diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/aio.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/aio.c')
-rw-r--r-- | fs/aio.c | 1729 |
1 files changed, 1729 insertions, 0 deletions
diff --git a/fs/aio.c b/fs/aio.c new file mode 100644 index 000000000000..d06a266769bc --- /dev/null +++ b/fs/aio.c | |||
@@ -0,0 +1,1729 @@ | |||
1 | /* | ||
2 | * An async IO implementation for Linux | ||
3 | * Written by Benjamin LaHaise <bcrl@kvack.org> | ||
4 | * | ||
5 | * Implements an efficient asynchronous io interface. | ||
6 | * | ||
7 | * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. | ||
8 | * | ||
9 | * See ../COPYING for licensing terms. | ||
10 | */ | ||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/init.h> | ||
13 | #include <linux/errno.h> | ||
14 | #include <linux/time.h> | ||
15 | #include <linux/aio_abi.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/syscalls.h> | ||
18 | |||
19 | #define DEBUG 0 | ||
20 | |||
21 | #include <linux/sched.h> | ||
22 | #include <linux/fs.h> | ||
23 | #include <linux/file.h> | ||
24 | #include <linux/mm.h> | ||
25 | #include <linux/mman.h> | ||
26 | #include <linux/slab.h> | ||
27 | #include <linux/timer.h> | ||
28 | #include <linux/aio.h> | ||
29 | #include <linux/highmem.h> | ||
30 | #include <linux/workqueue.h> | ||
31 | #include <linux/security.h> | ||
32 | |||
33 | #include <asm/kmap_types.h> | ||
34 | #include <asm/uaccess.h> | ||
35 | #include <asm/mmu_context.h> | ||
36 | |||
37 | #if DEBUG > 1 | ||
38 | #define dprintk printk | ||
39 | #else | ||
40 | #define dprintk(x...) do { ; } while (0) | ||
41 | #endif | ||
42 | |||
43 | long aio_run = 0; /* for testing only */ | ||
44 | long aio_wakeups = 0; /* for testing only */ | ||
45 | |||
46 | /*------ sysctl variables----*/ | ||
47 | atomic_t aio_nr = ATOMIC_INIT(0); /* current system wide number of aio requests */ | ||
48 | unsigned aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ | ||
49 | /*----end sysctl variables---*/ | ||
50 | |||
51 | static kmem_cache_t *kiocb_cachep; | ||
52 | static kmem_cache_t *kioctx_cachep; | ||
53 | |||
54 | static struct workqueue_struct *aio_wq; | ||
55 | |||
56 | /* Used for rare fput completion. */ | ||
57 | static void aio_fput_routine(void *); | ||
58 | static DECLARE_WORK(fput_work, aio_fput_routine, NULL); | ||
59 | |||
60 | static DEFINE_SPINLOCK(fput_lock); | ||
61 | LIST_HEAD(fput_head); | ||
62 | |||
63 | static void aio_kick_handler(void *); | ||
64 | |||
65 | /* aio_setup | ||
66 | * Creates the slab caches used by the aio routines, panic on | ||
67 | * failure as this is done early during the boot sequence. | ||
68 | */ | ||
69 | static int __init aio_setup(void) | ||
70 | { | ||
71 | kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb), | ||
72 | 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | ||
73 | kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx), | ||
74 | 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | ||
75 | |||
76 | aio_wq = create_workqueue("aio"); | ||
77 | |||
78 | pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); | ||
79 | |||
80 | return 0; | ||
81 | } | ||
82 | |||
83 | static void aio_free_ring(struct kioctx *ctx) | ||
84 | { | ||
85 | struct aio_ring_info *info = &ctx->ring_info; | ||
86 | long i; | ||
87 | |||
88 | for (i=0; i<info->nr_pages; i++) | ||
89 | put_page(info->ring_pages[i]); | ||
90 | |||
91 | if (info->mmap_size) { | ||
92 | down_write(&ctx->mm->mmap_sem); | ||
93 | do_munmap(ctx->mm, info->mmap_base, info->mmap_size); | ||
94 | up_write(&ctx->mm->mmap_sem); | ||
95 | } | ||
96 | |||
97 | if (info->ring_pages && info->ring_pages != info->internal_pages) | ||
98 | kfree(info->ring_pages); | ||
99 | info->ring_pages = NULL; | ||
100 | info->nr = 0; | ||
101 | } | ||
102 | |||
103 | static int aio_setup_ring(struct kioctx *ctx) | ||
104 | { | ||
105 | struct aio_ring *ring; | ||
106 | struct aio_ring_info *info = &ctx->ring_info; | ||
107 | unsigned nr_events = ctx->max_reqs; | ||
108 | unsigned long size; | ||
109 | int nr_pages; | ||
110 | |||
111 | /* Compensate for the ring buffer's head/tail overlap entry */ | ||
112 | nr_events += 2; /* 1 is required, 2 for good luck */ | ||
113 | |||
114 | size = sizeof(struct aio_ring); | ||
115 | size += sizeof(struct io_event) * nr_events; | ||
116 | nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; | ||
117 | |||
118 | if (nr_pages < 0) | ||
119 | return -EINVAL; | ||
120 | |||
121 | nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); | ||
122 | |||
123 | info->nr = 0; | ||
124 | info->ring_pages = info->internal_pages; | ||
125 | if (nr_pages > AIO_RING_PAGES) { | ||
126 | info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL); | ||
127 | if (!info->ring_pages) | ||
128 | return -ENOMEM; | ||
129 | memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages); | ||
130 | } | ||
131 | |||
132 | info->mmap_size = nr_pages * PAGE_SIZE; | ||
133 | dprintk("attempting mmap of %lu bytes\n", info->mmap_size); | ||
134 | down_write(&ctx->mm->mmap_sem); | ||
135 | info->mmap_base = do_mmap(NULL, 0, info->mmap_size, | ||
136 | PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, | ||
137 | 0); | ||
138 | if (IS_ERR((void *)info->mmap_base)) { | ||
139 | up_write(&ctx->mm->mmap_sem); | ||
140 | printk("mmap err: %ld\n", -info->mmap_base); | ||
141 | info->mmap_size = 0; | ||
142 | aio_free_ring(ctx); | ||
143 | return -EAGAIN; | ||
144 | } | ||
145 | |||
146 | dprintk("mmap address: 0x%08lx\n", info->mmap_base); | ||
147 | info->nr_pages = get_user_pages(current, ctx->mm, | ||
148 | info->mmap_base, nr_pages, | ||
149 | 1, 0, info->ring_pages, NULL); | ||
150 | up_write(&ctx->mm->mmap_sem); | ||
151 | |||
152 | if (unlikely(info->nr_pages != nr_pages)) { | ||
153 | aio_free_ring(ctx); | ||
154 | return -EAGAIN; | ||
155 | } | ||
156 | |||
157 | ctx->user_id = info->mmap_base; | ||
158 | |||
159 | info->nr = nr_events; /* trusted copy */ | ||
160 | |||
161 | ring = kmap_atomic(info->ring_pages[0], KM_USER0); | ||
162 | ring->nr = nr_events; /* user copy */ | ||
163 | ring->id = ctx->user_id; | ||
164 | ring->head = ring->tail = 0; | ||
165 | ring->magic = AIO_RING_MAGIC; | ||
166 | ring->compat_features = AIO_RING_COMPAT_FEATURES; | ||
167 | ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; | ||
168 | ring->header_length = sizeof(struct aio_ring); | ||
169 | kunmap_atomic(ring, KM_USER0); | ||
170 | |||
171 | return 0; | ||
172 | } | ||
173 | |||
174 | |||
175 | /* aio_ring_event: returns a pointer to the event at the given index from | ||
176 | * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); | ||
177 | */ | ||
178 | #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) | ||
179 | #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) | ||
180 | #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) | ||
181 | |||
182 | #define aio_ring_event(info, nr, km) ({ \ | ||
183 | unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ | ||
184 | struct io_event *__event; \ | ||
185 | __event = kmap_atomic( \ | ||
186 | (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ | ||
187 | __event += pos % AIO_EVENTS_PER_PAGE; \ | ||
188 | __event; \ | ||
189 | }) | ||
190 | |||
191 | #define put_aio_ring_event(event, km) do { \ | ||
192 | struct io_event *__event = (event); \ | ||
193 | (void)__event; \ | ||
194 | kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ | ||
195 | } while(0) | ||
196 | |||
197 | /* ioctx_alloc | ||
198 | * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. | ||
199 | */ | ||
200 | static struct kioctx *ioctx_alloc(unsigned nr_events) | ||
201 | { | ||
202 | struct mm_struct *mm; | ||
203 | struct kioctx *ctx; | ||
204 | |||
205 | /* Prevent overflows */ | ||
206 | if ((nr_events > (0x10000000U / sizeof(struct io_event))) || | ||
