 | return ret; | ||
814 | } | ||
815 | |||
816 | static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid) | ||
817 | { | ||
818 | int ret; | ||
819 | struct btrfs_key key; | ||
820 | struct btrfs_key found_key; | ||
821 | struct btrfs_path *path; | ||
822 | |||
823 | root = root->fs_info->chunk_root; | ||
824 | |||
825 | path = btrfs_alloc_path(); | ||
826 | if (!path) | ||
827 | return -ENOMEM; | ||
828 | |||
829 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
830 | key.type = BTRFS_DEV_ITEM_KEY; | ||
831 | key.offset = (u64)-1; | ||
832 | |||
833 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
834 | if (ret < 0) | ||
835 | goto error; | ||
836 | |||
837 | BUG_ON(ret == 0); | ||
838 | |||
839 | ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, | ||
840 | BTRFS_DEV_ITEM_KEY); | ||
841 | if (ret) { | ||
842 | *objectid = 1; | ||
843 | } else { | ||
844 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
845 | path->slots[0]); | ||
846 | *objectid = found_key.offset + 1; | ||
847 | } | ||
848 | ret = 0; | ||
849 | error: | ||
850 | btrfs_free_path(path); | ||
851 | return ret; | ||
852 | } | ||
853 | |||
854 | /* | ||
855 | * the device information is stored in the chunk root | ||
856 | * the btrfs_device struct should be fully filled in | ||
857 | */ | ||
858 | int btrfs_add_device(struct btrfs_trans_handle *trans, | ||
859 | struct btrfs_root *root, | ||
860 | struct btrfs_device *device) | ||
861 | { | ||
862 | int ret; | ||
863 | struct btrfs_path *path; | ||
864 | struct btrfs_dev_item *dev_item; | ||
865 | struct extent_buffer *leaf; | ||
866 | struct btrfs_key key; | ||
867 | unsigned long ptr; | ||
868 | |||
869 | root = root->fs_info->chunk_root; | ||
870 | |||
871 | path = btrfs_alloc_path(); | ||
872 | if (!path) | ||
873 | return -ENOMEM; | ||
874 | |||
875 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
876 | key.type = BTRFS_DEV_ITEM_KEY; | ||
877 | key.offset = device->devid; | ||
878 | |||
879 | ret = btrfs_insert_empty_item(trans, root, path, &key, | ||
880 | sizeof(*dev_item)); | ||
881 | if (ret) | ||
882 | goto out; | ||
883 | |||
884 | leaf = path->nodes[0]; | ||
885 | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | ||
886 | |||
887 | btrfs_set_device_id(leaf, dev_item, device->devid); | ||
888 | btrfs_set_device_generation(leaf, dev_item, 0); | ||
889 | btrfs_set_device_type(leaf, dev_item, device->type); | ||
890 | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | ||
891 | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | ||
892 | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | ||
893 | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | ||
894 | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | ||
895 | btrfs_set_device_group(leaf, dev_item, 0); | ||
896 | btrfs_set_device_seek_speed(leaf, dev_item, 0); | ||
897 | btrfs_set_device_bandwidth(leaf, dev_item, 0); | ||
898 | |||
899 | ptr = (unsigned long)btrfs_device_uuid(dev_item); | ||
900 | write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | ||
901 | ptr = (unsigned long)btrfs_device_fsid(dev_item); | ||
902 | write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); | ||
903 | btrfs_mark_buffer_dirty(leaf); | ||
904 | |||
905 | ret = 0; | ||
906 | out: | ||
907 | btrfs_free_path(path); | ||
908 | return ret; | ||
909 | } | ||
910 | |||
911 | static int btrfs_rm_dev_item(struct btrfs_root *root, | ||
912 | struct btrfs_device *device) | ||
913 | { | ||
914 | int ret; | ||
915 | struct btrfs_path *path; | ||
916 | struct btrfs_key key; | ||
917 | struct btrfs_trans_handle *trans; | ||
918 | |||
919 | root = root->fs_info->chunk_root; | ||
920 | |||
921 | path = btrfs_alloc_path(); | ||
922 | if (!path) | ||
923 | return -ENOMEM; | ||
924 | |||
925 | trans = btrfs_start_transaction(root, 1); | ||
926 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
927 | key.type = BTRFS_DEV_ITEM_KEY; | ||
928 | key.offset = device->devid; | ||
929 | lock_chunks(root); | ||
930 | |||
931 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
932 | if (ret < 0) | ||
933 | goto out; | ||
934 | |||
935 | if (ret > 0) { | ||
936 | ret = -ENOENT; | ||
937 | goto out; | ||
938 | } | ||
939 | |||
940 | ret = btrfs_del_item(trans, root, path); | ||
941 | if (ret) | ||
942 | goto out; | ||
943 | out: | ||
944 | btrfs_free_path(path); | ||
945 | unlock_chunks(root); | ||
946 | btrfs_commit_transaction(trans, root); | ||
947 | return ret; | ||
948 | } | ||
949 | |||
950 | int btrfs_rm_device(struct btrfs_root *root, char *device_path) | ||
951 | { | ||
952 | struct btrfs_device *device; | ||
953 | struct btrfs_device *next_device; | ||
954 | struct block_device *bdev; | ||
955 | struct buffer_head *bh = NULL; | ||
956 | struct btrfs_super_block *disk_super; | ||
957 | u64 all_avail; | ||
958 | u64 devid; | ||
959 | u64 num_devices; | ||
960 | u8 *dev_uuid; | ||
961 | int ret = 0; | ||
962 | |||
963 | mutex_lock(&uuid_mutex); | ||
964 | mutex_lock(&root->fs_info->volume_mutex); | ||
965 | |||
966 | all_avail = root->fs_info->avail_data_alloc_bits | | ||
967 | root->fs_info->avail_system_alloc_bits | | ||
968 | root->fs_info->avail_metadata_alloc_bits; | ||
969 | |||
970 | if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && | ||
971 | root->fs_info->fs_devices->rw_devices <= 4) { | ||
972 | printk("btrfs: unable to go below four devices on raid10\n"); | ||
973 | ret = -EINVAL; | ||
974 | goto out; | ||
975 | } | ||
976 | |||
977 | if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && | ||
978 | root->fs_info->fs_devices->rw_devices <= 2) { | ||
979 | printk("btrfs: unable to go below two devices on raid1\n"); | ||
980 | ret = -EINVAL; | ||
981 | goto out; | ||
982 | } | ||
983 | |||
984 | if (strcmp(device_path, "missing") == 0) { | ||
985 | struct list_head *cur; | ||
986 | struct list_head *devices; | ||
987 | struct btrfs_device *tmp; | ||
988 | |||
989 | device = NULL; | ||
990 | devices = &root->fs_info->fs_devices->devices; | ||
991 | list_for_each(cur, devices) { | ||
992 | tmp = list_entry(cur, struct btrfs_device, dev_list); | ||
993 | if (tmp->in_fs_metadata && !tmp->bdev) { | ||
994 | device = tmp; | ||
995 | break; | ||
996 | } | ||
997 | } | ||
998 | bdev = NULL; | ||
999 | bh = NULL; | ||
1000 | disk_super = NULL; | ||
1001 | if (!device) { | ||
1002 | printk("btrfs: no missing devices found to remove\n"); | ||
1003 | goto out; | ||
1004 | } | ||
1005 | } else { | ||
1006 | bdev = open_bdev_excl(device_path, MS_RDONLY, | ||
1007 | root->fs_info->bdev_holder); | ||
1008 | if (IS_ERR(bdev)) { | ||
1009 | ret = PTR_ERR(bdev); | ||
1010 | goto out; | ||
1011 | } | ||
1012 | |||
1013 | set_blocksize(bdev, 4096); | ||
1014 | bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096); | ||
1015 | if (!bh) { | ||
1016 | ret = -EIO; | ||
1017 | goto error_close; | ||
1018 | } | ||
1019 | disk_super = (struct btrfs_super_block *)bh->b_data; | ||
1020 | if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, | ||
1021 | sizeof(disk_super->magic))) { | ||
1022 | ret = -ENOENT; | ||
1023 | goto error_brelse; | ||
1024 | } | ||
1025 | devid = le64_to_cpu(disk_super->dev_item.devid); | ||
1026 | dev_uuid = disk_super->dev_item.uuid; | ||
1027 | device = btrfs_find_device(root, devid, dev_uuid, | ||
1028 | disk_super->fsid); | ||
1029 | if (!device) { | ||
1030 | ret = -ENOENT; | ||
1031 | goto error_brelse; | ||
1032 | } | ||
1033 | } | ||
1034 | |||
1035 | if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { | ||
1036 | printk("btrfs: unable to remove the only writeable device\n"); | ||
1037 | ret = -EINVAL; | ||
1038 | goto error_brelse; | ||
1039 | } | ||
1040 | |||
1041 | if (device->writeable) { | ||
1042 | list_del_init(&device->dev_alloc_list); | ||
1043 | root->fs_info->fs_devices->rw_devices--; | ||
1044 | } | ||
1045 | |||
1046 | ret = btrfs_shrink_device(device, 0); | ||
1047 | if (ret) | ||
1048 | goto error_brelse; | ||
1049 | |||
1050 | ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); | ||
1051 | if (ret) | ||
1052 | goto error_brelse; | ||
1053 | |||
1054 | device->in_fs_metadata = 0; | ||
1055 | if (device->fs_devices == root->fs_info->fs_devices) { | ||
1056 | list_del_init(&device->dev_list); | ||
1057 | root->fs_info->fs_devices->num_devices--; | ||
1058 | if (device->bdev) | ||
1059 | device->fs_devices->open_devices--; | ||
1060 | } | ||
1061 | |||
1062 | next_device = list_entry(root->fs_info->fs_devices->devices.next, | ||
1063 | struct btrfs_device, dev_list); | ||
1064 | if (device->bdev == root->fs_info->sb->s_bdev) | ||
1065 | root->fs_info->sb->s_bdev = next_device->bdev; | ||
1066 | if (device->bdev == root->fs_info->fs_devices->latest_bdev) | ||
1067 | root->fs_info->fs_devices->latest_bdev = next_device->bdev; | ||
1068 | |||
1069 | num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; | ||
1070 | btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices); | ||
1071 | |||
1072 | if (device->fs_devices != root->fs_info->fs_devices) { | ||
1073 | BUG_ON(device->writeable); | ||
1074 | brelse(bh); | ||
1075 | if (bdev) | ||
1076 | close_bdev_excl(bdev); | ||
1077 | |||
1078 | if (device->bdev) { | ||
1079 | close_bdev_excl(device->bdev); | ||
1080 | device->bdev = NULL; | ||
1081 | device->fs_devices->open_devices--; | ||
1082 | } | ||
1083 | if (device->fs_devices->open_devices == 0) { | ||
1084 | struct btrfs_fs_devices *fs_devices; | ||
1085 | fs_devices = root->fs_info->fs_devices; | ||
1086 | while (fs_devices) { | ||
1087 | if (fs_devices->seed == device->fs_devices) | ||
1088 | break; | ||
1089 | fs_devices = fs_devices->seed; | ||
1090 | } | ||
1091 | fs_devices->seed = device->fs_devices->seed; | ||
1092 | device->fs_devices->seed = NULL; | ||
1093 | __btrfs_close_devices(device->fs_devices); | ||
1094 | } | ||
1095 | ret = 0; | ||
1096 | goto out; | ||
1097 | } | ||
1098 | |||
1099 | /* | ||
1100 | * at this point, the device is zero sized. We want to | ||
1101 | * remove it from the devices list and zero out the old super | ||
1102 | */ | ||
1103 | if (device->writeable) { | ||
1104 | /* make sure this device isn't detected as part of | ||
1105 | * the FS anymore | ||
1106 | */ | ||
