diff options
author | Jens Axboe <axboe@suse.de> | 2005-11-04 02:43:35 -0500 |
---|---|---|
committer | Jens Axboe <axboe@suse.de> | 2005-11-04 02:43:35 -0500 |
commit | 3a65dfe8c088143c7155cfd36a72f4b0ad2fc4b2 (patch) | |
tree | db930c9f71f94d3ee674f65e38c38e95ca97227e /drivers | |
parent | 0f3278d14f0255e4cd9e07ccefc33ff12d8bb59c (diff) |
[BLOCK] Move all core block layer code to new block/ directory
drivers/block/ is right now a mix of core and driver parts. Lets move
the core parts to a new top level directory. Al will move the fs/
related block parts to block/ next.
Signed-off-by: Jens Axboe <axboe@suse.de>
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/block/Kconfig | 12 | ||||
-rw-r--r-- | drivers/block/Kconfig.iosched | 69 | ||||
-rw-r--r-- | drivers/block/Makefile | 14 | ||||
-rw-r--r-- | drivers/block/as-iosched.c | 1985 | ||||
-rw-r--r-- | drivers/block/cfq-iosched.c | 2428 | ||||
-rw-r--r-- | drivers/block/deadline-iosched.c | 878 | ||||
-rw-r--r-- | drivers/block/elevator.c | 802 | ||||
-rw-r--r-- | drivers/block/genhd.c | 726 | ||||
-rw-r--r-- | drivers/block/ioctl.c | 275 | ||||
-rw-r--r-- | drivers/block/ll_rw_blk.c | 3613 | ||||
-rw-r--r-- | drivers/block/noop-iosched.c | 46 | ||||
-rw-r--r-- | drivers/block/scsi_ioctl.c | 589 |
12 files changed, 0 insertions, 11437 deletions
diff --git a/drivers/block/Kconfig b/drivers/block/Kconfig index 51b0af1cebee..7b1cd93892be 100644 --- a/drivers/block/Kconfig +++ b/drivers/block/Kconfig | |||
@@ -409,16 +409,6 @@ config BLK_DEV_INITRD | |||
409 | for details. | 409 | for details. |
410 | 410 | ||
411 | 411 | ||
412 | #XXX - it makes sense to enable this only for 32-bit subarch's, not for x86_64 | ||
413 | #for instance. | ||
414 | config LBD | ||
415 | bool "Support for Large Block Devices" | ||
416 | depends on X86 || (MIPS && 32BIT) || PPC32 || ARCH_S390_31 || SUPERH || UML | ||
417 | help | ||
418 | Say Y here if you want to attach large (bigger than 2TB) discs to | ||
419 | your machine, or if you want to have a raid or loopback device | ||
420 | bigger than 2TB. Otherwise say N. | ||
421 | |||
422 | config CDROM_PKTCDVD | 412 | config CDROM_PKTCDVD |
423 | tristate "Packet writing on CD/DVD media" | 413 | tristate "Packet writing on CD/DVD media" |
424 | depends on !UML | 414 | depends on !UML |
@@ -455,8 +445,6 @@ config CDROM_PKTCDVD_WCACHE | |||
455 | 445 | ||
456 | source "drivers/s390/block/Kconfig" | 446 | source "drivers/s390/block/Kconfig" |
457 | 447 | ||
458 | source "drivers/block/Kconfig.iosched" | ||
459 | |||
460 | config ATA_OVER_ETH | 448 | config ATA_OVER_ETH |
461 | tristate "ATA over Ethernet support" | 449 | tristate "ATA over Ethernet support" |
462 | depends on NET | 450 | depends on NET |
diff --git a/drivers/block/Kconfig.iosched b/drivers/block/Kconfig.iosched deleted file mode 100644 index 5b90d2fa63b8..000000000000 --- a/drivers/block/Kconfig.iosched +++ /dev/null | |||
@@ -1,69 +0,0 @@ | |||
1 | |||
2 | menu "IO Schedulers" | ||
3 | |||
4 | config IOSCHED_NOOP | ||
5 | bool | ||
6 | default y | ||
7 | ---help--- | ||
8 | The no-op I/O scheduler is a minimal scheduler that does basic merging | ||
9 | and sorting. Its main uses include non-disk based block devices like | ||
