aboutsummaryrefslogtreecommitdiffstats
path: root/fs/btrfs/extent_map.c
diff options
context:
space:
mode:
authorChris Mason <chris.mason@oracle.com>2008-01-24 16:13:08 -0500
committerChris Mason <chris.mason@oracle.com>2008-09-25 11:03:59 -0400
commitd1310b2e0cd98eb1348553e69b73827b436dca7b (patch)
treef55e9c380df0f3a7e9fb792b2308b52b632b90aa /fs/btrfs/extent_map.c
parent5f56406aabdf5444d040c5955effc665b1d0dbaf (diff)
Btrfs: Split the extent_map code into two parts
There is now extent_map for mapping offsets in the file to disk and extent_io for state tracking, IO submission and extent_bufers. The new extent_map code shifts from [start,end] pairs to [start,len], and pushes the locking out into the caller. This allows a few performance optimizations and is easier to use. A number of extent_map usage bugs were fixed, mostly with failing to remove extent_map entries when changing the file. Signed-off-by: Chris Mason <chris.mason@oracle.com>
Diffstat (limited to 'fs/btrfs/extent_map.c')
-rw-r--r--fs/btrfs/extent_map.c3119
1 files changed, 84 insertions, 3035 deletions
diff --git a/fs/btrfs/extent_map.c b/fs/btrfs/extent_map.c
index 010a287fbd71..268ad8facf6e 100644
--- a/fs/btrfs/extent_map.c
+++ b/fs/btrfs/extent_map.c
@@ -1,17 +1,10 @@
1#include <linux/bitops.h> 1#include <linux/err.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
5#include <linux/gfp.h> 2#include <linux/gfp.h>
6#include <linux/pagemap.h> 3#include <linux/slab.h>
7#include <linux/page-flags.h>
8#include <linux/module.h> 4#include <linux/module.h>
9#include <linux/spinlock.h> 5#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/version.h> 6#include <linux/version.h>
13#include <linux/writeback.h> 7#include <linux/hardirq.h>
14#include <linux/pagevec.h>
15#include "extent_map.h" 8#include "extent_map.h"
16 9
17/* temporary define until extent_map moves out of btrfs */ 10/* temporary define until extent_map moves out of btrfs */
@@ -21,27 +14,6 @@ struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
21 unsigned long)); 14 unsigned long));
22 15
23static struct kmem_cache *extent_map_cache; 16static struct kmem_cache *extent_map_cache;
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26
27static LIST_HEAD(buffers);
28static LIST_HEAD(states);
29
30static spinlock_t state_lock = SPIN_LOCK_UNLOCKED;
31#define BUFFER_LRU_MAX 64
32
33struct tree_entry {
34 u64 start;
35 u64 end;
36 int in_tree;
37 struct rb_node rb_node;
38};
39
40struct extent_page_data {
41 struct bio *bio;
42 struct extent_map_tree *tree;
43 get_extent_t *get_extent;
44};
45 17
46int __init extent_map_init(void) 18int __init extent_map_init(void)
47{ 19{
@@ -50,72 +22,23 @@ int __init extent_map_init(void)
50 NULL); 22 NULL);
51 if (!extent_map_cache) 23 if (!extent_map_cache)
52 return -ENOMEM; 24 return -ENOMEM;
53 extent_state_cache = btrfs_cache_create("extent_state",
54 sizeof(struct extent_state), 0,
55 NULL);
56 if (!extent_state_cache)
57 goto free_map_cache;
58 extent_buffer_cache = btrfs_cache_create("extent_buffers",
59 sizeof(struct extent_buffer), 0,
60 NULL);
61 if (!extent_buffer_cache)
62 goto free_state_cache;
63 return 0; 25 return 0;
64
65free_state_cache:
66 kmem_cache_destroy(extent_state_cache);
67free_map_cache:
68 kmem_cache_destroy(extent_map_cache);
69 return -ENOMEM;
70} 26}
71 27
72void extent_map_exit(void) 28void extent_map_exit(void)
73{ 29{
74 struct extent_state *state;
75
76 while (!list_empty(&states)) {
77 state = list_entry(states.next, struct extent_state, list);
78 printk("state leak: start %Lu end %Lu state %lu in tree %d refs %d\n", state->start, state->end, state->state, state->in_tree, atomic_read(&state->refs));
79 list_del(&state->list);
80 kmem_cache_free(extent_state_cache, state);
81
82 }
83
84 if (extent_map_cache) 30 if (extent_map_cache)
85 kmem_cache_destroy(extent_map_cache); 31 kmem_cache_destroy(extent_map_cache);
86 if (extent_state_cache)
87 kmem_cache_destroy(extent_state_cache);
88 if (extent_buffer_cache)
89 kmem_cache_destroy(extent_buffer_cache);
90} 32}
91 33
92void extent_map_tree_init(struct extent_map_tree *tree, 34void extent_map_tree_init(struct extent_map_tree *tree, gfp_t mask)
93 struct address_space *mapping, gfp_t mask)
94{ 35{
95 tree->map.rb_node = NULL; 36 tree->map.rb_node = NULL;
96 tree->state.rb_node = NULL; 37 tree->last = NULL;
97 tree->ops = NULL; 38 spin_lock_init(&tree->lock);
98 tree->dirty_bytes = 0;
99 rwlock_init(&tree->lock);
100 spin_lock_init(&tree->lru_lock);
101 tree->mapping = mapping;
102 INIT_LIST_HEAD(&tree->buffer_lru);
103 tree->lru_size = 0;
104} 39}
105EXPORT_SYMBOL(extent_map_tree_init); 40EXPORT_SYMBOL(extent_map_tree_init);
106 41
107void extent_map_tree_empty_lru(struct extent_map_tree *tree)
108{
109 struct extent_buffer *eb;
110 while(!list_empty(&tree->buffer_lru)) {
111 eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
112 lru);
113 list_del_init(&eb->lru);
114 free_extent_buffer(eb);
115 }
116}
117EXPORT_SYMBOL(extent_map_tree_empty_lru);
118
119struct extent_map *alloc_extent_map(gfp_t mask) 42struct extent_map *alloc_extent_map(gfp_t mask)
120{ 43{
121 struct extent_map *em; 44 struct extent_map *em;
@@ -123,6 +46,7 @@ struct extent_map *alloc_extent_map(gfp_t mask)
123 if (!em || IS_ERR(em)) 46 if (!em || IS_ERR(em))
124 return em; 47 return em;
125 em->in_tree = 0; 48 em->in_tree = 0;
49 em->flags = 0;
126 atomic_set(&em->refs, 1); 50 atomic_set(&em->refs, 1);
127 return em; 51 return em;
128} 52}
@@ -132,6 +56,7 @@ void free_extent_map(struct extent_map *em)
132{ 56{
133 if (!em) 57 if (!em)
134 return; 58 return;
59 WARN_ON(atomic_read(&em->refs) == 0);
135 if (atomic_dec_and_test(&em->refs)) { 60 if (atomic_dec_and_test(&em->refs)) {
136 WARN_ON(em->in_tree); 61 WARN_ON(em->in_tree);
137 kmem_cache_free(extent_map_cache, em); 62 kmem_cache_free(extent_map_cache, em);
@@ -139,64 +64,28 @@ void free_extent_map(struct extent_map *em)
139} 64}
140EXPORT_SYMBOL(free_extent_map); 65EXPORT_SYMBOL(free_extent_map);
141 66
142
143struct extent_state *alloc_extent_state(gfp_t mask)
144{
145 struct extent_state *state;
146 unsigned long flags;
147
148 state = kmem_cache_alloc(extent_state_cache, mask);
149 if (!state || IS_ERR(state))
150 return state;
151 state->state = 0;
152 state->in_tree = 0;
153 state->private = 0;
154
155 spin_lock_irqsave(&state_lock, flags);
156 list_add(&state->list, &states);
157 spin_unlock_irqrestore(&state_lock, flags);
158
159 atomic_set(&state->refs, 1);
160 init_waitqueue_head(&state->wq);
161 return state;
162}
163EXPORT_SYMBOL(alloc_extent_state);
164
165void free_extent_state(struct extent_state *state)
166{
167 unsigned long flags;
168 if (!state)
169 return;
170 if (atomic_dec_and_test(&state->refs)) {
171 WARN_ON(state->in_tree);
172 spin_lock_irqsave(&state_lock, flags);
173 list_del(&state->list);
174 spin_unlock_irqrestore(&state_lock, flags);
175 kmem_cache_free(extent_state_cache, state);
176 }
177}
178EXPORT_SYMBOL(free_extent_state);
179
180static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 67static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
181 struct rb_node *node) 68 struct rb_node *node)
182{ 69{
183 struct rb_node ** p = &root->rb_node; 70 struct rb_node ** p = &root->rb_node;
184 struct rb_node * parent = NULL; 71 struct rb_node * parent = NULL;
185 struct tree_entry *entry; 72 struct extent_map *entry;
186 73
187 while(*p) { 74 while(*p) {
188 parent = *p; 75 parent = *p;
189 entry = rb_entry(parent, struct tree_entry, rb_node); 76 entry = rb_entry(parent, struct extent_map, rb_node);
77
78 WARN_ON(!entry->in_tree);
190 79
191 if (offset < entry->start) 80 if (offset < entry->start)
192 p = &(*p)->rb_left; 81 p = &(*p)->rb_left;
193 else if (offset > entry->end) 82 else if (offset >= extent_map_end(entry))
194 p = &(*p)->rb_right; 83 p = &(*p)->rb_right;
195 else 84 else
196 return parent; 85 return parent;
197 } 86 }
198 87
199 entry = rb_entry(node, struct tree_entry, rb_node); 88 entry = rb_entry(node, struct extent_map, rb_node);
200 entry->in_tree = 1; 89 entry->in_tree = 1;
201 rb_link_node(node, parent, p); 90 rb_link_node(node, parent, p);
202 rb_insert_color(node, root); 91 rb_insert_color(node, root);
@@ -210,17 +99,19 @@ static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
210 struct rb_node * n = root->rb_node; 99 struct rb_node * n = root->rb_node;
211 struct rb_node *prev = NULL; 100 struct rb_node *prev = NULL;
212 struct rb_node *orig_prev = NULL; 101 struct rb_node *orig_prev = NULL;
213 struct tree_entry *entry; 102 struct extent_map *entry;
214 struct tree_entry *prev_entry = NULL; 103 struct extent_map *prev_entry = NULL;
215 104
216 while(n) { 105 while(n) {
217 entry = rb_entry(n, struct tree_entry, rb_node); 106 entry = rb_entry(n, struct extent_map, rb_node);
218 prev = n; 107 prev = n;
219 prev_entry = entry; 108 prev_entry = entry;
220 109
110 WARN_ON(!entry->in_tree);
111
221 if (offset < entry->start) 112 if (offset < entry->start)
222 n = n->rb_left; 113 n = n->rb_left;
223 else if (offset > entry->end) 114 else if (offset >= extent_map_end(entry))
224 n = n->rb_right; 115 n = n->rb_right;
225 else 116 else
226 return n; 117 return n;
@@ -228,19 +119,19 @@ static struct rb_node *__tree_search(struct rb_root *root, u64 offset,
228 119
229 if (prev_ret) { 120 if (prev_ret) {
230 orig_prev = prev; 121 orig_prev = prev;
231 while(prev && offset > prev_entry->end) { 122 while(prev && offset >= extent_map_end(prev_entry)) {
232 prev = rb_next(prev); 123 prev = rb_next(prev);
233 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 124 prev_entry = rb_entry(prev, struct extent_map, rb_node);
234 } 125 }
235 *prev_ret = prev; 126 *prev_ret = prev;
236 prev = orig_prev; 127 prev = orig_prev;
237 } 128 }
238 129
239 if (next_ret) { 130 if (next_ret) {
240 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 131 prev_entry = rb_entry(prev, struct extent_map, rb_node);
241 while(prev && offset < prev_entry->start) { 132 while(prev && offset < prev_entry->start) {
242 prev = rb_prev(prev); 133 prev = rb_prev(prev);
243 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 134 prev_entry = rb_entry(prev, struct extent_map, rb_node);
244 } 135 }
245 *next_ret = prev; 136 *next_ret = prev;
246 } 137 }
@@ -257,22 +148,26 @@ static inline struct rb_node *tree_search(struct rb_root *root, u64 offset)
257 return ret; 148 return ret;
258} 149}
259 150
260static int tree_delete(struct rb_root *root, u64 offset) 151static int mergable_maps(struct extent_map *prev, struct extent_map *next)
261{ 152{
262 struct rb_node *node; 153 if (extent_map_end(prev) == next->start &&
263 struct tree_entry *entry; 154 prev->flags == next->flags &&
264 155 prev->bdev == next->bdev &&
265 node = __tree_search(root, offset, NULL, NULL); 156 ((next->block_start == EXTENT_MAP_HOLE &&
266 if (!node) 157 prev->block_start == EXTENT_MAP_HOLE) ||
267 return -ENOENT; 158 (next->block_start == EXTENT_MAP_INLINE &&
268 entry = rb_entry(node, struct tree_entry, rb_node); 159 prev->block_start == EXTENT_MAP_INLINE) ||
269 entry->in_tree = 0; 160 (next->block_start == EXTENT_MAP_DELALLOC &&
270 rb_erase(node, root); 161 prev->block_start == EXTENT_MAP_DELALLOC) ||
162 (next->block_start < EXTENT_MAP_LAST_BYTE - 1 &&
163 next->block_start == extent_map_block_end(prev)))) {
164 return 1;
165 }
271 return 0; 166 return 0;
272} 167}
273 168
274/* 169/*
275 * add_extent_mapping tries a simple backward merge with existing 170 * add_extent_mapping tries a simple forward/backward merge with existing
276 * mappings. The extent_map struct passed in will be inserted into 171 * mappings. The extent_map struct passed in will be inserted into
277 * the tree directly (no copies made, just a reference taken). 172 * the tree directly (no copies made, just a reference taken).