1107 | memset(&disk_super->magic, 0, sizeof(disk_super->magic)); | ||
1108 | set_buffer_dirty(bh); | ||
1109 | sync_dirty_buffer(bh); | ||
1110 | } | ||
1111 | brelse(bh); | ||
1112 | |||
1113 | if (device->bdev) { | ||
1114 | /* one close for the device struct or super_block */ | ||
1115 | close_bdev_excl(device->bdev); | ||
1116 | } | ||
1117 | if (bdev) { | ||
1118 | /* one close for us */ | ||
1119 | close_bdev_excl(bdev); | ||
1120 | } | ||
1121 | kfree(device->name); | ||
1122 | kfree(device); | ||
1123 | ret = 0; | ||
1124 | goto out; | ||
1125 | |||
1126 | error_brelse: | ||
1127 | brelse(bh); | ||
1128 | error_close: | ||
1129 | if (bdev) | ||
1130 | close_bdev_excl(bdev); | ||
1131 | out: | ||
1132 | mutex_unlock(&root->fs_info->volume_mutex); | ||
1133 | mutex_unlock(&uuid_mutex); | ||
1134 | return ret; | ||
1135 | } | ||
1136 | |||
1137 | /* | ||
1138 | * does all the dirty work required for changing file system's UUID. | ||
1139 | */ | ||
1140 | static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans, | ||
1141 | struct btrfs_root *root) | ||
1142 | { | ||
1143 | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | ||
1144 | struct btrfs_fs_devices *old_devices; | ||
1145 | struct btrfs_super_block *disk_super = &root->fs_info->super_copy; | ||
1146 | struct btrfs_device *device; | ||
1147 | u64 super_flags; | ||
1148 | |||
1149 | BUG_ON(!mutex_is_locked(&uuid_mutex)); | ||
1150 | if (!fs_devices->seeding || fs_devices->opened != 1) | ||
1151 | return -EINVAL; | ||
1152 | |||
1153 | old_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); | ||
1154 | if (!old_devices) | ||
1155 | return -ENOMEM; | ||
1156 | |||
1157 | memcpy(old_devices, fs_devices, sizeof(*old_devices)); | ||
1158 | old_devices->opened = 1; | ||
1159 | old_devices->sprouted = 1; | ||
1160 | INIT_LIST_HEAD(&old_devices->devices); | ||
1161 | INIT_LIST_HEAD(&old_devices->alloc_list); | ||
1162 | list_splice_init(&fs_devices->devices, &old_devices->devices); | ||
1163 | list_splice_init(&fs_devices->alloc_list, &old_devices->alloc_list); | ||
1164 | list_for_each_entry(device, &old_devices->devices, dev_list) { | ||
1165 | device->fs_devices = old_devices; | ||
1166 | } | ||
1167 | list_add(&old_devices->list, &fs_uuids); | ||
1168 | |||
1169 | fs_devices->seeding = 0; | ||
1170 | fs_devices->num_devices = 0; | ||
1171 | fs_devices->open_devices = 0; | ||
1172 | fs_devices->seed = old_devices; | ||
1173 | |||
1174 | generate_random_uuid(fs_devices->fsid); | ||
1175 | memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | ||
1176 | memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); | ||
1177 | super_flags = btrfs_super_flags(disk_super) & | ||
1178 | ~BTRFS_SUPER_FLAG_SEEDING; | ||
1179 | btrfs_set_super_flags(disk_super, super_flags); | ||
1180 | |||
1181 | return 0; | ||
1182 | } | ||
1183 | |||
1184 | /* | ||
1185 | * strore the expected generation for seed devices in device items. | ||
1186 | */ | ||
1187 | static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, | ||
1188 | struct btrfs_root *root) | ||
1189 | { | ||
1190 | struct btrfs_path *path; | ||
1191 | struct extent_buffer *leaf; | ||
1192 | struct btrfs_dev_item *dev_item; | ||
1193 | struct btrfs_device *device; | ||
1194 | struct btrfs_key key; | ||
1195 | u8 fs_uuid[BTRFS_UUID_SIZE]; | ||
1196 | u8 dev_uuid[BTRFS_UUID_SIZE]; | ||
1197 | u64 devid; | ||
1198 | int ret; | ||
1199 | |||
1200 | path = btrfs_alloc_path(); | ||
1201 | if (!path) | ||
1202 | return -ENOMEM; | ||
1203 | |||
1204 | root = root->fs_info->chunk_root; | ||
1205 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
1206 | key.offset = 0; | ||
1207 | key.type = BTRFS_DEV_ITEM_KEY; | ||
1208 | |||
1209 | while (1) { | ||
1210 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | ||
1211 | if (ret < 0) | ||
1212 | goto error; | ||
1213 | |||
1214 | leaf = path->nodes[0]; | ||
1215 | next_slot: | ||
1216 | if (path->slots[0] >= btrfs_header_nritems(leaf)) { | ||
1217 | ret = btrfs_next_leaf(root, path); | ||
1218 | if (ret > 0) | ||
1219 | break; | ||
1220 | if (ret < 0) | ||
1221 | goto error; | ||
1222 | leaf = path->nodes[0]; | ||
1223 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
1224 | btrfs_release_path(root, path); | ||
1225 | continue; | ||
1226 | } | ||
1227 | |||
1228 | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | ||
1229 | if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || | ||
1230 | key.type != BTRFS_DEV_ITEM_KEY) | ||
1231 | break; | ||
1232 | |||
1233 | dev_item = btrfs_item_ptr(leaf, path->slots[0], | ||
1234 | struct btrfs_dev_item); | ||
1235 | devid = btrfs_device_id(leaf, dev_item); | ||
1236 | read_extent_buffer(leaf, dev_uuid, | ||
1237 | (unsigned long)btrfs_device_uuid(dev_item), | ||
1238 | BTRFS_UUID_SIZE); | ||
1239 | read_extent_buffer(leaf, fs_uuid, | ||
1240 | (unsigned long)btrfs_device_fsid(dev_item), | ||
1241 | BTRFS_UUID_SIZE); | ||
1242 | device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | ||
1243 | BUG_ON(!device); | ||
1244 | |||
1245 | if (device->fs_devices->seeding) { | ||
1246 | btrfs_set_device_generation(leaf, dev_item, | ||
1247 | device->generation); | ||
1248 | btrfs_mark_buffer_dirty(leaf); | ||
1249 | } | ||
1250 | |||
1251 | path->slots[0]++; | ||
1252 | goto next_slot; | ||
1253 | } | ||
1254 | ret = 0; | ||
1255 | error: | ||
1256 | btrfs_free_path(path); | ||
1257 | return ret; | ||
1258 | } | ||
1259 | |||
1260 | int btrfs_init_new_device(struct btrfs_root *root, char *device_path) | ||
1261 | { | ||
1262 | struct btrfs_trans_handle *trans; | ||
1263 | struct btrfs_device *device; | ||
1264 | struct block_device *bdev; | ||
1265 | struct list_head *cur; | ||
1266 | struct list_head *devices; | ||
1267 | struct super_block *sb = root->fs_info->sb; | ||
1268 | u64 total_bytes; | ||
1269 | int seeding_dev = 0; | ||
1270 | int ret = 0; | ||
1271 | |||
1272 | if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) | ||
1273 | return -EINVAL; | ||
1274 | |||
1275 | bdev = open_bdev_excl(device_path, 0, root->fs_info->bdev_holder); | ||
1276 | if (!bdev) { | ||
1277 | return -EIO; | ||
1278 | } | ||
1279 | |||
1280 | if (root->fs_info->fs_devices->seeding) { | ||
1281 | seeding_dev = 1; | ||
1282 | down_write(&sb->s_umount); | ||
1283 | mutex_lock(&uuid_mutex); | ||
1284 | } | ||
1285 | |||
1286 | filemap_write_and_wait(bdev->bd_inode->i_mapping); | ||
1287 | mutex_lock(&root->fs_info->volume_mutex); | ||
1288 | |||
1289 | devices = &root->fs_info->fs_devices->devices; | ||
1290 | list_for_each(cur, devices) { | ||
1291 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
1292 | if (device->bdev == bdev) { | ||
1293 | ret = -EEXIST; | ||
1294 | goto error; | ||
1295 | } | ||
1296 | } | ||
1297 | |||
1298 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
1299 | if (!device) { | ||
1300 | /* we can safely leave the fs_devices entry around */ | ||
1301 | ret = -ENOMEM; | ||
1302 | goto error; | ||
1303 | } | ||
1304 | |||
1305 | device->name = kstrdup(device_path, GFP_NOFS); | ||
1306 | if (!device->name) { | ||
1307 | kfree(device); | ||
1308 | ret = -ENOMEM; | ||
1309 | goto error; | ||
1310 | } | ||
1311 | |||
1312 | ret = find_next_devid(root, &device->devid); | ||
1313 | if (ret) { | ||
1314 | kfree(device); | ||
1315 | goto error; | ||
1316 | } | ||
1317 | |||
1318 | trans = btrfs_start_transaction(root, 1); | ||
1319 | lock_chunks(root); | ||
1320 | |||
1321 | device->barriers = 1; | ||
1322 | device->writeable = 1; | ||
1323 | device->work.func = pending_bios_fn; | ||
1324 | generate_random_uuid(device->uuid); | ||
1325 | spin_lock_init(&device->io_lock); | ||
1326 | device->generation = trans->transid; | ||
1327 | device->io_width = root->sectorsize; | ||
1328 | device->io_align = root->sectorsize; | ||
1329 | device->sector_size = root->sectorsize; | ||
1330 | device->total_bytes = i_size_read(bdev->bd_inode); | ||
1331 | device->dev_root = root->fs_info->dev_root; | ||
1332 | device->bdev = bdev; | ||
1333 | device->in_fs_metadata = 1; | ||
1334 | set_blocksize(device->bdev, 4096); | ||
1335 | |||
1336 | if (seeding_dev) { | ||
1337 | sb->s_flags &= ~MS_RDONLY; | ||
1338 | ret = btrfs_prepare_sprout(trans, root); | ||
1339 | BUG_ON(ret); | ||
1340 | } | ||
1341 | |||
1342 | device->fs_devices = root->fs_info->fs_devices; | ||
1343 | list_add(&device->dev_list, &root->fs_info->fs_devices->devices); | ||
1344 | list_add(&device->dev_alloc_list, | ||
1345 | &root->fs_info->fs_devices->alloc_list); | ||
1346 | root->fs_info->fs_devices->num_devices++; | ||
1347 | root->fs_info->fs_devices->open_devices++; | ||
1348 | root->fs_info->fs_devices->rw_devices++; | ||
1349 | root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; | ||
1350 | |||
1351 | total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy); | ||
1352 | btrfs_set_super_total_bytes(&root->fs_info->super_copy, | ||
1353 | total_bytes + device->total_bytes); | ||
1354 | |||
1355 | total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy); | ||
1356 | btrfs_set_super_num_devices(&root->fs_info->super_copy, | ||
1357 | total_bytes + 1); | ||
1358 | |||
1359 | if (seeding_dev) { | ||
1360 | ret = init_first_rw_device(trans, root, device); | ||
1361 | BUG_ON(ret); | ||
1362 | ret = btrfs_finish_sprout(trans, root); | ||
1363 | BUG_ON(ret); | ||
1364 | } else { | ||
1365 | ret = btrfs_add_device(trans, root, device); | ||
1366 | } | ||
1367 | |||
1368 | unlock_chunks(root); | ||
1369 | btrfs_commit_transaction(trans, root); | ||
1370 | |||
1371 | if (seeding_dev) { | ||
1372 | mutex_unlock(&uuid_mutex); | ||
1373 | up_write(&sb->s_umount); | ||
1374 | |||
1375 | ret = btrfs_relocate_sys_chunks(root); | ||
1376 | BUG_ON(ret); | ||
1377 | } | ||
1378 | out: | ||
1379 | mutex_unlock(&root->fs_info->volume_mutex); | ||
1380 | return ret; | ||
1381 | error: | ||
1382 | close_bdev_excl(bdev); | ||
1383 | if (seeding_dev) { | ||
1384 | mutex_unlock(&uuid_mutex); | ||
1385 | up_write(&sb->s_umount); | ||
1386 | } | ||
1387 | goto out; | ||
1388 | } | ||
1389 | |||
1390 | int noinline btrfs_update_device(struct btrfs_trans_handle *trans, | ||
1391 | struct btrfs_device *device) | ||
