diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/bio.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/bio.c')
-rw-r--r-- | fs/bio.c | 1096 |
1 files changed, 1096 insertions, 0 deletions
diff --git a/fs/bio.c b/fs/bio.c new file mode 100644 index 000000000000..e5349e834563 --- /dev/null +++ b/fs/bio.c | |||
@@ -0,0 +1,1096 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2001 Jens Axboe <axboe@suse.de> | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License version 2 as | ||
6 | * published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
11 | * GNU General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public Licens | ||
14 | * along with this program; if not, write to the Free Software | ||
15 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | ||
16 | * | ||
17 | */ | ||
18 | #include <linux/mm.h> | ||
19 | #include <linux/swap.h> | ||
20 | #include <linux/bio.h> | ||
21 | #include <linux/blkdev.h> | ||
22 | #include <linux/slab.h> | ||
23 | #include <linux/init.h> | ||
24 | #include <linux/kernel.h> | ||
25 | #include <linux/module.h> | ||
26 | #include <linux/mempool.h> | ||
27 | #include <linux/workqueue.h> | ||
28 | |||
29 | #define BIO_POOL_SIZE 256 | ||
30 | |||
31 | static kmem_cache_t *bio_slab; | ||
32 | |||
33 | #define BIOVEC_NR_POOLS 6 | ||
34 | |||
35 | /* | ||
36 | * a small number of entries is fine, not going to be performance critical. | ||
37 | * basically we just need to survive | ||
38 | */ | ||
39 | #define BIO_SPLIT_ENTRIES 8 | ||
40 | mempool_t *bio_split_pool; | ||
41 | |||
42 | struct biovec_slab { | ||
43 | int nr_vecs; | ||
44 | char *name; | ||
45 | kmem_cache_t *slab; | ||
46 | }; | ||
47 | |||
48 | /* | ||
49 | * if you change this list, also change bvec_alloc or things will | ||
50 | * break badly! cannot be bigger than what you can fit into an | ||
51 | * unsigned short | ||
52 | */ | ||
53 | |||
54 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } | ||
55 | static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] = { | ||
56 | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), | ||
57 | }; | ||
58 | #undef BV | ||
59 | |||
60 | /* | ||
61 | * bio_set is used to allow other portions of the IO system to | ||
62 | * allocate their own private memory pools for bio and iovec structures. | ||
63 | * These memory pools in turn all allocate from the bio_slab | ||
64 | * and the bvec_slabs[]. | ||
65 | */ | ||
66 | struct bio_set { | ||
67 | mempool_t *bio_pool; | ||
68 | mempool_t *bvec_pools[BIOVEC_NR_POOLS]; | ||
69 | }; | ||
70 | |||
71 | /* | ||
72 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | ||
73 | * IO code that does not need private memory pools. | ||
74 | */ | ||
75 | static struct bio_set *fs_bio_set; | ||
76 | |||
77 | static inline struct bio_vec *bvec_alloc_bs(unsigned int __nocast gfp_mask, int nr, unsigned long *idx, struct bio_set *bs) | ||
78 | { | ||
79 | struct bio_vec *bvl; | ||
80 | struct biovec_slab *bp; | ||
81 | |||
82 | /* | ||
83 | * see comment near bvec_array define! | ||
84 | */ | ||
85 | switch (nr) { | ||
86 | case 1 : *idx = 0; break; | ||
87 | case 2 ... 4: *idx = 1; break; | ||
88 | case 5 ... 16: *idx = 2; break; | ||
89 | case 17 ... 64: *idx = 3; break; | ||
90 | case 65 ... 128: *idx = 4; break; | ||
91 | case 129 ... BIO_MAX_PAGES: *idx = 5; break; | ||
92 | default: | ||
93 | return NULL; | ||
94 | } | ||
95 | /* | ||
96 | * idx now points to the pool we want to allocate from | ||
97 | */ | ||
98 | |||
99 | bp = bvec_slabs + *idx; | ||
100 | bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask); | ||
101 | if (bvl) | ||
102 | memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec)); | ||
103 | |||
104 | return bvl; | ||
105 | } | ||
106 | |||
107 | /* | ||
108 | * default destructor for a bio allocated with bio_alloc_bioset() | ||
109 | */ | ||
110 | static void bio_destructor(struct bio *bio) | ||
111 | { | ||
112 | const int pool_idx = BIO_POOL_IDX(bio); | ||
113 | struct bio_set *bs = bio->bi_set; | ||
114 | |||
115 | BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS); | ||
116 | |||
117 | mempool_free(bio->bi_io_vec, bs->bvec_pools[pool_idx]); | ||
118 | mempool_free(bio, bs->bio_pool); | ||
119 | } | ||
120 | |||
121 | inline void bio_init(struct bio *bio) | ||
122 | { | ||
123 | bio->bi_next = NULL; | ||
124 | bio->bi_flags = 1 << BIO_UPTODATE; | ||
125 | bio->bi_rw = 0; | ||
126 | bio->bi_vcnt = 0; | ||
127 | bio->bi_idx = 0; | ||
128 | bio->bi_phys_segments = 0; | ||
129 | bio->bi_hw_segments = 0; | ||