278 */ 173 */
@@ -280,13 +175,12 @@ int add_extent_mapping(struct extent_map_tree *tree,
280 struct extent_map *em) 175 struct extent_map *em)
281{ 176{
282 int ret = 0; 177 int ret = 0;
283 struct extent_map *prev = NULL; 178 struct extent_map *merge = NULL;
284 struct rb_node *rb; 179 struct rb_node *rb;
285 180
286 write_lock_irq(&tree->lock); 181 rb = tree_insert(&tree->map, em->start, &em->rb_node);
287 rb = tree_insert(&tree->map, em->end, &em->rb_node);
288 if (rb) { 182 if (rb) {
289 prev = rb_entry(rb, struct extent_map, rb_node); 183 merge = rb_entry(rb, struct extent_map, rb_node);
290 ret = -EEXIST; 184 ret = -EEXIST;
291 goto out; 185 goto out;
292 } 186 }
@@ -294,53 +188,60 @@ int add_extent_mapping(struct extent_map_tree *tree,
294 if (em->start != 0) { 188 if (em->start != 0) {
295 rb = rb_prev(&em->rb_node); 189 rb = rb_prev(&em->rb_node);
296 if (rb) 190 if (rb)
297 prev = rb_entry(rb, struct extent_map, rb_node); 191 merge = rb_entry(rb, struct extent_map, rb_node);
298 if (prev && prev->end + 1 == em->start && 192 if (rb && mergable_maps(merge, em)) {
299 ((em->block_start == EXTENT_MAP_HOLE && 193 em->start = merge->start;
300 prev->block_start == EXTENT_MAP_HOLE) || 194 em->len += merge->len;
301 (em->block_start == EXTENT_MAP_INLINE && 195 em->block_start = merge->block_start;
302 prev->block_start == EXTENT_MAP_INLINE) || 196 merge->in_tree = 0;
303 (em->block_start == EXTENT_MAP_DELALLOC && 197 rb_erase(&merge->rb_node, &tree->map);
304 prev->block_start == EXTENT_MAP_DELALLOC) || 198 free_extent_map(merge);
305 (em->block_start < EXTENT_MAP_DELALLOC - 1 &&
306 em->block_start == prev->block_end + 1))) {
307 em->start = prev->start;
308 em->block_start = prev->block_start;
309 rb_erase(&prev->rb_node, &tree->map);
310 prev->in_tree = 0;
311 free_extent_map(prev);
312 } 199 }
313 } 200 }
201 rb = rb_next(&em->rb_node);
202 if (rb)
203 merge = rb_entry(rb, struct extent_map, rb_node);
204 if (rb && mergable_maps(em, merge)) {
205 em->len += merge->len;
206 rb_erase(&merge->rb_node, &tree->map);
207 merge->in_tree = 0;
208 free_extent_map(merge);
209 }
210 tree->last = em;
314out: 211out:
315 write_unlock_irq(&tree->lock);
316 return ret; 212 return ret;
317} 213}
318EXPORT_SYMBOL(add_extent_mapping); 214EXPORT_SYMBOL(add_extent_mapping);
319 215
216static u64 range_end(u64 start, u64 len)
217{
218 if (start + len < start)
219 return (u64)-1;
220 return start + len;
221}
222
320/* 223/*
321 * lookup_extent_mapping returns the first extent_map struct in the 224 * lookup_extent_mapping returns the first extent_map struct in the
322 * tree that intersects the [start, end] (inclusive) range. There may 225 * tree that intersects the [start, len] range. There may
323 * be additional objects in the tree that intersect, so check the object 226 * be additional objects in the tree that intersect, so check the object
324 * returned carefully to make sure you don't need additional lookups. 227 * returned carefully to make sure you don't need additional lookups.
325 */ 228 */
326struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree, 229struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
327 u64 start, u64 end) 230 u64 start, u64 len)
328{ 231{
329 struct extent_map *em; 232 struct extent_map *em;
330 struct rb_node *rb_node; 233 struct rb_node *rb_node;
331 struct rb_node *prev = NULL; 234 struct rb_node *prev = NULL; struct rb_node *next = NULL; u64 end = range_end(start, len); em = tree->last; if (em && end > em->start && start < extent_map_end(em)) goto found;
332 struct rb_node *next = NULL;
333 235
334 read_lock_irq(&tree->lock);
335 rb_node = __tree_search(&tree->map, start, &prev, &next); 236 rb_node = __tree_search(&tree->map, start, &prev, &next);
336 if (!rb_node && prev) { 237 if (!rb_node && prev) {
337 em = rb_entry(prev, struct extent_map, rb_node); 238 em = rb_entry(prev, struct extent_map, rb_node);
338 if (em->start <= end && em->end >= start) 239 if (end > em->start && start < extent_map_end(em))
339 goto found; 240 goto found;
340 } 241 }
341 if (!rb_node && next) { 242 if (!rb_node && next) {
342 em = rb_entry(next, struct extent_map, rb_node); 243 em = rb_entry(next, struct extent_map, rb_node);
343 if (em->start <= end && em->end >= start) 244 if (end > em->start && start < extent_map_end(em))
344 goto found; 245 goto found;
345 } 246 }
346 if (!rb_node) { 247 if (!rb_node) {
@@ -352,14 +253,16 @@ struct extent_map *lookup_extent_mapping(struct extent_map_tree *tree,
352 goto out; 253 goto out;
353 } 254 }
354 em = rb_entry(rb_node, struct extent_map, rb_node); 255 em = rb_entry(rb_node, struct extent_map, rb_node);
355 if (em->end < start || em->start > end) { 256 if (end > em->start && start < extent_map_end(em))
356 em = NULL; 257 goto found;
357 goto out; 258
358 } 259 em = NULL;
260 goto out;
261
359found: 262found:
360 atomic_inc(&em->refs); 263 atomic_inc(&em->refs);
264 tree->last = em;
361out: 265out:
362 read_unlock_irq(&tree->lock);
363 return em; 266 return em;
364} 267}
365EXPORT_SYMBOL(lookup_extent_mapping); 268EXPORT_SYMBOL(lookup_extent_mapping);
@@ -370,2866 +273,12 @@ EXPORT_SYMBOL(lookup_extent_mapping);
370 */ 273 */
371int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em) 274int remove_extent_mapping(struct extent_map_tree *tree, struct extent_map *em)
372{ 275{
373 int ret;
374
375 write_lock_irq(&tree->lock);
376 ret = tree_delete(&tree->map, em->end);
377 write_unlock_irq(&tree->lock);
378 return ret;
379}
380EXPORT_SYMBOL(remove_extent_mapping);
381
382/*
383 * utility function to look for merge candidates inside a given range.
384 * Any extents with matching state are merged together into a single
385 * extent in the tree. Extents with EXTENT_IO in their state field
386 * are not merged because the end_io handlers need to be able to do
387 * operations on them without sleeping (or doing allocations/splits).
388 *
389 * This should be called with the tree lock held.
390 */
391static int merge_state(struct extent_map_tree *tree,
392 struct extent_state *state)
393{
394 struct extent_state *other;
395 struct rb_node *other_node;
396
397 if (state->state & EXTENT_IOBITS)
398 return 0;
399
400 other_node = rb_prev(&state->rb_node);
401 if (other_node) {
402 other = rb_entry(other_node, struct extent_state, rb_node);
403 if (other->end == state->start - 1 &&
404 other->state == state->state) {
405 state->start = other->start;
406 other->in_tree = 0;
407 rb_erase(&other->rb_node, &tree->state);
408 free_extent_state(other);
409 }
410 }
411 other_node = rb_next(&state->rb_node);
412 if (other_node) {
413 other = rb_entry(other_node, struct extent_state, rb_node);
414 if (other->start == state->end + 1 &&
415 other->state == state->state) {
416 other->start = state->start;
417 state->in_tree = 0;
418 rb_erase(&state->rb_node, &tree->state);
419 free_extent_state(state);
420 }
421 }
422 return 0;
423}
424
425/*
426 * insert an extent_state struct into the tree. 'bits' are set on the
427 * struct before it is inserted.
428 *
429 * This may return -EEXIST if the extent is already there, in which case the
430 * state struct is freed.
431 *
432 * The tree lock is not taken internally. This is a utility function and
433 * probably isn't what you want to call (see set/clear_extent_bit).
434 */
435static int insert_state(struct extent_map_tree *tree,
436 struct extent_state *state, u64 start, u64 end,
437 int bits)
438{
439 struct rb_node *node;
440
441 if (end < start) {
442 printk("end < start %Lu %Lu\n", end, start);
443 WARN_ON(1);
444 }
445 if (bits & EXTENT_DIRTY)
446 tree->dirty_bytes += end - start + 1;
447 state->state |= bits;
448 state->start = start;
449 state->end = end;
450 node = tree_insert(&tree->state, end, &state->rb_node);
451 if (node) {
452 struct extent_state *found;
453 found = rb_entry(node, struct extent_state, rb_node);
454 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
455 free_extent_state(state);
456 return -EEXIST;
457 }
458 merge_state(tree, state);
459 return 0;
460}
461
462/*
463 * split a given extent state struct in two, inserting the preallocated
464 * struct 'prealloc' as the newly created second half. 'split' indicates an
465 * offset inside 'orig' where it should be split.
466 *
467 * Before calling,
468 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
469 * are two extent state structs in the tree:
470 * prealloc: [orig->start, split - 1]
471 * orig: [ split, orig->end ]
472 *
473 * The tree locks are not taken by this function. They need to be held
474 * by the caller.
475 */
476static int split_state(struct extent_map_tree *tree, struct extent_state *orig,
477 struct extent_state *prealloc, u64 split)
478{
479 struct rb_node *node;
480 prealloc->start = orig->start;
481 prealloc->end = split - 1;
482 prealloc->state = orig->state;
483 orig->start = split;
484
485 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
486 if (node) {
487 struct extent_state *found;
488 found = rb_entry(node, struct extent_state, rb_node);
489 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494}
495
496/*
497 * utility function to clear some bits in an extent state struct.
498 * it will optionally wake up any one waiting on this state (wake == 1), or
499 * forcibly remove the state from the tree (delete == 1).
500 *
501 * If no bits are set on the state struct after clearing things, the
502 * struct is freed and removed from the tree
503 */
504static int clear_state_bit(struct extent_map_tree *tree,
505 struct extent_state *state, int bits, int wake,
506 int delete)
507{
508 int ret = state->state & bits;
509
510 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
511 u64 range = state->end - state->start + 1;
512 WARN_ON(range > tree->dirty_bytes);
513 tree->dirty_bytes -= range;
514 }
515 state->state &= ~bits;
516 if (wake)
517 wake_up(&state->wq);
518 if (delete || state->state == 0) {
519 if (state->in_tree) {
520 rb_erase(&state->rb_node, &tree->state);
521 state->in_tree = 0;
522 free_extent_state(state);
523 } else {
524 WARN_ON(1);
525 }
526 } else {
527 merge_state(tree, state);
528 }
529 return ret;
530}
531
532/*
533 * clear some bits on a range in the tree. This may require splitting
534 * or inserting elements in the tree, so the gfp mask is used to
535 * indicate which allocations or sleeping are allowed.
536 *
537 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
538 * the given range from the tree regardless of state (ie for truncate).
539 *
540 * the range [start, end] is inclusive.
541 *
542 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
543 * bits were already set, or zero if none of the bits were already set.
544 */
545int clear_extent_bit(struct extent_map_tree *tree, u64 start, u64 end,
546 int bits, int wake, int delete, gfp_t mask)
547{
548 struct extent_state *state;
549 struct extent_state *prealloc = NULL;
550 struct rb_node *node;
551 unsigned long flags;
552 int err;
553 int set = 0;
554
555again:
556 if (!prealloc && (mask & __GFP_WAIT)) {
557 prealloc = alloc_extent_state(mask);
558 if (!prealloc)
559 return -ENOMEM;
560 }
561
562 write_lock_irqsave(&tree->lock, flags);
563 /*
564 * this search will find the extents that end after
565 * our range starts
566 */
567 node = tree_search(&tree->state, start);
568 if (!node)
569 goto out;
570 state = rb_entry(node, struct extent_state, rb_node);
571 if (state->start > end)
572 goto out;
573 WARN_ON(state->end < start);
574
575 /*
576 * | ---- desired range ---- |
577 * | state | or
578 * | ------------- state -------------- |
579 *
580 * We need to split the extent we found, and may flip
581 * bits on second half.
582 *
583 * If the extent we found extends past our range, we
584 * just split and search again. It'll get split again
585 * the next time though.
586 *
587 * If the extent we found is inside our range, we clear
588 * the desired bit on it.