1392 | { | ||
1393 | int ret; | ||
1394 | struct btrfs_path *path; | ||
1395 | struct btrfs_root *root; | ||
1396 | struct btrfs_dev_item *dev_item; | ||
1397 | struct extent_buffer *leaf; | ||
1398 | struct btrfs_key key; | ||
1399 | |||
1400 | root = device->dev_root->fs_info->chunk_root; | ||
1401 | |||
1402 | path = btrfs_alloc_path(); | ||
1403 | if (!path) | ||
1404 | return -ENOMEM; | ||
1405 | |||
1406 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
1407 | key.type = BTRFS_DEV_ITEM_KEY; | ||
1408 | key.offset = device->devid; | ||
1409 | |||
1410 | ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | ||
1411 | if (ret < 0) | ||
1412 | goto out; | ||
1413 | |||
1414 | if (ret > 0) { | ||
1415 | ret = -ENOENT; | ||
1416 | goto out; | ||
1417 | } | ||
1418 | |||
1419 | leaf = path->nodes[0]; | ||
1420 | dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); | ||
1421 | |||
1422 | btrfs_set_device_id(leaf, dev_item, device->devid); | ||
1423 | btrfs_set_device_type(leaf, dev_item, device->type); | ||
1424 | btrfs_set_device_io_align(leaf, dev_item, device->io_align); | ||
1425 | btrfs_set_device_io_width(leaf, dev_item, device->io_width); | ||
1426 | btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); | ||
1427 | btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); | ||
1428 | btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); | ||
1429 | btrfs_mark_buffer_dirty(leaf); | ||
1430 | |||
1431 | out: | ||
1432 | btrfs_free_path(path); | ||
1433 | return ret; | ||
1434 | } | ||
1435 | |||
1436 | static int __btrfs_grow_device(struct btrfs_trans_handle *trans, | ||
1437 | struct btrfs_device *device, u64 new_size) | ||
1438 | { | ||
1439 | struct btrfs_super_block *super_copy = | ||
1440 | &device->dev_root->fs_info->super_copy; | ||
1441 | u64 old_total = btrfs_super_total_bytes(super_copy); | ||
1442 | u64 diff = new_size - device->total_bytes; | ||
1443 | |||
1444 | if (!device->writeable) | ||
1445 | return -EACCES; | ||
1446 | if (new_size <= device->total_bytes) | ||
1447 | return -EINVAL; | ||
1448 | |||
1449 | btrfs_set_super_total_bytes(super_copy, old_total + diff); | ||
1450 | device->fs_devices->total_rw_bytes += diff; | ||
1451 | |||
1452 | device->total_bytes = new_size; | ||
1453 | return btrfs_update_device(trans, device); | ||
1454 | } | ||
1455 | |||
1456 | int btrfs_grow_device(struct btrfs_trans_handle *trans, | ||
1457 | struct btrfs_device *device, u64 new_size) | ||
1458 | { | ||
1459 | int ret; | ||
1460 | lock_chunks(device->dev_root); | ||
1461 | ret = __btrfs_grow_device(trans, device, new_size); | ||
1462 | unlock_chunks(device->dev_root); | ||
1463 | return ret; | ||
1464 | } | ||
1465 | |||
1466 | static int btrfs_free_chunk(struct btrfs_trans_handle *trans, | ||
1467 | struct btrfs_root *root, | ||
1468 | u64 chunk_tree, u64 chunk_objectid, | ||
1469 | u64 chunk_offset) | ||
1470 | { | ||
1471 | int ret; | ||
1472 | struct btrfs_path *path; | ||
1473 | struct btrfs_key key; | ||
1474 | |||
1475 | root = root->fs_info->chunk_root; | ||
1476 | path = btrfs_alloc_path(); | ||
1477 | if (!path) | ||
1478 | return -ENOMEM; | ||
1479 | |||
1480 | key.objectid = chunk_objectid; | ||
1481 | key.offset = chunk_offset; | ||
1482 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1483 | |||
1484 | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | ||
1485 | BUG_ON(ret); | ||
1486 | |||
1487 | ret = btrfs_del_item(trans, root, path); | ||
1488 | BUG_ON(ret); | ||
1489 | |||
1490 | btrfs_free_path(path); | ||
1491 | return 0; | ||
1492 | } | ||
1493 | |||
1494 | int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 | ||
1495 | chunk_offset) | ||
1496 | { | ||
1497 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1498 | struct btrfs_disk_key *disk_key; | ||
1499 | struct btrfs_chunk *chunk; | ||
1500 | u8 *ptr; | ||
1501 | int ret = 0; | ||
1502 | u32 num_stripes; | ||
1503 | u32 array_size; | ||
1504 | u32 len = 0; | ||
1505 | u32 cur; | ||
1506 | struct btrfs_key key; | ||
1507 | |||
1508 | array_size = btrfs_super_sys_array_size(super_copy); | ||
1509 | |||
1510 | ptr = super_copy->sys_chunk_array; | ||
1511 | cur = 0; | ||
1512 | |||
1513 | while (cur < array_size) { | ||
1514 | disk_key = (struct btrfs_disk_key *)ptr; | ||
1515 | btrfs_disk_key_to_cpu(&key, disk_key); | ||
1516 | |||
1517 | len = sizeof(*disk_key); | ||
1518 | |||
1519 | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
1520 | chunk = (struct btrfs_chunk *)(ptr + len); | ||
1521 | num_stripes = btrfs_stack_chunk_num_stripes(chunk); | ||
1522 | len += btrfs_chunk_item_size(num_stripes); | ||
1523 | } else { | ||
1524 | ret = -EIO; | ||
1525 | break; | ||
1526 | } | ||
1527 | if (key.objectid == chunk_objectid && | ||
1528 | key.offset == chunk_offset) { | ||
1529 | memmove(ptr, ptr + len, array_size - (cur + len)); | ||
1530 | array_size -= len; | ||
1531 | btrfs_set_super_sys_array_size(super_copy, array_size); | ||
1532 | } else { | ||
1533 | ptr += len; | ||
1534 | cur += len; | ||
1535 | } | ||
1536 | } | ||
1537 | return ret; | ||
1538 | } | ||
1539 | |||
1540 | int btrfs_relocate_chunk(struct btrfs_root *root, | ||
1541 | u64 chunk_tree, u64 chunk_objectid, | ||
1542 | u64 chunk_offset) | ||
1543 | { | ||
1544 | struct extent_map_tree *em_tree; | ||
1545 | struct btrfs_root *extent_root; | ||
1546 | struct btrfs_trans_handle *trans; | ||
1547 | struct extent_map *em; | ||
1548 | struct map_lookup *map; | ||
1549 | int ret; | ||
1550 | int i; | ||
1551 | |||
1552 | printk("btrfs relocating chunk %llu\n", | ||
1553 | (unsigned long long)chunk_offset); | ||
1554 | root = root->fs_info->chunk_root; | ||
1555 | extent_root = root->fs_info->extent_root; | ||
1556 | em_tree = &root->fs_info->mapping_tree.map_tree; | ||
1557 | |||
1558 | /* step one, relocate all the extents inside this chunk */ | ||
1559 | ret = btrfs_relocate_block_group(extent_root, chunk_offset); | ||
1560 | BUG_ON(ret); | ||
1561 | |||
1562 | trans = btrfs_start_transaction(root, 1); | ||
1563 | BUG_ON(!trans); | ||
1564 | |||
1565 | lock_chunks(root); | ||
1566 | |||
1567 | /* | ||
1568 | * step two, delete the device extents and the | ||
1569 | * chunk tree entries | ||
1570 | */ | ||
1571 | spin_lock(&em_tree->lock); | ||
1572 | em = lookup_extent_mapping(em_tree, chunk_offset, 1); | ||
1573 | spin_unlock(&em_tree->lock); | ||
1574 | |||
1575 | BUG_ON(em->start > chunk_offset || | ||
1576 | em->start + em->len < chunk_offset); | ||
1577 | map = (struct map_lookup *)em->bdev; | ||
1578 | |||
1579 | for (i = 0; i < map->num_stripes; i++) { | ||
1580 | ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, | ||
1581 | map->stripes[i].physical); | ||
1582 | BUG_ON(ret); | ||
1583 | |||
1584 | if (map->stripes[i].dev) { | ||
1585 | ret = btrfs_update_device(trans, map->stripes[i].dev); | ||
1586 | BUG_ON(ret); | ||
1587 | } | ||
1588 | } | ||
1589 | ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, | ||
1590 | chunk_offset); | ||
1591 | |||
1592 | BUG_ON(ret); | ||
1593 | |||
1594 | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
1595 | ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); | ||
1596 | BUG_ON(ret); | ||
1597 | } | ||
1598 | |||
1599 | ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); | ||
1600 | BUG_ON(ret); | ||
1601 | |||
1602 | spin_lock(&em_tree->lock); | ||
1603 | remove_extent_mapping(em_tree, em); | ||
1604 | spin_unlock(&em_tree->lock); | ||
1605 | |||
1606 | kfree(map); | ||
1607 | em->bdev = NULL; | ||
1608 | |||
1609 | /* once for the tree */ | ||
1610 | free_extent_map(em); | ||
1611 | /* once for us */ | ||
1612 | free_extent_map(em); | ||
1613 | |||
1614 | unlock_chunks(root); | ||
1615 | btrfs_end_transaction(trans, root); | ||
1616 | return 0; | ||
1617 | } | ||
1618 | |||
1619 | static int btrfs_relocate_sys_chunks(struct btrfs_root *root) | ||
1620 | { | ||
1621 | struct btrfs_root *chunk_root = root->fs_info->chunk_root; | ||
1622 | struct btrfs_path *path; | ||
1623 | struct extent_buffer *leaf; | ||
1624 | struct btrfs_chunk *chunk; | ||
1625 | struct btrfs_key key; | ||
1626 | struct btrfs_key found_key; | ||
1627 | u64 chunk_tree = chunk_root->root_key.objectid; | ||
1628 | u64 chunk_type; | ||
1629 | int ret; | ||
1630 | |||
1631 | path = btrfs_alloc_path(); | ||
1632 | if (!path) | ||
1633 | return -ENOMEM; | ||
1634 | |||
1635 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
1636 | key.offset = (u64)-1; | ||
1637 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1638 | |||
1639 | while (1) { | ||
1640 | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | ||
1641 | if (ret < 0) | ||
1642 | goto error; | ||
1643 | BUG_ON(ret == 0); | ||
1644 | |||
1645 | ret = btrfs_previous_item(chunk_root, path, key.objectid, | ||
1646 | key.type); | ||
1647 | if (ret < 0) | ||
1648 | goto error; | ||
1649 | if (ret > 0) | ||
1650 | break; | ||
1651 | |||
1652 | leaf = path->nodes[0]; | ||
1653 | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | ||
1654 | |||
1655 | chunk = btrfs_item_ptr(leaf, path->slots[0], | ||
1656 | struct btrfs_chunk); | ||
1657 | chunk_type = btrfs_chunk_type(leaf, chunk); | ||
1658 | btrfs_release_path(chunk_root, path); | ||
1659 | |||
1660 | if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
1661 | ret = btrfs_relocate_chunk(chunk_root, chunk_tree, | ||
1662 | found_key.objectid, | ||
1663 | found_key.offset); | ||
1664 | BUG_ON(ret); | ||
1665 | } | ||
1666 | |||
1667 | if (found_key.offset == 0) | ||
1668 | break; | ||
1669 | key.offset = found_key.offset - 1; | ||
1670 | } | ||
1671 | ret = 0; | ||
1672 | error: | ||
1673 | btrfs_free_path(path); | ||
1674 | return ret; | ||
1675 | } | ||
1676 | |||
1677 | static u64 div_factor(u64 num, int factor) | ||
1678 | { | ||
1679 | if (factor == 10) | ||
1680 | return num; | ||
1681 | num *= factor; | ||
1682 | do_div(num, 10); | ||
1683 | return num; | ||
1684 | } | ||
1685 | |||
1686 | int btrfs_balance(struct btrfs_root *dev_root) | ||
1687 | { | ||
1688 | int ret; | ||
1689 | struct list_head *cur; | ||
1690 | struct list_head *devices = &dev_root->fs_info->fs_devices->devices; | ||
1691 | struct btrfs_device *device; | ||