130 | bio->bi_hw_front_size = 0; | ||
131 | bio->bi_hw_back_size = 0; | ||
132 | bio->bi_size = 0; | ||
133 | bio->bi_max_vecs = 0; | ||
134 | bio->bi_end_io = NULL; | ||
135 | atomic_set(&bio->bi_cnt, 1); | ||
136 | bio->bi_private = NULL; | ||
137 | } | ||
138 | |||
139 | /** | ||
140 | * bio_alloc_bioset - allocate a bio for I/O | ||
141 | * @gfp_mask: the GFP_ mask given to the slab allocator | ||
142 | * @nr_iovecs: number of iovecs to pre-allocate | ||
143 | * | ||
144 | * Description: | ||
145 | * bio_alloc_bioset will first try it's on mempool to satisfy the allocation. | ||
146 | * If %__GFP_WAIT is set then we will block on the internal pool waiting | ||
147 | * for a &struct bio to become free. | ||
148 | * | ||
149 | * allocate bio and iovecs from the memory pools specified by the | ||
150 | * bio_set structure. | ||
151 | **/ | ||
152 | struct bio *bio_alloc_bioset(unsigned int __nocast gfp_mask, int nr_iovecs, struct bio_set *bs) | ||
153 | { | ||
154 | struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask); | ||
155 | |||
156 | if (likely(bio)) { | ||
157 | struct bio_vec *bvl = NULL; | ||
158 | |||
159 | bio_init(bio); | ||
160 | if (likely(nr_iovecs)) { | ||
161 | unsigned long idx; | ||
162 | |||
163 | bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs); | ||
164 | if (unlikely(!bvl)) { | ||
165 | mempool_free(bio, bs->bio_pool); | ||
166 | bio = NULL; | ||
167 | goto out; | ||
168 | } | ||
169 | bio->bi_flags |= idx << BIO_POOL_OFFSET; | ||
170 | bio->bi_max_vecs = bvec_slabs[idx].nr_vecs; | ||
171 | } | ||
172 | bio->bi_io_vec = bvl; | ||
173 | bio->bi_destructor = bio_destructor; | ||
174 | bio->bi_set = bs; | ||
175 | } | ||
176 | out: | ||
177 | return bio; | ||
178 | } | ||
179 | |||
180 | struct bio *bio_alloc(unsigned int __nocast gfp_mask, int nr_iovecs) | ||
181 | { | ||
182 | return bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); | ||
183 | } | ||
184 | |||
185 | void zero_fill_bio(struct bio *bio) | ||
186 | { | ||
187 | unsigned long flags; | ||
188 | struct bio_vec *bv; | ||
189 | int i; | ||
190 | |||
191 | bio_for_each_segment(bv, bio, i) { | ||
192 | char *data = bvec_kmap_irq(bv, &flags); | ||
193 | memset(data, 0, bv->bv_len); | ||
194 | flush_dcache_page(bv->bv_page); | ||
195 | bvec_kunmap_irq(data, &flags); | ||
196 | } | ||
197 | } | ||
198 | EXPORT_SYMBOL(zero_fill_bio); | ||
199 | |||
200 | /** | ||
201 | * bio_put - release a reference to a bio | ||
202 | * @bio: bio to release reference to | ||
203 | * | ||
204 | * Description: | ||
205 | * Put a reference to a &struct bio, either one you have gotten with | ||
206 | * bio_alloc or bio_get. The last put of a bio will free it. | ||
207 | **/ | ||
208 | void bio_put(struct bio *bio) | ||
209 | { | ||
210 | BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); | ||
211 | |||
212 | /* | ||
213 | * last put frees it | ||
214 | */ | ||
215 | if (atomic_dec_and_test(&bio->bi_cnt)) { | ||
216 | bio->bi_next = NULL; | ||
217 | bio->bi_destructor(bio); | ||
218 | } | ||
219 | } | ||
220 | |||
221 | inline int bio_phys_segments(request_queue_t *q, struct bio *bio) | ||
222 | { | ||
223 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | ||
224 | blk_recount_segments(q, bio); | ||
225 | |||
226 | return bio->bi_phys_segments; | ||
227 | } | ||
228 | |||
229 | inline int bio_hw_segments(request_queue_t *q, struct bio *bio) | ||
230 | { | ||
231 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | ||
232 | blk_recount_segments(q, bio); | ||
233 | |||
234 | return bio->bi_hw_segments; | ||
235 | } | ||
236 | |||
237 | /** | ||
238 | * __bio_clone - clone a bio | ||
239 | * @bio: destination bio | ||
240 | * @bio_src: bio to clone | ||
241 | * | ||
242 | * Clone a &bio. Caller will own the returned bio, but not | ||
243 | * the actual data it points to. Reference count of returned | ||
244 | * bio will be one. | ||
245 | */ | ||
246 | inline void __bio_clone(struct bio *bio, struct bio *bio_src) | ||
247 | { | ||
248 | request_queue_t *q = bdev_get_queue(bio_src->bi_bdev); | ||
249 | |||
250 | memcpy(bio->bi_io_vec, bio_src->bi_io_vec, bio_src->bi_max_vecs * sizeof(struct bio_vec)); | ||
251 | |||
252 | bio->bi_sector = bio_src->bi_sector; | ||
253 | bio->bi_bdev = bio_src->bi_bdev; | ||
254 | bio->bi_flags |= 1 << BIO_CLONED; | ||
255 | bio->bi_rw = bio_src->bi_rw; | ||
256 | |||
257 | /* | ||
258 | * notes -- maybe just leave bi_idx alone. assume identical mapping | ||
259 | * for the clone | ||
260 | */ | ||