10 | memory devices, and specialised software or hardware environments | ||
11 | that do their own scheduling and require only minimal assistance from | ||
12 | the kernel. | ||
13 | |||
14 | config IOSCHED_AS | ||
15 | tristate "Anticipatory I/O scheduler" | ||
16 | default y | ||
17 | ---help--- | ||
18 | The anticipatory I/O scheduler is the default disk scheduler. It is | ||
19 | generally a good choice for most environments, but is quite large and | ||
20 | complex when compared to the deadline I/O scheduler, it can also be | ||
21 | slower in some cases especially some database loads. | ||
22 | |||
23 | config IOSCHED_DEADLINE | ||
24 | tristate "Deadline I/O scheduler" | ||
25 | default y | ||
26 | ---help--- | ||
27 | The deadline I/O scheduler is simple and compact, and is often as | ||
28 | good as the anticipatory I/O scheduler, and in some database | ||
29 | workloads, better. In the case of a single process performing I/O to | ||
30 | a disk at any one time, its behaviour is almost identical to the | ||
31 | anticipatory I/O scheduler and so is a good choice. | ||
32 | |||
33 | config IOSCHED_CFQ | ||
34 | tristate "CFQ I/O scheduler" | ||
35 | default y | ||
36 | ---help--- | ||
37 | The CFQ I/O scheduler tries to distribute bandwidth equally | ||
38 | among all processes in the system. It should provide a fair | ||
39 | working environment, suitable for desktop systems. | ||
40 | |||
41 | choice | ||
42 | prompt "Default I/O scheduler" | ||
43 | default DEFAULT_AS | ||
44 | help | ||
45 | Select the I/O scheduler which will be used by default for all | ||
46 | block devices. | ||
47 | |||
48 | config DEFAULT_AS | ||
49 | bool "Anticipatory" if IOSCHED_AS | ||
50 | |||
51 | config DEFAULT_DEADLINE | ||
52 | bool "Deadline" if IOSCHED_DEADLINE | ||
53 | |||
54 | config DEFAULT_CFQ | ||
55 | bool "CFQ" if IOSCHED_CFQ | ||
56 | |||
57 | config DEFAULT_NOOP | ||
58 | bool "No-op" | ||
59 | |||
60 | endchoice | ||
61 | |||
62 | config DEFAULT_IOSCHED | ||
63 | string | ||
64 | default "anticipatory" if DEFAULT_AS | ||
65 | default "deadline" if DEFAULT_DEADLINE | ||
66 | default "cfq" if DEFAULT_CFQ | ||
67 | default "noop" if DEFAULT_NOOP | ||
68 | |||
69 | endmenu | ||
diff --git a/drivers/block/Makefile b/drivers/block/Makefile index 1cf09a1c065b..3ec1f8df87b1 100644 --- a/drivers/block/Makefile +++ b/drivers/block/Makefile | |||
@@ -4,21 +4,7 @@ | |||
4 | # 12 June 2000, Christoph Hellwig <hch@infradead.org> | 4 | # 12 June 2000, Christoph Hellwig <hch@infradead.org> |
5 | # Rewritten to use lists instead of if-statements. | 5 | # Rewritten to use lists instead of if-statements. |
6 | # | 6 | # |
7 | # Note : at this point, these files are compiled on all systems. | ||
8 | # In the future, some of these should be built conditionally. | ||
9 | # | ||
10 | |||
11 | # | ||
12 | # NOTE that ll_rw_blk.c must come early in linkage order - it starts the | ||
13 | # kblockd threads | ||
14 | # | ||
15 | |||
16 | obj-y := elevator.o ll_rw_blk.o ioctl.o genhd.o scsi_ioctl.o | ||
17 | 7 | ||
18 | obj-$(CONFIG_IOSCHED_NOOP) += noop-iosched.o | ||
19 | obj-$(CONFIG_IOSCHED_AS) += as-iosched.o | ||
20 | obj-$(CONFIG_IOSCHED_DEADLINE) += deadline-iosched.o | ||
21 | obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o | ||