589 */
590
591 if (state->start < start) {
592 err = split_state(tree, state, prealloc, start);
593 BUG_ON(err == -EEXIST);
594 prealloc = NULL;
595 if (err)
596 goto out;
597 if (state->end <= end) {
598 start = state->end + 1;
599 set |= clear_state_bit(tree, state, bits,
600 wake, delete);
601 } else {
602 start = state->start;
603 }
604 goto search_again;
605 }
606 /*
607 * | ---- desired range ---- |
608 * | state |
609 * We need to split the extent, and clear the bit
610 * on the first half
611 */
612 if (state->start <= end && state->end > end) {
613 err = split_state(tree, state, prealloc, end + 1);
614 BUG_ON(err == -EEXIST);
615
616 if (wake)
617 wake_up(&state->wq);
618 set |= clear_state_bit(tree, prealloc, bits,
619 wake, delete);
620 prealloc = NULL;
621 goto out;
622 }
623
624 start = state->end + 1;
625 set |= clear_state_bit(tree, state, bits, wake, delete);
626 goto search_again;
627
628out:
629 write_unlock_irqrestore(&tree->lock, flags);
630 if (prealloc)
631 free_extent_state(prealloc);
632
633 return set;
634
635search_again:
636 if (start > end)
637 goto out;
638 write_unlock_irqrestore(&tree->lock, flags);
639 if (mask & __GFP_WAIT)
640 cond_resched();
641 goto again;
642}
643EXPORT_SYMBOL(clear_extent_bit);
644
645static int wait_on_state(struct extent_map_tree *tree,
646 struct extent_state *state)
647{
648 DEFINE_WAIT(wait);
649 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
650 read_unlock_irq(&tree->lock);
651 schedule();
652 read_lock_irq(&tree->lock);
653 finish_wait(&state->wq, &wait);
654 return 0;
655}
656
657/*
658 * waits for one or more bits to clear on a range in the state tree.
659 * The range [start, end] is inclusive.
660 * The tree lock is taken by this function
661 */
662int wait_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits)
663{
664 struct extent_state *state;
665 struct rb_node *node;
666
667 read_lock_irq(&tree->lock);
668again:
669 while (1) {
670 /*
671 * this search will find all the extents that end after
672 * our range starts
673 */
674 node = tree_search(&tree->state, start);
675 if (!node)
676 break;
677
678 state = rb_entry(node, struct extent_state, rb_node);
679
680 if (state->start > end)
681 goto out;
682
683 if (state->state & bits) {
684 start = state->start;
685 atomic_inc(&state->refs);
686 wait_on_state(tree, state);
687 free_extent_state(state);
688 goto again;
689 }
690 start = state->end + 1;
691
692 if (start > end)
693 break;
694
695 if (need_resched()) {
696 read_unlock_irq(&tree->lock);
697 cond_resched();
698 read_lock_irq(&tree->lock);
699 }
700 }
701out:
702 read_unlock_irq(&tree->lock);
703 return 0;
704}
705EXPORT_SYMBOL(wait_extent_bit);
706
707static void set_state_bits(struct extent_map_tree *tree,
708 struct extent_state *state,
709 int bits)
710{
711 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
712 u64 range = state->end - state->start + 1;
713 tree->dirty_bytes += range;
714 }
715 state->state |= bits;
716}
717
718/*
719 * set some bits on a range in the tree. This may require allocations
720 * or sleeping, so the gfp mask is used to indicate what is allowed.
721 *
722 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
723 * range already has the desired bits set. The start of the existing
724 * range is returned in failed_start in this case.
725 *
726 * [start, end] is inclusive
727 * This takes the tree lock.
728 */
729int set_extent_bit(struct extent_map_tree *tree, u64 start, u64 end, int bits,
730 int exclusive, u64 *failed_start, gfp_t mask)
731{
732 struct extent_state *state;
733 struct extent_state *prealloc = NULL;
734 struct rb_node *node;
735 unsigned long flags;
736 int err = 0;
737 int set;
738 u64 last_start;
739 u64 last_end;
740again:
741 if (!prealloc && (mask & __GFP_WAIT)) {
742 prealloc = alloc_extent_state(mask);
743 if (!prealloc)
744 return -ENOMEM;
745 }
746
747 write_lock_irqsave(&tree->lock, flags);
748 /*
749 * this search will find all the extents that end after
750 * our range starts.
751 */
752 node = tree_search(&tree->state, start);
753 if (!node) {
754 err = insert_state(tree, prealloc, start, end, bits);
755 prealloc = NULL;
756 BUG_ON(err == -EEXIST);
757 goto out;
758 }
759
760 state = rb_entry(node, struct extent_state, rb_node);
761 last_start = state->start;
762 last_end = state->end;
763
764 /*
765 * | ---- desired range ---- |
766 * | state |
767 *
768 * Just lock what we found and keep going
769 */
770 if (state->start == start && state->end <= end) {
771 set = state->state & bits;
772 if (set && exclusive) {
773 *failed_start = state->start;
774 err = -EEXIST;
775 goto out;
776 }
777 set_state_bits(tree, state, bits);
778 start = state->end + 1;
779 merge_state(tree, state);
780 goto search_again;
781 }
782
783 /*
784 * | ---- desired range ---- |
785 * | state |
786 * or
787 * | ------------- state -------------- |
788 *
789 * We need to split the extent we found, and may flip bits on
790 * second half.
791 *
792 * If the extent we found extends past our
793 * range, we just split and search again. It'll get split
794 * again the next time though.
795 *
796 * If the extent we found is inside our range, we set the
797 * desired bit on it.
798 */
799 if (state->start < start) {
800 set = state->state & bits;
801 if (exclusive && set) {
802 *failed_start = start;
803 err = -EEXIST;
804 goto out;
805 }
806 err = split_state(tree, state, prealloc, start);
807 BUG_ON(err == -EEXIST);
808 prealloc = NULL;
809 if (err)
810 goto out;
811 if (state->end <= end) {
812 set_state_bits(tree, state, bits);
813 start = state->end + 1;
814 merge_state(tree, state);
815 } else {
816 start = state->start;
817 }
818 goto search_again;
819 }
820 /*
821 * | ---- desired range ---- |
822 * | state | or | state |
823 *
824 * There's a hole, we need to insert something in it and
825 * ignore the extent we found.
826 */
827 if (state->start > start) {
828 u64 this_end;
829 if (end < last_start)
830 this_end = end;
831 else
832 this_end = last_start -1;
833 err = insert_state(tree, prealloc, start, this_end,
834 bits);
835 prealloc = NULL;
836 BUG_ON(err == -EEXIST);
837 if (err)
838 goto out;
839 start = this_end + 1;
840 goto search_again;
841 }
842 /*
843 * | ---- desired range ---- |
844 * | state |
845 * We need to split the extent, and set the bit
846 * on the first half
847 */
848 if (state->start <= end && state->end > end) {
849 set = state->state & bits;
850 if (exclusive && set) {
851 *failed_start = start;
852 err = -EEXIST;
853 goto out;
854 }
855 err = split_state(tree, state, prealloc, end + 1);
856 BUG_ON(err == -EEXIST);
857
858 set_state_bits(tree, prealloc, bits);
859 merge_state(tree, prealloc);
860 prealloc = NULL;
861 goto out;
862 }
863
864 goto search_again;
865
866out:
867 write_unlock_irqrestore(&tree->lock, flags);
868 if (prealloc)
869 free_extent_state(prealloc);
870
871 return err;
872
873search_again:
874 if (start > end)
875 goto out;
876 write_unlock_irqrestore(&tree->lock, flags);
877 if (mask & __GFP_WAIT)
878 cond_resched();
879 goto again;
880}
881EXPORT_SYMBOL(set_extent_bit);
882
883/* wrappers around set/clear extent bit */
884int set_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
885 gfp_t mask)
886{
887 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
888 mask);
889}
890EXPORT_SYMBOL(set_extent_dirty);
891
892int set_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
893 int bits, gfp_t mask)
894{
895 return set_extent_bit(tree, start, end, bits, 0, NULL,
896 mask);
897}
898EXPORT_SYMBOL(set_extent_bits);
899
900int clear_extent_bits(struct extent_map_tree *tree, u64 start, u64 end,
901 int bits, gfp_t mask)
902{
903 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
904}
905EXPORT_SYMBOL(clear_extent_bits);
906
907int set_extent_delalloc(struct extent_map_tree *tree, u64 start, u64 end,
908 gfp_t mask)
909{
910 return set_extent_bit(tree, start, end,
911 EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
912 mask);
913}
914EXPORT_SYMBOL(set_extent_delalloc);
915
916int clear_extent_dirty(struct extent_map_tree *tree, u64 start, u64 end,
917 gfp_t mask)
918{
919 return clear_extent_bit(tree, start, end,
920 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
921}
922EXPORT_SYMBOL(clear_extent_dirty);
923
924int set_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
925 gfp_t mask)
926{
927 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
928 mask);
929}
930EXPORT_SYMBOL(set_extent_new);
931
932int clear_extent_new(struct extent_map_tree *tree, u64 start, u64 end,
933 gfp_t mask)
934{
935 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
936}
937EXPORT_SYMBOL(clear_extent_new);
938
939int set_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
940 gfp_t mask)
941{
942 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
943 mask);
944}
945EXPORT_SYMBOL(set_extent_uptodate);
946
947int clear_extent_uptodate(struct extent_map_tree *tree, u64 start, u64 end,
948 gfp_t mask)
949{
950 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
951}
952EXPORT_SYMBOL(clear_extent_uptodate);
953
954int set_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
955 gfp_t mask)
956{
957 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
958 0, NULL, mask);
959}
960EXPORT_SYMBOL(set_extent_writeback);
961
962int clear_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end,
963 gfp_t mask)
964{
965 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
966}
967EXPORT_SYMBOL(clear_extent_writeback);
968
969int wait_on_extent_writeback(struct extent_map_tree *tree, u64 start, u64 end)
970{
971 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
972}
973EXPORT_SYMBOL(wait_on_extent_writeback);
974
975/*
976 * locks a range in ascending order, waiting for any locked regions
977 * it hits on the way. [start,end] are inclusive, and this will sleep.
978 */
979int lock_extent(struct extent_map_tree *tree, u64 start, u64 end, gfp_t mask)
980{
981 int err;
982 u64 failed_start;
983 while (1) {
984 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
985 &failed_start, mask);
986 if (err == -EEXIST && (mask & __GFP_WAIT)) {
987 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
988 start = failed_start;
989 } else {
990 break;
991 }
992 WARN_ON(start > end);
993 }
994 return err;
995}
996EXPORT_SYMBOL(lock_extent);
997
998int unlock_extent(struct extent_map_tree *tree, u64 start, u64 end,
999 gfp_t mask)
1000{
1001 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
1002}
1003EXPORT_SYMBOL(unlock_extent);
1004
1005/*
1006 * helper function to set pages and extents in the tree dirty
1007 */
1008int set_range_dirty(struct extent_map_tree *tree, u64 start, u64 end)
1009{
1010 unsigned long index = start >> PAGE_CACHE_SHIFT;
1011 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1012 struct page *page;
1013
1014 while (index <= end_index) {
1015 page = find_get_page(tree->mapping, index);
1016 BUG_ON(!page);
1017 __set_page_dirty_nobuffers(page);
1018 page_cache_release(page);
1019 index++;
1020 }
1021 set_extent_dirty(tree, start, end, GFP_NOFS);
1022 return 0;
1023}
1024EXPORT_SYMBOL(set_range_dirty);
1025
1026/*
1027 * helper function to set both pages and extents in the tree writeback
1028 */
1029int set_range_writeback(struct extent_map_tree *tree, u64 start, u64 end)
1030{
1031 unsigned long index = start >> PAGE_CACHE_SHIFT;
1032 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1033 struct page *page;
1034
1035 while (index <= end_index) {
1036 page = find_get_page(tree->mapping, index);
1037 BUG_ON(!page);
1038 set_page_writeback(page);
1039 page_cache_release(page);
1040 index++;
1041 }
1042 set_extent_writeback(tree, start, end, GFP_NOFS);
1043 return 0;
1044}
1045EXPORT_SYMBOL(set_range_writeback);
1046
1047int find_first_extent_bit(struct extent_map_tree *tree, u64 start,
1048 u64 *start_ret, u64 *end_ret, int bits)
1049{
1050 struct rb_node *node;
1051 struct extent_state *state;
1052 int ret = 1;
1053
1054 read_lock_irq(&tree->lock);
1055 /*
1056 * this search will find all the extents that end after
1057 * our range starts.
1058 */
1059 node = tree_search(&tree->state, start);
1060 if (!node || IS_ERR(node)) {
1061 goto out;
1062 }
1063
1064 while(1) {
1065 state = rb_entry(node, struct extent_state, rb_node);
1066 if (state->end >= start && (state->state & bits)) {
1067 *start_ret = state->start;
1068 *end_ret = state->end;
1069 ret = 0;
1070 break;
1071 }
1072 node = rb_next(node);
1073 if (!node)
1074 break;
1075 }
1076out:
1077 read_unlock_irq(&tree->lock);
1078 return ret;
1079}
1080EXPORT_SYMBOL(find_first_extent_bit);
1081
1082u64 find_lock_delalloc_range(struct extent_map_tree *tree,
1083 u64 *start, u64 *end, u64 max_bytes)
1084{
1085 struct rb_node *node;
1086 struct extent_state *state;
1087 u64 cur_start = *start;
1088 u64 found = 0;
1089 u64 total_bytes = 0;
1090
1091 write_lock_irq(&tree->lock);
1092 /*
1093 * this search will find all the extents that end after
1094 * our range starts.