207 | (nr_events > (0x10000000U / sizeof(struct kiocb)))) { | ||
208 | pr_debug("ENOMEM: nr_events too high\n"); | ||
209 | return ERR_PTR(-EINVAL); | ||
210 | } | ||
211 | |||
212 | if (nr_events > aio_max_nr) | ||
213 | return ERR_PTR(-EAGAIN); | ||
214 | |||
215 | ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL); | ||
216 | if (!ctx) | ||
217 | return ERR_PTR(-ENOMEM); | ||
218 | |||
219 | memset(ctx, 0, sizeof(*ctx)); | ||
220 | ctx->max_reqs = nr_events; | ||
221 | mm = ctx->mm = current->mm; | ||
222 | atomic_inc(&mm->mm_count); | ||
223 | |||
224 | atomic_set(&ctx->users, 1); | ||
225 | spin_lock_init(&ctx->ctx_lock); | ||
226 | spin_lock_init(&ctx->ring_info.ring_lock); | ||
227 | init_waitqueue_head(&ctx->wait); | ||
228 | |||
229 | INIT_LIST_HEAD(&ctx->active_reqs); | ||
230 | INIT_LIST_HEAD(&ctx->run_list); | ||
231 | INIT_WORK(&ctx->wq, aio_kick_handler, ctx); | ||
232 | |||
233 | if (aio_setup_ring(ctx) < 0) | ||
234 | goto out_freectx; | ||
235 | |||
236 | /* limit the number of system wide aios */ | ||
237 | atomic_add(ctx->max_reqs, &aio_nr); /* undone by __put_ioctx */ | ||
238 | if (unlikely(atomic_read(&aio_nr) > aio_max_nr)) | ||
239 | goto out_cleanup; | ||
240 | |||
241 | /* now link into global list. kludge. FIXME */ | ||
242 | write_lock(&mm->ioctx_list_lock); | ||
243 | ctx->next = mm->ioctx_list; | ||
244 | mm->ioctx_list = ctx; | ||
245 | write_unlock(&mm->ioctx_list_lock); | ||
246 | |||
247 | dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", | ||
248 | ctx, ctx->user_id, current->mm, ctx->ring_info.nr); | ||
249 | return ctx; | ||
250 | |||
251 | out_cleanup: | ||
252 | atomic_sub(ctx->max_reqs, &aio_nr); | ||
253 | ctx->max_reqs = 0; /* prevent __put_ioctx from sub'ing aio_nr */ | ||
254 | __put_ioctx(ctx); | ||
255 | return ERR_PTR(-EAGAIN); | ||
256 | |||
257 | out_freectx: | ||
258 | mmdrop(mm); | ||
259 | kmem_cache_free(kioctx_cachep, ctx); | ||
260 | ctx = ERR_PTR(-ENOMEM); | ||
261 | |||
262 | dprintk("aio: error allocating ioctx %p\n", ctx); | ||
263 | return ctx; | ||
264 | } | ||
265 | |||
266 | /* aio_cancel_all | ||
267 | * Cancels all outstanding aio requests on an aio context. Used | ||
268 | * when the processes owning a context have all exited to encourage | ||
269 | * the rapid destruction of the kioctx. | ||
270 | */ | ||
271 | static void aio_cancel_all(struct kioctx *ctx) | ||
272 | { | ||
273 | int (*cancel)(struct kiocb *, struct io_event *); | ||
274 | struct io_event res; | ||
275 | spin_lock_irq(&ctx->ctx_lock); | ||
276 | ctx->dead = 1; | ||
277 | while (!list_empty(&ctx->active_reqs)) { | ||
278 | struct list_head *pos = ctx->active_reqs.next; | ||
279 | struct kiocb *iocb = list_kiocb(pos); | ||
280 | list_del_init(&iocb->ki_list); | ||
281 | cancel = iocb->ki_cancel; | ||
282 | kiocbSetCancelled(iocb); | ||
283 | if (cancel) { | ||
284 | iocb->ki_users++; | ||
285 | spin_unlock_irq(&ctx->ctx_lock); | ||
286 | cancel(iocb, &res); | ||
287 | spin_lock_irq(&ctx->ctx_lock); | ||
288 | } | ||
289 | } | ||
290 | spin_unlock_irq(&ctx->ctx_lock); | ||
291 | } | ||
292 | |||
293 | void wait_for_all_aios(struct kioctx *ctx) | ||
294 | { | ||
295 | struct task_struct *tsk = current; | ||
296 | DECLARE_WAITQUEUE(wait, tsk); | ||
297 | |||
298 | if (!ctx->reqs_active) | ||
299 | return; | ||
300 | |||
301 | add_wait_queue(&ctx->wait, &wait); | ||
302 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | ||
303 | while (ctx->reqs_active) { | ||
304 | schedule(); | ||
305 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | ||
306 | } | ||
307 | __set_task_state(tsk, TASK_RUNNING); | ||
308 | remove_wait_queue(&ctx->wait, &wait); | ||
309 | } | ||
310 | |||
311 | /* wait_on_sync_kiocb: | ||
312 | * Waits on the given sync kiocb to complete. | ||
313 | */ | ||
314 | ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb) | ||
315 | { | ||
316 | while (iocb->ki_users) { | ||
317 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
318 | if (!iocb->ki_users) | ||
319 | break; | ||
320 | schedule(); | ||
321 | } | ||
322 | __set_current_state(TASK_RUNNING); | ||
323 | return iocb->ki_user_data; | ||
324 | } | ||
325 | |||
326 | /* exit_aio: called when the last user of mm goes away. At this point, | ||
327 | * there is no way for any new requests to be submited or any of the | ||
328 | * io_* syscalls to be called on the context. However, there may be | ||
329 | * outstanding requests which hold references to the context; as they | ||
330 | * go away, they will call put_ioctx and release any pinned memory | ||
331 | * associated with the request (held via struct page * references). | ||
332 | */ | ||
333 | void fastcall exit_aio(struct mm_struct *mm) | ||
334 | { | ||
335 | struct kioctx *ctx = mm->ioctx_list; | ||
336 | mm->ioctx_list = NULL; | ||
337 | while (ctx) { | ||
338 | struct kioctx *next = ctx->next; | ||
339 | ctx->next = NULL; | ||
340 | aio_cancel_all(ctx); | ||
341 | |||
342 | wait_for_all_aios(ctx); | ||
343 | /* | ||
344 | * this is an overkill, but ensures we don't leave | ||
345 | * the ctx on the aio_wq | ||
346 | */ | ||
347 | flush_workqueue(aio_wq); | ||
348 | |||
349 | if (1 != atomic_read(&ctx->users)) | ||
350 | printk(KERN_DEBUG | ||
351 | "exit_aio:ioctx still alive: %d %d %d\n", | ||
352 | atomic_read(&ctx->users), ctx->dead, | ||
353 | ctx->reqs_active); | ||
354 | put_ioctx(ctx); | ||
355 | ctx = next; | ||
356 | } | ||
357 | } | ||
358 | |||
359 | /* __put_ioctx | ||
360 | * Called when the last user of an aio context has gone away, | ||
361 | * and the struct needs to be freed. | ||
362 | */ | ||
363 | void fastcall __put_ioctx(struct kioctx *ctx) | ||
364 | { | ||
365 | unsigned nr_events = ctx->max_reqs; | ||
366 | |||
367 | if (unlikely(ctx->reqs_active)) | ||
368 | BUG(); | ||
369 | |||
370 | cancel_delayed_work(&ctx->wq); | ||
371 | flush_workqueue(aio_wq); | ||
372 | aio_free_ring(ctx); | ||
373 | mmdrop(ctx->mm); | ||
374 | ctx->mm = NULL; | ||
375 | pr_debug("__put_ioctx: freeing %p\n", ctx); | ||
376 | kmem_cache_free(kioctx_cachep, ctx); | ||
377 | |||
378 | atomic_sub(nr_events, &aio_nr); | ||
379 | } | ||
380 | |||
381 | /* aio_get_req | ||
382 | * Allocate a slot for an aio request. Increments the users count | ||
383 | * of the kioctx so that the kioctx stays around until all requests are | ||
384 | * complete. Returns NULL if no requests are free. | ||
385 | * | ||
386 | * Returns with kiocb->users set to 2. The io submit code path holds | ||
387 | * an extra reference while submitting the i/o. | ||
388 | * This prevents races between the aio code path referencing the | ||
389 | * req (after submitting it) and aio_complete() freeing the req. | ||
390 | */ | ||
391 | static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx)); | ||
392 | static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx) | ||
393 | { | ||
394 | struct kiocb *req = NULL; | ||
395 | struct aio_ring *ring; | ||
396 | int okay = 0; | ||
397 | |||
398 | req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); | ||
399 | if (unlikely(!req)) | ||
400 | return NULL; | ||
401 | |||
402 | req->ki_flags = 1 << KIF_LOCKED; | ||
403 | req->ki_users = 2; | ||
404 | req->ki_key = 0; | ||
405 | req->ki_ctx = ctx; | ||
406 | req->ki_cancel = NULL; | ||
407 | req->ki_retry = NULL; | ||
408 | req->ki_obj.user = NULL; | ||
409 | req->ki_dtor = NULL; | ||
410 | req->private = NULL; | ||
411 | INIT_LIST_HEAD(&req->ki_run_list); | ||
412 | |||
413 | /* Check if the completion queue has enough free space to | ||
414 | * accept an event from this io. | ||
415 | */ | ||
416 | spin_lock_irq(&ctx->ctx_lock); | ||
417 | ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); | ||
418 | if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { | ||