22 | obj-$(CONFIG_MAC_FLOPPY) += swim3.o | 8 | obj-$(CONFIG_MAC_FLOPPY) += swim3.o |
23 | obj-$(CONFIG_BLK_DEV_FD) += floppy.o | 9 | obj-$(CONFIG_BLK_DEV_FD) += floppy.o |
24 | obj-$(CONFIG_BLK_DEV_FD98) += floppy98.o | 10 | obj-$(CONFIG_BLK_DEV_FD98) += floppy98.o |
diff --git a/drivers/block/as-iosched.c b/drivers/block/as-iosched.c deleted file mode 100644 index c6744ff38294..000000000000 --- a/drivers/block/as-iosched.c +++ /dev/null | |||
@@ -1,1985 +0,0 @@ | |||
1 | /* | ||
2 | * linux/drivers/block/as-iosched.c | ||
3 | * | ||
4 | * Anticipatory & deadline i/o scheduler. | ||
5 | * | ||
6 | * Copyright (C) 2002 Jens Axboe <axboe@suse.de> | ||
7 | * Nick Piggin <piggin@cyberone.com.au> | ||
8 | * | ||
9 | */ | ||
10 | #include <linux/kernel.h> | ||
11 | #include <linux/fs.h> | ||
12 | #include <linux/blkdev.h> | ||
13 | #include <linux/elevator.h> | ||
14 | #include <linux/bio.h> | ||
15 | #include <linux/config.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/slab.h> | ||
18 | #include <linux/init.h> | ||
19 | #include <linux/compiler.h> | ||
20 | #include <linux/hash.h> | ||
21 | #include <linux/rbtree.h> | ||
22 | #include <linux/interrupt.h> | ||
23 | |||
24 | #define REQ_SYNC 1 | ||
25 | #define REQ_ASYNC 0 | ||
26 | |||
27 | /* | ||
28 | * See Documentation/block/as-iosched.txt | ||
29 | */ | ||
30 | |||
31 | /* | ||
32 | * max time before a read is submitted. | ||
33 | */ | ||
34 | #define default_read_expire (HZ / 8) | ||
35 | |||
36 | /* | ||
37 | * ditto for writes, these limits are not hard, even | ||
38 | * if the disk is capable of satisfying them. | ||
39 | */ | ||
40 | #define default_write_expire (HZ / 4) | ||
41 | |||
42 | /* | ||
43 | * read_batch_expire describes how long we will allow a stream of reads to | ||
44 | * persist before looking to see whether it is time to switch over to writes. | ||
45 | */ | ||
46 | #define default_read_batch_expire (HZ / 2) | ||
47 | |||
48 | /* | ||
49 | * write_batch_expire describes how long we want a stream of writes to run for. | ||
50 | * This is not a hard limit, but a target we set for the auto-tuning thingy. | ||
51 | * See, the problem is: we can send a lot of writes to disk cache / TCQ in | ||
52 | * a short amount of time... | ||
53 | */ | ||
54 | #define default_write_batch_expire (HZ / 8) | ||
55 | |||
56 | /* | ||
57 | * max time we may wait to anticipate a read (default around 6ms) | ||
58 | */ | ||
59 | #define default_antic_expire ((HZ / 150) ? HZ / 150 : 1) | ||
60 | |||
61 | /* | ||
62 | * Keep track of up to 20ms thinktimes. We can go as big as we like here, | ||
63 | * however huge values tend to interfere and not decay fast enough. A program | ||
64 | * might be in a non-io phase of operation. Waiting on user input for example, | ||
65 | * or doing a lengthy computation. A small penalty can be justified there, and | ||
66 | * will still catch out those processes that constantly have large thinktimes. | ||
67 | */ | ||
68 | #define MAX_THINKTIME (HZ/50UL) | ||
69 | |||
70 | /* Bits in as_io_context.state */ | ||
71 | enum as_io_states { | ||
72 | AS_TASK_RUNNING=0, /* Process has not exitted */ | ||
73 | AS_TASK_IOSTARTED, /* Process has started some IO */ | ||