1095 */
1096search_again:
1097 node = tree_search(&tree->state, cur_start);
1098 if (!node || IS_ERR(node)) {
1099 *end = (u64)-1;
1100 goto out;
1101 }
1102
1103 while(1) {
1104 state = rb_entry(node, struct extent_state, rb_node);
1105 if (found && state->start != cur_start) {
1106 goto out;
1107 }
1108 if (!(state->state & EXTENT_DELALLOC)) {
1109 if (!found)
1110 *end = state->end;
1111 goto out;
1112 }
1113 if (!found) {
1114 struct extent_state *prev_state;
1115 struct rb_node *prev_node = node;
1116 while(1) {
1117 prev_node = rb_prev(prev_node);
1118 if (!prev_node)
1119 break;
1120 prev_state = rb_entry(prev_node,
1121 struct extent_state,
1122 rb_node);
1123 if (!(prev_state->state & EXTENT_DELALLOC))
1124 break;
1125 state = prev_state;
1126 node = prev_node;
1127 }
1128 }
1129 if (state->state & EXTENT_LOCKED) {
1130 DEFINE_WAIT(wait);
1131 atomic_inc(&state->refs);
1132 prepare_to_wait(&state->wq, &wait,
1133 TASK_UNINTERRUPTIBLE);
1134 write_unlock_irq(&tree->lock);
1135 schedule();
1136 write_lock_irq(&tree->lock);
1137 finish_wait(&state->wq, &wait);
1138 free_extent_state(state);
1139 goto search_again;
1140 }
1141 state->state |= EXTENT_LOCKED;
1142 if (!found)
1143 *start = state->start;
1144 found++;
1145 *end = state->end;
1146 cur_start = state->end + 1;
1147 node = rb_next(node);
1148 if (!node)
1149 break;
1150 total_bytes += state->end - state->start + 1;
1151 if (total_bytes >= max_bytes)
1152 break;
1153 }
1154out:
1155 write_unlock_irq(&tree->lock);
1156 return found;
1157}
1158
1159u64 count_range_bits(struct extent_map_tree *tree,
1160 u64 *start, u64 search_end, u64 max_bytes,
1161 unsigned long bits)
1162{
1163 struct rb_node *node;
1164 struct extent_state *state;
1165 u64 cur_start = *start;
1166 u64 total_bytes = 0;
1167 int found = 0;
1168
1169 if (search_end <= cur_start) {
1170 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1171 WARN_ON(1);
1172 return 0;
1173 }
1174
1175 write_lock_irq(&tree->lock);
1176 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1177 total_bytes = tree->dirty_bytes;
1178 goto out;
1179 }
1180 /*
1181 * this search will find all the extents that end after
1182 * our range starts.
1183 */
1184 node = tree_search(&tree->state, cur_start);
1185 if (!node || IS_ERR(node)) {
1186 goto out;
1187 }
1188
1189 while(1) {
1190 state = rb_entry(node, struct extent_state, rb_node);
1191 if (state->start > search_end)
1192 break;
1193 if (state->end >= cur_start && (state->state & bits)) {
1194 total_bytes += min(search_end, state->end) + 1 -
1195 max(cur_start, state->start);
1196 if (total_bytes >= max_bytes)
1197 break;
1198 if (!found) {
1199 *start = state->start;
1200 found = 1;
1201 }
1202 }
1203 node = rb_next(node);
1204 if (!node)
1205 break;
1206 }
1207out:
1208 write_unlock_irq(&tree->lock);
1209 return total_bytes;
1210}
1211/*
1212 * helper function to lock both pages and extents in the tree.
1213 * pages must be locked first.
1214 */
1215int lock_range(struct extent_map_tree *tree, u64 start, u64 end)
1216{
1217 unsigned long index = start >> PAGE_CACHE_SHIFT;
1218 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1219 struct page *page;
1220 int err;
1221
1222 while (index <= end_index) {
1223 page = grab_cache_page(tree->mapping, index);
1224 if (!page) {
1225 err = -ENOMEM;
1226 goto failed;
1227 }
1228 if (IS_ERR(page)) {
1229 err = PTR_ERR(page);
1230 goto failed;
1231 }
1232 index++;
1233 }
1234 lock_extent(tree, start, end, GFP_NOFS);
1235 return 0;
1236
1237failed:
1238 /*
1239 * we failed above in getting the page at 'index', so we undo here
1240 * up to but not including the page at 'index'
1241 */
1242 end_index = index;
1243 index = start >> PAGE_CACHE_SHIFT;
1244 while (index < end_index) {
1245 page = find_get_page(tree->mapping, index);
1246 unlock_page(page);
1247 page_cache_release(page);
1248 index++;
1249 }
1250 return err;
1251}
1252EXPORT_SYMBOL(lock_range);
1253
1254/*
1255 * helper function to unlock both pages and extents in the tree.
1256 */
1257int unlock_range(struct extent_map_tree *tree, u64 start, u64 end)
1258{
1259 unsigned long index = start >> PAGE_CACHE_SHIFT;
1260 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1261 struct page *page;
1262
1263 while (index <= end_index) {
1264 page = find_get_page(tree->mapping, index);
1265 unlock_page(page);
1266 page_cache_release(page);
1267 index++;
1268 }
1269 unlock_extent(tree, start, end, GFP_NOFS);
1270 return 0;
1271}
1272EXPORT_SYMBOL(unlock_range);
1273
1274int set_state_private(struct extent_map_tree *tree, u64 start, u64 private)
1275{
1276 struct rb_node *node;
1277 struct extent_state *state;
1278 int ret = 0;
1279
1280 write_lock_irq(&tree->lock);
1281 /*
1282 * this search will find all the extents that end after
1283 * our range starts.
1284 */
1285 node = tree_search(&tree->state, start);
1286 if (!node || IS_ERR(node)) {
1287 ret = -ENOENT;
1288 goto out;
1289 }
1290 state = rb_entry(node, struct extent_state, rb_node);
1291 if (state->start != start) {
1292 ret = -ENOENT;
1293 goto out;
1294 }
1295 state->private = private;
1296out:
1297 write_unlock_irq(&tree->lock);
1298 return ret;
1299}
1300
1301int get_state_private(struct extent_map_tree *tree, u64 start, u64 *private)
1302{
1303 struct rb_node *node;
1304 struct extent_state *state;
1305 int ret = 0;
1306
1307 read_lock_irq(&tree->lock);
1308 /*
1309 * this search will find all the extents that end after
1310 * our range starts.
1311 */
1312 node = tree_search(&tree->state, start);
1313 if (!node || IS_ERR(node)) {
1314 ret = -ENOENT;
1315 goto out;
1316 }
1317 state = rb_entry(node, struct extent_state, rb_node);
1318 if (state->start != start) {
1319 ret = -ENOENT;
1320 goto out;
1321 }
1322 *private = state->private;
1323out:
1324 read_unlock_irq(&tree->lock);
1325 return ret;
1326}
1327
1328/*
1329 * searches a range in the state tree for a given mask.
1330 * If 'filled' == 1, this returns 1 only if ever extent in the tree
1331 * has the bits set. Otherwise, 1 is returned if any bit in the
1332 * range is found set.
1333 */
1334int test_range_bit(struct extent_map_tree *tree, u64 start, u64 end,
1335 int bits, int filled)
1336{
1337 struct extent_state *state = NULL;
1338 struct rb_node *node;
1339 int bitset = 0;
1340
1341 read_lock_irq(&tree->lock);
1342 node = tree_search(&tree->state, start);
1343 while (node && start <= end) {
1344 state = rb_entry(node, struct extent_state, rb_node);
1345
1346 if (filled && state->start > start) {
1347 bitset = 0;
1348 break;
1349 }
1350
1351 if (state->start > end)
1352 break;
1353
1354 if (state->state & bits) {
1355 bitset = 1;
1356 if (!filled)
1357 break;
1358 } else if (filled) {
1359 bitset = 0;
1360 break;
1361 }
1362 start = state->end + 1;
1363 if (start > end)
1364 break;
1365 node = rb_next(node);
1366 if (!node) {
1367 if (filled)
1368 bitset = 0;
1369 break;
1370 }
1371 }
1372 read_unlock_irq(&tree->lock);
1373 return bitset;
1374}
1375EXPORT_SYMBOL(test_range_bit);
1376
1377/*
1378 * helper function to set a given page up to date if all the
1379 * extents in the tree for that page are up to date
1380 */
1381static int check_page_uptodate(struct extent_map_tree *tree,
1382 struct page *page)
1383{
1384 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1385 u64 end = start + PAGE_CACHE_SIZE - 1;
1386 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1387 SetPageUptodate(page);
1388 return 0;
1389}
1390
1391/*
1392 * helper function to unlock a page if all the extents in the tree
1393 * for that page are unlocked
1394 */
1395static int check_page_locked(struct extent_map_tree *tree,
1396 struct page *page)
1397{
1398 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1399 u64 end = start + PAGE_CACHE_SIZE - 1;
1400 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1401 unlock_page(page);
1402 return 0;
1403}
1404
1405/*
1406 * helper function to end page writeback if all the extents
1407 * in the tree for that page are done with writeback
1408 */
1409static int check_page_writeback(struct extent_map_tree *tree,
1410 struct page *page)
1411{
1412 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1413 u64 end = start + PAGE_CACHE_SIZE - 1;
1414 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1415 end_page_writeback(page);
1416 return 0;
1417}
1418
1419/* lots and lots of room for performance fixes in the end_bio funcs */
1420
1421/*
1422 * after a writepage IO is done, we need to:
1423 * clear the uptodate bits on error
1424 * clear the writeback bits in the extent tree for this IO
1425 * end_page_writeback if the page has no more pending IO
1426 *
1427 * Scheduling is not allowed, so the extent state tree is expected
1428 * to have one and only one object corresponding to this IO.
1429 */
1430#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1431static void end_bio_extent_writepage(struct bio *bio, int err)
1432#else
1433static int end_bio_extent_writepage(struct bio *bio,
1434 unsigned int bytes_done, int err)
1435#endif
1436{
1437 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1438 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1439 struct extent_map_tree *tree = bio->bi_private;
1440 u64 start;
1441 u64 end;
1442 int whole_page;
1443
1444#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1445 if (bio->bi_size)
1446 return 1;
1447#endif
1448
1449 do {
1450 struct page *page = bvec->bv_page;
1451 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1452 bvec->bv_offset;
1453 end = start + bvec->bv_len - 1;
1454
1455 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1456 whole_page = 1;
1457 else
1458 whole_page = 0;
1459
1460 if (--bvec >= bio->bi_io_vec)
1461 prefetchw(&bvec->bv_page->flags);
1462
1463 if (!uptodate) {
1464 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1465 ClearPageUptodate(page);
1466 SetPageError(page);
1467 }
1468 clear_extent_writeback(tree, start, end, GFP_ATOMIC);
1469
1470 if (whole_page)
1471 end_page_writeback(page);
1472 else
1473 check_page_writeback(tree, page);
1474 if (tree->ops && tree->ops->writepage_end_io_hook)
1475 tree->ops->writepage_end_io_hook(page, start, end);
1476 } while (bvec >= bio->bi_io_vec);
1477
1478 bio_put(bio);
1479#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1480 return 0;
1481#endif
1482}
1483
1484/*
1485 * after a readpage IO is done, we need to:
1486 * clear the uptodate bits on error
1487 * set the uptodate bits if things worked
1488 * set the page up to date if all extents in the tree are uptodate
1489 * clear the lock bit in the extent tree
1490 * unlock the page if there are no other extents locked for it
1491 *
1492 * Scheduling is not allowed, so the extent state tree is expected
1493 * to have one and only one object corresponding to this IO.
1494 */
1495#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1496static void end_bio_extent_readpage(struct bio *bio, int err)
1497#else
1498static int end_bio_extent_readpage(struct bio *bio,
1499 unsigned int bytes_done, int err)
1500#endif
1501{
1502 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1503 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1504 struct extent_map_tree *tree = bio->bi_private;
1505 u64 start;
1506 u64 end;
1507 int whole_page;
1508 int ret;
1509
1510#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1511 if (bio->bi_size)
1512 return 1;
1513#endif
1514
1515 do {
1516 struct page *page = bvec->bv_page;
1517 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1518 bvec->bv_offset;
1519 end = start + bvec->bv_len - 1;
1520
1521 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1522 whole_page = 1;
1523 else
1524 whole_page = 0;
1525
1526 if (--bvec >= bio->bi_io_vec)
1527 prefetchw(&bvec->bv_page->flags);
1528
1529 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1530 ret = tree->ops->readpage_end_io_hook(page, start, end);
1531 if (ret)
1532 uptodate = 0;
1533 }
1534 if (uptodate) {
1535 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1536 if (whole_page)
1537 SetPageUptodate(page);
1538 else
1539 check_page_uptodate(tree, page);
1540 } else {
1541 ClearPageUptodate(page);
1542 SetPageError(page);
1543 }
1544
1545 unlock_extent(tree, start, end, GFP_ATOMIC);
1546
1547 if (whole_page)
1548 unlock_page(page);
1549 else
1550 check_page_locked(tree, page);
1551 } while (bvec >= bio->bi_io_vec);
1552
1553 bio_put(bio);
1554#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1555 return 0;
1556#endif
1557}
1558
1559/*
1560 * IO done from prepare_write is pretty simple, we just unlock
1561 * the structs in the extent tree when done, and set the uptodate bits
1562 * as appropriate.