261 | bio->bi_vcnt = bio_src->bi_vcnt; | ||
262 | bio->bi_size = bio_src->bi_size; | ||
263 | bio_phys_segments(q, bio); | ||
264 | bio_hw_segments(q, bio); | ||
265 | } | ||
266 | |||
267 | /** | ||
268 | * bio_clone - clone a bio | ||
269 | * @bio: bio to clone | ||
270 | * @gfp_mask: allocation priority | ||
271 | * | ||
272 | * Like __bio_clone, only also allocates the returned bio | ||
273 | */ | ||
274 | struct bio *bio_clone(struct bio *bio, unsigned int __nocast gfp_mask) | ||
275 | { | ||
276 | struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); | ||
277 | |||
278 | if (b) | ||
279 | __bio_clone(b, bio); | ||
280 | |||
281 | return b; | ||
282 | } | ||
283 | |||
284 | /** | ||
285 | * bio_get_nr_vecs - return approx number of vecs | ||
286 | * @bdev: I/O target | ||
287 | * | ||
288 | * Return the approximate number of pages we can send to this target. | ||
289 | * There's no guarantee that you will be able to fit this number of pages | ||
290 | * into a bio, it does not account for dynamic restrictions that vary | ||
291 | * on offset. | ||
292 | */ | ||
293 | int bio_get_nr_vecs(struct block_device *bdev) | ||
294 | { | ||
295 | request_queue_t *q = bdev_get_queue(bdev); | ||
296 | int nr_pages; | ||
297 | |||
298 | nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
299 | if (nr_pages > q->max_phys_segments) | ||
300 | nr_pages = q->max_phys_segments; | ||
301 | if (nr_pages > q->max_hw_segments) | ||
302 | nr_pages = q->max_hw_segments; | ||
303 | |||
304 | return nr_pages; | ||
305 | } | ||
306 | |||
307 | static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page | ||
308 | *page, unsigned int len, unsigned int offset) | ||
309 | { | ||
310 | int retried_segments = 0; | ||
311 | struct bio_vec *bvec; | ||
312 | |||
313 | /* | ||
314 | * cloned bio must not modify vec list | ||
315 | */ | ||
316 | if (unlikely(bio_flagged(bio, BIO_CLONED))) | ||
317 | return 0; | ||
318 | |||
319 | if (bio->bi_vcnt >= bio->bi_max_vecs) | ||
320 | return 0; | ||
321 | |||
322 | if (((bio->bi_size + len) >> 9) > q->max_sectors) | ||
323 | return 0; | ||
324 | |||
325 | /* | ||
326 | * we might lose a segment or two here, but rather that than | ||
327 | * make this too complex. | ||
328 | */ | ||
329 | |||
330 | while (bio->bi_phys_segments >= q->max_phys_segments | ||
331 | || bio->bi_hw_segments >= q->max_hw_segments | ||
332 | || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) { | ||
333 | |||
334 | if (retried_segments) | ||
335 | return 0; | ||
336 | |||
337 | retried_segments = 1; | ||
338 | blk_recount_segments(q, bio); | ||
339 | } | ||
340 | |||
341 | /* | ||
342 | * setup the new entry, we might clear it again later if we | ||
343 | * cannot add the page | ||
344 | */ | ||
345 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | ||
346 | bvec->bv_page = page; | ||
347 | bvec->bv_len = len; | ||
348 | bvec->bv_offset = offset; | ||
349 | |||
350 | /* | ||
351 | * if queue has other restrictions (eg varying max sector size | ||
352 | * depending on offset), it can specify a merge_bvec_fn in the | ||
353 | * queue to get further control | ||
354 | */ | ||
355 | if (q->merge_bvec_fn) { | ||
356 | /* | ||
357 | * merge_bvec_fn() returns number of bytes it can accept | ||
358 | * at this offset | ||
359 | */ | ||
360 | if (q->merge_bvec_fn(q, bio, bvec) < len) { | ||
361 | bvec->bv_page = NULL; | ||
362 | bvec->bv_len = 0; | ||
363 | bvec->bv_offset = 0; | ||
364 | return 0; | ||
365 | } | ||
366 | } | ||
367 | |||
368 | /* If we may be able to merge these biovecs, force a recount */ | ||
369 | if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) || | ||
370 | BIOVEC_VIRT_MERGEABLE(bvec-1, bvec))) | ||
371 | bio->bi_flags &= ~(1 << BIO_SEG_VALID); | ||
372 | |||
373 | bio->bi_vcnt++; | ||
374 | bio->bi_phys_segments++; | ||
375 | bio->bi_hw_segments++; | ||
376 | bio->bi_size += len; | ||
377 | return len; | ||
378 | } | ||
379 | |||
380 | /** | ||
381 | * bio_add_page - attempt to add page to bio | ||
382 | * @bio: destination bio | ||
383 | * @page: page to add | ||
384 | * @len: vec entry length | ||
385 | * @offset: vec entry offset | ||
386 | * | ||
387 | * Attempt to add a page to the bio_vec maplist. This can fail for a | ||
388 | * number of reasons, such as the bio being full or target block | ||
389 | * device limitations. The target block device must allow bio's | ||
390 | * smaller than PAGE_SIZE, so it is always possible to add a single | ||
391 | * page to an empty bio. | ||
392 | */ | ||