74 | AS_TASK_IORUNNING, /* Process has completed some IO */ | ||
75 | }; | ||
76 | |||
77 | enum anticipation_status { | ||
78 | ANTIC_OFF=0, /* Not anticipating (normal operation) */ | ||
79 | ANTIC_WAIT_REQ, /* The last read has not yet completed */ | ||
80 | ANTIC_WAIT_NEXT, /* Currently anticipating a request vs | ||
81 | last read (which has completed) */ | ||
82 | ANTIC_FINISHED, /* Anticipating but have found a candidate | ||
83 | * or timed out */ | ||
84 | }; | ||
85 | |||
86 | struct as_data { | ||
87 | /* | ||
88 | * run time data | ||
89 | */ | ||
90 | |||
91 | struct request_queue *q; /* the "owner" queue */ | ||
92 | |||
93 | /* | ||
94 | * requests (as_rq s) are present on both sort_list and fifo_list | ||
95 | */ | ||
96 | struct rb_root sort_list[2]; | ||
97 | struct list_head fifo_list[2]; | ||
98 | |||
99 | struct as_rq *next_arq[2]; /* next in sort order */ | ||
100 | sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */ | ||
101 | struct list_head *hash; /* request hash */ | ||
102 | |||
103 | unsigned long exit_prob; /* probability a task will exit while | ||
104 | being waited on */ | ||
105 | unsigned long new_ttime_total; /* mean thinktime on new proc */ | ||
106 | unsigned long new_ttime_mean; | ||
107 | u64 new_seek_total; /* mean seek on new proc */ | ||
108 | sector_t new_seek_mean; | ||
109 | |||
110 | unsigned long current_batch_expires; | ||
111 | unsigned long last_check_fifo[2]; | ||
112 | int changed_batch; /* 1: waiting for old batch to end */ | ||
113 | int new_batch; /* 1: waiting on first read complete */ | ||
114 | int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */ | ||
115 | int write_batch_count; /* max # of reqs in a write batch */ | ||
116 | int current_write_count; /* how many requests left this batch */ | ||
117 | int write_batch_idled; /* has the write batch gone idle? */ | ||
118 | mempool_t *arq_pool; | ||
119 | |||
120 | enum anticipation_status antic_status; | ||
121 | unsigned long antic_start; /* jiffies: when it started */ | ||
122 | struct timer_list antic_timer; /* anticipatory scheduling timer */ | ||
123 | struct work_struct antic_work; /* Deferred unplugging */ | ||
124 | struct io_context *io_context; /* Identify the expected process */ | ||
125 | int ioc_finished; /* IO associated with io_context is finished */ | ||
126 | int nr_dispatched; | ||
127 | |||
128 | /* | ||
129 | * settings that change how the i/o scheduler behaves | ||
130 | */ | ||
131 | unsigned long fifo_expire[2]; | ||
132 | unsigned long batch_expire[2]; | ||
133 | unsigned long antic_expire; | ||
134 | }; | ||
135 | |||
136 | #define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo) | ||
137 | |||
138 | /* | ||
139 | * per-request data. | ||
140 | */ | ||
141 | enum arq_state { | ||
142 | AS_RQ_NEW=0, /* New - not referenced and not on any lists */ | ||
143 | AS_RQ_QUEUED, /* In the request queue. It belongs to the | ||
144 | scheduler */ | ||
145 | AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the | ||
146 | driver now */ | ||
147 | AS_RQ_PRESCHED, /* Debug poisoning for requests being used */ | ||
148 | AS_RQ_REMOVED, | ||
149 | AS_RQ_MERGED, | ||
150 | AS_RQ_POSTSCHED, /* when they shouldn't be */ | ||
151 | }; | ||
152 | |||
153 | struct as_rq { | ||