1563 */
1564#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1565static void end_bio_extent_preparewrite(struct bio *bio, int err)
1566#else
1567static int end_bio_extent_preparewrite(struct bio *bio,
1568 unsigned int bytes_done, int err)
1569#endif
1570{
1571 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1572 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1573 struct extent_map_tree *tree = bio->bi_private;
1574 u64 start;
1575 u64 end;
1576
1577#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1578 if (bio->bi_size)
1579 return 1;
1580#endif
1581
1582 do {
1583 struct page *page = bvec->bv_page;
1584 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1585 bvec->bv_offset;
1586 end = start + bvec->bv_len - 1;
1587
1588 if (--bvec >= bio->bi_io_vec)
1589 prefetchw(&bvec->bv_page->flags);
1590
1591 if (uptodate) {
1592 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1593 } else {
1594 ClearPageUptodate(page);
1595 SetPageError(page);
1596 }
1597
1598 unlock_extent(tree, start, end, GFP_ATOMIC);
1599
1600 } while (bvec >= bio->bi_io_vec);
1601
1602 bio_put(bio);
1603#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1604 return 0;
1605#endif
1606}
1607
1608static struct bio *
1609extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1610 gfp_t gfp_flags)
1611{
1612 struct bio *bio;
1613
1614 bio = bio_alloc(gfp_flags, nr_vecs);
1615
1616 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1617 while (!bio && (nr_vecs /= 2))
1618 bio = bio_alloc(gfp_flags, nr_vecs);
1619 }
1620
1621 if (bio) {
1622 bio->bi_bdev = bdev;
1623 bio->bi_sector = first_sector;
1624 }
1625 return bio;
1626}
1627
1628static int submit_one_bio(int rw, struct bio *bio)
1629{
1630 u64 maxsector;
1631 int ret = 0;
1632
1633 bio_get(bio);
1634
1635 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1636 if (maxsector < bio->bi_sector) {
1637 printk("sector too large max %Lu got %llu\n", maxsector,
1638 (unsigned long long)bio->bi_sector);
1639 WARN_ON(1);
1640 }
1641
1642 submit_bio(rw, bio);
1643 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1644 ret = -EOPNOTSUPP;
1645 bio_put(bio);
1646 return ret;
1647}
1648
1649static int submit_extent_page(int rw, struct extent_map_tree *tree,
1650 struct page *page, sector_t sector,
1651 size_t size, unsigned long offset,
1652 struct block_device *bdev,
1653 struct bio **bio_ret,
1654 unsigned long max_pages,
1655 bio_end_io_t end_io_func)
1656{
1657 int ret = 0;
1658 struct bio *bio;
1659 int nr;
1660
1661 if (bio_ret && *bio_ret) {
1662 bio = *bio_ret;
1663 if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1664 bio_add_page(bio, page, size, offset) < size) {
1665 ret = submit_one_bio(rw, bio);
1666 bio = NULL;
1667 } else {
1668 return 0;
1669 }
1670 }
1671 nr = min_t(int, max_pages, bio_get_nr_vecs(bdev));
1672 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1673 if (!bio) {
1674 printk("failed to allocate bio nr %d\n", nr);
1675 }
1676 bio_add_page(bio, page, size, offset);
1677 bio->bi_end_io = end_io_func;
1678 bio->bi_private = tree;
1679 if (bio_ret) {
1680 *bio_ret = bio;
1681 } else {
1682 ret = submit_one_bio(rw, bio);
1683 }
1684
1685 return ret;
1686}
1687
1688void set_page_extent_mapped(struct page *page)
1689{
1690 if (!PagePrivate(page)) {
1691 SetPagePrivate(page);
1692 WARN_ON(!page->mapping->a_ops->invalidatepage);
1693 set_page_private(page, EXTENT_PAGE_PRIVATE);
1694 page_cache_get(page);
1695 }
1696}
1697
1698void set_page_extent_head(struct page *page, unsigned long len)
1699{
1700 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1701}
1702
1703/*
1704 * basic readpage implementation. Locked extent state structs are inserted
1705 * into the tree that are removed when the IO is done (by the end_io
1706 * handlers)
1707 */
1708static int __extent_read_full_page(struct extent_map_tree *tree,
1709 struct page *page,
1710 get_extent_t *get_extent,
1711 struct bio **bio)
1712{
1713 struct inode *inode = page->mapping->host;
1714 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1715 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1716 u64 end;
1717 u64 cur = start;
1718 u64 extent_offset;
1719 u64 last_byte = i_size_read(inode);
1720 u64 block_start;
1721 u64 cur_end;
1722 sector_t sector;
1723 struct extent_map *em;
1724 struct block_device *bdev;
1725 int ret;
1726 int nr = 0;
1727 size_t page_offset = 0;
1728 size_t iosize;
1729 size_t blocksize = inode->i_sb->s_blocksize;
1730
1731 set_page_extent_mapped(page);
1732
1733 end = page_end;
1734 lock_extent(tree, start, end, GFP_NOFS);
1735
1736 while (cur <= end) {
1737 if (cur >= last_byte) {
1738 char *userpage;
1739 iosize = PAGE_CACHE_SIZE - page_offset;
1740 userpage = kmap_atomic(page, KM_USER0);
1741 memset(userpage + page_offset, 0, iosize);
1742 flush_dcache_page(page);
1743 kunmap_atomic(userpage, KM_USER0);
1744 set_extent_uptodate(tree, cur, cur + iosize - 1,
1745 GFP_NOFS);
1746 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1747 break;
1748 }
1749 em = get_extent(inode, page, page_offset, cur, end, 0);
1750 if (IS_ERR(em) || !em) {
1751 SetPageError(page);
1752 unlock_extent(tree, cur, end, GFP_NOFS);
1753 break;
1754 }
1755
1756 extent_offset = cur - em->start;
1757 BUG_ON(em->end < cur);
1758 BUG_ON(end < cur);
1759
1760 iosize = min(em->end - cur, end - cur) + 1;
1761 cur_end = min(em->end, end);
1762 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1763 sector = (em->block_start + extent_offset) >> 9;
1764 bdev = em->bdev;
1765 block_start = em->block_start;
1766 free_extent_map(em);
1767 em = NULL;
1768
1769 /* we've found a hole, just zero and go on */
1770 if (block_start == EXTENT_MAP_HOLE) {
1771 char *userpage;
1772 userpage = kmap_atomic(page, KM_USER0);
1773 memset(userpage + page_offset, 0, iosize);
1774 flush_dcache_page(page);
1775 kunmap_atomic(userpage, KM_USER0);
1776
1777 set_extent_uptodate(tree, cur, cur + iosize - 1,
1778 GFP_NOFS);
1779 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1780 cur = cur + iosize;
1781 page_offset += iosize;
1782 continue;
1783 }
1784 /* the get_extent function already copied into the page */
1785 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1786 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1787 cur = cur + iosize;
1788 page_offset += iosize;
1789 continue;
1790 }
1791
1792 ret = 0;
1793 if (tree->ops && tree->ops->readpage_io_hook) {
1794 ret = tree->ops->readpage_io_hook(page, cur,
1795 cur + iosize - 1);
1796 }
1797 if (!ret) {
1798 unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1799 nr -= page->index;
1800 ret = submit_extent_page(READ, tree, page,
1801 sector, iosize, page_offset,
1802 bdev, bio, nr,
1803 end_bio_extent_readpage);
1804 }
1805 if (ret)
1806 SetPageError(page);
1807 cur = cur + iosize;
1808 page_offset += iosize;
1809 nr++;
1810 }
1811 if (!nr) {
1812 if (!PageError(page))
1813 SetPageUptodate(page);
1814 unlock_page(page);
1815 }
1816 return 0;
1817}
1818
1819int extent_read_full_page(struct extent_map_tree *tree, struct page *page,
1820 get_extent_t *get_extent)
1821{
1822 struct bio *bio = NULL;
1823 int ret;
1824
1825 ret = __extent_read_full_page(tree, page, get_extent, &bio);
1826 if (bio)
1827 submit_one_bio(READ, bio);
1828 return ret;
1829}
1830EXPORT_SYMBOL(extent_read_full_page);
1831
1832/*
1833 * the writepage semantics are similar to regular writepage. extent
1834 * records are inserted to lock ranges in the tree, and as dirty areas
1835 * are found, they are marked writeback. Then the lock bits are removed
1836 * and the end_io handler clears the writeback ranges
1837 */
1838static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1839 void *data)
1840{
1841 struct inode *inode = page->mapping->host;
1842 struct extent_page_data *epd = data;
1843 struct extent_map_tree *tree = epd->tree;
1844 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1845 u64 delalloc_start;
1846 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1847 u64 end;
1848 u64 cur = start;
1849 u64 extent_offset;
1850 u64 last_byte = i_size_read(inode);
1851 u64 block_start;
1852 u64 iosize;
1853 sector_t sector;
1854 struct extent_map *em;
1855 struct block_device *bdev;
1856 int ret;
1857 int nr = 0;
1858 size_t page_offset = 0;
1859 size_t blocksize;
1860 loff_t i_size = i_size_read(inode);
1861 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1862 u64 nr_delalloc;
1863 u64 delalloc_end;
1864
1865 WARN_ON(!PageLocked(page));
1866 if (page->index > end_index) {
1867 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1868 unlock_page(page);
1869 return 0;
1870 }
1871
1872 if (page->index == end_index) {
1873 char *userpage;
1874
1875 size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1876
1877 userpage = kmap_atomic(page, KM_USER0);
1878 memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1879 flush_dcache_page(page);
1880 kunmap_atomic(userpage, KM_USER0);
1881 }
1882
1883 set_page_extent_mapped(page);
1884
1885 delalloc_start = start;
1886 delalloc_end = 0;
1887 while(delalloc_end < page_end) {
1888 nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1889 &delalloc_end,
1890 128 * 1024 * 1024);
1891 if (nr_delalloc == 0) {
1892 delalloc_start = delalloc_end + 1;
1893 continue;
1894 }
1895 tree->ops->fill_delalloc(inode, delalloc_start,
1896 delalloc_end);
1897 clear_extent_bit(tree, delalloc_start,
1898 delalloc_end,
1899 EXTENT_LOCKED | EXTENT_DELALLOC,
1900 1, 0, GFP_NOFS);
1901 delalloc_start = delalloc_end + 1;
1902 }
1903 lock_extent(tree, start, page_end, GFP_NOFS);
1904
1905 end = page_end;
1906 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1907 printk("found delalloc bits after lock_extent\n");
1908 }
1909
1910 if (last_byte <= start) {
1911 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1912 goto done;
1913 }
1914
1915 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1916 blocksize = inode->i_sb->s_blocksize;
1917
1918 while (cur <= end) {
1919 if (cur >= last_byte) {
1920 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
1921 break;
1922 }
1923 em = epd->get_extent(inode, page, page_offset, cur, end, 1);
1924 if (IS_ERR(em) || !em) {
1925 SetPageError(page);
1926 break;
1927 }
1928
1929 extent_offset = cur - em->start;
1930 BUG_ON(em->end < cur);
1931 BUG_ON(end < cur);
1932 iosize = min(em->end - cur, end - cur) + 1;
1933 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1934 sector = (em->block_start + extent_offset) >> 9;
1935 bdev = em->bdev;
1936 block_start = em->block_start;
1937 free_extent_map(em);
1938 em = NULL;
1939
1940 if (block_start == EXTENT_MAP_HOLE ||
1941 block_start == EXTENT_MAP_INLINE) {
1942 clear_extent_dirty(tree, cur,
1943 cur + iosize - 1, GFP_NOFS);
1944 cur = cur + iosize;
1945 page_offset += iosize;
1946 continue;
1947 }
1948
1949 /* leave this out until we have a page_mkwrite call */
1950 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
1951 EXTENT_DIRTY, 0)) {
1952 cur = cur + iosize;
1953 page_offset += iosize;
1954 continue;
1955 }
1956 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
1957 if (tree->ops && tree->ops->writepage_io_hook) {
1958 ret = tree->ops->writepage_io_hook(page, cur,
1959 cur + iosize - 1);
1960 } else {
1961 ret = 0;
1962 }
1963 if (ret)
1964 SetPageError(page);
1965 else {
1966 unsigned long max_nr = end_index + 1;
1967 set_range_writeback(tree, cur, cur + iosize - 1);
1968 if (!PageWriteback(page)) {
1969 printk("warning page %lu not writeback, "
1970 "cur %llu end %llu\n", page->index,
1971 (unsigned long long)cur,
1972 (unsigned long long)end);
1973 }
1974
1975 ret = submit_extent_page(WRITE, tree, page, sector,
1976 iosize, page_offset, bdev,
1977 &epd->bio, max_nr,
1978 end_bio_extent_writepage);
1979 if (ret)
1980 SetPageError(page);
1981 }
1982 cur = cur + iosize;
1983 page_offset += iosize;
1984 nr++;
1985 }
1986done:
1987 if (nr == 0) {
1988 /* make sure the mapping tag for page dirty gets cleared */
1989 set_page_writeback(page);
1990 end_page_writeback(page);
1991 }
1992 unlock_extent(tree, start, page_end, GFP_NOFS);
1993 unlock_page(page);
1994 return 0;
1995}
1996
1997#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1998
1999/* Taken directly from 2.6.23 for 2.6.18 back port */
2000typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
2001 void *data);
2002
2003/**
2004 * write_cache_pages - walk the list of dirty pages of the given address space
2005 * and write all of them.