1692 | u64 old_size; | ||
1693 | u64 size_to_free; | ||
1694 | struct btrfs_path *path; | ||
1695 | struct btrfs_key key; | ||
1696 | struct btrfs_chunk *chunk; | ||
1697 | struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root; | ||
1698 | struct btrfs_trans_handle *trans; | ||
1699 | struct btrfs_key found_key; | ||
1700 | |||
1701 | if (dev_root->fs_info->sb->s_flags & MS_RDONLY) | ||
1702 | return -EROFS; | ||
1703 | |||
1704 | mutex_lock(&dev_root->fs_info->volume_mutex); | ||
1705 | dev_root = dev_root->fs_info->dev_root; | ||
1706 | |||
1707 | /* step one make some room on all the devices */ | ||
1708 | list_for_each(cur, devices) { | ||
1709 | device = list_entry(cur, struct btrfs_device, dev_list); | ||
1710 | old_size = device->total_bytes; | ||
1711 | size_to_free = div_factor(old_size, 1); | ||
1712 | size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); | ||
1713 | if (!device->writeable || | ||
1714 | device->total_bytes - device->bytes_used > size_to_free) | ||
1715 | continue; | ||
1716 | |||
1717 | ret = btrfs_shrink_device(device, old_size - size_to_free); | ||
1718 | BUG_ON(ret); | ||
1719 | |||
1720 | trans = btrfs_start_transaction(dev_root, 1); | ||
1721 | BUG_ON(!trans); | ||
1722 | |||
1723 | ret = btrfs_grow_device(trans, device, old_size); | ||
1724 | BUG_ON(ret); | ||
1725 | |||
1726 | btrfs_end_transaction(trans, dev_root); | ||
1727 | } | ||
1728 | |||
1729 | /* step two, relocate all the chunks */ | ||
1730 | path = btrfs_alloc_path(); | ||
1731 | BUG_ON(!path); | ||
1732 | |||
1733 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
1734 | key.offset = (u64)-1; | ||
1735 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
1736 | |||
1737 | while(1) { | ||
1738 | ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); | ||
1739 | if (ret < 0) | ||
1740 | goto error; | ||
1741 | |||
1742 | /* | ||
1743 | * this shouldn't happen, it means the last relocate | ||
1744 | * failed | ||
1745 | */ | ||
1746 | if (ret == 0) | ||
1747 | break; | ||
1748 | |||
1749 | ret = btrfs_previous_item(chunk_root, path, 0, | ||
1750 | BTRFS_CHUNK_ITEM_KEY); | ||
1751 | if (ret) | ||
1752 | break; | ||
1753 | |||
1754 | btrfs_item_key_to_cpu(path->nodes[0], &found_key, | ||
1755 | path->slots[0]); | ||
1756 | if (found_key.objectid != key.objectid) | ||
1757 | break; | ||
1758 | |||
1759 | chunk = btrfs_item_ptr(path->nodes[0], | ||
1760 | path->slots[0], | ||
1761 | struct btrfs_chunk); | ||
1762 | key.offset = found_key.offset; | ||
1763 | /* chunk zero is special */ | ||
1764 | if (key.offset == 0) | ||
1765 | break; | ||
1766 | |||
1767 | btrfs_release_path(chunk_root, path); | ||
1768 | ret = btrfs_relocate_chunk(chunk_root, | ||
1769 | chunk_root->root_key.objectid, | ||
1770 | found_key.objectid, | ||
1771 | found_key.offset); | ||
1772 | BUG_ON(ret); | ||
1773 | } | ||
1774 | ret = 0; | ||
1775 | error: | ||
1776 | btrfs_free_path(path); | ||
1777 | mutex_unlock(&dev_root->fs_info->volume_mutex); | ||
1778 | return ret; | ||
1779 | } | ||
1780 | |||
1781 | /* | ||
1782 | * shrinking a device means finding all of the device extents past | ||
1783 | * the new size, and then following the back refs to the chunks. | ||
1784 | * The chunk relocation code actually frees the device extent | ||
1785 | */ | ||
1786 | int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) | ||
1787 | { | ||
1788 | struct btrfs_trans_handle *trans; | ||
1789 | struct btrfs_root *root = device->dev_root; | ||
1790 | struct btrfs_dev_extent *dev_extent = NULL; | ||
1791 | struct btrfs_path *path; | ||
1792 | u64 length; | ||
1793 | u64 chunk_tree; | ||
1794 | u64 chunk_objectid; | ||
1795 | u64 chunk_offset; | ||
1796 | int ret; | ||
1797 | int slot; | ||
1798 | struct extent_buffer *l; | ||
1799 | struct btrfs_key key; | ||
1800 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1801 | u64 old_total = btrfs_super_total_bytes(super_copy); | ||
1802 | u64 diff = device->total_bytes - new_size; | ||
1803 | |||
1804 | if (new_size >= device->total_bytes) | ||
1805 | return -EINVAL; | ||
1806 | |||
1807 | path = btrfs_alloc_path(); | ||
1808 | if (!path) | ||
1809 | return -ENOMEM; | ||
1810 | |||
1811 | trans = btrfs_start_transaction(root, 1); | ||
1812 | if (!trans) { | ||
1813 | ret = -ENOMEM; | ||
1814 | goto done; | ||
1815 | } | ||
1816 | |||
1817 | path->reada = 2; | ||
1818 | |||
1819 | lock_chunks(root); | ||
1820 | |||
1821 | device->total_bytes = new_size; | ||
1822 | if (device->writeable) | ||
1823 | device->fs_devices->total_rw_bytes -= diff; | ||
1824 | ret = btrfs_update_device(trans, device); | ||
1825 | if (ret) { | ||
1826 | unlock_chunks(root); | ||
1827 | btrfs_end_transaction(trans, root); | ||
1828 | goto done; | ||
1829 | } | ||
1830 | WARN_ON(diff > old_total); | ||
1831 | btrfs_set_super_total_bytes(super_copy, old_total - diff); | ||
1832 | unlock_chunks(root); | ||
1833 | btrfs_end_transaction(trans, root); | ||
1834 | |||
1835 | key.objectid = device->devid; | ||
1836 | key.offset = (u64)-1; | ||
1837 | key.type = BTRFS_DEV_EXTENT_KEY; | ||
1838 | |||
1839 | while (1) { | ||
1840 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
1841 | if (ret < 0) | ||
1842 | goto done; | ||
1843 | |||
1844 | ret = btrfs_previous_item(root, path, 0, key.type); | ||
1845 | if (ret < 0) | ||
1846 | goto done; | ||
1847 | if (ret) { | ||
1848 | ret = 0; | ||
1849 | goto done; | ||
1850 | } | ||
1851 | |||
1852 | l = path->nodes[0]; | ||
1853 | slot = path->slots[0]; | ||
1854 | btrfs_item_key_to_cpu(l, &key, path->slots[0]); | ||
1855 | |||
1856 | if (key.objectid != device->devid) | ||
1857 | goto done; | ||
1858 | |||
1859 | dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | ||
1860 | length = btrfs_dev_extent_length(l, dev_extent); | ||
1861 | |||
1862 | if (key.offset + length <= new_size) | ||
1863 | goto done; | ||
1864 | |||
1865 | chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | ||
1866 | chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | ||
1867 | chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | ||
1868 | btrfs_release_path(root, path); | ||
1869 | |||
1870 | ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, | ||
1871 | chunk_offset); | ||
1872 | if (ret) | ||
1873 | goto done; | ||
1874 | } | ||
1875 | |||
1876 | done: | ||
1877 | btrfs_free_path(path); | ||
1878 | return ret; | ||
1879 | } | ||
1880 | |||
1881 | int btrfs_add_system_chunk(struct btrfs_trans_handle *trans, | ||
1882 | struct btrfs_root *root, | ||
1883 | struct btrfs_key *key, | ||
1884 | struct btrfs_chunk *chunk, int item_size) | ||
1885 | { | ||
1886 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
1887 | struct btrfs_disk_key disk_key; | ||
1888 | u32 array_size; | ||
1889 | u8 *ptr; | ||
1890 | |||
1891 | array_size = btrfs_super_sys_array_size(super_copy); | ||
1892 | if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) | ||
1893 | return -EFBIG; | ||
1894 | |||
1895 | ptr = super_copy->sys_chunk_array + array_size; | ||
1896 | btrfs_cpu_key_to_disk(&disk_key, key); | ||
1897 | memcpy(ptr, &disk_key, sizeof(disk_key)); | ||
1898 | ptr += sizeof(disk_key); | ||
1899 | memcpy(ptr, chunk, item_size); | ||
1900 | item_size += sizeof(disk_key); | ||
1901 | btrfs_set_super_sys_array_size(super_copy, array_size + item_size); | ||
1902 | return 0; | ||
1903 | } | ||
1904 | |||
1905 | static u64 noinline chunk_bytes_by_type(u64 type, u64 calc_size, | ||
1906 | int num_stripes, int sub_stripes) | ||
1907 | { | ||
1908 | if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP)) | ||
1909 | return calc_size; | ||
1910 | else if (type & BTRFS_BLOCK_GROUP_RAID10) | ||
1911 | return calc_size * (num_stripes / sub_stripes); | ||
1912 | else | ||
1913 | return calc_size * num_stripes; | ||
1914 | } | ||
1915 | |||
1916 | static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | ||
1917 | struct btrfs_root *extent_root, | ||
1918 | struct map_lookup **map_ret, | ||
1919 | u64 *num_bytes, u64 *stripe_size, | ||
1920 | u64 start, u64 type) | ||
1921 | { | ||
1922 | struct btrfs_fs_info *info = extent_root->fs_info; | ||
1923 | struct btrfs_device *device = NULL; | ||
1924 | struct btrfs_fs_devices *fs_devices = info->fs_devices; | ||
1925 | struct list_head *cur; | ||
1926 | struct map_lookup *map = NULL; | ||
1927 | struct extent_map_tree *em_tree; | ||
1928 | struct extent_map *em; | ||
1929 | struct list_head private_devs; | ||
1930 | int min_stripe_size = 1 * 1024 * 1024; | ||
1931 | u64 calc_size = 1024 * 1024 * 1024; | ||
1932 | u64 max_chunk_size = calc_size; | ||
1933 | u64 min_free; | ||
1934 | u64 avail; | ||
1935 | u64 max_avail = 0; | ||
1936 | u64 dev_offset; | ||
1937 | int num_stripes = 1; | ||
1938 | int min_stripes = 1; | ||
1939 | int sub_stripes = 0; | ||
1940 | int looped = 0; | ||
1941 | int ret; | ||
1942 | int index; | ||
1943 | int stripe_len = 64 * 1024; | ||
1944 | |||
1945 | if ((type & BTRFS_BLOCK_GROUP_RAID1) && | ||
1946 | (type & BTRFS_BLOCK_GROUP_DUP)) { | ||
1947 | WARN_ON(1); | ||
1948 | type &= ~BTRFS_BLOCK_GROUP_DUP; | ||
1949 | } | ||
1950 | if (list_empty(&fs_devices->alloc_list)) | ||
1951 | return -ENOSPC; | ||
1952 | |||
1953 | if (type & (BTRFS_BLOCK_GROUP_RAID0)) { | ||
1954 | num_stripes = fs_devices->rw_devices; | ||
1955 | min_stripes = 2; | ||
1956 | } | ||
1957 | if (type & (BTRFS_BLOCK_GROUP_DUP)) { | ||
1958 | num_stripes = 2; | ||
1959 | min_stripes = 2; | ||
1960 | } | ||
1961 | if (type & (BTRFS_BLOCK_GROUP_RAID1)) { | ||
1962 | num_stripes = min_t(u64, 2, fs_devices->rw_devices); | ||
1963 | if (num_stripes < 2) | ||
1964 | return -ENOSPC; | ||
1965 | min_stripes = 2; | ||
1966 | } | ||
1967 | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | ||
1968 | num_stripes = fs_devices->rw_devices; | ||
1969 | if (num_stripes < 4) | ||
1970 | return -ENOSPC; | ||
1971 | num_stripes &= ~(u32)1; | ||
1972 | sub_stripes = 2; | ||
1973 | min_stripes = 4; | ||
1974 | } | ||
1975 | |||
1976 | if (type & BTRFS_BLOCK_GROUP_DATA) { | ||
1977 | max_chunk_size = 10 * calc_size; | ||
1978 | min_stripe_size = 64 * 1024 * 1024; | ||
1979 | } else if (type & BTRFS_BLOCK_GROUP_METADATA) { | ||