419 | list_add(&req->ki_list, &ctx->active_reqs); | ||
420 | get_ioctx(ctx); | ||
421 | ctx->reqs_active++; | ||
422 | okay = 1; | ||
423 | } | ||
424 | kunmap_atomic(ring, KM_USER0); | ||
425 | spin_unlock_irq(&ctx->ctx_lock); | ||
426 | |||
427 | if (!okay) { | ||
428 | kmem_cache_free(kiocb_cachep, req); | ||
429 | req = NULL; | ||
430 | } | ||
431 | |||
432 | return req; | ||
433 | } | ||
434 | |||
435 | static inline struct kiocb *aio_get_req(struct kioctx *ctx) | ||
436 | { | ||
437 | struct kiocb *req; | ||
438 | /* Handle a potential starvation case -- should be exceedingly rare as | ||
439 | * requests will be stuck on fput_head only if the aio_fput_routine is | ||
440 | * delayed and the requests were the last user of the struct file. | ||
441 | */ | ||
442 | req = __aio_get_req(ctx); | ||
443 | if (unlikely(NULL == req)) { | ||
444 | aio_fput_routine(NULL); | ||
445 | req = __aio_get_req(ctx); | ||
446 | } | ||
447 | return req; | ||
448 | } | ||
449 | |||
450 | static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) | ||
451 | { | ||
452 | if (req->ki_dtor) | ||
453 | req->ki_dtor(req); | ||
454 | req->ki_ctx = NULL; | ||
455 | req->ki_filp = NULL; | ||
456 | req->ki_obj.user = NULL; | ||
457 | req->ki_dtor = NULL; | ||
458 | req->private = NULL; | ||
459 | kmem_cache_free(kiocb_cachep, req); | ||
460 | ctx->reqs_active--; | ||
461 | |||
462 | if (unlikely(!ctx->reqs_active && ctx->dead)) | ||
463 | wake_up(&ctx->wait); | ||
464 | } | ||
465 | |||
466 | static void aio_fput_routine(void *data) | ||
467 | { | ||
468 | spin_lock_irq(&fput_lock); | ||
469 | while (likely(!list_empty(&fput_head))) { | ||
470 | struct kiocb *req = list_kiocb(fput_head.next); | ||
471 | struct kioctx *ctx = req->ki_ctx; | ||
472 | |||
473 | list_del(&req->ki_list); | ||
474 | spin_unlock_irq(&fput_lock); | ||
475 | |||
476 | /* Complete the fput */ | ||
477 | __fput(req->ki_filp); | ||
478 | |||
479 | /* Link the iocb into the context's free list */ | ||
480 | spin_lock_irq(&ctx->ctx_lock); | ||
481 | really_put_req(ctx, req); | ||
482 | spin_unlock_irq(&ctx->ctx_lock); | ||
483 | |||
484 | put_ioctx(ctx); | ||
485 | spin_lock_irq(&fput_lock); | ||
486 | } | ||
487 | spin_unlock_irq(&fput_lock); | ||
488 | } | ||
489 | |||
490 | /* __aio_put_req | ||
491 | * Returns true if this put was the last user of the request. | ||
492 | */ | ||
493 | static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) | ||
494 | { | ||
495 | dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n", | ||
496 | req, atomic_read(&req->ki_filp->f_count)); | ||
497 | |||
498 | req->ki_users --; | ||
499 | if (unlikely(req->ki_users < 0)) | ||
500 | BUG(); | ||
501 | if (likely(req->ki_users)) | ||
502 | return 0; | ||
503 | list_del(&req->ki_list); /* remove from active_reqs */ | ||
504 | req->ki_cancel = NULL; | ||
505 | req->ki_retry = NULL; | ||
506 | |||
507 | /* Must be done under the lock to serialise against cancellation. | ||
508 | * Call this aio_fput as it duplicates fput via the fput_work. | ||
509 | */ | ||
510 | if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) { | ||
511 | get_ioctx(ctx); | ||
512 | spin_lock(&fput_lock); | ||
513 | list_add(&req->ki_list, &fput_head); | ||
514 | spin_unlock(&fput_lock); | ||
515 | queue_work(aio_wq, &fput_work); | ||
516 | } else | ||
517 | really_put_req(ctx, req); | ||
518 | return 1; | ||
519 | } | ||
520 | |||
521 | /* aio_put_req | ||
522 | * Returns true if this put was the last user of the kiocb, | ||
523 | * false if the request is still in use. | ||
524 | */ | ||
525 | int fastcall aio_put_req(struct kiocb *req) | ||
526 | { | ||
527 | struct kioctx *ctx = req->ki_ctx; | ||
528 | int ret; | ||
529 | spin_lock_irq(&ctx->ctx_lock); | ||
530 | ret = __aio_put_req(ctx, req); | ||
531 | spin_unlock_irq(&ctx->ctx_lock); | ||
532 | if (ret) | ||
533 | put_ioctx(ctx); | ||
534 | return ret; | ||
535 | } | ||
536 | |||
537 | /* Lookup an ioctx id. ioctx_list is lockless for reads. | ||
538 | * FIXME: this is O(n) and is only suitable for development. | ||
539 | */ | ||
540 | struct kioctx *lookup_ioctx(unsigned long ctx_id) | ||
541 | { | ||
542 | struct kioctx *ioctx; | ||
543 | struct mm_struct *mm; | ||
544 | |||
545 | mm = current->mm; | ||
546 | read_lock(&mm->ioctx_list_lock); | ||
547 | for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next) | ||
548 | if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) { | ||
549 | get_ioctx(ioctx); | ||
550 | break; | ||
551 | } | ||
552 | read_unlock(&mm->ioctx_list_lock); | ||
553 | |||
554 | return ioctx; | ||
555 | } | ||
556 | |||
557 | /* | ||
558 | * use_mm | ||
559 | * Makes the calling kernel thread take on the specified | ||
560 | * mm context. | ||
561 | * Called by the retry thread execute retries within the | ||
562 | * iocb issuer's mm context, so that copy_from/to_user | ||
563 | * operations work seamlessly for aio. | ||
564 | * (Note: this routine is intended to be called only | ||
565 | * from a kernel thread context) | ||
566 | */ | ||
567 | static void use_mm(struct mm_struct *mm) | ||
568 | { | ||
569 | struct mm_struct *active_mm; | ||
570 | struct task_struct *tsk = current; | ||
571 | |||
572 | task_lock(tsk); | ||
573 | tsk->flags |= PF_BORROWED_MM; | ||
574 | active_mm = tsk->active_mm; | ||
575 | atomic_inc(&mm->mm_count); | ||
576 | tsk->mm = mm; | ||
577 | tsk->active_mm = mm; | ||
578 | activate_mm(active_mm, mm); | ||
579 | task_unlock(tsk); | ||
580 | |||
581 | mmdrop(active_mm); | ||
582 | } | ||
583 | |||
584 | /* | ||
585 | * unuse_mm | ||
586 | * Reverses the effect of use_mm, i.e. releases the | ||
587 | * specified mm context which was earlier taken on | ||
588 | * by the calling kernel thread | ||
589 | * (Note: this routine is intended to be called only | ||
590 | * from a kernel thread context) | ||
591 | * | ||
592 | * Comments: Called with ctx->ctx_lock held. This nests | ||
593 | * task_lock instead ctx_lock. | ||
594 | */ | ||
595 | void unuse_mm(struct mm_struct *mm) | ||
596 | { | ||
597 | struct task_struct *tsk = current; | ||
598 | |||
599 | task_lock(tsk); | ||
600 | tsk->flags &= ~PF_BORROWED_MM; | ||
601 | tsk->mm = NULL; | ||
602 | /* active_mm is still 'mm' */ | ||
603 | enter_lazy_tlb(mm, tsk); | ||
604 | task_unlock(tsk); | ||
605 | } | ||
606 | |||
607 | /* | ||
608 | * Queue up a kiocb to be retried. Assumes that the kiocb | ||
609 | * has already been marked as kicked, and places it on | ||
610 | * the retry run list for the corresponding ioctx, if it | ||
611 | * isn't already queued. Returns 1 if it actually queued | ||
612 | * the kiocb (to tell the caller to activate the work | ||
613 | * queue to process it), or 0, if it found that it was | ||
614 | * already queued. | ||
615 | * | ||
616 | * Should be called with the spin lock iocb->ki_ctx->ctx_lock | ||
617 | * held | ||
618 | */ | ||
619 | static inline int __queue_kicked_iocb(struct kiocb *iocb) | ||
620 | { | ||
621 | struct kioctx *ctx = iocb->ki_ctx; | ||
622 | |||
623 | if (list_empty(&iocb->ki_run_list)) { | ||
624 | list_add_tail(&iocb->ki_run_list, | ||
625 | &ctx->run_list); | ||
626 | iocb->ki_queued++; | ||
627 | return 1; | ||
628 | } | ||
629 | return 0; | ||
630 | } | ||
631 | |||
632 | /* aio_run_iocb | ||
633 | * This is the core aio execution routine. It is | ||
634 | * invoked both for initial i/o submission and | ||
635 | * subsequent retries via the aio_kick_handler. | ||
636 | * Expects to be invoked with iocb->ki_ctx->lock | ||
637 | * already held. The lock is released and reaquired | ||
638 | * as needed during processing. | ||
639 | * | ||
640 | * Calls the iocb retry method (already setup for the | ||
641 | * iocb on initial submission) for operation specific | ||
642 | * handling, but takes care of most of common retry | ||