393 | int bio_add_page(struct bio *bio, struct page *page, unsigned int len, | ||
394 | unsigned int offset) | ||
395 | { | ||
396 | return __bio_add_page(bdev_get_queue(bio->bi_bdev), bio, page, | ||
397 | len, offset); | ||
398 | } | ||
399 | |||
400 | struct bio_map_data { | ||
401 | struct bio_vec *iovecs; | ||
402 | void __user *userptr; | ||
403 | }; | ||
404 | |||
405 | static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio) | ||
406 | { | ||
407 | memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); | ||
408 | bio->bi_private = bmd; | ||
409 | } | ||
410 | |||
411 | static void bio_free_map_data(struct bio_map_data *bmd) | ||
412 | { | ||
413 | kfree(bmd->iovecs); | ||
414 | kfree(bmd); | ||
415 | } | ||
416 | |||
417 | static struct bio_map_data *bio_alloc_map_data(int nr_segs) | ||
418 | { | ||
419 | struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL); | ||
420 | |||
421 | if (!bmd) | ||
422 | return NULL; | ||
423 | |||
424 | bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL); | ||
425 | if (bmd->iovecs) | ||
426 | return bmd; | ||
427 | |||
428 | kfree(bmd); | ||
429 | return NULL; | ||
430 | } | ||
431 | |||
432 | /** | ||
433 | * bio_uncopy_user - finish previously mapped bio | ||
434 | * @bio: bio being terminated | ||
435 | * | ||
436 | * Free pages allocated from bio_copy_user() and write back data | ||
437 | * to user space in case of a read. | ||
438 | */ | ||
439 | int bio_uncopy_user(struct bio *bio) | ||
440 | { | ||
441 | struct bio_map_data *bmd = bio->bi_private; | ||
442 | const int read = bio_data_dir(bio) == READ; | ||
443 | struct bio_vec *bvec; | ||
444 | int i, ret = 0; | ||
445 | |||
446 | __bio_for_each_segment(bvec, bio, i, 0) { | ||
447 | char *addr = page_address(bvec->bv_page); | ||
448 | unsigned int len = bmd->iovecs[i].bv_len; | ||
449 | |||
450 | if (read && !ret && copy_to_user(bmd->userptr, addr, len)) | ||
451 | ret = -EFAULT; | ||
452 | |||
453 | __free_page(bvec->bv_page); | ||
454 | bmd->userptr += len; | ||
455 | } | ||
456 | bio_free_map_data(bmd); | ||
457 | bio_put(bio); | ||
458 | return ret; | ||
459 | } | ||
460 | |||
461 | /** | ||
462 | * bio_copy_user - copy user data to bio | ||
463 | * @q: destination block queue | ||
464 | * @uaddr: start of user address | ||
465 | * @len: length in bytes | ||
466 | * @write_to_vm: bool indicating writing to pages or not | ||
467 | * | ||
468 | * Prepares and returns a bio for indirect user io, bouncing data | ||
469 | * to/from kernel pages as necessary. Must be paired with | ||
470 | * call bio_uncopy_user() on io completion. | ||
471 | */ | ||
472 | struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr, | ||
473 | unsigned int len, int write_to_vm) | ||
474 | { | ||
475 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
476 | unsigned long start = uaddr >> PAGE_SHIFT; | ||
477 | struct bio_map_data *bmd; | ||
478 | struct bio_vec *bvec; | ||
479 | struct page *page; | ||
480 | struct bio *bio; | ||
481 | int i, ret; | ||
482 | |||
483 | bmd = bio_alloc_map_data(end - start); | ||
484 | if (!bmd) | ||
485 | return ERR_PTR(-ENOMEM); | ||
486 | |||
487 | bmd->userptr = (void __user *) uaddr; | ||
488 | |||
489 | ret = -ENOMEM; | ||
490 | bio = bio_alloc(GFP_KERNEL, end - start); | ||
491 | if (!bio) | ||
492 | goto out_bmd; | ||
493 | |||
494 | bio->bi_rw |= (!write_to_vm << BIO_RW); | ||
495 | |||
496 | ret = 0; | ||
497 | while (len) { | ||
498 | unsigned int bytes = PAGE_SIZE; | ||
499 | |||
500 | if (bytes > len) | ||
501 | bytes = len; | ||
502 | |||
503 | page = alloc_page(q->bounce_gfp | GFP_KERNEL); | ||
504 | if (!page) { | ||
505 | ret = -ENOMEM; | ||
506 | break; | ||
507 | } | ||
508 | |||
509 | if (__bio_add_page(q, bio, page, bytes, 0) < bytes) { | ||
510 | ret = -EINVAL; | ||
511 | break; | ||
512 | } | ||
513 | |||
514 | len -= bytes; | ||
515 | } | ||
516 | |||
517 | if (ret) | ||
518 | goto cleanup; | ||
519 | |||
520 | /* | ||
521 | * success | ||
522 | */ | ||
523 | if (!write_to_vm) { | ||
524 | char __user *p = (char __user *) uaddr; | ||
525 | |||
526 | /* | ||
527 | * for a write, copy in data to kernel pages | ||
528 | */ | ||
529 | ret = -EFAULT; | ||
530 | bio_for_each_segment(bvec, bio, i) { | ||
531 | char *addr = page_address(bvec->bv_page); | ||
532 | |||
533 | if (copy_from_user(addr, p, bvec->bv_len)) | ||
534 | goto cleanup; | ||
535 | p += bvec->bv_len; | ||
536 | } | ||
537 | } | ||
538 | |||
539 | bio_set_map_data(bmd, bio); | ||
540 | return bio; | ||
541 | cleanup: | ||
542 | bio_for_each_segment(bvec, bio, i) | ||