154 | /* | ||
155 | * rbtree index, key is the starting offset | ||
156 | */ | ||
157 | struct rb_node rb_node; | ||
158 | sector_t rb_key; | ||
159 | |||
160 | struct request *request; | ||
161 | |||
162 | struct io_context *io_context; /* The submitting task */ | ||
163 | |||
164 | /* | ||
165 | * request hash, key is the ending offset (for back merge lookup) | ||
166 | */ | ||
167 | struct list_head hash; | ||
168 | unsigned int on_hash; | ||
169 | |||
170 | /* | ||
171 | * expire fifo | ||
172 | */ | ||
173 | struct list_head fifo; | ||
174 | unsigned long expires; | ||
175 | |||
176 | unsigned int is_sync; | ||
177 | enum arq_state state; | ||
178 | }; | ||
179 | |||
180 | #define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private) | ||
181 | |||
182 | static kmem_cache_t *arq_pool; | ||
183 | |||
184 | /* | ||
185 | * IO Context helper functions | ||
186 | */ | ||
187 | |||
188 | /* Called to deallocate the as_io_context */ | ||
189 | static void free_as_io_context(struct as_io_context *aic) | ||
190 | { | ||
191 | kfree(aic); | ||
192 | } | ||
193 | |||
194 | /* Called when the task exits */ | ||
195 | static void exit_as_io_context(struct as_io_context *aic) | ||
196 | { | ||
197 | WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state)); | ||
198 | clear_bit(AS_TASK_RUNNING, &aic->state); | ||
199 | } | ||
200 | |||
201 | static struct as_io_context *alloc_as_io_context(void) | ||
202 | { | ||
203 | struct as_io_context *ret; | ||
204 | |||
205 | ret = kmalloc(sizeof(*ret), GFP_ATOMIC); | ||
206 | if (ret) { | ||
207 | ret->dtor = free_as_io_context; | ||
208 | ret->exit = exit_as_io_context; | ||
209 | ret->state = 1 << AS_TASK_RUNNING; | ||
210 | atomic_set(&ret->nr_queued, 0); | ||
211 | atomic_set(&ret->nr_dispatched, 0); | ||
212 | spin_lock_init(&ret->lock); | ||
213 | ret->ttime_total = 0; | ||
214 | ret->ttime_samples = 0; | ||
215 | ret->ttime_mean = 0; | ||
216 | ret->seek_total = 0; | ||
217 | ret->seek_samples = 0; | ||
218 | ret->seek_mean = 0; | ||
219 | } | ||
220 | |||
221 | return ret; | ||
222 | } | ||
223 | |||
224 | /* | ||
225 | * If the current task has no AS IO context then create one and initialise it. | ||
226 | * Then take a ref on the task's io context and return it. | ||
227 | */ | ||
228 | static struct io_context *as_get_io_context(void) | ||
229 | { | ||
230 | struct io_context *ioc = get_io_context(GFP_ATOMIC); | ||
231 | if (ioc && !ioc->aic) { | ||
232 | ioc->aic = alloc_as_io_context(); | ||
233 | if (!ioc->aic) { | ||
234 | put_io_context(ioc); | ||
235 | ioc = NULL; | ||
236 | } | ||
237 | } | ||
238 | return ioc; | ||
239 | } | ||
240 | |||
241 | static void as_put_io_context(struct as_rq *arq) | ||
242 | { | ||
243 | struct as_io_context *aic; | ||
244 | |||
245 | if (unlikely(!arq->io_context)) | ||
246 | return; | ||
247 | |||
248 | aic = arq->io_context->aic; | ||
249 | |||
250 | if (arq->is_sync == REQ_SYNC && aic) { | ||
251 | spin_lock(&aic->lock); | ||
252 | set_bit(AS_TASK_IORUNNING, &aic->state); | ||
253 | aic->last_end_request = jiffies; | ||
254 | spin_unlock(&aic->lock); | ||
255 | } | ||
256 | |||
257 | put_io_context(arq->io_context); | ||
258 | } | ||
259 | |||
260 | /* | ||
261 | * the back merge hash support functions | ||