643 | * execution details for a given iocb. The retry method | ||
644 | * needs to be non-blocking as far as possible, to avoid | ||
645 | * holding up other iocbs waiting to be serviced by the | ||
646 | * retry kernel thread. | ||
647 | * | ||
648 | * The trickier parts in this code have to do with | ||
649 | * ensuring that only one retry instance is in progress | ||
650 | * for a given iocb at any time. Providing that guarantee | ||
651 | * simplifies the coding of individual aio operations as | ||
652 | * it avoids various potential races. | ||
653 | */ | ||
654 | static ssize_t aio_run_iocb(struct kiocb *iocb) | ||
655 | { | ||
656 | struct kioctx *ctx = iocb->ki_ctx; | ||
657 | ssize_t (*retry)(struct kiocb *); | ||
658 | ssize_t ret; | ||
659 | |||
660 | if (iocb->ki_retried++ > 1024*1024) { | ||
661 | printk("Maximal retry count. Bytes done %Zd\n", | ||
662 | iocb->ki_nbytes - iocb->ki_left); | ||
663 | return -EAGAIN; | ||
664 | } | ||
665 | |||
666 | if (!(iocb->ki_retried & 0xff)) { | ||
667 | pr_debug("%ld retry: %d of %d (kick %ld, Q %ld run %ld, wake %ld)\n", | ||
668 | iocb->ki_retried, | ||
669 | iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes, | ||
670 | iocb->ki_kicked, iocb->ki_queued, aio_run, aio_wakeups); | ||
671 | } | ||
672 | |||
673 | if (!(retry = iocb->ki_retry)) { | ||
674 | printk("aio_run_iocb: iocb->ki_retry = NULL\n"); | ||
675 | return 0; | ||
676 | } | ||
677 | |||
678 | /* | ||
679 | * We don't want the next retry iteration for this | ||
680 | * operation to start until this one has returned and | ||
681 | * updated the iocb state. However, wait_queue functions | ||
682 | * can trigger a kick_iocb from interrupt context in the | ||
683 | * meantime, indicating that data is available for the next | ||
684 | * iteration. We want to remember that and enable the | ||
685 | * next retry iteration _after_ we are through with | ||
686 | * this one. | ||
687 | * | ||
688 | * So, in order to be able to register a "kick", but | ||
689 | * prevent it from being queued now, we clear the kick | ||
690 | * flag, but make the kick code *think* that the iocb is | ||
691 | * still on the run list until we are actually done. | ||
692 | * When we are done with this iteration, we check if | ||
693 | * the iocb was kicked in the meantime and if so, queue | ||
694 | * it up afresh. | ||
695 | */ | ||
696 | |||
697 | kiocbClearKicked(iocb); | ||
698 | |||
699 | /* | ||
700 | * This is so that aio_complete knows it doesn't need to | ||
701 | * pull the iocb off the run list (We can't just call | ||
702 | * INIT_LIST_HEAD because we don't want a kick_iocb to | ||
703 | * queue this on the run list yet) | ||
704 | */ | ||
705 | iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; | ||
706 | spin_unlock_irq(&ctx->ctx_lock); | ||
707 | |||
708 | /* Quit retrying if the i/o has been cancelled */ | ||
709 | if (kiocbIsCancelled(iocb)) { | ||
710 | ret = -EINTR; | ||
711 | aio_complete(iocb, ret, 0); | ||
712 | /* must not access the iocb after this */ | ||
713 | goto out; | ||
714 | } | ||
715 | |||
716 | /* | ||
717 | * Now we are all set to call the retry method in async | ||
718 | * context. By setting this thread's io_wait context | ||
719 | * to point to the wait queue entry inside the currently | ||
720 | * running iocb for the duration of the retry, we ensure | ||
721 | * that async notification wakeups are queued by the | ||
722 | * operation instead of blocking waits, and when notified, | ||
723 | * cause the iocb to be kicked for continuation (through | ||
724 | * the aio_wake_function callback). | ||
725 | */ | ||
726 | BUG_ON(current->io_wait != NULL); | ||
727 | current->io_wait = &iocb->ki_wait; | ||
728 | ret = retry(iocb); | ||
729 | current->io_wait = NULL; | ||
730 | |||
731 | if (-EIOCBRETRY != ret) { | ||
732 | if (-EIOCBQUEUED != ret) { | ||
733 | BUG_ON(!list_empty(&iocb->ki_wait.task_list)); | ||
734 | aio_complete(iocb, ret, 0); | ||
735 | /* must not access the iocb after this */ | ||
736 | } | ||
737 | } else { | ||
738 | /* | ||
739 | * Issue an additional retry to avoid waiting forever if | ||
740 | * no waits were queued (e.g. in case of a short read). | ||
741 | */ | ||
742 | if (list_empty(&iocb->ki_wait.task_list)) | ||
743 | kiocbSetKicked(iocb); | ||
744 | } | ||
745 | out: | ||
746 | spin_lock_irq(&ctx->ctx_lock); | ||
747 | |||
748 | if (-EIOCBRETRY == ret) { | ||
749 | /* | ||
750 | * OK, now that we are done with this iteration | ||
751 | * and know that there is more left to go, | ||
752 | * this is where we let go so that a subsequent | ||
753 | * "kick" can start the next iteration | ||
754 | */ | ||
755 | |||
756 | /* will make __queue_kicked_iocb succeed from here on */ | ||
757 | INIT_LIST_HEAD(&iocb->ki_run_list); | ||
758 | /* we must queue the next iteration ourselves, if it | ||
759 | * has already been kicked */ | ||
760 | if (kiocbIsKicked(iocb)) { | ||
761 | __queue_kicked_iocb(iocb); | ||
762 | } | ||
763 | } | ||
764 | return ret; | ||
765 | } | ||
766 | |||
767 | /* | ||
768 | * __aio_run_iocbs: | ||
769 | * Process all pending retries queued on the ioctx | ||
770 | * run list. | ||
771 | * Assumes it is operating within the aio issuer's mm | ||
772 | * context. Expects to be called with ctx->ctx_lock held | ||
773 | */ | ||
774 | static int __aio_run_iocbs(struct kioctx *ctx) | ||
775 | { | ||
776 | struct kiocb *iocb; | ||
777 | int count = 0; | ||
778 | LIST_HEAD(run_list); | ||
779 | |||
780 | list_splice_init(&ctx->run_list, &run_list); | ||
781 | while (!list_empty(&run_list)) { | ||
782 | iocb = list_entry(run_list.next, struct kiocb, | ||
783 | ki_run_list); | ||
784 | list_del(&iocb->ki_run_list); | ||
785 | /* | ||
786 | * Hold an extra reference while retrying i/o. | ||
787 | */ | ||
788 | iocb->ki_users++; /* grab extra reference */ | ||
789 | aio_run_iocb(iocb); | ||
790 | if (__aio_put_req(ctx, iocb)) /* drop extra ref */ | ||
791 | put_ioctx(ctx); | ||
792 | count++; | ||
793 | } | ||
794 | aio_run++; | ||
795 | if (!list_empty(&ctx->run_list)) | ||
796 | return 1; | ||
797 | return 0; | ||
798 | } | ||
799 | |||
800 | static void aio_queue_work(struct kioctx * ctx) | ||
801 | { | ||
802 | unsigned long timeout; | ||
803 | /* | ||
804 | * if someone is waiting, get the work started right | ||
805 | * away, otherwise, use a longer delay | ||
806 | */ | ||
807 | smp_mb(); | ||
808 | if (waitqueue_active(&ctx->wait)) | ||
809 | timeout = 1; | ||
810 | else | ||
811 | timeout = HZ/10; | ||
812 | queue_delayed_work(aio_wq, &ctx->wq, timeout); | ||
813 | } | ||
814 | |||
815 | |||
816 | /* | ||
817 | * aio_run_iocbs: | ||
818 | * Process all pending retries queued on the ioctx | ||
819 | * run list. | ||
820 | * Assumes it is operating within the aio issuer's mm | ||
821 | * context. | ||
822 | */ | ||
823 | static inline void aio_run_iocbs(struct kioctx *ctx) | ||
824 | { | ||
825 | int requeue; | ||
826 | |||
827 | spin_lock_irq(&ctx->ctx_lock); | ||
828 | |||
829 | requeue = __aio_run_iocbs(ctx); | ||
830 | spin_unlock_irq(&ctx->ctx_lock); | ||
831 | if (requeue) | ||
832 | aio_queue_work(ctx); | ||
833 | } | ||
834 | |||
835 | /* | ||
836 | * just like aio_run_iocbs, but keeps running them until | ||
837 | * the list stays empty | ||
838 | */ | ||
839 | static inline void aio_run_all_iocbs(struct kioctx *ctx) | ||
840 | { | ||
841 | spin_lock_irq(&ctx->ctx_lock); | ||
842 | while (__aio_run_iocbs(ctx)) | ||
843 | ; | ||
844 | spin_unlock_irq(&ctx->ctx_lock); | ||
845 | } | ||
846 | |||
847 | /* | ||
848 | * aio_kick_handler: | ||
849 | * Work queue handler triggered to process pending | ||
850 | * retries on an ioctx. Takes on the aio issuer's | ||
851 | * mm context before running the iocbs, so that | ||
852 | * copy_xxx_user operates on the issuer's address | ||