1980 | max_chunk_size = 4 * calc_size; | ||
1981 | min_stripe_size = 32 * 1024 * 1024; | ||
1982 | } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
1983 | calc_size = 8 * 1024 * 1024; | ||
1984 | max_chunk_size = calc_size * 2; | ||
1985 | min_stripe_size = 1 * 1024 * 1024; | ||
1986 | } | ||
1987 | |||
1988 | /* we don't want a chunk larger than 10% of writeable space */ | ||
1989 | max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), | ||
1990 | max_chunk_size); | ||
1991 | |||
1992 | again: | ||
1993 | if (!map || map->num_stripes != num_stripes) { | ||
1994 | kfree(map); | ||
1995 | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | ||
1996 | if (!map) | ||
1997 | return -ENOMEM; | ||
1998 | map->num_stripes = num_stripes; | ||
1999 | } | ||
2000 | |||
2001 | if (calc_size * num_stripes > max_chunk_size) { | ||
2002 | calc_size = max_chunk_size; | ||
2003 | do_div(calc_size, num_stripes); | ||
2004 | do_div(calc_size, stripe_len); | ||
2005 | calc_size *= stripe_len; | ||
2006 | } | ||
2007 | /* we don't want tiny stripes */ | ||
2008 | calc_size = max_t(u64, min_stripe_size, calc_size); | ||
2009 | |||
2010 | do_div(calc_size, stripe_len); | ||
2011 | calc_size *= stripe_len; | ||
2012 | |||
2013 | cur = fs_devices->alloc_list.next; | ||
2014 | index = 0; | ||
2015 | |||
2016 | if (type & BTRFS_BLOCK_GROUP_DUP) | ||
2017 | min_free = calc_size * 2; | ||
2018 | else | ||
2019 | min_free = calc_size; | ||
2020 | |||
2021 | /* | ||
2022 | * we add 1MB because we never use the first 1MB of the device, unless | ||
2023 | * we've looped, then we are likely allocating the maximum amount of | ||
2024 | * space left already | ||
2025 | */ | ||
2026 | if (!looped) | ||
2027 | min_free += 1024 * 1024; | ||
2028 | |||
2029 | INIT_LIST_HEAD(&private_devs); | ||
2030 | while(index < num_stripes) { | ||
2031 | device = list_entry(cur, struct btrfs_device, dev_alloc_list); | ||
2032 | BUG_ON(!device->writeable); | ||
2033 | if (device->total_bytes > device->bytes_used) | ||
2034 | avail = device->total_bytes - device->bytes_used; | ||
2035 | else | ||
2036 | avail = 0; | ||
2037 | cur = cur->next; | ||
2038 | |||
2039 | if (device->in_fs_metadata && avail >= min_free) { | ||
2040 | ret = find_free_dev_extent(trans, device, | ||
2041 | min_free, &dev_offset); | ||
2042 | if (ret == 0) { | ||
2043 | list_move_tail(&device->dev_alloc_list, | ||
2044 | &private_devs); | ||
2045 | map->stripes[index].dev = device; | ||
2046 | map->stripes[index].physical = dev_offset; | ||
2047 | index++; | ||
2048 | if (type & BTRFS_BLOCK_GROUP_DUP) { | ||
2049 | map->stripes[index].dev = device; | ||
2050 | map->stripes[index].physical = | ||
2051 | dev_offset + calc_size; | ||
2052 | index++; | ||
2053 | } | ||
2054 | } | ||
2055 | } else if (device->in_fs_metadata && avail > max_avail) | ||
2056 | max_avail = avail; | ||
2057 | if (cur == &fs_devices->alloc_list) | ||
2058 | break; | ||
2059 | } | ||
2060 | list_splice(&private_devs, &fs_devices->alloc_list); | ||
2061 | if (index < num_stripes) { | ||
2062 | if (index >= min_stripes) { | ||
2063 | num_stripes = index; | ||
2064 | if (type & (BTRFS_BLOCK_GROUP_RAID10)) { | ||
2065 | num_stripes /= sub_stripes; | ||
2066 | num_stripes *= sub_stripes; | ||
2067 | } | ||
2068 | looped = 1; | ||
2069 | goto again; | ||
2070 | } | ||
2071 | if (!looped && max_avail > 0) { | ||
2072 | looped = 1; | ||
2073 | calc_size = max_avail; | ||
2074 | goto again; | ||
2075 | } | ||
2076 | kfree(map); | ||
2077 | return -ENOSPC; | ||
2078 | } | ||
2079 | map->sector_size = extent_root->sectorsize; | ||
2080 | map->stripe_len = stripe_len; | ||
2081 | map->io_align = stripe_len; | ||
2082 | map->io_width = stripe_len; | ||
2083 | map->type = type; | ||
2084 | map->num_stripes = num_stripes; | ||
2085 | map->sub_stripes = sub_stripes; | ||
2086 | |||
2087 | *map_ret = map; | ||
2088 | *stripe_size = calc_size; | ||
2089 | *num_bytes = chunk_bytes_by_type(type, calc_size, | ||
2090 | num_stripes, sub_stripes); | ||
2091 | |||
2092 | em = alloc_extent_map(GFP_NOFS); | ||
2093 | if (!em) { | ||
2094 | kfree(map); | ||
2095 | return -ENOMEM; | ||
2096 | } | ||
2097 | em->bdev = (struct block_device *)map; | ||
2098 | em->start = start; | ||
2099 | em->len = *num_bytes; | ||
2100 | em->block_start = 0; | ||
2101 | em->block_len = em->len; | ||
2102 | |||
2103 | em_tree = &extent_root->fs_info->mapping_tree.map_tree; | ||
2104 | spin_lock(&em_tree->lock); | ||
2105 | ret = add_extent_mapping(em_tree, em); | ||
2106 | spin_unlock(&em_tree->lock); | ||
2107 | BUG_ON(ret); | ||
2108 | free_extent_map(em); | ||
2109 | |||
2110 | ret = btrfs_make_block_group(trans, extent_root, 0, type, | ||
2111 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, | ||
2112 | start, *num_bytes); | ||
2113 | BUG_ON(ret); | ||
2114 | |||
2115 | index = 0; | ||
2116 | while (index < map->num_stripes) { | ||
2117 | device = map->stripes[index].dev; | ||
2118 | dev_offset = map->stripes[index].physical; | ||
2119 | |||
2120 | ret = btrfs_alloc_dev_extent(trans, device, | ||
2121 | info->chunk_root->root_key.objectid, | ||
2122 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, | ||
2123 | start, dev_offset, calc_size); | ||
2124 | BUG_ON(ret); | ||
2125 | index++; | ||
2126 | } | ||
2127 | |||
2128 | return 0; | ||
2129 | } | ||
2130 | |||
2131 | static int __finish_chunk_alloc(struct btrfs_trans_handle *trans, | ||
2132 | struct btrfs_root *extent_root, | ||
2133 | struct map_lookup *map, u64 chunk_offset, | ||
2134 | u64 chunk_size, u64 stripe_size) | ||
2135 | { | ||
2136 | u64 dev_offset; | ||
2137 | struct btrfs_key key; | ||
2138 | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | ||
2139 | struct btrfs_device *device; | ||
2140 | struct btrfs_chunk *chunk; | ||
2141 | struct btrfs_stripe *stripe; | ||
2142 | size_t item_size = btrfs_chunk_item_size(map->num_stripes); | ||
2143 | int index = 0; | ||
2144 | int ret; | ||
2145 | |||
2146 | chunk = kzalloc(item_size, GFP_NOFS); | ||
2147 | if (!chunk) | ||
2148 | return -ENOMEM; | ||
2149 | |||
2150 | index = 0; | ||
2151 | while (index < map->num_stripes) { | ||
2152 | device = map->stripes[index].dev; | ||
2153 | device->bytes_used += stripe_size; | ||
2154 | ret = btrfs_update_device(trans, device); | ||
2155 | BUG_ON(ret); | ||
2156 | index++; | ||
2157 | } | ||
2158 | |||
2159 | index = 0; | ||
2160 | stripe = &chunk->stripe; | ||
2161 | while (index < map->num_stripes) { | ||
2162 | device = map->stripes[index].dev; | ||
2163 | dev_offset = map->stripes[index].physical; | ||
2164 | |||
2165 | btrfs_set_stack_stripe_devid(stripe, device->devid); | ||
2166 | btrfs_set_stack_stripe_offset(stripe, dev_offset); | ||
2167 | memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); | ||
2168 | stripe++; | ||
2169 | index++; | ||
2170 | } | ||
2171 | |||
2172 | btrfs_set_stack_chunk_length(chunk, chunk_size); | ||
2173 | btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); | ||
2174 | btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); | ||
2175 | btrfs_set_stack_chunk_type(chunk, map->type); | ||
2176 | btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); | ||
2177 | btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); | ||
2178 | btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); | ||
2179 | btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); | ||
2180 | btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); | ||
2181 | |||
2182 | key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; | ||
2183 | key.type = BTRFS_CHUNK_ITEM_KEY; | ||
2184 | key.offset = chunk_offset; | ||
2185 | |||
2186 | ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); | ||
2187 | BUG_ON(ret); | ||
2188 | |||
2189 | if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { | ||
2190 | ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk, | ||
2191 | item_size); | ||
2192 | BUG_ON(ret); | ||
2193 | } | ||
2194 | kfree(chunk); | ||
2195 | return 0; | ||
2196 | } | ||
2197 | |||
2198 | /* | ||
2199 | * Chunk allocation falls into two parts. The first part does works | ||
2200 | * that make the new allocated chunk useable, but not do any operation | ||
2201 | * that modifies the chunk tree. The second part does the works that | ||
2202 | * require modifying the chunk tree. This division is important for the | ||
2203 | * bootstrap process of adding storage to a seed btrfs. | ||
2204 | */ | ||
2205 | int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, | ||
2206 | struct btrfs_root *extent_root, u64 type) | ||
2207 | { | ||
2208 | u64 chunk_offset; | ||
2209 | u64 chunk_size; | ||
2210 | u64 stripe_size; | ||
2211 | struct map_lookup *map; | ||
2212 | struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; | ||
2213 | int ret; | ||
2214 | |||
2215 | ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, | ||
2216 | &chunk_offset); | ||
2217 | if (ret) | ||
2218 | return ret; | ||
2219 | |||
2220 | ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | ||
2221 | &stripe_size, chunk_offset, type); | ||
2222 | if (ret) | ||
2223 | return ret; | ||
2224 | |||
2225 | ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | ||
2226 | chunk_size, stripe_size); | ||
2227 | BUG_ON(ret); | ||
2228 | return 0; | ||
2229 | } | ||
2230 | |||
2231 | static int noinline init_first_rw_device(struct btrfs_trans_handle *trans, | ||
2232 | struct btrfs_root *root, | ||
2233 | struct btrfs_device *device) | ||
2234 | { | ||
2235 | u64 chunk_offset; | ||
2236 | u64 sys_chunk_offset; | ||
2237 | u64 chunk_size; | ||
2238 | u64 sys_chunk_size; | ||
2239 | u64 stripe_size; | ||
2240 | u64 sys_stripe_size; | ||
2241 | u64 alloc_profile; | ||
2242 | struct map_lookup *map; | ||
2243 | struct map_lookup *sys_map; | ||
2244 | struct btrfs_fs_info *fs_info = root->fs_info; | ||
2245 | struct btrfs_root *extent_root = fs_info->extent_root; | ||
2246 | int ret; | ||
2247 | |||
2248 | ret = find_next_chunk(fs_info->chunk_root, | ||
2249 | BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset); | ||
2250 | BUG_ON(ret); | ||
2251 | |||
2252 | alloc_profile = BTRFS_BLOCK_GROUP_METADATA | | ||
2253 | (fs_info->metadata_alloc_profile & | ||