2006 * @mapping: address space structure to write
2007 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2008 * @writepage: function called for each page
2009 * @data: data passed to writepage function
2010 *
2011 * If a page is already under I/O, write_cache_pages() skips it, even
2012 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2013 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2014 * and msync() need to guarantee that all the data which was dirty at the time
2015 * the call was made get new I/O started against them. If wbc->sync_mode is
2016 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2017 * existing IO to complete.
2018 */
2019static int write_cache_pages(struct address_space *mapping,
2020 struct writeback_control *wbc, writepage_t writepage,
2021 void *data)
2022{
2023 struct backing_dev_info *bdi = mapping->backing_dev_info;
2024 int ret = 0;
2025 int done = 0;
2026 struct pagevec pvec;
2027 int nr_pages;
2028 pgoff_t index;
2029 pgoff_t end; /* Inclusive */
2030 int scanned = 0;
2031 int range_whole = 0;
2032
2033 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2034 wbc->encountered_congestion = 1;
2035 return 0;
2036 }
2037
2038 pagevec_init(&pvec, 0);
2039 if (wbc->range_cyclic) {
2040 index = mapping->writeback_index; /* Start from prev offset */
2041 end = -1;
2042 } else {
2043 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2044 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2045 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2046 range_whole = 1;
2047 scanned = 1;
2048 }
2049retry:
2050 while (!done && (index <= end) &&
2051 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2052 PAGECACHE_TAG_DIRTY,
2053 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2054 unsigned i;
2055
2056 scanned = 1;
2057 for (i = 0; i < nr_pages; i++) {
2058 struct page *page = pvec.pages[i];
2059
2060 /*
2061 * At this point we hold neither mapping->tree_lock nor
2062 * lock on the page itself: the page may be truncated or
2063 * invalidated (changing page->mapping to NULL), or even
2064 * swizzled back from swapper_space to tmpfs file
2065 * mapping
2066 */
2067 lock_page(page);
2068
2069 if (unlikely(page->mapping != mapping)) {
2070 unlock_page(page);
2071 continue;
2072 }
2073
2074 if (!wbc->range_cyclic && page->index > end) {
2075 done = 1;
2076 unlock_page(page);
2077 continue;
2078 }
2079
2080 if (wbc->sync_mode != WB_SYNC_NONE)
2081 wait_on_page_writeback(page);
2082
2083 if (PageWriteback(page) ||
2084 !clear_page_dirty_for_io(page)) {
2085 unlock_page(page);
2086 continue;
2087 }
2088
2089 ret = (*writepage)(page, wbc, data);
2090
2091 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2092 unlock_page(page);
2093 ret = 0;
2094 }
2095 if (ret || (--(wbc->nr_to_write) <= 0))
2096 done = 1;
2097 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2098 wbc->encountered_congestion = 1;
2099 done = 1;
2100 }
2101 }
2102 pagevec_release(&pvec);
2103 cond_resched();
2104 }
2105 if (!scanned && !done) {
2106 /*
2107 * We hit the last page and there is more work to be done: wrap
2108 * back to the start of the file
2109 */
2110 scanned = 1;
2111 index = 0;
2112 goto retry;
2113 }
2114 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2115 mapping->writeback_index = index;
2116 return ret;
2117}
2118#endif
2119
2120int extent_write_full_page(struct extent_map_tree *tree, struct page *page,
2121 get_extent_t *get_extent,
2122 struct writeback_control *wbc)
2123{
2124 int ret;
2125 struct address_space *mapping = page->mapping;
2126 struct extent_page_data epd = {
2127 .bio = NULL,
2128 .tree = tree,
2129 .get_extent = get_extent,
2130 };
2131 struct writeback_control wbc_writepages = {
2132 .bdi = wbc->bdi,
2133 .sync_mode = WB_SYNC_NONE,
2134 .older_than_this = NULL,
2135 .nr_to_write = 64,
2136 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2137 .range_end = (loff_t)-1,
2138 };
2139
2140
2141 ret = __extent_writepage(page, wbc, &epd);
2142
2143 write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2144 if (epd.bio) {
2145 submit_one_bio(WRITE, epd.bio);
2146 }
2147 return ret;
2148}
2149EXPORT_SYMBOL(extent_write_full_page);
2150
2151
2152int extent_writepages(struct extent_map_tree *tree,
2153 struct address_space *mapping,
2154 get_extent_t *get_extent,
2155 struct writeback_control *wbc)
2156{
2157 int ret = 0; 276 int ret = 0;
2158 struct extent_page_data epd = {
2159 .bio = NULL,
2160 .tree = tree,
2161 .get_extent = get_extent,
2162 };
2163
2164 ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2165 if (epd.bio) {
2166 submit_one_bio(WRITE, epd.bio);
2167 }
2168 return ret;
2169}
2170EXPORT_SYMBOL(extent_writepages);
2171
2172int extent_readpages(struct extent_map_tree *tree,
2173 struct address_space *mapping,
2174 struct list_head *pages, unsigned nr_pages,
2175 get_extent_t get_extent)
2176{
2177 struct bio *bio = NULL;
2178 unsigned page_idx;
2179 struct pagevec pvec;
2180
2181 pagevec_init(&pvec, 0);
2182 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2183 struct page *page = list_entry(pages->prev, struct page, lru);
2184
2185 prefetchw(&page->flags);
2186 list_del(&page->lru);
2187 /*
2188 * what we want to do here is call add_to_page_cache_lru,
2189 * but that isn't exported, so we reproduce it here
2190 */
2191 if (!add_to_page_cache(page, mapping,
2192 page->index, GFP_KERNEL)) {
2193
2194 /* open coding of lru_cache_add, also not exported */
2195 page_cache_get(page);
2196 if (!pagevec_add(&pvec, page))
2197 __pagevec_lru_add(&pvec);
2198 __extent_read_full_page(tree, page, get_extent, &bio);
2199 }
2200 page_cache_release(page);
2201 }
2202 if (pagevec_count(&pvec))
2203 __pagevec_lru_add(&pvec);
2204 BUG_ON(!list_empty(pages));
2205 if (bio)
2206 submit_one_bio(READ, bio);
2207 return 0;
2208}
2209EXPORT_SYMBOL(extent_readpages);
2210
2211/*
2212 * basic invalidatepage code, this waits on any locked or writeback
2213 * ranges corresponding to the page, and then deletes any extent state
2214 * records from the tree
2215 */
2216int extent_invalidatepage(struct extent_map_tree *tree,
2217 struct page *page, unsigned long offset)
2218{
2219 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2220 u64 end = start + PAGE_CACHE_SIZE - 1;
2221 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2222
2223 start += (offset + blocksize -1) & ~(blocksize - 1);
2224 if (start > end)
2225 return 0;
2226
2227 lock_extent(tree, start, end, GFP_NOFS);
2228 wait_on_extent_writeback(tree, start, end);
2229 clear_extent_bit(tree, start, end,
2230 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2231 1, 1, GFP_NOFS);
2232 return 0;
2233}
2234EXPORT_SYMBOL(extent_invalidatepage);
2235
2236/*
2237 * simple commit_write call, set_range_dirty is used to mark both
2238 * the pages and the extent records as dirty
2239 */
2240int extent_commit_write(struct extent_map_tree *tree,
2241 struct inode *inode, struct page *page,
2242 unsigned from, unsigned to)
2243{
2244 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2245
2246 set_page_extent_mapped(page);
2247 set_page_dirty(page);
2248
2249 if (pos > inode->i_size) {
2250 i_size_write(inode, pos);
2251 mark_inode_dirty(inode);
2252 }
2253 return 0;
2254}
2255EXPORT_SYMBOL(extent_commit_write);
2256
2257int extent_prepare_write(struct extent_map_tree *tree,
2258 struct inode *inode, struct page *page,
2259 unsigned from, unsigned to, get_extent_t *get_extent)
2260{
2261 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2262 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2263 u64 block_start;
2264 u64 orig_block_start;
2265 u64 block_end;
2266 u64 cur_end;
2267 struct extent_map *em;
2268 unsigned blocksize = 1 << inode->i_blkbits;
2269 size_t page_offset = 0;
2270 size_t block_off_start;
2271 size_t block_off_end;
2272 int err = 0;
2273 int iocount = 0;
2274 int ret = 0;
2275 int isnew;
2276
2277 set_page_extent_mapped(page);
2278
2279 block_start = (page_start + from) & ~((u64)blocksize - 1);
2280 block_end = (page_start + to - 1) | (blocksize - 1);
2281 orig_block_start = block_start;
2282
2283 lock_extent(tree, page_start, page_end, GFP_NOFS);
2284 while(block_start <= block_end) {
2285 em = get_extent(inode, page, page_offset, block_start,
2286 block_end, 1);
2287 if (IS_ERR(em) || !em) {
2288 goto err;
2289 }
2290 cur_end = min(block_end, em->end);
2291 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2292 block_off_end = block_off_start + blocksize;
2293 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2294
2295 if (!PageUptodate(page) && isnew &&
2296 (block_off_end > to || block_off_start < from)) {
2297 void *kaddr;
2298
2299 kaddr = kmap_atomic(page, KM_USER0);
2300 if (block_off_end > to)
2301 memset(kaddr + to, 0, block_off_end - to);
2302 if (block_off_start < from)
2303 memset(kaddr + block_off_start, 0,
2304 from - block_off_start);
2305 flush_dcache_page(page);
2306 kunmap_atomic(kaddr, KM_USER0);
2307 }
2308 if ((em->block_start != EXTENT_MAP_HOLE &&
2309 em->block_start != EXTENT_MAP_INLINE) &&
2310 !isnew && !PageUptodate(page) &&
2311 (block_off_end > to || block_off_start < from) &&
2312 !test_range_bit(tree, block_start, cur_end,
2313 EXTENT_UPTODATE, 1)) {
2314 u64 sector;
2315 u64 extent_offset = block_start - em->start;
2316 size_t iosize;
2317 sector = (em->block_start + extent_offset) >> 9;
2318 iosize = (cur_end - block_start + blocksize) &
2319 ~((u64)blocksize - 1);
2320 /*
2321 * we've already got the extent locked, but we
2322 * need to split the state such that our end_bio
2323 * handler can clear the lock.