262 | */ | ||
263 | static const int as_hash_shift = 6; | ||
264 | #define AS_HASH_BLOCK(sec) ((sec) >> 3) | ||
265 | #define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift)) | ||
266 | #define AS_HASH_ENTRIES (1 << as_hash_shift) | ||
267 | #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) | ||
268 | #define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash) | ||
269 | |||
270 | static inline void __as_del_arq_hash(struct as_rq *arq) | ||
271 | { | ||
272 | arq->on_hash = 0; | ||
273 | list_del_init(&arq->hash); | ||
274 | } | ||
275 | |||
276 | static inline void as_del_arq_hash(struct as_rq *arq) | ||
277 | { | ||
278 | if (arq->on_hash) | ||
279 | __as_del_arq_hash(arq); | ||
280 | } | ||
281 | |||
282 | static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq) | ||
283 | { | ||
284 | struct request *rq = arq->request; | ||
285 | |||
286 | BUG_ON(arq->on_hash); | ||
287 | |||
288 | arq->on_hash = 1; | ||
289 | list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]); | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | * move hot entry to front of chain | ||
294 | */ | ||
295 | static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq) | ||
296 | { | ||
297 | struct request *rq = arq->request; | ||
298 | struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))]; | ||
299 | |||
300 | if (!arq->on_hash) { | ||
301 | WARN_ON(1); | ||
302 | return; | ||
303 | } | ||
304 | |||
305 | if (arq->hash.prev != head) { | ||
306 | list_del(&arq->hash); | ||
307 | list_add(&arq->hash, head); | ||
308 | } | ||
309 | } | ||
310 | |||
311 | static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset) | ||
312 | { | ||
313 | struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)]; | ||
314 | struct list_head *entry, *next = hash_list->next; | ||
315 | |||
316 | while ((entry = next) != hash_list) { | ||
317 | struct as_rq *arq = list_entry_hash(entry); | ||
318 | struct request *__rq = arq->request; | ||
319 | |||
320 | next = entry->next; | ||
321 | |||
322 | BUG_ON(!arq->on_hash); | ||
323 | |||
324 | if (!rq_mergeable(__rq)) { | ||
325 | as_del_arq_hash(arq); | ||
326 | continue; | ||
327 | } | ||
328 | |||
329 | if (rq_hash_key(__rq) == offset) | ||
330 | return __rq; | ||
331 | } | ||
332 | |||
333 | return NULL; | ||
334 | } | ||
335 | |||
336 | /* | ||
337 | * rb tree support functions | ||
338 | */ | ||
339 | #define RB_NONE (2) | ||
340 | #define RB_EMPTY(root) ((root)->rb_node == NULL) | ||
341 | #define ON_RB(node) ((node)->rb_color != RB_NONE) | ||
342 | #define RB_CLEAR(node) ((node)->rb_color = RB_NONE) | ||
343 | #define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node) | ||
344 | #define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync]) | ||
345 | #define rq_rb_key(rq) (rq)->sector | ||
346 | |||
347 | /* | ||
348 | * as_find_first_arq finds the first (lowest sector numbered) request | ||
349 | * for the specified data_dir. Used to sweep back to the start of the disk | ||
350 | * (1-way elevator) after we process the last (highest sector) request. | ||
351 | */ | ||
352 | static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir) | ||
353 | { | ||
354 | struct rb_node *n = ad->sort_list[data_dir].rb_node; | ||