2254 | fs_info->avail_metadata_alloc_bits); | ||
2255 | alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | ||
2256 | |||
2257 | ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size, | ||
2258 | &stripe_size, chunk_offset, alloc_profile); | ||
2259 | BUG_ON(ret); | ||
2260 | |||
2261 | sys_chunk_offset = chunk_offset + chunk_size; | ||
2262 | |||
2263 | alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM | | ||
2264 | (fs_info->system_alloc_profile & | ||
2265 | fs_info->avail_system_alloc_bits); | ||
2266 | alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile); | ||
2267 | |||
2268 | ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map, | ||
2269 | &sys_chunk_size, &sys_stripe_size, | ||
2270 | sys_chunk_offset, alloc_profile); | ||
2271 | BUG_ON(ret); | ||
2272 | |||
2273 | ret = btrfs_add_device(trans, fs_info->chunk_root, device); | ||
2274 | BUG_ON(ret); | ||
2275 | |||
2276 | /* | ||
2277 | * Modifying chunk tree needs allocating new blocks from both | ||
2278 | * system block group and metadata block group. So we only can | ||
2279 | * do operations require modifying the chunk tree after both | ||
2280 | * block groups were created. | ||
2281 | */ | ||
2282 | ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset, | ||
2283 | chunk_size, stripe_size); | ||
2284 | BUG_ON(ret); | ||
2285 | |||
2286 | ret = __finish_chunk_alloc(trans, extent_root, sys_map, | ||
2287 | sys_chunk_offset, sys_chunk_size, | ||
2288 | sys_stripe_size); | ||
2289 | BUG_ON(ret); | ||
2290 | return 0; | ||
2291 | } | ||
2292 | |||
2293 | int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) | ||
2294 | { | ||
2295 | struct extent_map *em; | ||
2296 | struct map_lookup *map; | ||
2297 | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | ||
2298 | int readonly = 0; | ||
2299 | int i; | ||
2300 | |||
2301 | spin_lock(&map_tree->map_tree.lock); | ||
2302 | em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | ||
2303 | spin_unlock(&map_tree->map_tree.lock); | ||
2304 | if (!em) | ||
2305 | return 1; | ||
2306 | |||
2307 | map = (struct map_lookup *)em->bdev; | ||
2308 | for (i = 0; i < map->num_stripes; i++) { | ||
2309 | if (!map->stripes[i].dev->writeable) { | ||
2310 | readonly = 1; | ||
2311 | break; | ||
2312 | } | ||
2313 | } | ||
2314 | free_extent_map(em); | ||
2315 | return readonly; | ||
2316 | } | ||
2317 | |||
2318 | void btrfs_mapping_init(struct btrfs_mapping_tree *tree) | ||
2319 | { | ||
2320 | extent_map_tree_init(&tree->map_tree, GFP_NOFS); | ||
2321 | } | ||
2322 | |||
2323 | void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) | ||
2324 | { | ||
2325 | struct extent_map *em; | ||
2326 | |||
2327 | while(1) { | ||
2328 | spin_lock(&tree->map_tree.lock); | ||
2329 | em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); | ||
2330 | if (em) | ||
2331 | remove_extent_mapping(&tree->map_tree, em); | ||
2332 | spin_unlock(&tree->map_tree.lock); | ||
2333 | if (!em) | ||
2334 | break; | ||
2335 | kfree(em->bdev); | ||
2336 | /* once for us */ | ||
2337 | free_extent_map(em); | ||
2338 | /* once for the tree */ | ||
2339 | free_extent_map(em); | ||
2340 | } | ||
2341 | } | ||
2342 | |||
2343 | int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) | ||
2344 | { | ||
2345 | struct extent_map *em; | ||
2346 | struct map_lookup *map; | ||
2347 | struct extent_map_tree *em_tree = &map_tree->map_tree; | ||
2348 | int ret; | ||
2349 | |||
2350 | spin_lock(&em_tree->lock); | ||
2351 | em = lookup_extent_mapping(em_tree, logical, len); | ||
2352 | spin_unlock(&em_tree->lock); | ||
2353 | BUG_ON(!em); | ||
2354 | |||
2355 | BUG_ON(em->start > logical || em->start + em->len < logical); | ||
2356 | map = (struct map_lookup *)em->bdev; | ||
2357 | if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) | ||
2358 | ret = map->num_stripes; | ||
2359 | else if (map->type & BTRFS_BLOCK_GROUP_RAID10) | ||
2360 | ret = map->sub_stripes; | ||
2361 | else | ||
2362 | ret = 1; | ||
2363 | free_extent_map(em); | ||
2364 | return ret; | ||
2365 | } | ||
2366 | |||
2367 | static int find_live_mirror(struct map_lookup *map, int first, int num, | ||
2368 | int optimal) | ||
2369 | { | ||
2370 | int i; | ||
2371 | if (map->stripes[optimal].dev->bdev) | ||
2372 | return optimal; | ||
2373 | for (i = first; i < first + num; i++) { | ||
2374 | if (map->stripes[i].dev->bdev) | ||
2375 | return i; | ||
2376 | } | ||
2377 | /* we couldn't find one that doesn't fail. Just return something | ||
2378 | * and the io error handling code will clean up eventually | ||
2379 | */ | ||
2380 | return optimal; | ||
2381 | } | ||
2382 | |||
2383 | static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | ||
2384 | u64 logical, u64 *length, | ||
2385 | struct btrfs_multi_bio **multi_ret, | ||
2386 | int mirror_num, struct page *unplug_page) | ||
2387 | { | ||
2388 | struct extent_map *em; | ||
2389 | struct map_lookup *map; | ||
2390 | struct extent_map_tree *em_tree = &map_tree->map_tree; | ||
2391 | u64 offset; | ||
2392 | u64 stripe_offset; | ||
2393 | u64 stripe_nr; | ||
2394 | int stripes_allocated = 8; | ||
2395 | int stripes_required = 1; | ||
2396 | int stripe_index; | ||
2397 | int i; | ||
2398 | int num_stripes; | ||
2399 | int max_errors = 0; | ||
2400 | struct btrfs_multi_bio *multi = NULL; | ||
2401 | |||
2402 | if (multi_ret && !(rw & (1 << BIO_RW))) { | ||
2403 | stripes_allocated = 1; | ||
2404 | } | ||
2405 | again: | ||
2406 | if (multi_ret) { | ||
2407 | multi = kzalloc(btrfs_multi_bio_size(stripes_allocated), | ||
2408 | GFP_NOFS); | ||
2409 | if (!multi) | ||
2410 | return -ENOMEM; | ||
2411 | |||
2412 | atomic_set(&multi->error, 0); | ||
2413 | } | ||
2414 | |||
2415 | spin_lock(&em_tree->lock); | ||
2416 | em = lookup_extent_mapping(em_tree, logical, *length); | ||
2417 | spin_unlock(&em_tree->lock); | ||
2418 | |||
2419 | if (!em && unplug_page) | ||
2420 | return 0; | ||
2421 | |||
2422 | if (!em) { | ||
2423 | printk("unable to find logical %Lu len %Lu\n", logical, *length); | ||
2424 | BUG(); | ||
2425 | } | ||
2426 | |||
2427 | BUG_ON(em->start > logical || em->start + em->len < logical); | ||
2428 | map = (struct map_lookup *)em->bdev; | ||
2429 | offset = logical - em->start; | ||
2430 | |||
2431 | if (mirror_num > map->num_stripes) | ||
2432 | mirror_num = 0; | ||
2433 | |||
2434 | /* if our multi bio struct is too small, back off and try again */ | ||
2435 | if (rw & (1 << BIO_RW)) { | ||
2436 | if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | | ||
2437 | BTRFS_BLOCK_GROUP_DUP)) { | ||
2438 | stripes_required = map->num_stripes; | ||
2439 | max_errors = 1; | ||
2440 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | ||
2441 | stripes_required = map->sub_stripes; | ||
2442 | max_errors = 1; | ||
2443 | } | ||
2444 | } | ||
2445 | if (multi_ret && rw == WRITE && | ||
2446 | stripes_allocated < stripes_required) { | ||
2447 | stripes_allocated = map->num_stripes; | ||
2448 | free_extent_map(em); | ||
2449 | kfree(multi); | ||
2450 | goto again; | ||
2451 | } | ||
2452 | stripe_nr = offset; | ||
2453 | /* | ||
2454 | * stripe_nr counts the total number of stripes we have to stride | ||
2455 | * to get to this block | ||
2456 | */ | ||
2457 | do_div(stripe_nr, map->stripe_len); | ||
2458 | |||
2459 | stripe_offset = stripe_nr * map->stripe_len; | ||
2460 | BUG_ON(offset < stripe_offset); | ||
2461 | |||
2462 | /* stripe_offset is the offset of this block in its stripe*/ | ||
2463 | stripe_offset = offset - stripe_offset; | ||
2464 | |||
2465 | if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | | ||
2466 | BTRFS_BLOCK_GROUP_RAID10 | | ||
2467 | BTRFS_BLOCK_GROUP_DUP)) { | ||
2468 | /* we limit the length of each bio to what fits in a stripe */ | ||
2469 | *length = min_t(u64, em->len - offset, | ||
2470 | map->stripe_len - stripe_offset); | ||
2471 | } else { | ||
2472 | *length = em->len - offset; | ||
2473 | } | ||
2474 | |||
2475 | if (!multi_ret && !unplug_page) | ||
2476 | goto out; | ||
2477 | |||
2478 | num_stripes = 1; | ||
2479 | stripe_index = 0; | ||
2480 | if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | ||
2481 | if (unplug_page || (rw & (1 << BIO_RW))) | ||
2482 | num_stripes = map->num_stripes; | ||
2483 | else if (mirror_num) | ||
2484 | stripe_index = mirror_num - 1; | ||
2485 | else { | ||
2486 | stripe_index = find_live_mirror(map, 0, | ||
2487 | map->num_stripes, | ||
2488 | current->pid % map->num_stripes); | ||
2489 | } | ||
2490 | |||
2491 | } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | ||
2492 | if (rw & (1 << BIO_RW)) | ||
2493 | num_stripes = map->num_stripes; | ||
2494 | else if (mirror_num) | ||
2495 | stripe_index = mirror_num - 1; | ||
2496 | |||
2497 | } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | ||
2498 | int factor = map->num_stripes / map->sub_stripes; | ||
2499 | |||
2500 | stripe_index = do_div(stripe_nr, factor); | ||
2501 | stripe_index *= map->sub_stripes; | ||
2502 | |||
2503 | if (unplug_page || (rw & (1 << BIO_RW))) | ||
2504 | num_stripes = map->sub_stripes; | ||
2505 | else if (mirror_num) | ||
2506 | stripe_index += mirror_num - 1; | ||
2507 | else { | ||
2508 | stripe_index = find_live_mirror(map, stripe_index, | ||
2509 | map->sub_stripes, stripe_index + | ||
2510 | current->pid % map->sub_stripes); | ||
2511 | } | ||
2512 | } else { | ||
2513 | /* | ||
2514 | * after this do_div call, stripe_nr is the number of stripes | ||
2515 | * on this device we have to walk to find the data, and | ||
2516 | * stripe_index is the number of our device in the stripe array | ||
2517 | */ | ||
2518 | stripe_index = do_div(stripe_nr, map->num_stripes); | ||
2519 | } | ||
2520 | BUG_ON(stripe_index >= map->num_stripes); | ||
2521 | |||
2522 | for (i = 0; i < num_stripes; i++) { | ||
2523 | if (unplug_page) { | ||
2524 | struct btrfs_device *device; | ||
2525 | struct backing_dev_info *bdi; | ||
2526 | |||
2527 | device = map->stripes[stripe_index].dev; | ||
2528 | if (device->bdev) { | ||
2529 | bdi = blk_get_backing_dev_info(device->bdev); | ||
2530 | if (bdi->unplug_io_fn) { | ||
2531 | bdi->unplug_io_fn(bdi, unplug_page); | ||
2532 | } | ||
2533 | } | ||