2324 */
2325 set_extent_bit(tree, block_start,
2326 block_start + iosize - 1,
2327 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2328 ret = submit_extent_page(READ, tree, page,
2329 sector, iosize, page_offset, em->bdev,
2330 NULL, 1,
2331 end_bio_extent_preparewrite);
2332 iocount++;
2333 block_start = block_start + iosize;
2334 } else {
2335 set_extent_uptodate(tree, block_start, cur_end,
2336 GFP_NOFS);
2337 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2338 block_start = cur_end + 1;
2339 }
2340 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2341 free_extent_map(em);
2342 }
2343 if (iocount) {
2344 wait_extent_bit(tree, orig_block_start,
2345 block_end, EXTENT_LOCKED);
2346 }
2347 check_page_uptodate(tree, page);
2348err:
2349 /* FIXME, zero out newly allocated blocks on error */
2350 return err;
2351}
2352EXPORT_SYMBOL(extent_prepare_write);
2353
2354/*
2355 * a helper for releasepage. As long as there are no locked extents
2356 * in the range corresponding to the page, both state records and extent
2357 * map records are removed
2358 */
2359int try_release_extent_mapping(struct extent_map_tree *tree, struct page *page)
2360{
2361 struct extent_map *em;
2362 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2363 u64 end = start + PAGE_CACHE_SIZE - 1;
2364 u64 orig_start = start;
2365 int ret = 1;
2366
2367 while (start <= end) {
2368 em = lookup_extent_mapping(tree, start, end);
2369 if (!em || IS_ERR(em))
2370 break;
2371 if (!test_range_bit(tree, em->start, em->end,
2372 EXTENT_LOCKED, 0)) {
2373 remove_extent_mapping(tree, em);
2374 /* once for the rb tree */
2375 free_extent_map(em);
2376 }
2377 start = em->end + 1;
2378 /* once for us */
2379 free_extent_map(em);
2380 }
2381 if (test_range_bit(tree, orig_start, end, EXTENT_LOCKED, 0))
2382 ret = 0;
2383 else
2384 clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
2385 1, 1, GFP_NOFS);
2386 return ret;
2387}
2388EXPORT_SYMBOL(try_release_extent_mapping);
2389
2390sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2391 get_extent_t *get_extent)
2392{
2393 struct inode *inode = mapping->host;
2394 u64 start = iblock << inode->i_blkbits;
2395 u64 end = start + (1 << inode->i_blkbits) - 1;
2396 sector_t sector = 0;
2397 struct extent_map *em;
2398
2399 em = get_extent(inode, NULL, 0, start, end, 0);
2400 if (!em || IS_ERR(em))
2401 return 0;
2402
2403 if (em->block_start == EXTENT_MAP_INLINE ||
2404 em->block_start == EXTENT_MAP_HOLE)
2405 goto out;
2406
2407 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
2408out:
2409 free_extent_map(em);
2410 return sector;
2411}
2412
2413static int add_lru(struct extent_map_tree *tree, struct extent_buffer *eb)
2414{
2415 if (list_empty(&eb->lru)) {
2416 extent_buffer_get(eb);
2417 list_add(&eb->lru, &tree->buffer_lru);
2418 tree->lru_size++;
2419 if (tree->lru_size >= BUFFER_LRU_MAX) {
2420 struct extent_buffer *rm;
2421 rm = list_entry(tree->buffer_lru.prev,
2422 struct extent_buffer, lru);
2423 tree->lru_size--;
2424 list_del_init(&rm->lru);
2425 free_extent_buffer(rm);
2426 }
2427 } else
2428 list_move(&eb->lru, &tree->buffer_lru);
2429 return 0;
2430}
2431static struct extent_buffer *find_lru(struct extent_map_tree *tree,
2432 u64 start, unsigned long len)
2433{
2434 struct list_head *lru = &tree->buffer_lru;
2435 struct list_head *cur = lru->next;
2436 struct extent_buffer *eb;
2437
2438 if (list_empty(lru))
2439 return NULL;
2440
2441 do {
2442 eb = list_entry(cur, struct extent_buffer, lru);
2443 if (eb->start == start && eb->len == len) {
2444 extent_buffer_get(eb);
2445 return eb;
2446 }
2447 cur = cur->next;
2448 } while (cur != lru);
2449 return NULL;
2450}
2451
2452static inline unsigned long num_extent_pages(u64 start, u64 len)
2453{
2454 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2455 (start >> PAGE_CACHE_SHIFT);
2456}
2457
2458static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2459 unsigned long i)
2460{
2461 struct page *p;
2462 struct address_space *mapping;
2463
2464 if (i == 0)
2465 return eb->first_page;
2466 i += eb->start >> PAGE_CACHE_SHIFT;
2467 mapping = eb->first_page->mapping;
2468 read_lock_irq(&mapping->tree_lock);
2469 p = radix_tree_lookup(&mapping->page_tree, i);
2470 read_unlock_irq(&mapping->tree_lock);
2471 return p;
2472}
2473
2474static struct extent_buffer *__alloc_extent_buffer(struct extent_map_tree *tree,
2475 u64 start,
2476 unsigned long len,
2477 gfp_t mask)
2478{
2479 struct extent_buffer *eb = NULL;
2480 277
2481 spin_lock(&tree->lru_lock); 278 rb_erase(&em->rb_node, &tree->map);
2482 eb = find_lru(tree, start, len); 279 em->in_tree = 0;
2483 spin_unlock(&tree->lru_lock); 280 if (tree->last == em)
2484 if (eb) { 281 tree->last = NULL;
2485 return eb;
2486 }
2487
2488 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2489 INIT_LIST_HEAD(&eb->lru);
2490 eb->start = start;
2491 eb->len = len;
2492 atomic_set(&eb->refs, 1);
2493
2494 return eb;
2495}
2496
2497static void __free_extent_buffer(struct extent_buffer *eb)
2498{
2499 kmem_cache_free(extent_buffer_cache, eb);
2500}
2501
2502struct extent_buffer *alloc_extent_buffer(struct extent_map_tree *tree,
2503 u64 start, unsigned long len,
2504 struct page *page0,
2505 gfp_t mask)
2506{
2507 unsigned long num_pages = num_extent_pages(start, len);
2508 unsigned long i;
2509 unsigned long index = start >> PAGE_CACHE_SHIFT;
2510 struct extent_buffer *eb;
2511 struct page *p;
2512 struct address_space *mapping = tree->mapping;
2513 int uptodate = 1;
2514
2515 eb = __alloc_extent_buffer(tree, start, len, mask);
2516 if (!eb || IS_ERR(eb))
2517 return NULL;
2518
2519 if (eb->flags & EXTENT_BUFFER_FILLED)
2520 goto lru_add;
2521
2522 if (page0) {
2523 eb->first_page = page0;
2524 i = 1;
2525 index++;
2526 page_cache_get(page0);
2527 mark_page_accessed(page0);
2528 set_page_extent_mapped(page0);
2529 WARN_ON(!PageUptodate(page0));
2530 set_page_extent_head(page0, len);
2531 } else {
2532 i = 0;
2533 }
2534 for (; i < num_pages; i++, index++) {
2535 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2536 if (!p) {
2537 WARN_ON(1);
2538 goto fail;
2539 }
2540 set_page_extent_mapped(p);
2541 mark_page_accessed(p);
2542 if (i == 0) {
2543 eb->first_page = p;
2544 set_page_extent_head(p, len);
2545 } else {
2546 set_page_private(p, EXTENT_PAGE_PRIVATE);
2547 }
2548 if (!PageUptodate(p))
2549 uptodate = 0;
2550 unlock_page(p);
2551 }
2552 if (uptodate)
2553 eb->flags |= EXTENT_UPTODATE;
2554 eb->flags |= EXTENT_BUFFER_FILLED;
2555
2556lru_add:
2557 spin_lock(&tree->lru_lock);
2558 add_lru(tree, eb);
2559 spin_unlock(&tree->lru_lock);
2560 return eb;
2561
2562fail:
2563 spin_lock(&tree->lru_lock);
2564 list_del_init(&eb->lru);
2565 spin_unlock(&tree->lru_lock);
2566 if (!atomic_dec_and_test(&eb->refs))
2567 return NULL;
2568 for (index = 1; index < i; index++) {
2569 page_cache_release(extent_buffer_page(eb, index));
2570 }
2571 if (i > 0)
2572 page_cache_release(extent_buffer_page(eb, 0));
2573 __free_extent_buffer(eb);
2574 return NULL;
2575}
2576EXPORT_SYMBOL(alloc_extent_buffer);
2577
2578struct extent_buffer *find_extent_buffer(struct extent_map_tree *tree,
2579 u64 start, unsigned long len,
2580 gfp_t mask)
2581{
2582 unsigned long num_pages = num_extent_pages(start, len);
2583 unsigned long i;
2584 unsigned long index = start >> PAGE_CACHE_SHIFT;
2585 struct extent_buffer *eb;
2586 struct page *p;
2587 struct address_space *mapping = tree->mapping;
2588 int uptodate = 1;
2589
2590 eb = __alloc_extent_buffer(tree, start, len, mask);
2591 if (!eb || IS_ERR(eb))
2592 return NULL;
2593
2594 if (eb->flags & EXTENT_BUFFER_FILLED)
2595 goto lru_add;
2596
2597 for (i = 0; i < num_pages; i++, index++) {
2598 p = find_lock_page(mapping, index);
2599 if (!p) {
2600 goto fail;
2601 }
2602 set_page_extent_mapped(p);
2603 mark_page_accessed(p);
2604
2605 if (i == 0) {
2606 eb->first_page = p;
2607 set_page_extent_head(p, len);
2608 } else {
2609 set_page_private(p, EXTENT_PAGE_PRIVATE);
2610 }
2611
2612 if (!PageUptodate(p))
2613 uptodate = 0;
2614 unlock_page(p);
2615 }
2616 if (uptodate)
2617 eb->flags |= EXTENT_UPTODATE;
2618 eb->flags |= EXTENT_BUFFER_FILLED;
2619
2620lru_add:
2621 spin_lock(&tree->lru_lock);
2622 add_lru(tree, eb);
2623 spin_unlock(&tree->lru_lock);
2624 return eb;
2625fail:
2626 spin_lock(&tree->lru_lock);
2627 list_del_init(&eb->lru);
2628 spin_unlock(&tree->lru_lock);
2629 if (!atomic_dec_and_test(&eb->refs))
2630 return NULL;
2631 for (index = 1; index < i; index++) {
2632 page_cache_release(extent_buffer_page(eb, index));
2633 }
2634 if (i > 0)
2635 page_cache_release(extent_buffer_page(eb, 0));
2636 __free_extent_buffer(eb);
2637 return NULL;
2638}
2639EXPORT_SYMBOL(find_extent_buffer);
2640
2641void free_extent_buffer(struct extent_buffer *eb)
2642{
2643 unsigned long i;
2644 unsigned long num_pages;
2645
2646 if (!eb)
2647 return;
2648
2649 if (!atomic_dec_and_test(&eb->refs))
2650 return;
2651
2652 WARN_ON(!list_empty(&eb->lru));
2653 num_pages = num_extent_pages(eb->start, eb->len);
2654
2655 for (i = 1; i < num_pages; i++) {
2656 page_cache_release(extent_buffer_page(eb, i));
2657 }
2658 page_cache_release(extent_buffer_page(eb, 0));
2659 __free_extent_buffer(eb);
2660}
2661EXPORT_SYMBOL(free_extent_buffer);
2662
2663int clear_extent_buffer_dirty(struct extent_map_tree *tree,
2664 struct extent_buffer *eb)
2665{
2666 int set;
2667 unsigned long i;
2668 unsigned long num_pages;
2669 struct page *page;
2670
2671 u64 start = eb->start;
2672 u64 end = start + eb->len - 1;
2673
2674 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2675 num_pages = num_extent_pages(eb->start, eb->len);
2676
2677 for (i = 0; i < num_pages; i++) {
2678 page = extent_buffer_page(eb, i);
2679 lock_page(page);
2680 if (i == 0)
2681 set_page_extent_head(page, eb->len);
2682 else
2683 set_page_private(page, EXTENT_PAGE_PRIVATE);
2684
2685 /*
2686 * if we're on the last page or the first page and the
2687 * block isn't aligned on a page boundary, do extra checks
2688 * to make sure we don't clean page that is partially dirty
2689 */
2690 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2691 ((i == num_pages - 1) &&
2692 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2693 start = (u64)page->index << PAGE_CACHE_SHIFT;
2694 end = start + PAGE_CACHE_SIZE - 1;
2695 if (test_range_bit(tree, start, end,
2696 EXTENT_DIRTY, 0)) {
2697 unlock_page(page);
2698 continue;
2699 }
2700 }
2701 clear_page_dirty_for_io(page);
2702 write_lock_irq(&page->mapping->tree_lock);
2703 if (!PageDirty(page)) {
2704 radix_tree_tag_clear(&page->mapping->page_tree,
2705 page_index(page),
2706 PAGECACHE_TAG_DIRTY);
2707 }
2708 write_unlock_irq(&page->mapping->tree_lock);
2709 unlock_page(page);
2710 }
2711 return 0;
2712}
2713EXPORT_SYMBOL(clear_extent_buffer_dirty);
2714
2715int wait_on_extent_buffer_writeback(struct extent_map_tree *tree,
2716 struct extent_buffer *eb)
2717{
2718 return wait_on_extent_writeback(tree, eb->start,
2719 eb->start + eb->len - 1);
2720}
2721EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2722
2723int set_extent_buffer_dirty(struct extent_map_tree *tree,
2724 struct extent_buffer *eb)
2725{
2726 unsigned long i;
2727 unsigned long num_pages;
2728
2729 num_pages = num_extent_pages(eb->start, eb->len);
2730 for (i = 0; i < num_pages; i++) {
2731 struct page *page = extent_buffer_page(eb, i);
2732 /* writepage may need to do something special for the
2733 * first page, we have to make sure page->private is
2734 * properly set. releasepage may drop page->private
2735 * on us if the page isn't already dirty.