543 | __free_page(bvec->bv_page); | ||
544 | |||
545 | bio_put(bio); | ||
546 | out_bmd: | ||
547 | bio_free_map_data(bmd); | ||
548 | return ERR_PTR(ret); | ||
549 | } | ||
550 | |||
551 | static struct bio *__bio_map_user(request_queue_t *q, struct block_device *bdev, | ||
552 | unsigned long uaddr, unsigned int len, | ||
553 | int write_to_vm) | ||
554 | { | ||
555 | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | ||
556 | unsigned long start = uaddr >> PAGE_SHIFT; | ||
557 | const int nr_pages = end - start; | ||
558 | int ret, offset, i; | ||
559 | struct page **pages; | ||
560 | struct bio *bio; | ||
561 | |||
562 | /* | ||
563 | * transfer and buffer must be aligned to at least hardsector | ||
564 | * size for now, in the future we can relax this restriction | ||
565 | */ | ||
566 | if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q))) | ||
567 | return ERR_PTR(-EINVAL); | ||
568 | |||
569 | bio = bio_alloc(GFP_KERNEL, nr_pages); | ||
570 | if (!bio) | ||
571 | return ERR_PTR(-ENOMEM); | ||
572 | |||
573 | ret = -ENOMEM; | ||
574 | pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL); | ||
575 | if (!pages) | ||
576 | goto out; | ||
577 | |||
578 | down_read(¤t->mm->mmap_sem); | ||
579 | ret = get_user_pages(current, current->mm, uaddr, nr_pages, | ||
580 | write_to_vm, 0, pages, NULL); | ||
581 | up_read(¤t->mm->mmap_sem); | ||
582 | |||
583 | if (ret < nr_pages) | ||
584 | goto out; | ||
585 | |||
586 | bio->bi_bdev = bdev; | ||
587 | |||
588 | offset = uaddr & ~PAGE_MASK; | ||
589 | for (i = 0; i < nr_pages; i++) { | ||
590 | unsigned int bytes = PAGE_SIZE - offset; | ||
591 | |||
592 | if (len <= 0) | ||
593 | break; | ||
594 | |||
595 | if (bytes > len) | ||
596 | bytes = len; | ||
597 | |||
598 | /* | ||
599 | * sorry... | ||
600 | */ | ||
601 | if (__bio_add_page(q, bio, pages[i], bytes, offset) < bytes) | ||
602 | break; | ||
603 | |||
604 | len -= bytes; | ||
605 | offset = 0; | ||
606 | } | ||
607 | |||
608 | /* | ||
609 | * release the pages we didn't map into the bio, if any | ||
610 | */ | ||
611 | while (i < nr_pages) | ||
612 | page_cache_release(pages[i++]); | ||
613 | |||
614 | kfree(pages); | ||
615 | |||
616 | /* | ||
617 | * set data direction, and check if mapped pages need bouncing | ||
618 | */ | ||
619 | if (!write_to_vm) | ||
620 | bio->bi_rw |= (1 << BIO_RW); | ||
621 | |||
622 | bio->bi_flags |= (1 << BIO_USER_MAPPED); | ||
623 | return bio; | ||
624 | out: | ||
625 | kfree(pages); | ||
626 | bio_put(bio); | ||
627 | return ERR_PTR(ret); | ||
628 | } | ||
629 | |||
630 | /** | ||
631 | * bio_map_user - map user address into bio | ||
632 | * @bdev: destination block device | ||
633 | * @uaddr: start of user address | ||
634 | * @len: length in bytes | ||
635 | * @write_to_vm: bool indicating writing to pages or not | ||
636 | * | ||
637 | * Map the user space address into a bio suitable for io to a block | ||
638 | * device. Returns an error pointer in case of error. | ||
639 | */ | ||
640 | struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev, | ||
641 | unsigned long uaddr, unsigned int len, int write_to_vm) | ||
642 | { | ||
643 | struct bio *bio; | ||
644 | |||
645 | bio = __bio_map_user(q, bdev, uaddr, len, write_to_vm); | ||
646 | |||
647 | if (IS_ERR(bio)) | ||
648 | return bio; | ||
649 | |||
650 | /* | ||
651 | * subtle -- if __bio_map_user() ended up bouncing a bio, | ||
652 | * it would normally disappear when its bi_end_io is run. | ||
653 | * however, we need it for the unmap, so grab an extra | ||
654 | * reference to it | ||
655 | */ | ||
656 | bio_get(bio); | ||
657 | |||
658 | if (bio->bi_size == len) | ||
659 | return bio; | ||
660 | |||
661 | /* | ||
662 | * don't support partial mappings | ||
663 | */ | ||
664 | bio_endio(bio, bio->bi_size, 0); | ||
665 | bio_unmap_user(bio); | ||
666 | return ERR_PTR(-EINVAL); | ||
667 | } | ||
668 | |||
669 | static void __bio_unmap_user(struct bio *bio) | ||
670 | { | ||
671 | struct bio_vec *bvec; | ||
672 | int i; | ||
673 | |||
674 | /* | ||
675 | * make sure we dirty pages we wrote to | ||
676 | */ | ||
677 | __bio_for_each_segment(bvec, bio, i, 0) { | ||
678 | if (bio_data_dir(bio) == READ) | ||
679 | set_page_dirty_lock(bvec->bv_page); | ||
680 | |||
681 | page_cache_release(bvec->bv_page); | ||
682 | } | ||
683 | |||
684 | bio_put(bio); | ||
685 | } | ||
686 | |||
687 | /** | ||
688 | * bio_unmap_user - unmap a bio | ||
689 | * @bio: the bio being unmapped | ||
690 | * | ||