2534 | } else { | ||
2535 | multi->stripes[i].physical = | ||
2536 | map->stripes[stripe_index].physical + | ||
2537 | stripe_offset + stripe_nr * map->stripe_len; | ||
2538 | multi->stripes[i].dev = map->stripes[stripe_index].dev; | ||
2539 | } | ||
2540 | stripe_index++; | ||
2541 | } | ||
2542 | if (multi_ret) { | ||
2543 | *multi_ret = multi; | ||
2544 | multi->num_stripes = num_stripes; | ||
2545 | multi->max_errors = max_errors; | ||
2546 | } | ||
2547 | out: | ||
2548 | free_extent_map(em); | ||
2549 | return 0; | ||
2550 | } | ||
2551 | |||
2552 | int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, | ||
2553 | u64 logical, u64 *length, | ||
2554 | struct btrfs_multi_bio **multi_ret, int mirror_num) | ||
2555 | { | ||
2556 | return __btrfs_map_block(map_tree, rw, logical, length, multi_ret, | ||
2557 | mirror_num, NULL); | ||
2558 | } | ||
2559 | |||
2560 | int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree, | ||
2561 | u64 logical, struct page *page) | ||
2562 | { | ||
2563 | u64 length = PAGE_CACHE_SIZE; | ||
2564 | return __btrfs_map_block(map_tree, READ, logical, &length, | ||
2565 | NULL, 0, page); | ||
2566 | } | ||
2567 | |||
2568 | |||
2569 | static void end_bio_multi_stripe(struct bio *bio, int err) | ||
2570 | { | ||
2571 | struct btrfs_multi_bio *multi = bio->bi_private; | ||
2572 | int is_orig_bio = 0; | ||
2573 | |||
2574 | if (err) | ||
2575 | atomic_inc(&multi->error); | ||
2576 | |||
2577 | if (bio == multi->orig_bio) | ||
2578 | is_orig_bio = 1; | ||
2579 | |||
2580 | if (atomic_dec_and_test(&multi->stripes_pending)) { | ||
2581 | if (!is_orig_bio) { | ||
2582 | bio_put(bio); | ||
2583 | bio = multi->orig_bio; | ||
2584 | } | ||
2585 | bio->bi_private = multi->private; | ||
2586 | bio->bi_end_io = multi->end_io; | ||
2587 | /* only send an error to the higher layers if it is | ||
2588 | * beyond the tolerance of the multi-bio | ||
2589 | */ | ||
2590 | if (atomic_read(&multi->error) > multi->max_errors) { | ||
2591 | err = -EIO; | ||
2592 | } else if (err) { | ||
2593 | /* | ||
2594 | * this bio is actually up to date, we didn't | ||
2595 | * go over the max number of errors | ||
2596 | */ | ||
2597 | set_bit(BIO_UPTODATE, &bio->bi_flags); | ||
2598 | err = 0; | ||
2599 | } | ||
2600 | kfree(multi); | ||
2601 | |||
2602 | bio_endio(bio, err); | ||
2603 | } else if (!is_orig_bio) { | ||
2604 | bio_put(bio); | ||
2605 | } | ||
2606 | } | ||
2607 | |||
2608 | struct async_sched { | ||
2609 | struct bio *bio; | ||
2610 | int rw; | ||
2611 | struct btrfs_fs_info *info; | ||
2612 | struct btrfs_work work; | ||
2613 | }; | ||
2614 | |||
2615 | /* | ||
2616 | * see run_scheduled_bios for a description of why bios are collected for | ||
2617 | * async submit. | ||
2618 | * | ||
2619 | * This will add one bio to the pending list for a device and make sure | ||
2620 | * the work struct is scheduled. | ||
2621 | */ | ||
2622 | static int noinline schedule_bio(struct btrfs_root *root, | ||
2623 | struct btrfs_device *device, | ||
2624 | int rw, struct bio *bio) | ||
2625 | { | ||
2626 | int should_queue = 1; | ||
2627 | |||
2628 | /* don't bother with additional async steps for reads, right now */ | ||
2629 | if (!(rw & (1 << BIO_RW))) { | ||
2630 | bio_get(bio); | ||
2631 | submit_bio(rw, bio); | ||
2632 | bio_put(bio); | ||
2633 | return 0; | ||
2634 | } | ||
2635 | |||
2636 | /* | ||
2637 | * nr_async_bios allows us to reliably return congestion to the | ||
2638 | * higher layers. Otherwise, the async bio makes it appear we have | ||
2639 | * made progress against dirty pages when we've really just put it | ||
2640 | * on a queue for later | ||
2641 | */ | ||
2642 | atomic_inc(&root->fs_info->nr_async_bios); | ||
2643 | WARN_ON(bio->bi_next); | ||
2644 | bio->bi_next = NULL; | ||
2645 | bio->bi_rw |= rw; | ||
2646 | |||
2647 | spin_lock(&device->io_lock); | ||
2648 | |||
2649 | if (device->pending_bio_tail) | ||
2650 | device->pending_bio_tail->bi_next = bio; | ||
2651 | |||
2652 | device->pending_bio_tail = bio; | ||
2653 | if (!device->pending_bios) | ||
2654 | device->pending_bios = bio; | ||
2655 | if (device->running_pending) | ||
2656 | should_queue = 0; | ||
2657 | |||
2658 | spin_unlock(&device->io_lock); | ||
2659 | |||
2660 | if (should_queue) | ||
2661 | btrfs_queue_worker(&root->fs_info->submit_workers, | ||
2662 | &device->work); | ||
2663 | return 0; | ||
2664 | } | ||
2665 | |||
2666 | int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, | ||
2667 | int mirror_num, int async_submit) | ||
2668 | { | ||
2669 | struct btrfs_mapping_tree *map_tree; | ||
2670 | struct btrfs_device *dev; | ||
2671 | struct bio *first_bio = bio; | ||
2672 | u64 logical = (u64)bio->bi_sector << 9; | ||
2673 | u64 length = 0; | ||
2674 | u64 map_length; | ||
2675 | struct btrfs_multi_bio *multi = NULL; | ||
2676 | int ret; | ||
2677 | int dev_nr = 0; | ||
2678 | int total_devs = 1; | ||
2679 | |||
2680 | length = bio->bi_size; | ||
2681 | map_tree = &root->fs_info->mapping_tree; | ||
2682 | map_length = length; | ||
2683 | |||
2684 | ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi, | ||
2685 | mirror_num); | ||
2686 | BUG_ON(ret); | ||
2687 | |||
2688 | total_devs = multi->num_stripes; | ||
2689 | if (map_length < length) { | ||
2690 | printk("mapping failed logical %Lu bio len %Lu " | ||
2691 | "len %Lu\n", logical, length, map_length); | ||
2692 | BUG(); | ||
2693 | } | ||
2694 | multi->end_io = first_bio->bi_end_io; | ||
2695 | multi->private = first_bio->bi_private; | ||
2696 | multi->orig_bio = first_bio; | ||
2697 | atomic_set(&multi->stripes_pending, multi->num_stripes); | ||
2698 | |||
2699 | while(dev_nr < total_devs) { | ||
2700 | if (total_devs > 1) { | ||
2701 | if (dev_nr < total_devs - 1) { | ||
2702 | bio = bio_clone(first_bio, GFP_NOFS); | ||
2703 | BUG_ON(!bio); | ||
2704 | } else { | ||
2705 | bio = first_bio; | ||
2706 | } | ||
2707 | bio->bi_private = multi; | ||
2708 | bio->bi_end_io = end_bio_multi_stripe; | ||
2709 | } | ||
2710 | bio->bi_sector = multi->stripes[dev_nr].physical >> 9; | ||
2711 | dev = multi->stripes[dev_nr].dev; | ||
2712 | BUG_ON(rw == WRITE && !dev->writeable); | ||
2713 | if (dev && dev->bdev) { | ||
2714 | bio->bi_bdev = dev->bdev; | ||
2715 | if (async_submit) | ||
2716 | schedule_bio(root, dev, rw, bio); | ||
2717 | else | ||
2718 | submit_bio(rw, bio); | ||
2719 | } else { | ||
2720 | bio->bi_bdev = root->fs_info->fs_devices->latest_bdev; | ||
2721 | bio->bi_sector = logical >> 9; | ||
2722 | bio_endio(bio, -EIO); | ||
2723 | } | ||
2724 | dev_nr++; | ||
2725 | } | ||
2726 | if (total_devs == 1) | ||
2727 | kfree(multi); | ||
2728 | return 0; | ||
2729 | } | ||
2730 | |||
2731 | struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, | ||
2732 | u8 *uuid, u8 *fsid) | ||
2733 | { | ||
2734 | struct btrfs_device *device; | ||
2735 | struct btrfs_fs_devices *cur_devices; | ||
2736 | |||
2737 | cur_devices = root->fs_info->fs_devices; | ||
2738 | while (cur_devices) { | ||
2739 | if (!fsid || | ||
2740 | !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | ||
2741 | device = __find_device(&cur_devices->devices, | ||
2742 | devid, uuid); | ||
2743 | if (device) | ||
2744 | return device; | ||
2745 | } | ||
2746 | cur_devices = cur_devices->seed; | ||
2747 | } | ||
2748 | return NULL; | ||
2749 | } | ||
2750 | |||
2751 | static struct btrfs_device *add_missing_dev(struct btrfs_root *root, | ||
2752 | u64 devid, u8 *dev_uuid) | ||
2753 | { | ||
2754 | struct btrfs_device *device; | ||
2755 | struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; | ||
2756 | |||
2757 | device = kzalloc(sizeof(*device), GFP_NOFS); | ||
2758 | if (!device) | ||
2759 | return NULL; | ||
2760 | list_add(&device->dev_list, | ||
2761 | &fs_devices->devices); | ||
2762 | device->barriers = 1; | ||
2763 | device->dev_root = root->fs_info->dev_root; | ||
2764 | device->devid = devid; | ||
2765 | device->work.func = pending_bios_fn; | ||
2766 | fs_devices->num_devices++; | ||
2767 | spin_lock_init(&device->io_lock); | ||
2768 | memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE); | ||
2769 | return device; | ||
2770 | } | ||
2771 | |||
2772 | static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, | ||
2773 | struct extent_buffer *leaf, | ||
2774 | struct btrfs_chunk *chunk) | ||
2775 | { | ||
2776 | struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; | ||
2777 | struct map_lookup *map; | ||
2778 | struct extent_map *em; | ||
2779 | u64 logical; | ||
2780 | u64 length; | ||
2781 | u64 devid; | ||
2782 | u8 uuid[BTRFS_UUID_SIZE]; | ||
2783 | int num_stripes; | ||
2784 | int ret; | ||
2785 | int i; | ||
2786 | |||
2787 | logical = key->offset; | ||
2788 | length = btrfs_chunk_length(leaf, chunk); | ||
2789 | |||
2790 | spin_lock(&map_tree->map_tree.lock); | ||
2791 | em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); | ||
2792 | spin_unlock(&map_tree->map_tree.lock); | ||
2793 | |||
2794 | /* already mapped? */ | ||
2795 | if (em && em->start <= logical && em->start + em->len > logical) { | ||
2796 | free_extent_map(em); | ||
2797 | return 0; | ||
2798 | } else if (em) { | ||
2799 | free_extent_map(em); | ||
2800 | } | ||
2801 | |||
2802 | map = kzalloc(sizeof(*map), GFP_NOFS); | ||
2803 | if (!map) | ||
2804 | return -ENOMEM; | ||
2805 | |||
2806 | em = alloc_extent_map(GFP_NOFS); | ||
2807 | if (!em) | ||
2808 | return -ENOMEM; | ||
2809 | num_stripes = btrfs_chunk_num_stripes(leaf, chunk); | ||
2810 | map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); | ||
2811 | if (!map) { | ||
2812 | free_extent_map(em); | ||
2813 | return -ENOMEM; | ||
2814 | } | ||
2815 | |||
2816 | em->bdev = (struct block_device *)map; | ||
2817 | em->start = logical; | ||
2818 | em->len = length; | ||
2819 | em->block_start = 0; | ||
2820 | em->block_len = em->len; | ||
2821 | |||
2822 | map->num_stripes = num_stripes; | ||
2823 | map->io_width = btrfs_chunk_io_width(leaf, chunk); | ||
2824 | map->io_align = btrfs_chunk_io_align(leaf, chunk); | ||
2825 | map->sector_size = btrfs_chunk_sector_size(leaf, chunk); | ||
2826 | map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); | ||