853 | * space. | ||
854 | * Run on aiod's context. | ||
855 | */ | ||
856 | static void aio_kick_handler(void *data) | ||
857 | { | ||
858 | struct kioctx *ctx = data; | ||
859 | mm_segment_t oldfs = get_fs(); | ||
860 | int requeue; | ||
861 | |||
862 | set_fs(USER_DS); | ||
863 | use_mm(ctx->mm); | ||
864 | spin_lock_irq(&ctx->ctx_lock); | ||
865 | requeue =__aio_run_iocbs(ctx); | ||
866 | unuse_mm(ctx->mm); | ||
867 | spin_unlock_irq(&ctx->ctx_lock); | ||
868 | set_fs(oldfs); | ||
869 | /* | ||
870 | * we're in a worker thread already, don't use queue_delayed_work, | ||
871 | */ | ||
872 | if (requeue) | ||
873 | queue_work(aio_wq, &ctx->wq); | ||
874 | } | ||
875 | |||
876 | |||
877 | /* | ||
878 | * Called by kick_iocb to queue the kiocb for retry | ||
879 | * and if required activate the aio work queue to process | ||
880 | * it | ||
881 | */ | ||
882 | void queue_kicked_iocb(struct kiocb *iocb) | ||
883 | { | ||
884 | struct kioctx *ctx = iocb->ki_ctx; | ||
885 | unsigned long flags; | ||
886 | int run = 0; | ||
887 | |||
888 | WARN_ON((!list_empty(&iocb->ki_wait.task_list))); | ||
889 | |||
890 | spin_lock_irqsave(&ctx->ctx_lock, flags); | ||
891 | run = __queue_kicked_iocb(iocb); | ||
892 | spin_unlock_irqrestore(&ctx->ctx_lock, flags); | ||
893 | if (run) { | ||
894 | aio_queue_work(ctx); | ||
895 | aio_wakeups++; | ||
896 | } | ||
897 | } | ||
898 | |||
899 | /* | ||
900 | * kick_iocb: | ||
901 | * Called typically from a wait queue callback context | ||
902 | * (aio_wake_function) to trigger a retry of the iocb. | ||
903 | * The retry is usually executed by aio workqueue | ||
904 | * threads (See aio_kick_handler). | ||
905 | */ | ||
906 | void fastcall kick_iocb(struct kiocb *iocb) | ||
907 | { | ||
908 | /* sync iocbs are easy: they can only ever be executing from a | ||
909 | * single context. */ | ||
910 | if (is_sync_kiocb(iocb)) { | ||
911 | kiocbSetKicked(iocb); | ||
912 | wake_up_process(iocb->ki_obj.tsk); | ||
913 | return; | ||
914 | } | ||
915 | |||
916 | iocb->ki_kicked++; | ||
917 | /* If its already kicked we shouldn't queue it again */ | ||
918 | if (!kiocbTryKick(iocb)) { | ||
919 | queue_kicked_iocb(iocb); | ||
920 | } | ||
921 | } | ||
922 | EXPORT_SYMBOL(kick_iocb); | ||
923 | |||
924 | /* aio_complete | ||
925 | * Called when the io request on the given iocb is complete. | ||
926 | * Returns true if this is the last user of the request. The | ||
927 | * only other user of the request can be the cancellation code. | ||
928 | */ | ||
929 | int fastcall aio_complete(struct kiocb *iocb, long res, long res2) | ||
930 | { | ||
931 | struct kioctx *ctx = iocb->ki_ctx; | ||
932 | struct aio_ring_info *info; | ||
933 | struct aio_ring *ring; | ||
934 | struct io_event *event; | ||
935 | unsigned long flags; | ||
936 | unsigned long tail; | ||
937 | int ret; | ||
938 | |||
939 | /* Special case handling for sync iocbs: events go directly | ||
940 | * into the iocb for fast handling. Note that this will not | ||
941 | * work if we allow sync kiocbs to be cancelled. in which | ||
942 | * case the usage count checks will have to move under ctx_lock | ||
943 | * for all cases. | ||
944 | */ | ||
945 | if (is_sync_kiocb(iocb)) { | ||
946 | int ret; | ||
947 | |||
948 | iocb->ki_user_data = res; | ||
949 | if (iocb->ki_users == 1) { | ||
950 | iocb->ki_users = 0; | ||
951 | ret = 1; | ||
952 | } else { | ||
953 | spin_lock_irq(&ctx->ctx_lock); | ||
954 | iocb->ki_users--; | ||
955 | ret = (0 == iocb->ki_users); | ||
956 | spin_unlock_irq(&ctx->ctx_lock); | ||
957 | } | ||
958 | /* sync iocbs put the task here for us */ | ||
959 | wake_up_process(iocb->ki_obj.tsk); | ||
960 | return ret; | ||
961 | } | ||
962 | |||
963 | info = &ctx->ring_info; | ||
964 | |||
965 | /* add a completion event to the ring buffer. | ||
966 | * must be done holding ctx->ctx_lock to prevent | ||
967 | * other code from messing with the tail | ||
968 | * pointer since we might be called from irq | ||
969 | * context. | ||
970 | */ | ||
971 | spin_lock_irqsave(&ctx->ctx_lock, flags); | ||
972 | |||
973 | if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) | ||
974 | list_del_init(&iocb->ki_run_list); | ||
975 | |||
976 | /* | ||
977 | * cancelled requests don't get events, userland was given one | ||
978 | * when the event got cancelled. | ||
979 | */ | ||
980 | if (kiocbIsCancelled(iocb)) | ||
981 | goto put_rq; | ||
982 | |||
983 | ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); | ||
984 | |||
985 | tail = info->tail; | ||
986 | event = aio_ring_event(info, tail, KM_IRQ0); | ||
987 | tail = (tail + 1) % info->nr; | ||
988 | |||
989 | event->obj = (u64)(unsigned long)iocb->ki_obj.user; | ||
990 | event->data = iocb->ki_user_data; | ||
991 | event->res = res; | ||
992 | event->res2 = res2; | ||
993 | |||
994 | dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", | ||
995 | ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, | ||
996 | res, res2); | ||
997 | |||
998 | /* after flagging the request as done, we | ||
999 | * must never even look at it again | ||
1000 | */ | ||
1001 | smp_wmb(); /* make event visible before updating tail */ | ||
1002 | |||
1003 | info->tail = tail; | ||
1004 | ring->tail = tail; | ||
1005 | |||
1006 | put_aio_ring_event(event, KM_IRQ0); | ||
1007 | kunmap_atomic(ring, KM_IRQ1); | ||
1008 | |||
1009 | pr_debug("added to ring %p at [%lu]\n", iocb, tail); | ||
1010 | |||
1011 | pr_debug("%ld retries: %d of %d (kicked %ld, Q %ld run %ld wake %ld)\n", | ||
1012 | iocb->ki_retried, | ||
1013 | iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes, | ||
1014 | iocb->ki_kicked, iocb->ki_queued, aio_run, aio_wakeups); | ||
1015 | put_rq: | ||
1016 | /* everything turned out well, dispose of the aiocb. */ | ||
1017 | ret = __aio_put_req(ctx, iocb); | ||
1018 | |||
1019 | spin_unlock_irqrestore(&ctx->ctx_lock, flags); | ||
1020 | |||
1021 | if (waitqueue_active(&ctx->wait)) | ||
1022 | wake_up(&ctx->wait); | ||
1023 | |||
1024 | if (ret) | ||
1025 | put_ioctx(ctx); | ||
1026 | |||
1027 | return ret; | ||
1028 | } | ||
1029 | |||
1030 | /* aio_read_evt | ||
1031 | * Pull an event off of the ioctx's event ring. Returns the number of | ||
1032 | * events fetched (0 or 1 ;-) | ||
1033 | * FIXME: make this use cmpxchg. | ||
1034 | * TODO: make the ringbuffer user mmap()able (requires FIXME). | ||
1035 | */ | ||
1036 | static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) | ||
1037 | { | ||
1038 | struct aio_ring_info *info = &ioctx->ring_info; | ||
1039 | struct aio_ring *ring; | ||
1040 | unsigned long head; | ||
1041 | int ret = 0; | ||
1042 | |||
1043 | ring = kmap_atomic(info->ring_pages[0], KM_USER0); | ||
1044 | dprintk("in aio_read_evt h%lu t%lu m%lu\n", | ||
1045 | (unsigned long)ring->head, (unsigned long)ring->tail, | ||
1046 | (unsigned long)ring->nr); | ||
1047 | |||
1048 | if (ring->head == ring->tail) | ||
1049 | goto out; | ||
1050 | |||
1051 | spin_lock(&info->ring_lock); | ||
1052 | |||
1053 | head = ring->head % info->nr; | ||
1054 | if (head != ring->tail) { | ||
1055 | struct io_event *evp = aio_ring_event(info, head, KM_USER1); | ||
1056 | *ent = *evp; | ||
1057 | head = (head + 1) % info->nr; | ||
1058 | smp_mb(); /* finish reading the event before updatng the head */ | ||
1059 | ring->head = head; | ||
1060 | ret = 1; | ||
1061 | put_aio_ring_event(evp, KM_USER1); | ||
1062 | } | ||
1063 | spin_unlock(&info->ring_lock); | ||
1064 | |||
1065 | out: | ||
1066 | kunmap_atomic(ring, KM_USER0); | ||
1067 | dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, | ||
1068 | (unsigned long)ring->head, (unsigned long)ring->tail); | ||
1069 | return ret; | ||
1070 | } | ||
1071 | |||
1072 | struct aio_timeout { | ||
1073 | struct timer_list timer; | ||
1074 | int timed_out; | ||