355 | |||
356 | if (n == NULL) | ||
357 | return NULL; | ||
358 | |||
359 | for (;;) { | ||
360 | if (n->rb_left == NULL) | ||
361 | return rb_entry_arq(n); | ||
362 | |||
363 | n = n->rb_left; | ||
364 | } | ||
365 | } | ||
366 | |||
367 | /* | ||
368 | * Add the request to the rb tree if it is unique. If there is an alias (an | ||
369 | * existing request against the same sector), which can happen when using | ||
370 | * direct IO, then return the alias. | ||
371 | */ | ||
372 | static struct as_rq *as_add_arq_rb(struct as_data *ad, struct as_rq *arq) | ||
373 | { | ||
374 | struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node; | ||
375 | struct rb_node *parent = NULL; | ||
376 | struct as_rq *__arq; | ||
377 | struct request *rq = arq->request; | ||
378 | |||
379 | arq->rb_key = rq_rb_key(rq); | ||
380 | |||
381 | while (*p) { | ||
382 | parent = *p; | ||
383 | __arq = rb_entry_arq(parent); | ||
384 | |||
385 | if (arq->rb_key < __arq->rb_key) | ||
386 | p = &(*p)->rb_left; | ||
387 | else if (arq->rb_key > __arq->rb_key) | ||
388 | p = &(*p)->rb_right; | ||
389 | else | ||
390 | return __arq; | ||
391 | } | ||
392 | |||
393 | rb_link_node(&arq->rb_node, parent, p); | ||
394 | rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); | ||
395 | |||
396 | return NULL; | ||
397 | } | ||
398 | |||
399 | static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq) | ||
400 | { | ||
401 | if (!ON_RB(&arq->rb_node)) { | ||
402 | WARN_ON(1); | ||
403 | return; | ||
404 | } | ||
405 | |||
406 | rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq)); | ||
407 | RB_CLEAR(&arq->rb_node); | ||
408 | } | ||
409 | |||
410 | static struct request * | ||
411 | as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir) | ||
412 | { | ||
413 | struct rb_node *n = ad->sort_list[data_dir].rb_node; | ||
414 | struct as_rq *arq; | ||
415 | |||
416 | while (n) { | ||
417 | arq = rb_entry_arq(n); | ||
418 | |||
419 | if (sector < arq->rb_key) | ||
420 | n = n->rb_left; | ||
421 | else if (sector > arq->rb_key) | ||
422 | n = n->rb_right; | ||
423 | else | ||
424 | return arq->request; | ||
425 | } | ||
426 | |||
427 | return NULL; | ||
428 | } | ||
429 | |||
430 | /* | ||
431 | * IO Scheduler proper | ||
432 | */ | ||
433 | |||
434 | #define MAXBACK (1024 * 1024) /* | ||
435 | * Maximum distance the disk will go backward | ||
436 | * for a request. | ||
437 | */ | ||
438 | |||
439 | #define BACK_PENALTY 2 | ||
440 | |||
441 | /* | ||
442 | * as_choose_req selects the preferred one of two requests of the same data_dir | ||
443 | * ignoring time - eg. timeouts, which is the job of as_dispatch_request | ||
444 | */ | ||
445 | static struct as_rq * | ||
446 | as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2) | ||
447 | { | ||
448 | int data_dir; | ||
449 | sector_t last, s1, s2, d1, d2; | ||
450 | int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */ | ||
451 | const sector_t maxback = MAXBACK; | ||
452 | |||
453 | if (arq1 == NULL || arq1 == arq2) | ||
454 | return arq2; | ||
455 | if (arq2 == NULL) | ||
456 | return arq1; | ||
457 | |||
458 | data_dir = arq1->is_sync; | ||
459 | |||
460 | last = ad->last_sector[data_dir]; | ||
461 | s1 = arq1->request->sector; | ||