2736 */
2737 if (i == 0) {
2738 lock_page(page);
2739 set_page_extent_head(page, eb->len);
2740 } else if (PagePrivate(page) &&
2741 page->private != EXTENT_PAGE_PRIVATE) {
2742 lock_page(page);
2743 set_page_extent_mapped(page);
2744 unlock_page(page);
2745 }
2746 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2747 if (i == 0)
2748 unlock_page(page);
2749 }
2750 return set_extent_dirty(tree, eb->start,
2751 eb->start + eb->len - 1, GFP_NOFS);
2752}
2753EXPORT_SYMBOL(set_extent_buffer_dirty);
2754
2755int set_extent_buffer_uptodate(struct extent_map_tree *tree,
2756 struct extent_buffer *eb)
2757{
2758 unsigned long i;
2759 struct page *page;
2760 unsigned long num_pages;
2761
2762 num_pages = num_extent_pages(eb->start, eb->len);
2763
2764 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2765 GFP_NOFS);
2766 for (i = 0; i < num_pages; i++) {
2767 page = extent_buffer_page(eb, i);
2768 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2769 ((i == num_pages - 1) &&
2770 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2771 check_page_uptodate(tree, page);
2772 continue;
2773 }
2774 SetPageUptodate(page);
2775 }
2776 return 0;
2777}
2778EXPORT_SYMBOL(set_extent_buffer_uptodate);
2779
2780int extent_buffer_uptodate(struct extent_map_tree *tree,
2781 struct extent_buffer *eb)
2782{
2783 if (eb->flags & EXTENT_UPTODATE)
2784 return 1;
2785 return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2786 EXTENT_UPTODATE, 1);
2787}
2788EXPORT_SYMBOL(extent_buffer_uptodate);
2789
2790int read_extent_buffer_pages(struct extent_map_tree *tree,
2791 struct extent_buffer *eb,
2792 u64 start,
2793 int wait)
2794{
2795 unsigned long i;
2796 unsigned long start_i;
2797 struct page *page;
2798 int err;
2799 int ret = 0;
2800 unsigned long num_pages;
2801
2802 if (eb->flags & EXTENT_UPTODATE)
2803 return 0;
2804
2805 if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2806 EXTENT_UPTODATE, 1)) {
2807 return 0;
2808 }
2809
2810 if (start) {
2811 WARN_ON(start < eb->start);
2812 start_i = (start >> PAGE_CACHE_SHIFT) -
2813 (eb->start >> PAGE_CACHE_SHIFT);
2814 } else {
2815 start_i = 0;
2816 }
2817
2818 num_pages = num_extent_pages(eb->start, eb->len);
2819 for (i = start_i; i < num_pages; i++) {
2820 page = extent_buffer_page(eb, i);
2821 if (PageUptodate(page)) {
2822 continue;
2823 }
2824 if (!wait) {
2825 if (TestSetPageLocked(page)) {
2826 continue;
2827 }
2828 } else {
2829 lock_page(page);
2830 }
2831 if (!PageUptodate(page)) {
2832 err = page->mapping->a_ops->readpage(NULL, page);
2833 if (err) {
2834 ret = err;
2835 }
2836 } else {
2837 unlock_page(page);
2838 }
2839 }
2840
2841 if (ret || !wait) {
2842 return ret;
2843 }
2844
2845 for (i = start_i; i < num_pages; i++) {
2846 page = extent_buffer_page(eb, i);
2847 wait_on_page_locked(page);
2848 if (!PageUptodate(page)) {
2849 ret = -EIO;
2850 }
2851 }
2852 if (!ret)
2853 eb->flags |= EXTENT_UPTODATE;
2854 return ret;
2855}
2856EXPORT_SYMBOL(read_extent_buffer_pages);
2857
2858void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2859 unsigned long start,
2860 unsigned long len)
2861{
2862 size_t cur;
2863 size_t offset;
2864 struct page *page;
2865 char *kaddr;
2866 char *dst = (char *)dstv;
2867 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2868 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2869 unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2870
2871 WARN_ON(start > eb->len);
2872 WARN_ON(start + len > eb->start + eb->len);
2873
2874 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2875
2876 while(len > 0) {
2877 page = extent_buffer_page(eb, i);
2878 if (!PageUptodate(page)) {
2879 printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2880 WARN_ON(1);
2881 }
2882 WARN_ON(!PageUptodate(page));
2883
2884 cur = min(len, (PAGE_CACHE_SIZE - offset));
2885 kaddr = kmap_atomic(page, KM_USER1);
2886 memcpy(dst, kaddr + offset, cur);
2887 kunmap_atomic(kaddr, KM_USER1);
2888
2889 dst += cur;
2890 len -= cur;
2891 offset = 0;
2892 i++;
2893 }
2894}
2895EXPORT_SYMBOL(read_extent_buffer);
2896
2897int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
2898 unsigned long min_len, char **token, char **map,
2899 unsigned long *map_start,
2900 unsigned long *map_len, int km)
2901{
2902 size_t offset = start & (PAGE_CACHE_SIZE - 1);
2903 char *kaddr;
2904 struct page *p;
2905 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2906 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2907 unsigned long end_i = (start_offset + start + min_len - 1) >>
2908 PAGE_CACHE_SHIFT;
2909
2910 if (i != end_i)
2911 return -EINVAL;
2912
2913 if (i == 0) {
2914 offset = start_offset;
2915 *map_start = 0;
2916 } else {
2917 offset = 0;
2918 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
2919 }
2920 if (start + min_len > eb->len) {
2921printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
2922 WARN_ON(1);
2923 }
2924
2925 p = extent_buffer_page(eb, i);
2926 WARN_ON(!PageUptodate(p));
2927 kaddr = kmap_atomic(p, km);
2928 *token = kaddr;
2929 *map = kaddr + offset;
2930 *map_len = PAGE_CACHE_SIZE - offset;
2931 return 0;
2932}
2933EXPORT_SYMBOL(map_private_extent_buffer);
2934
2935int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
2936 unsigned long min_len,
2937 char **token, char **map,
2938 unsigned long *map_start,
2939 unsigned long *map_len, int km)
2940{
2941 int err;
2942 int save = 0;
2943 if (eb->map_token) {
2944 unmap_extent_buffer(eb, eb->map_token, km);
2945 eb->map_token = NULL;
2946 save = 1;
2947 }
2948 err = map_private_extent_buffer(eb, start, min_len, token, map,
2949 map_start, map_len, km);
2950 if (!err && save) {
2951 eb->map_token = *token;
2952 eb->kaddr = *map;
2953 eb->map_start = *map_start;
2954 eb->map_len = *map_len;
2955 }
2956 return err;
2957}
2958EXPORT_SYMBOL(map_extent_buffer);
2959
2960void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
2961{
2962 kunmap_atomic(token, km);
2963}
2964EXPORT_SYMBOL(unmap_extent_buffer);
2965
2966int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
2967 unsigned long start,
2968 unsigned long len)
2969{
2970 size_t cur;
2971 size_t offset;
2972 struct page *page;
2973 char *kaddr;
2974 char *ptr = (char *)ptrv;
2975 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2976 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2977 int ret = 0;
2978
2979 WARN_ON(start > eb->len);
2980 WARN_ON(start + len > eb->start + eb->len);
2981
2982 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2983
2984 while(len > 0) {
2985 page = extent_buffer_page(eb, i);
2986 WARN_ON(!PageUptodate(page));
2987
2988 cur = min(len, (PAGE_CACHE_SIZE - offset));
2989
2990 kaddr = kmap_atomic(page, KM_USER0);
2991 ret = memcmp(ptr, kaddr + offset, cur);
2992 kunmap_atomic(kaddr, KM_USER0);
2993 if (ret)
2994 break;
2995
2996 ptr += cur;
2997 len -= cur;
2998 offset = 0;
2999 i++;
3000 }
3001 return ret; 282 return ret;
3002} 283}
3003EXPORT_SYMBOL(memcmp_extent_buffer); 284EXPORT_SYMBOL(remove_extent_mapping);
3004
3005void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3006 unsigned long start, unsigned long len)
3007{
3008 size_t cur;
3009 size_t offset;
3010 struct page *page;
3011 char *kaddr;
3012 char *src = (char *)srcv;
3013 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3014 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3015
3016 WARN_ON(start > eb->len);
3017 WARN_ON(start + len > eb->start + eb->len);
3018
3019 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3020
3021 while(len > 0) {
3022 page = extent_buffer_page(eb, i);
3023 WARN_ON(!PageUptodate(page));
3024
3025 cur = min(len, PAGE_CACHE_SIZE - offset);
3026 kaddr = kmap_atomic(page, KM_USER1);
3027 memcpy(kaddr + offset, src, cur);
3028 kunmap_atomic(kaddr, KM_USER1);
3029
3030 src += cur;
3031 len -= cur;
3032 offset = 0;
3033 i++;
3034 }
3035}
3036EXPORT_SYMBOL(write_extent_buffer);
3037
3038void memset_extent_buffer(struct extent_buffer *eb, char c,
3039 unsigned long start, unsigned long len)
3040{
3041 size_t cur;
3042 size_t offset;
3043 struct page *page;
3044 char *kaddr;
3045 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3046 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3047
3048 WARN_ON(start > eb->len);
3049 WARN_ON(start + len > eb->start + eb->len);
3050
3051 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3052
3053 while(len > 0) {
3054 page = extent_buffer_page(eb, i);
3055 WARN_ON(!PageUptodate(page));
3056
3057 cur = min(len, PAGE_CACHE_SIZE - offset);
3058 kaddr = kmap_atomic(page, KM_USER0);
3059 memset(kaddr + offset, c, cur);
3060 kunmap_atomic(kaddr, KM_USER0);
3061
3062 len -= cur;
3063 offset = 0;
3064 i++;
3065 }
3066}
3067EXPORT_SYMBOL(memset_extent_buffer);
3068
3069void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3070 unsigned long dst_offset, unsigned long src_offset,
3071 unsigned long len)
3072{
3073 u64 dst_len = dst->len;
3074 size_t cur;
3075 size_t offset;
3076 struct page *page;
3077 char *kaddr;
3078 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3079 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3080
3081 WARN_ON(src->len != dst_len);
3082
3083 offset = (start_offset + dst_offset) &
3084 ((unsigned long)PAGE_CACHE_SIZE - 1);
3085
3086 while(len > 0) {
3087 page = extent_buffer_page(dst, i);
3088 WARN_ON(!PageUptodate(page));
3089
3090 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3091
3092 kaddr = kmap_atomic(page, KM_USER0);
3093 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3094 kunmap_atomic(kaddr, KM_USER0);
3095
3096 src_offset += cur;
3097 len -= cur;
3098 offset = 0;
3099 i++;
3100 }
3101}
3102EXPORT_SYMBOL(copy_extent_buffer);
3103
3104static void move_pages(struct page *dst_page, struct page *src_page,
3105 unsigned long dst_off, unsigned long src_off,
3106 unsigned long len)
3107{
3108 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3109 if (dst_page == src_page) {
3110 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3111 } else {
3112 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3113 char *p = dst_kaddr + dst_off + len;
3114 char *s = src_kaddr + src_off + len;
3115
3116 while (len--)
3117 *--p = *--s;
3118
3119 kunmap_atomic(src_kaddr, KM_USER1);
3120 }
3121 kunmap_atomic(dst_kaddr, KM_USER0);
3122}
3123
3124static void copy_pages(struct page *dst_page, struct page *src_page,
3125 unsigned long dst_off, unsigned long src_off,
3126 unsigned long len)
3127{
3128 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3129 char *src_kaddr;
3130
3131 if (dst_page != src_page)
3132 src_kaddr = kmap_atomic(src_page, KM_USER1);
3133 else
3134 src_kaddr = dst_kaddr;
3135
3136 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3137 kunmap_atomic(dst_kaddr, KM_USER0);
3138 if (dst_page != src_page)
3139 kunmap_atomic(src_kaddr, KM_USER1);
3140}
3141
3142void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3143 unsigned long src_offset, unsigned long len)
3144{
3145 size_t cur;
3146 size_t dst_off_in_page;
3147 size_t src_off_in_page;
3148 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3149 unsigned long dst_i;
3150 unsigned long src_i;
3151
3152 if (src_offset + len > dst->len) {
3153 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3154 src_offset, len, dst->len);
3155 BUG_ON(1);
3156 }
3157 if (dst_offset + len > dst->len) {
3158 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3159 dst_offset, len, dst->len);
3160 BUG_ON(1);
3161 }
3162
3163 while(len > 0) {
3164 dst_off_in_page = (start_offset + dst_offset) &
3165 ((unsigned long)PAGE_CACHE_SIZE - 1);
3166 src_off_in_page = (start_offset + src_offset) &
3167 ((unsigned long)PAGE_CACHE_SIZE - 1);
3168
3169 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3170 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3171
3172 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3173 src_off_in_page));
3174 cur = min_t(unsigned long, cur,
3175 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3176
3177 copy_pages(extent_buffer_page(dst, dst_i),
3178 extent_buffer_page(dst, src_i),
3179 dst_off_in_page, src_off_in_page, cur);
3180
3181 src_offset += cur;
3182 dst_offset += cur;
3183 len -= cur;
3184 }
3185}
3186EXPORT_SYMBOL(memcpy_extent_buffer);
3187
3188void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3189 unsigned long src_offset, unsigned long len)
3190{
3191 size_t cur;
3192 size_t dst_off_in_page;
3193 size_t src_off_in_page;
3194 unsigned long dst_end = dst_offset + len - 1;
3195 unsigned long src_end = src_offset + len - 1;
3196 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3197 unsigned long dst_i;
3198 unsigned long src_i;
3199
3200 if (src_offset + len > dst->len) {
3201 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3202 src_offset, len, dst->len);
3203 BUG_ON(1);
3204 }
3205 if (dst_offset + len > dst->len) {
3206 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3207 dst_offset, len, dst->len);
3208 BUG_ON(1);
3209 }
3210 if (dst_offset < src_offset) {
3211 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3212 return;
3213 }
3214 while(len > 0) {
3215 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3216 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3217
3218 dst_off_in_page = (start_offset + dst_end) &
3219 ((unsigned long)PAGE_CACHE_SIZE - 1);
3220 src_off_in_page = (start_offset + src_end) &
3221 ((unsigned long)PAGE_CACHE_SIZE - 1);
3222
3223 cur = min_t(unsigned long, len, src_off_in_page + 1);
3224 cur = min(cur, dst_off_in_page + 1);
3225 move_pages(extent_buffer_page(dst, dst_i),
3226 extent_buffer_page(dst, src_i),
3227 dst_off_in_page - cur + 1,
3228 src_off_in_page - cur + 1, cur);
3229
3230 dst_end -= cur;
3231 src_end -= cur;
3232 len -= cur;
3233 }
3234}
3235EXPORT_SYMBOL(memmove_extent_buffer);