1075 | struct task_struct *p; | ||
1076 | }; | ||
1077 | |||
1078 | static void timeout_func(unsigned long data) | ||
1079 | { | ||
1080 | struct aio_timeout *to = (struct aio_timeout *)data; | ||
1081 | |||
1082 | to->timed_out = 1; | ||
1083 | wake_up_process(to->p); | ||
1084 | } | ||
1085 | |||
1086 | static inline void init_timeout(struct aio_timeout *to) | ||
1087 | { | ||
1088 | init_timer(&to->timer); | ||
1089 | to->timer.data = (unsigned long)to; | ||
1090 | to->timer.function = timeout_func; | ||
1091 | to->timed_out = 0; | ||
1092 | to->p = current; | ||
1093 | } | ||
1094 | |||
1095 | static inline void set_timeout(long start_jiffies, struct aio_timeout *to, | ||
1096 | const struct timespec *ts) | ||
1097 | { | ||
1098 | to->timer.expires = start_jiffies + timespec_to_jiffies(ts); | ||
1099 | if (time_after(to->timer.expires, jiffies)) | ||
1100 | add_timer(&to->timer); | ||
1101 | else | ||
1102 | to->timed_out = 1; | ||
1103 | } | ||
1104 | |||
1105 | static inline void clear_timeout(struct aio_timeout *to) | ||
1106 | { | ||
1107 | del_singleshot_timer_sync(&to->timer); | ||
1108 | } | ||
1109 | |||
1110 | static int read_events(struct kioctx *ctx, | ||
1111 | long min_nr, long nr, | ||
1112 | struct io_event __user *event, | ||
1113 | struct timespec __user *timeout) | ||
1114 | { | ||
1115 | long start_jiffies = jiffies; | ||
1116 | struct task_struct *tsk = current; | ||
1117 | DECLARE_WAITQUEUE(wait, tsk); | ||
1118 | int ret; | ||
1119 | int i = 0; | ||
1120 | struct io_event ent; | ||
1121 | struct aio_timeout to; | ||
1122 | int event_loop = 0; /* testing only */ | ||
1123 | int retry = 0; | ||
1124 | |||
1125 | /* needed to zero any padding within an entry (there shouldn't be | ||
1126 | * any, but C is fun! | ||
1127 | */ | ||
1128 | memset(&ent, 0, sizeof(ent)); | ||
1129 | retry: | ||
1130 | ret = 0; | ||
1131 | while (likely(i < nr)) { | ||
1132 | ret = aio_read_evt(ctx, &ent); | ||
1133 | if (unlikely(ret <= 0)) | ||
1134 | break; | ||
1135 | |||
1136 | dprintk("read event: %Lx %Lx %Lx %Lx\n", | ||
1137 | ent.data, ent.obj, ent.res, ent.res2); | ||
1138 | |||
1139 | /* Could we split the check in two? */ | ||
1140 | ret = -EFAULT; | ||
1141 | if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { | ||
1142 | dprintk("aio: lost an event due to EFAULT.\n"); | ||
1143 | break; | ||
1144 | } | ||
1145 | ret = 0; | ||
1146 | |||
1147 | /* Good, event copied to userland, update counts. */ | ||
1148 | event ++; | ||
1149 | i ++; | ||
1150 | } | ||
1151 | |||
1152 | if (min_nr <= i) | ||
1153 | return i; | ||
1154 | if (ret) | ||
1155 | return ret; | ||
1156 | |||
1157 | /* End fast path */ | ||
1158 | |||
1159 | /* racey check, but it gets redone */ | ||
1160 | if (!retry && unlikely(!list_empty(&ctx->run_list))) { | ||
1161 | retry = 1; | ||
1162 | aio_run_all_iocbs(ctx); | ||
1163 | goto retry; | ||
1164 | } | ||
1165 | |||
1166 | init_timeout(&to); | ||
1167 | if (timeout) { | ||
1168 | struct timespec ts; | ||
1169 | ret = -EFAULT; | ||
1170 | if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) | ||
1171 | goto out; | ||
1172 | |||
1173 | set_timeout(start_jiffies, &to, &ts); | ||
1174 | } | ||
1175 | |||
1176 | while (likely(i < nr)) { | ||
1177 | add_wait_queue_exclusive(&ctx->wait, &wait); | ||
1178 | do { | ||
1179 | set_task_state(tsk, TASK_INTERRUPTIBLE); | ||
1180 | ret = aio_read_evt(ctx, &ent); | ||
1181 | if (ret) | ||
1182 | break; | ||
1183 | if (min_nr <= i) | ||
1184 | break; | ||
1185 | ret = 0; | ||
1186 | if (to.timed_out) /* Only check after read evt */ | ||
1187 | break; | ||
1188 | schedule(); | ||
1189 | event_loop++; | ||
1190 | if (signal_pending(tsk)) { | ||
1191 | ret = -EINTR; | ||
1192 | break; | ||
1193 | } | ||
1194 | /*ret = aio_read_evt(ctx, &ent);*/ | ||
1195 | } while (1) ; | ||
1196 | |||
1197 | set_task_state(tsk, TASK_RUNNING); | ||
1198 | remove_wait_queue(&ctx->wait, &wait); | ||
1199 | |||
1200 | if (unlikely(ret <= 0)) | ||
1201 | break; | ||
1202 | |||
1203 | ret = -EFAULT; | ||
1204 | if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { | ||
1205 | dprintk("aio: lost an event due to EFAULT.\n"); | ||
1206 | break; | ||
1207 | } | ||
1208 | |||
1209 | /* Good, event copied to userland, update counts. */ | ||
1210 | event ++; | ||
1211 | i ++; | ||
1212 | } | ||
1213 | |||
1214 | if (timeout) | ||
1215 | clear_timeout(&to); | ||
1216 | out: | ||
1217 | pr_debug("event loop executed %d times\n", event_loop); | ||
1218 | pr_debug("aio_run %ld\n", aio_run); | ||
1219 | pr_debug("aio_wakeups %ld\n", aio_wakeups); | ||
1220 | return i ? i : ret; | ||
1221 | } | ||
1222 | |||
1223 | /* Take an ioctx and remove it from the list of ioctx's. Protects | ||
1224 | * against races with itself via ->dead. | ||
1225 | */ | ||
1226 | static void io_destroy(struct kioctx *ioctx) | ||
1227 | { | ||
1228 | struct mm_struct *mm = current->mm; | ||
1229 | struct kioctx **tmp; | ||
1230 | int was_dead; | ||
1231 | |||
1232 | /* delete the entry from the list is someone else hasn't already */ | ||
1233 | write_lock(&mm->ioctx_list_lock); | ||
1234 | was_dead = ioctx->dead; | ||
1235 | ioctx->dead = 1; | ||
1236 | for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx; | ||
1237 | tmp = &(*tmp)->next) | ||
1238 | ; | ||
1239 | if (*tmp) | ||
1240 | *tmp = ioctx->next; | ||
1241 | write_unlock(&mm->ioctx_list_lock); | ||
1242 | |||
1243 | dprintk("aio_release(%p)\n", ioctx); | ||
1244 | if (likely(!was_dead)) | ||
1245 | put_ioctx(ioctx); /* twice for the list */ | ||
1246 | |||
1247 | aio_cancel_all(ioctx); | ||
1248 | wait_for_all_aios(ioctx); | ||
1249 | put_ioctx(ioctx); /* once for the lookup */ | ||
1250 | } | ||
1251 | |||
1252 | /* sys_io_setup: | ||
1253 | * Create an aio_context capable of receiving at least nr_events. | ||
1254 | * ctxp must not point to an aio_context that already exists, and | ||
1255 | * must be initialized to 0 prior to the call. On successful | ||
1256 | * creation of the aio_context, *ctxp is filled in with the resulting | ||
1257 | * handle. May fail with -EINVAL if *ctxp is not initialized, | ||
1258 | * if the specified nr_events exceeds internal limits. May fail | ||
1259 | * with -EAGAIN if the specified nr_events exceeds the user's limit | ||
1260 | * of available events. May fail with -ENOMEM if insufficient kernel | ||
1261 | * resources are available. May fail with -EFAULT if an invalid | ||
1262 | * pointer is passed for ctxp. Will fail with -ENOSYS if not | ||
1263 | * implemented. | ||
1264 | */ | ||
1265 | asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) | ||
1266 | { | ||
1267 | struct kioctx *ioctx = NULL; | ||
1268 | unsigned long ctx; | ||
1269 | long ret; | ||
1270 | |||
1271 | ret = get_user(ctx, ctxp); | ||
1272 | if (unlikely(ret)) | ||
1273 | goto out; | ||
1274 | |||
1275 | ret = -EINVAL; | ||
1276 | if (unlikely(ctx || (int)nr_events <= 0)) { | ||
1277 | pr_debug("EINVAL: io_setup: ctx or nr_events > max\n"); | ||
1278 | goto out; | ||
1279 | } | ||
1280 | |||
1281 | ioctx = ioctx_alloc(nr_events); | ||
1282 | ret = PTR_ERR(ioctx); | ||
1283 | if (!IS_ERR(ioctx)) { | ||
1284 | ret = put_user(ioctx->user_id, ctxp); | ||
1285 | if (!ret) | ||
1286 | return 0; | ||
1287 | |||
1288 | get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ | ||
1289 | io_destroy(ioctx); | ||
1290 | } | ||
1291 | |||
1292 | out: | ||
1293 | return ret; | ||
1294 | } | ||
1295 | |||
1296 | /* sys_io_destroy: | ||
1297 | * Destroy the aio_context specified. May cancel any outstanding | ||
1298 | * AIOs and block on completion. Will fail with -ENOSYS if not | ||
1299 | * implemented. May fail with -EFAULT if the context pointed to | ||
1300 | * is invalid. | ||
1301 | */ | ||
1302 | asmlinkage long sys_io_destroy(aio_context_t ctx) | ||
1303 | { | ||