691 | * Unmap a bio previously mapped by bio_map_user(). Must be called with | ||
692 | * a process context. | ||
693 | * | ||
694 | * bio_unmap_user() may sleep. | ||
695 | */ | ||
696 | void bio_unmap_user(struct bio *bio) | ||
697 | { | ||
698 | __bio_unmap_user(bio); | ||
699 | bio_put(bio); | ||
700 | } | ||
701 | |||
702 | /* | ||
703 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | ||
704 | * for performing direct-IO in BIOs. | ||
705 | * | ||
706 | * The problem is that we cannot run set_page_dirty() from interrupt context | ||
707 | * because the required locks are not interrupt-safe. So what we can do is to | ||
708 | * mark the pages dirty _before_ performing IO. And in interrupt context, | ||
709 | * check that the pages are still dirty. If so, fine. If not, redirty them | ||
710 | * in process context. | ||
711 | * | ||
712 | * We special-case compound pages here: normally this means reads into hugetlb | ||
713 | * pages. The logic in here doesn't really work right for compound pages | ||
714 | * because the VM does not uniformly chase down the head page in all cases. | ||
715 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | ||
716 | * handle them at all. So we skip compound pages here at an early stage. | ||
717 | * | ||
718 | * Note that this code is very hard to test under normal circumstances because | ||
719 | * direct-io pins the pages with get_user_pages(). This makes | ||
720 | * is_page_cache_freeable return false, and the VM will not clean the pages. | ||
721 | * But other code (eg, pdflush) could clean the pages if they are mapped | ||
722 | * pagecache. | ||
723 | * | ||
724 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | ||
725 | * deferred bio dirtying paths. | ||
726 | */ | ||
727 | |||
728 | /* | ||
729 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | ||
730 | */ | ||
731 | void bio_set_pages_dirty(struct bio *bio) | ||
732 | { | ||
733 | struct bio_vec *bvec = bio->bi_io_vec; | ||
734 | int i; | ||
735 | |||
736 | for (i = 0; i < bio->bi_vcnt; i++) { | ||
737 | struct page *page = bvec[i].bv_page; | ||
738 | |||
739 | if (page && !PageCompound(page)) | ||
740 | set_page_dirty_lock(page); | ||
741 | } | ||
742 | } | ||
743 | |||
744 | static void bio_release_pages(struct bio *bio) | ||
745 | { | ||
746 | struct bio_vec *bvec = bio->bi_io_vec; | ||
747 | int i; | ||
748 | |||
749 | for (i = 0; i < bio->bi_vcnt; i++) { | ||
750 | struct page *page = bvec[i].bv_page; | ||
751 | |||
752 | if (page) | ||
753 | put_page(page); | ||
754 | } | ||
755 | } | ||
756 | |||
757 | /* | ||
758 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | ||
759 | * If they are, then fine. If, however, some pages are clean then they must | ||
760 | * have been written out during the direct-IO read. So we take another ref on | ||
761 | * the BIO and the offending pages and re-dirty the pages in process context. | ||
762 | * | ||
763 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | ||
764 | * here on. It will run one page_cache_release() against each page and will | ||
765 | * run one bio_put() against the BIO. | ||
766 | */ | ||
767 | |||
768 | static void bio_dirty_fn(void *data); | ||
769 | |||
770 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL); | ||
771 | static DEFINE_SPINLOCK(bio_dirty_lock); | ||
772 | static struct bio *bio_dirty_list; | ||
773 | |||
774 | /* | ||
775 | * This runs in process context | ||
776 | */ | ||
777 | static void bio_dirty_fn(void *data) | ||
778 | { | ||
779 | unsigned long flags; | ||
780 | struct bio *bio; | ||
781 | |||
782 | spin_lock_irqsave(&bio_dirty_lock, flags); | ||
783 | bio = bio_dirty_list; | ||
784 | bio_dirty_list = NULL; | ||
785 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | ||
786 | |||
787 | while (bio) { | ||
788 | struct bio *next = bio->bi_private; | ||
789 | |||
790 | bio_set_pages_dirty(bio); | ||
791 | bio_release_pages(bio); | ||
792 | bio_put(bio); | ||
793 | bio = next; | ||
794 | } | ||
795 | } | ||
796 | |||
797 | void bio_check_pages_dirty(struct bio *bio) | ||
798 | { | ||
799 | struct bio_vec *bvec = bio->bi_io_vec; | ||
800 | int nr_clean_pages = 0; | ||
801 | int i; | ||
802 | |||
803 | for (i = 0; i < bio->bi_vcnt; i++) { | ||
804 | struct page *page = bvec[i].bv_page; | ||
805 | |||
806 | if (PageDirty(page) || PageCompound(page)) { | ||
807 | page_cache_release(page); | ||
808 | bvec[i].bv_page = NULL; | ||
809 | } else { | ||
810 | nr_clean_pages++; | ||
811 | } | ||
812 | } | ||
813 | |||
814 | if (nr_clean_pages) { | ||
815 | unsigned long flags; | ||