2827 | map->type = btrfs_chunk_type(leaf, chunk); | ||
2828 | map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); | ||
2829 | for (i = 0; i < num_stripes; i++) { | ||
2830 | map->stripes[i].physical = | ||
2831 | btrfs_stripe_offset_nr(leaf, chunk, i); | ||
2832 | devid = btrfs_stripe_devid_nr(leaf, chunk, i); | ||
2833 | read_extent_buffer(leaf, uuid, (unsigned long) | ||
2834 | btrfs_stripe_dev_uuid_nr(chunk, i), | ||
2835 | BTRFS_UUID_SIZE); | ||
2836 | map->stripes[i].dev = btrfs_find_device(root, devid, uuid, | ||
2837 | NULL); | ||
2838 | if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { | ||
2839 | kfree(map); | ||
2840 | free_extent_map(em); | ||
2841 | return -EIO; | ||
2842 | } | ||
2843 | if (!map->stripes[i].dev) { | ||
2844 | map->stripes[i].dev = | ||
2845 | add_missing_dev(root, devid, uuid); | ||
2846 | if (!map->stripes[i].dev) { | ||
2847 | kfree(map); | ||
2848 | free_extent_map(em); | ||
2849 | return -EIO; | ||
2850 | } | ||
2851 | } | ||
2852 | map->stripes[i].dev->in_fs_metadata = 1; | ||
2853 | } | ||
2854 | |||
2855 | spin_lock(&map_tree->map_tree.lock); | ||
2856 | ret = add_extent_mapping(&map_tree->map_tree, em); | ||
2857 | spin_unlock(&map_tree->map_tree.lock); | ||
2858 | BUG_ON(ret); | ||
2859 | free_extent_map(em); | ||
2860 | |||
2861 | return 0; | ||
2862 | } | ||
2863 | |||
2864 | static int fill_device_from_item(struct extent_buffer *leaf, | ||
2865 | struct btrfs_dev_item *dev_item, | ||
2866 | struct btrfs_device *device) | ||
2867 | { | ||
2868 | unsigned long ptr; | ||
2869 | |||
2870 | device->devid = btrfs_device_id(leaf, dev_item); | ||
2871 | device->total_bytes = btrfs_device_total_bytes(leaf, dev_item); | ||
2872 | device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); | ||
2873 | device->type = btrfs_device_type(leaf, dev_item); | ||
2874 | device->io_align = btrfs_device_io_align(leaf, dev_item); | ||
2875 | device->io_width = btrfs_device_io_width(leaf, dev_item); | ||
2876 | device->sector_size = btrfs_device_sector_size(leaf, dev_item); | ||
2877 | |||
2878 | ptr = (unsigned long)btrfs_device_uuid(dev_item); | ||
2879 | read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); | ||
2880 | |||
2881 | return 0; | ||
2882 | } | ||
2883 | |||
2884 | static int open_seed_devices(struct btrfs_root *root, u8 *fsid) | ||
2885 | { | ||
2886 | struct btrfs_fs_devices *fs_devices; | ||
2887 | int ret; | ||
2888 | |||
2889 | mutex_lock(&uuid_mutex); | ||
2890 | |||
2891 | fs_devices = root->fs_info->fs_devices->seed; | ||
2892 | while (fs_devices) { | ||
2893 | if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { | ||
2894 | ret = 0; | ||
2895 | goto out; | ||
2896 | } | ||
2897 | fs_devices = fs_devices->seed; | ||
2898 | } | ||
2899 | |||
2900 | fs_devices = find_fsid(fsid); | ||
2901 | if (!fs_devices) { | ||
2902 | ret = -ENOENT; | ||
2903 | goto out; | ||
2904 | } | ||
2905 | if (fs_devices->opened) { | ||
2906 | ret = -EBUSY; | ||
2907 | goto out; | ||
2908 | } | ||
2909 | |||
2910 | ret = __btrfs_open_devices(fs_devices, root->fs_info->bdev_holder); | ||
2911 | if (ret) | ||
2912 | goto out; | ||
2913 | |||
2914 | if (!fs_devices->seeding) { | ||
2915 | __btrfs_close_devices(fs_devices); | ||
2916 | ret = -EINVAL; | ||
2917 | goto out; | ||
2918 | } | ||
2919 | |||
2920 | fs_devices->seed = root->fs_info->fs_devices->seed; | ||
2921 | root->fs_info->fs_devices->seed = fs_devices; | ||
2922 | fs_devices->sprouted = 1; | ||
2923 | out: | ||
2924 | mutex_unlock(&uuid_mutex); | ||
2925 | return ret; | ||
2926 | } | ||
2927 | |||
2928 | static int read_one_dev(struct btrfs_root *root, | ||
2929 | struct extent_buffer *leaf, | ||
2930 | struct btrfs_dev_item *dev_item) | ||
2931 | { | ||
2932 | struct btrfs_device *device; | ||
2933 | u64 devid; | ||
2934 | int ret; | ||
2935 | int seed_devices = 0; | ||
2936 | u8 fs_uuid[BTRFS_UUID_SIZE]; | ||
2937 | u8 dev_uuid[BTRFS_UUID_SIZE]; | ||
2938 | |||
2939 | devid = btrfs_device_id(leaf, dev_item); | ||
2940 | read_extent_buffer(leaf, dev_uuid, | ||
2941 | (unsigned long)btrfs_device_uuid(dev_item), | ||
2942 | BTRFS_UUID_SIZE); | ||
2943 | read_extent_buffer(leaf, fs_uuid, | ||
2944 | (unsigned long)btrfs_device_fsid(dev_item), | ||
2945 | BTRFS_UUID_SIZE); | ||
2946 | |||
2947 | if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { | ||
2948 | ret = open_seed_devices(root, fs_uuid); | ||
2949 | if (ret) | ||
2950 | return ret; | ||
2951 | seed_devices = 1; | ||
2952 | } | ||
2953 | |||
2954 | device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); | ||
2955 | if (!device || !device->bdev) { | ||
2956 | if (!btrfs_test_opt(root, DEGRADED) || seed_devices) | ||
2957 | return -EIO; | ||
2958 | |||
2959 | if (!device) { | ||
2960 | printk("warning devid %Lu missing\n", devid); | ||
2961 | device = add_missing_dev(root, devid, dev_uuid); | ||
2962 | if (!device) | ||
2963 | return -ENOMEM; | ||
2964 | } | ||
2965 | } | ||
2966 | |||
2967 | if (device->fs_devices != root->fs_info->fs_devices) { | ||
2968 | BUG_ON(device->writeable); | ||
2969 | if (device->generation != | ||
2970 | btrfs_device_generation(leaf, dev_item)) | ||
2971 | return -EINVAL; | ||
2972 | } | ||
2973 | |||
2974 | fill_device_from_item(leaf, dev_item, device); | ||
2975 | device->dev_root = root->fs_info->dev_root; | ||
2976 | device->in_fs_metadata = 1; | ||
2977 | if (device->writeable) | ||
2978 | device->fs_devices->total_rw_bytes += device->total_bytes; | ||
2979 | ret = 0; | ||
2980 | #if 0 | ||
2981 | ret = btrfs_open_device(device); | ||
2982 | if (ret) { | ||
2983 | kfree(device); | ||
2984 | } | ||
2985 | #endif | ||
2986 | return ret; | ||
2987 | } | ||
2988 | |||
2989 | int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf) | ||
2990 | { | ||
2991 | struct btrfs_dev_item *dev_item; | ||
2992 | |||
2993 | dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block, | ||
2994 | dev_item); | ||
2995 | return read_one_dev(root, buf, dev_item); | ||
2996 | } | ||
2997 | |||
2998 | int btrfs_read_sys_array(struct btrfs_root *root) | ||
2999 | { | ||
3000 | struct btrfs_super_block *super_copy = &root->fs_info->super_copy; | ||
3001 | struct extent_buffer *sb; | ||
3002 | struct btrfs_disk_key *disk_key; | ||
3003 | struct btrfs_chunk *chunk; | ||
3004 | u8 *ptr; | ||
3005 | unsigned long sb_ptr; | ||
3006 | int ret = 0; | ||
3007 | u32 num_stripes; | ||
3008 | u32 array_size; | ||
3009 | u32 len = 0; | ||
3010 | u32 cur; | ||
3011 | struct btrfs_key key; | ||
3012 | |||
3013 | sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, | ||
3014 | BTRFS_SUPER_INFO_SIZE); | ||
3015 | if (!sb) | ||
3016 | return -ENOMEM; | ||
3017 | btrfs_set_buffer_uptodate(sb); | ||
3018 | write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); | ||
3019 | array_size = btrfs_super_sys_array_size(super_copy); | ||
3020 | |||
3021 | ptr = super_copy->sys_chunk_array; | ||
3022 | sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); | ||
3023 | cur = 0; | ||
3024 | |||
3025 | while (cur < array_size) { | ||
3026 | disk_key = (struct btrfs_disk_key *)ptr; | ||
3027 | btrfs_disk_key_to_cpu(&key, disk_key); | ||
3028 | |||
3029 | len = sizeof(*disk_key); ptr += len; | ||
3030 | sb_ptr += len; | ||
3031 | cur += len; | ||
3032 | |||
3033 | if (key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
3034 | chunk = (struct btrfs_chunk *)sb_ptr; | ||
3035 | ret = read_one_chunk(root, &key, sb, chunk); | ||
3036 | if (ret) | ||
3037 | break; | ||
3038 | num_stripes = btrfs_chunk_num_stripes(sb, chunk); | ||
3039 | len = btrfs_chunk_item_size(num_stripes); | ||
3040 | } else { | ||
3041 | ret = -EIO; | ||
3042 | break; | ||
3043 | } | ||
3044 | ptr += len; | ||
3045 | sb_ptr += len; | ||
3046 | cur += len; | ||
3047 | } | ||
3048 | free_extent_buffer(sb); | ||
3049 | return ret; | ||
3050 | } | ||
3051 | |||
3052 | int btrfs_read_chunk_tree(struct btrfs_root *root) | ||
3053 | { | ||
3054 | struct btrfs_path *path; | ||
3055 | struct extent_buffer *leaf; | ||
3056 | struct btrfs_key key; | ||
3057 | struct btrfs_key found_key; | ||
3058 | int ret; | ||
3059 | int slot; | ||
3060 | |||
3061 | root = root->fs_info->chunk_root; | ||
3062 | |||
3063 | path = btrfs_alloc_path(); | ||
3064 | if (!path) | ||
3065 | return -ENOMEM; | ||
3066 | |||
3067 | /* first we search for all of the device items, and then we | ||
3068 | * read in all of the chunk items. This way we can create chunk | ||
3069 | * mappings that reference all of the devices that are afound | ||
3070 | */ | ||
3071 | key.objectid = BTRFS_DEV_ITEMS_OBJECTID; | ||
3072 | key.offset = 0; | ||
3073 | key.type = 0; | ||
3074 | again: | ||
3075 | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | ||
3076 | while(1) { | ||
3077 | leaf = path->nodes[0]; | ||
3078 | slot = path->slots[0]; | ||
3079 | if (slot >= btrfs_header_nritems(leaf)) { | ||
3080 | ret = btrfs_next_leaf(root, path); | ||
3081 | if (ret == 0) | ||
3082 | continue; | ||
3083 | if (ret < 0) | ||
3084 | goto error; | ||
3085 | break; | ||
3086 | } | ||
3087 | btrfs_item_key_to_cpu(leaf, &found_key, slot); | ||
3088 | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | ||
3089 | if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID) | ||
3090 | break; | ||
3091 | if (found_key.type == BTRFS_DEV_ITEM_KEY) { | ||
3092 | struct btrfs_dev_item *dev_item; | ||
3093 | dev_item = btrfs_item_ptr(leaf, slot, | ||
3094 | struct btrfs_dev_item); | ||
3095 | ret = read_one_dev(root, leaf, dev_item); | ||
3096 | if (ret) | ||
3097 | goto error; | ||
3098 | } | ||
3099 | } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { | ||
3100 | struct btrfs_chunk *chunk; | ||
3101 | chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); | ||
3102 | ret = read_one_chunk(root, &found_key, leaf, chunk); | ||
3103 | if (ret) | ||
3104 | goto error; | ||
3105 | } | ||
3106 | path->slots[0]++; | ||
3107 | } | ||
3108 | if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) { | ||
3109 | key.objectid = 0; | ||
3110 | btrfs_release_path(root, path); | ||
3111 | goto again; | ||
3112 | } | ||
3113 | ret = 0; | ||
3114 | error: | ||
3115 | btrfs_free_path(path); | ||
3116 | return ret; | ||
3117 | } | ||