1304 | struct kioctx *ioctx = lookup_ioctx(ctx); | ||
1305 | if (likely(NULL != ioctx)) { | ||
1306 | io_destroy(ioctx); | ||
1307 | return 0; | ||
1308 | } | ||
1309 | pr_debug("EINVAL: io_destroy: invalid context id\n"); | ||
1310 | return -EINVAL; | ||
1311 | } | ||
1312 | |||
1313 | /* | ||
1314 | * Default retry method for aio_read (also used for first time submit) | ||
1315 | * Responsible for updating iocb state as retries progress | ||
1316 | */ | ||
1317 | static ssize_t aio_pread(struct kiocb *iocb) | ||
1318 | { | ||
1319 | struct file *file = iocb->ki_filp; | ||
1320 | struct address_space *mapping = file->f_mapping; | ||
1321 | struct inode *inode = mapping->host; | ||
1322 | ssize_t ret = 0; | ||
1323 | |||
1324 | ret = file->f_op->aio_read(iocb, iocb->ki_buf, | ||
1325 | iocb->ki_left, iocb->ki_pos); | ||
1326 | |||
1327 | /* | ||
1328 | * Can't just depend on iocb->ki_left to determine | ||
1329 | * whether we are done. This may have been a short read. | ||
1330 | */ | ||
1331 | if (ret > 0) { | ||
1332 | iocb->ki_buf += ret; | ||
1333 | iocb->ki_left -= ret; | ||
1334 | /* | ||
1335 | * For pipes and sockets we return once we have | ||
1336 | * some data; for regular files we retry till we | ||
1337 | * complete the entire read or find that we can't | ||
1338 | * read any more data (e.g short reads). | ||
1339 | */ | ||
1340 | if (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)) | ||
1341 | ret = -EIOCBRETRY; | ||
1342 | } | ||
1343 | |||
1344 | /* This means we must have transferred all that we could */ | ||
1345 | /* No need to retry anymore */ | ||
1346 | if ((ret == 0) || (iocb->ki_left == 0)) | ||
1347 | ret = iocb->ki_nbytes - iocb->ki_left; | ||
1348 | |||
1349 | return ret; | ||
1350 | } | ||
1351 | |||
1352 | /* | ||
1353 | * Default retry method for aio_write (also used for first time submit) | ||
1354 | * Responsible for updating iocb state as retries progress | ||
1355 | */ | ||
1356 | static ssize_t aio_pwrite(struct kiocb *iocb) | ||
1357 | { | ||
1358 | struct file *file = iocb->ki_filp; | ||
1359 | ssize_t ret = 0; | ||
1360 | |||
1361 | ret = file->f_op->aio_write(iocb, iocb->ki_buf, | ||
1362 | iocb->ki_left, iocb->ki_pos); | ||
1363 | |||
1364 | if (ret > 0) { | ||
1365 | iocb->ki_buf += ret; | ||
1366 | iocb->ki_left -= ret; | ||
1367 | |||
1368 | ret = -EIOCBRETRY; | ||
1369 | } | ||
1370 | |||
1371 | /* This means we must have transferred all that we could */ | ||
1372 | /* No need to retry anymore */ | ||
1373 | if ((ret == 0) || (iocb->ki_left == 0)) | ||
1374 | ret = iocb->ki_nbytes - iocb->ki_left; | ||
1375 | |||
1376 | return ret; | ||
1377 | } | ||
1378 | |||
1379 | static ssize_t aio_fdsync(struct kiocb *iocb) | ||
1380 | { | ||
1381 | struct file *file = iocb->ki_filp; | ||
1382 | ssize_t ret = -EINVAL; | ||
1383 | |||
1384 | if (file->f_op->aio_fsync) | ||
1385 | ret = file->f_op->aio_fsync(iocb, 1); | ||
1386 | return ret; | ||
1387 | } | ||
1388 | |||
1389 | static ssize_t aio_fsync(struct kiocb *iocb) | ||
1390 | { | ||
1391 | struct file *file = iocb->ki_filp; | ||
1392 | ssize_t ret = -EINVAL; | ||
1393 | |||
1394 | if (file->f_op->aio_fsync) | ||
1395 | ret = file->f_op->aio_fsync(iocb, 0); | ||
1396 | return ret; | ||
1397 | } | ||
1398 | |||
1399 | /* | ||
1400 | * aio_setup_iocb: | ||
1401 | * Performs the initial checks and aio retry method | ||
1402 | * setup for the kiocb at the time of io submission. | ||
1403 | */ | ||
1404 | ssize_t aio_setup_iocb(struct kiocb *kiocb) | ||
1405 | { | ||
1406 | struct file *file = kiocb->ki_filp; | ||
1407 | ssize_t ret = 0; | ||
1408 | |||
1409 | switch (kiocb->ki_opcode) { | ||
1410 | case IOCB_CMD_PREAD: | ||
1411 | ret = -EBADF; | ||
1412 | if (unlikely(!(file->f_mode & FMODE_READ))) | ||
1413 | break; | ||
1414 | ret = -EFAULT; | ||
1415 | if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, | ||
1416 | kiocb->ki_left))) | ||
1417 | break; | ||
1418 | ret = -EINVAL; | ||
1419 | if (file->f_op->aio_read) | ||
1420 | kiocb->ki_retry = aio_pread; | ||
1421 | break; | ||
1422 | case IOCB_CMD_PWRITE: | ||
1423 | ret = -EBADF; | ||
1424 | if (unlikely(!(file->f_mode & FMODE_WRITE))) | ||
1425 | break; | ||
1426 | ret = -EFAULT; | ||
1427 | if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, | ||
1428 | kiocb->ki_left))) | ||
1429 | break; | ||
1430 | ret = -EINVAL; | ||
1431 | if (file->f_op->aio_write) | ||
1432 | kiocb->ki_retry = aio_pwrite; | ||
1433 | break; | ||
1434 | case IOCB_CMD_FDSYNC: | ||
1435 | ret = -EINVAL; | ||
1436 | if (file->f_op->aio_fsync) | ||
1437 | kiocb->ki_retry = aio_fdsync; | ||
1438 | break; | ||
1439 | case IOCB_CMD_FSYNC: | ||
1440 | ret = -EINVAL; | ||
1441 | if (file->f_op->aio_fsync) | ||
1442 | kiocb->ki_retry = aio_fsync; | ||
1443 | break; | ||
1444 | default: | ||
1445 | dprintk("EINVAL: io_submit: no operation provided\n"); | ||
1446 | ret = -EINVAL; | ||
1447 | } | ||
1448 | |||
1449 | if (!kiocb->ki_retry) | ||
1450 | return ret; | ||
1451 | |||
1452 | return 0; | ||
1453 | } | ||
1454 | |||
1455 | /* | ||
1456 | * aio_wake_function: | ||
1457 | * wait queue callback function for aio notification, | ||
1458 | * Simply triggers a retry of the operation via kick_iocb. | ||
1459 | * | ||
1460 | * This callback is specified in the wait queue entry in | ||
1461 | * a kiocb (current->io_wait points to this wait queue | ||
1462 | * entry when an aio operation executes; it is used | ||
1463 | * instead of a synchronous wait when an i/o blocking | ||
1464 | * condition is encountered during aio). | ||
1465 | * | ||
1466 | * Note: | ||
1467 | * This routine is executed with the wait queue lock held. | ||
1468 | * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests | ||
1469 | * the ioctx lock inside the wait queue lock. This is safe | ||
1470 | * because this callback isn't used for wait queues which | ||
1471 | * are nested inside ioctx lock (i.e. ctx->wait) | ||
1472 | */ | ||
1473 | int aio_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) | ||
1474 | { | ||
1475 | struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); | ||
1476 | |||
1477 | list_del_init(&wait->task_list); | ||
1478 | kick_iocb(iocb); | ||
1479 | return 1; | ||
1480 | } | ||
1481 | |||
1482 | int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, | ||
1483 | struct iocb *iocb) | ||
1484 | { | ||
1485 | struct kiocb *req; | ||
1486 | struct file *file; | ||
1487 | ssize_t ret; | ||
1488 | |||
1489 | /* enforce forwards compatibility on users */ | ||
1490 | if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 || | ||
1491 | iocb->aio_reserved3)) { | ||
1492 | pr_debug("EINVAL: io_submit: reserve field set\n"); | ||
1493 | return -EINVAL; | ||
1494 | } | ||
1495 | |||
1496 | /* prevent overflows */ | ||
1497 | if (unlikely( | ||
1498 | (iocb->aio_buf != (unsigned long)iocb->aio_buf) || | ||
1499 | (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || | ||
1500 | ((ssize_t)iocb->aio_nbytes < 0) | ||
1501 | )) { | ||
1502 | pr_debug("EINVAL: io_submit: overflow check\n"); | ||
1503 | return -EINVAL; | ||
1504 | } | ||
1505 | |||
1506 | file = fget(iocb->aio_fildes); | ||
1507 | if (unlikely(!file)) | ||
1508 | return -EBADF; | ||
1509 | |||
1510 | req = aio_get_req(ctx); /* returns with 2 references to req */ | ||
1511 | if (unlikely(!req)) { | ||
1512 | fput(file); | ||
1513 | return -EAGAIN; | ||
1514 | } | ||
1515 | |||
1516 | req->ki_filp = file; | ||
1517 | iocb->aio_key = req->ki_key; | ||
1518 | ret = put_user(iocb->aio_key, &user_iocb->aio_key); | ||
1519 | if (unlikely(ret)) { | ||
1520 | dprintk("EFAULT: aio_key\n"); | ||
1521 | goto out_put_req; | ||
1522 | } | ||
1523 | |||
1524 | req->ki_obj.user = user_iocb; | ||
1525 | req->ki_user_data = iocb->aio_data; | ||
1526 | req->ki_pos = iocb->aio_offset; | ||