816 | |||
817 | spin_lock_irqsave(&bio_dirty_lock, flags); | ||
818 | bio->bi_private = bio_dirty_list; | ||
819 | bio_dirty_list = bio; | ||
820 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | ||
821 | schedule_work(&bio_dirty_work); | ||
822 | } else { | ||
823 | bio_put(bio); | ||
824 | } | ||
825 | } | ||
826 | |||
827 | /** | ||
828 | * bio_endio - end I/O on a bio | ||
829 | * @bio: bio | ||
830 | * @bytes_done: number of bytes completed | ||
831 | * @error: error, if any | ||
832 | * | ||
833 | * Description: | ||
834 | * bio_endio() will end I/O on @bytes_done number of bytes. This may be | ||
835 | * just a partial part of the bio, or it may be the whole bio. bio_endio() | ||
836 | * is the preferred way to end I/O on a bio, it takes care of decrementing | ||
837 | * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and | ||
838 | * and one of the established -Exxxx (-EIO, for instance) error values in | ||
839 | * case something went wrong. Noone should call bi_end_io() directly on | ||
840 | * a bio unless they own it and thus know that it has an end_io function. | ||
841 | **/ | ||
842 | void bio_endio(struct bio *bio, unsigned int bytes_done, int error) | ||
843 | { | ||
844 | if (error) | ||
845 | clear_bit(BIO_UPTODATE, &bio->bi_flags); | ||
846 | |||
847 | if (unlikely(bytes_done > bio->bi_size)) { | ||
848 | printk("%s: want %u bytes done, only %u left\n", __FUNCTION__, | ||
849 | bytes_done, bio->bi_size); | ||
850 | bytes_done = bio->bi_size; | ||
851 | } | ||
852 | |||
853 | bio->bi_size -= bytes_done; | ||
854 | bio->bi_sector += (bytes_done >> 9); | ||
855 | |||
856 | if (bio->bi_end_io) | ||
857 | bio->bi_end_io(bio, bytes_done, error); | ||
858 | } | ||
859 | |||
860 | void bio_pair_release(struct bio_pair *bp) | ||
861 | { | ||
862 | if (atomic_dec_and_test(&bp->cnt)) { | ||
863 | struct bio *master = bp->bio1.bi_private; | ||
864 | |||
865 | bio_endio(master, master->bi_size, bp->error); | ||
866 | mempool_free(bp, bp->bio2.bi_private); | ||
867 | } | ||
868 | } | ||
869 | |||
870 | static int bio_pair_end_1(struct bio * bi, unsigned int done, int err) | ||
871 | { | ||
872 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); | ||
873 | |||
874 | if (err) | ||
875 | bp->error = err; | ||
876 | |||
877 | if (bi->bi_size) | ||
878 | return 1; | ||
879 | |||
880 | bio_pair_release(bp); | ||
881 | return 0; | ||
882 | } | ||
883 | |||
884 | static int bio_pair_end_2(struct bio * bi, unsigned int done, int err) | ||
885 | { | ||
886 | struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); | ||
887 | |||
888 | if (err) | ||
889 | bp->error = err; | ||
890 | |||
891 | if (bi->bi_size) | ||
892 | return 1; | ||
893 | |||
894 | bio_pair_release(bp); | ||
895 | return 0; | ||
896 | } | ||
897 | |||
898 | /* | ||
899 | * split a bio - only worry about a bio with a single page | ||
900 | * in it's iovec | ||
901 | */ | ||
902 | struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors) | ||
903 | { | ||
904 | struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO); | ||
905 | |||
906 | if (!bp) | ||
907 | return bp; | ||
908 | |||
909 | BUG_ON(bi->bi_vcnt != 1); | ||
910 | BUG_ON(bi->bi_idx != 0); | ||
911 | atomic_set(&bp->cnt, 3); | ||
912 | bp->error = 0; | ||
913 | bp->bio1 = *bi; | ||
914 | bp->bio2 = *bi; | ||
915 | bp->bio2.bi_sector += first_sectors; | ||
916 | bp->bio2.bi_size -= first_sectors << 9; | ||
917 | bp->bio1.bi_size = first_sectors << 9; | ||
918 | |||
919 | bp->bv1 = bi->bi_io_vec[0]; | ||
920 | bp->bv2 = bi->bi_io_vec[0]; | ||
921 | bp->bv2.bv_offset += first_sectors << 9; | ||
922 | bp->bv2.bv_len -= first_sectors << 9; | ||
923 | bp->bv1.bv_len = first_sectors << 9; | ||
924 | |||
925 | bp->bio1.bi_io_vec = &bp->bv1; | ||
926 | bp->bio2.bi_io_vec = &bp->bv2; | ||
927 | |||
928 | bp->bio1.bi_end_io = bio_pair_end_1; | ||
929 | bp->bio2.bi_end_io = bio_pair_end_2; | ||
930 | |||
931 | bp->bio1.bi_private = bi; | ||
932 | bp->bio2.bi_private = pool; | ||
933 | |||
934 | return bp; | ||
935 | } | ||
936 | |||
937 | static void *bio_pair_alloc(unsigned int __nocast gfp_flags, void *data) | ||
938 | { | ||
939 | return kmalloc(sizeof(struct bio_pair), gfp_flags); | ||
940 | } | ||
941 | |||
942 | static void bio_pair_free(void *bp, void *data) | ||
943 | { | ||
944 | kfree(bp); | ||
945 | } | ||
946 | |||
947 | |||
948 | /* | ||
949 | * create memory pools for biovec's in a bio_set. | ||
950 | * use the global biovec slabs created for general use. | ||
951 | */ | ||