1527 | |||
1528 | req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; | ||
1529 | req->ki_left = req->ki_nbytes = iocb->aio_nbytes; | ||
1530 | req->ki_opcode = iocb->aio_lio_opcode; | ||
1531 | init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); | ||
1532 | INIT_LIST_HEAD(&req->ki_wait.task_list); | ||
1533 | req->ki_run_list.next = req->ki_run_list.prev = NULL; | ||
1534 | req->ki_retry = NULL; | ||
1535 | req->ki_retried = 0; | ||
1536 | req->ki_kicked = 0; | ||
1537 | req->ki_queued = 0; | ||
1538 | aio_run = 0; | ||
1539 | aio_wakeups = 0; | ||
1540 | |||
1541 | ret = aio_setup_iocb(req); | ||
1542 | |||
1543 | if (ret) | ||
1544 | goto out_put_req; | ||
1545 | |||
1546 | spin_lock_irq(&ctx->ctx_lock); | ||
1547 | list_add_tail(&req->ki_run_list, &ctx->run_list); | ||
1548 | /* drain the run list */ | ||
1549 | while (__aio_run_iocbs(ctx)) | ||
1550 | ; | ||
1551 | spin_unlock_irq(&ctx->ctx_lock); | ||
1552 | aio_put_req(req); /* drop extra ref to req */ | ||
1553 | return 0; | ||
1554 | |||
1555 | out_put_req: | ||
1556 | aio_put_req(req); /* drop extra ref to req */ | ||
1557 | aio_put_req(req); /* drop i/o ref to req */ | ||
1558 | return ret; | ||
1559 | } | ||
1560 | |||
1561 | /* sys_io_submit: | ||
1562 | * Queue the nr iocbs pointed to by iocbpp for processing. Returns | ||
1563 | * the number of iocbs queued. May return -EINVAL if the aio_context | ||
1564 | * specified by ctx_id is invalid, if nr is < 0, if the iocb at | ||
1565 | * *iocbpp[0] is not properly initialized, if the operation specified | ||
1566 | * is invalid for the file descriptor in the iocb. May fail with | ||
1567 | * -EFAULT if any of the data structures point to invalid data. May | ||
1568 | * fail with -EBADF if the file descriptor specified in the first | ||
1569 | * iocb is invalid. May fail with -EAGAIN if insufficient resources | ||
1570 | * are available to queue any iocbs. Will return 0 if nr is 0. Will | ||
1571 | * fail with -ENOSYS if not implemented. | ||
1572 | */ | ||
1573 | asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, | ||
1574 | struct iocb __user * __user *iocbpp) | ||
1575 | { | ||
1576 | struct kioctx *ctx; | ||
1577 | long ret = 0; | ||
1578 | int i; | ||
1579 | |||
1580 | if (unlikely(nr < 0)) | ||
1581 | return -EINVAL; | ||
1582 | |||
1583 | if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) | ||
1584 | return -EFAULT; | ||
1585 | |||
1586 | ctx = lookup_ioctx(ctx_id); | ||
1587 | if (unlikely(!ctx)) { | ||
1588 | pr_debug("EINVAL: io_submit: invalid context id\n"); | ||
1589 | return -EINVAL; | ||
1590 | } | ||
1591 | |||
1592 | /* | ||
1593 | * AKPM: should this return a partial result if some of the IOs were | ||
1594 | * successfully submitted? | ||
1595 | */ | ||
1596 | for (i=0; i<nr; i++) { | ||
1597 | struct iocb __user *user_iocb; | ||
1598 | struct iocb tmp; | ||
1599 | |||
1600 | if (unlikely(__get_user(user_iocb, iocbpp + i))) { | ||
1601 | ret = -EFAULT; | ||
1602 | break; | ||
1603 | } | ||
1604 | |||
1605 | if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { | ||
1606 | ret = -EFAULT; | ||
1607 | break; | ||
1608 | } | ||
1609 | |||
1610 | ret = io_submit_one(ctx, user_iocb, &tmp); | ||
1611 | if (ret) | ||
1612 | break; | ||
1613 | } | ||
1614 | |||
1615 | put_ioctx(ctx); | ||
1616 | return i ? i : ret; | ||
1617 | } | ||
1618 | |||
1619 | /* lookup_kiocb | ||
1620 | * Finds a given iocb for cancellation. | ||
1621 | * MUST be called with ctx->ctx_lock held. | ||
1622 | */ | ||
1623 | struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key) | ||
1624 | { | ||
1625 | struct list_head *pos; | ||
1626 | /* TODO: use a hash or array, this sucks. */ | ||
1627 | list_for_each(pos, &ctx->active_reqs) { | ||
1628 | struct kiocb *kiocb = list_kiocb(pos); | ||
1629 | if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) | ||
1630 | return kiocb; | ||
1631 | } | ||
1632 | return NULL; | ||
1633 | } | ||
1634 | |||
1635 | /* sys_io_cancel: | ||
1636 | * Attempts to cancel an iocb previously passed to io_submit. If | ||
1637 | * the operation is successfully cancelled, the resulting event is | ||
1638 | * copied into the memory pointed to by result without being placed | ||
1639 | * into the completion queue and 0 is returned. May fail with | ||
1640 | * -EFAULT if any of the data structures pointed to are invalid. | ||
1641 | * May fail with -EINVAL if aio_context specified by ctx_id is | ||
1642 | * invalid. May fail with -EAGAIN if the iocb specified was not | ||
1643 | * cancelled. Will fail with -ENOSYS if not implemented. | ||
1644 | */ | ||
1645 | asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, | ||
1646 | struct io_event __user *result) | ||
1647 | { | ||
1648 | int (*cancel)(struct kiocb *iocb, struct io_event *res); | ||
1649 | struct kioctx *ctx; | ||
1650 | struct kiocb *kiocb; | ||
1651 | u32 key; | ||
1652 | int ret; | ||
1653 | |||
1654 | ret = get_user(key, &iocb->aio_key); | ||
1655 | if (unlikely(ret)) | ||
1656 | return -EFAULT; | ||
1657 | |||
1658 | ctx = lookup_ioctx(ctx_id); | ||
1659 | if (unlikely(!ctx)) | ||
1660 | return -EINVAL; | ||
1661 | |||
1662 | spin_lock_irq(&ctx->ctx_lock); | ||
1663 | ret = -EAGAIN; | ||
1664 | kiocb = lookup_kiocb(ctx, iocb, key); | ||
1665 | if (kiocb && kiocb->ki_cancel) { | ||
1666 | cancel = kiocb->ki_cancel; | ||
1667 | kiocb->ki_users ++; | ||
1668 | kiocbSetCancelled(kiocb); | ||
1669 | } else | ||
1670 | cancel = NULL; | ||
1671 | spin_unlock_irq(&ctx->ctx_lock); | ||
1672 | |||
1673 | if (NULL != cancel) { | ||
1674 | struct io_event tmp; | ||
1675 | pr_debug("calling cancel\n"); | ||
1676 | memset(&tmp, 0, sizeof(tmp)); | ||
1677 | tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; | ||
1678 | tmp.data = kiocb->ki_user_data; | ||
1679 | ret = cancel(kiocb, &tmp); | ||
1680 | if (!ret) { | ||
1681 | /* Cancellation succeeded -- copy the result | ||
1682 | * into the user's buffer. | ||
1683 | */ | ||
1684 | if (copy_to_user(result, &tmp, sizeof(tmp))) | ||
1685 | ret = -EFAULT; | ||
1686 | } | ||
1687 | } else | ||
1688 | printk(KERN_DEBUG "iocb has no cancel operation\n"); | ||
1689 | |||
1690 | put_ioctx(ctx); | ||
1691 | |||
1692 | return ret; | ||
1693 | } | ||
1694 | |||
1695 | /* io_getevents: | ||
1696 | * Attempts to read at least min_nr events and up to nr events from | ||
1697 | * the completion queue for the aio_context specified by ctx_id. May | ||
1698 | * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, | ||
1699 | * if nr is out of range, if when is out of range. May fail with | ||
1700 | * -EFAULT if any of the memory specified to is invalid. May return | ||
1701 | * 0 or < min_nr if no events are available and the timeout specified | ||
1702 | * by when has elapsed, where when == NULL specifies an infinite | ||
1703 | * timeout. Note that the timeout pointed to by when is relative and | ||
1704 | * will be updated if not NULL and the operation blocks. Will fail | ||
1705 | * with -ENOSYS if not implemented. | ||
1706 | */ | ||
1707 | asmlinkage long sys_io_getevents(aio_context_t ctx_id, | ||
1708 | long min_nr, | ||
1709 | long nr, | ||
1710 | struct io_event __user *events, | ||
1711 | struct timespec __user *timeout) | ||
1712 | { | ||
1713 | struct kioctx *ioctx = lookup_ioctx(ctx_id); | ||
1714 | long ret = -EINVAL; | ||
1715 | |||
1716 | if (likely(ioctx)) { | ||
1717 | if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) | ||
1718 | ret = read_events(ioctx, min_nr, nr, events, timeout); | ||
1719 | put_ioctx(ioctx); | ||
1720 | } | ||
1721 | |||
1722 | return ret; | ||
1723 | } | ||
1724 | |||
1725 | __initcall(aio_setup); | ||
1726 | |||
1727 | EXPORT_SYMBOL(aio_complete); | ||
1728 | EXPORT_SYMBOL(aio_put_req); | ||
1729 | EXPORT_SYMBOL(wait_on_sync_kiocb); | ||