952 | static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale) | ||
953 | { | ||
954 | int i; | ||
955 | |||
956 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | ||
957 | struct biovec_slab *bp = bvec_slabs + i; | ||
958 | mempool_t **bvp = bs->bvec_pools + i; | ||
959 | |||
960 | if (i >= scale) | ||
961 | pool_entries >>= 1; | ||
962 | |||
963 | *bvp = mempool_create(pool_entries, mempool_alloc_slab, | ||
964 | mempool_free_slab, bp->slab); | ||
965 | if (!*bvp) | ||
966 | return -ENOMEM; | ||
967 | } | ||
968 | return 0; | ||
969 | } | ||
970 | |||
971 | static void biovec_free_pools(struct bio_set *bs) | ||
972 | { | ||
973 | int i; | ||
974 | |||
975 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | ||
976 | mempool_t *bvp = bs->bvec_pools[i]; | ||
977 | |||
978 | if (bvp) | ||
979 | mempool_destroy(bvp); | ||
980 | } | ||
981 | |||
982 | } | ||
983 | |||
984 | void bioset_free(struct bio_set *bs) | ||
985 | { | ||
986 | if (bs->bio_pool) | ||
987 | mempool_destroy(bs->bio_pool); | ||
988 | |||
989 | biovec_free_pools(bs); | ||
990 | |||
991 | kfree(bs); | ||
992 | } | ||
993 | |||
994 | struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale) | ||
995 | { | ||
996 | struct bio_set *bs = kmalloc(sizeof(*bs), GFP_KERNEL); | ||
997 | |||
998 | if (!bs) | ||
999 | return NULL; | ||
1000 | |||
1001 | memset(bs, 0, sizeof(*bs)); | ||
1002 | bs->bio_pool = mempool_create(bio_pool_size, mempool_alloc_slab, | ||
1003 | mempool_free_slab, bio_slab); | ||
1004 | |||
1005 | if (!bs->bio_pool) | ||
1006 | goto bad; | ||
1007 | |||
1008 | if (!biovec_create_pools(bs, bvec_pool_size, scale)) | ||
1009 | return bs; | ||
1010 | |||
1011 | bad: | ||
1012 | bioset_free(bs); | ||
1013 | return NULL; | ||
1014 | } | ||
1015 | |||
1016 | static void __init biovec_init_slabs(void) | ||
1017 | { | ||
1018 | int i; | ||
1019 | |||
1020 | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | ||
1021 | int size; | ||
1022 | struct biovec_slab *bvs = bvec_slabs + i; | ||
1023 | |||
1024 | size = bvs->nr_vecs * sizeof(struct bio_vec); | ||
1025 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | ||
1026 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | ||
1027 | } | ||
1028 | } | ||
1029 | |||
1030 | static int __init init_bio(void) | ||
1031 | { | ||
1032 | int megabytes, bvec_pool_entries; | ||
1033 | int scale = BIOVEC_NR_POOLS; | ||
1034 | |||
1035 | bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0, | ||
1036 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | ||
1037 | |||
1038 | biovec_init_slabs(); | ||
1039 | |||
1040 | megabytes = nr_free_pages() >> (20 - PAGE_SHIFT); | ||
1041 | |||
1042 | /* | ||
1043 | * find out where to start scaling | ||
1044 | */ | ||
1045 | if (megabytes <= 16) | ||
1046 | scale = 0; | ||
1047 | else if (megabytes <= 32) | ||
1048 | scale = 1; | ||
1049 | else if (megabytes <= 64) | ||
1050 | scale = 2; | ||
1051 | else if (megabytes <= 96) | ||
1052 | scale = 3; | ||
1053 | else if (megabytes <= 128) | ||
1054 | scale = 4; | ||
1055 | |||
1056 | /* | ||
1057 | * scale number of entries | ||
1058 | */ | ||
1059 | bvec_pool_entries = megabytes * 2; | ||
1060 | if (bvec_pool_entries > 256) | ||
1061 | bvec_pool_entries = 256; | ||
1062 | |||
1063 | fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale); | ||
1064 | if (!fs_bio_set) | ||
1065 | panic("bio: can't allocate bios\n"); | ||
1066 | |||
1067 | bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES, | ||
1068 | bio_pair_alloc, bio_pair_free, NULL); | ||
1069 | if (!bio_split_pool) | ||
1070 | panic("bio: can't create split pool\n"); | ||
1071 | |||
1072 | return 0; | ||
1073 | } | ||
1074 | |||
1075 | subsys_initcall(init_bio); | ||
1076 | |||
1077 | EXPORT_SYMBOL(bio_alloc); | ||
1078 | EXPORT_SYMBOL(bio_put); | ||
1079 | EXPORT_SYMBOL(bio_endio); | ||
1080 | EXPORT_SYMBOL(bio_init); | ||
1081 | EXPORT_SYMBOL(__bio_clone); | ||
1082 | EXPORT_SYMBOL(bio_clone); | ||
1083 | EXPORT_SYMBOL(bio_phys_segments); | ||
1084 | EXPORT_SYMBOL(bio_hw_segments); | ||
1085 | EXPORT_SYMBOL(bio_add_page); | ||
1086 | EXPORT_SYMBOL(bio_get_nr_vecs); | ||
1087 | EXPORT_SYMBOL(bio_map_user); | ||
1088 | EXPORT_SYMBOL(bio_unmap_user); | ||
1089 | EXPORT_SYMBOL(bio_pair_release); | ||
1090 | EXPORT_SYMBOL(bio_split); | ||
1091 | EXPORT_SYMBOL(bio_split_pool); | ||
1092 | EXPORT_SYMBOL(bio_copy_user); | ||
1093 | EXPORT_SYMBOL(bio_uncopy_user); | ||
1094 | EXPORT_SYMBOL(bioset_create); | ||
1095 | EXPORT_SYMBOL(bioset_free); | ||
1096 | EXPORT_SYMBOL(bio_alloc_bioset); | ||