462 | s2 = arq2->request->sector; | ||
463 | |||
464 | BUG_ON(data_dir != arq2->is_sync); | ||
465 | |||
466 | /* | ||
467 | * Strict one way elevator _except_ in the case where we allow | ||
468 | * short backward seeks which are biased as twice the cost of a | ||
469 | * similar forward seek. | ||
470 | */ | ||
471 | if (s1 >= last) | ||
472 | d1 = s1 - last; | ||
473 | else if (s1+maxback >= last) | ||
474 | d1 = (last - s1)*BACK_PENALTY; | ||
475 | else { | ||
476 | r1_wrap = 1; | ||
477 | d1 = 0; /* shut up, gcc */ | ||
478 | } | ||
479 | |||
480 | if (s2 >= last) | ||
481 | d2 = s2 - last; | ||
482 | else if (s2+maxback >= last) | ||
483 | d2 = (last - s2)*BACK_PENALTY; | ||
484 | else { | ||
485 | r2_wrap = 1; | ||
486 | d2 = 0; | ||
487 | } | ||
488 | |||
489 | /* Found required data */ | ||
490 | if (!r1_wrap && r2_wrap) | ||
491 | return arq1; | ||
492 | else if (!r2_wrap && r1_wrap) | ||
493 | return arq2; | ||
494 | else if (r1_wrap && r2_wrap) { | ||
495 | /* both behind the head */ | ||
496 | if (s1 <= s2) | ||
497 | return arq1; | ||
498 | else | ||
499 | return arq2; | ||
500 | } | ||
501 | |||
502 | /* Both requests in front of the head */ | ||
503 | if (d1 < d2) | ||
504 | return arq1; | ||
505 | else if (d2 < d1) | ||
506 | return arq2; | ||
507 | else { | ||
508 | if (s1 >= s2) | ||
509 | return arq1; | ||
510 | else | ||
511 | return arq2; | ||
512 | } | ||
513 | } | ||
514 | |||
515 | /* | ||
516 | * as_find_next_arq finds the next request after @prev in elevator order. | ||
517 | * this with as_choose_req form the basis for how the scheduler chooses | ||
518 | * what request to process next. Anticipation works on top of this. | ||
519 | */ | ||
520 | static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last) | ||
521 | { | ||
522 | const int data_dir = last->is_sync; | ||
523 | struct as_rq *ret; | ||
524 | struct rb_node *rbnext = rb_next(&last->rb_node); | ||
525 | struct rb_node *rbprev = rb_prev(&last->rb_node); | ||
526 | struct as_rq *arq_next, *arq_prev; | ||
527 | |||
528 | BUG_ON(!ON_RB(&last->rb_node)); | ||
529 | |||
530 | if (rbprev) | ||
531 | arq_prev = rb_entry_arq(rbprev); | ||
532 | else | ||
533 | arq_prev = NULL; | ||
534 | |||
535 | if (rbnext) | ||
536 | arq_next = rb_entry_arq(rbnext); | ||
537 | else { | ||
538 | arq_next = as_find_first_arq(ad, data_dir); | ||
539 | if (arq_next == last) | ||
540 | arq_next = NULL; | ||
541 | } | ||
542 | |||
543 | ret = as_choose_req(ad, arq_next, arq_prev); | ||
544 | |||
545 | return ret; | ||
546 | } | ||
547 | |||
548 | /* | ||
549 | * anticipatory scheduling functions follow | ||
550 | */ | ||
551 | |||
552 | /* | ||
553 | * as_antic_expired tells us when we have anticipated too long. | ||
554 | * The funny "absolute difference" math on the elapsed time is to handle | ||
555 | * jiffy wraps, and disks which have been idle for 0x80000000 jiffies. | ||
556 | */ | ||
557 | static int as_antic_expired(struct as_data *ad) | ||
558 | { | ||
559 | long delta_jif; | ||
560 | |||
561 | delta_jif = jiffies - ad->antic_start; | ||
562 | if (unlikely(delta_jif < 0)) | ||
563 | delta_jif = -delta_jif; | ||
564 | if (delta_jif < ad->antic_expire) | ||
565 | return 0; | ||
566 | |||
567 | return 1; | ||
568 | } | ||
569 | |||
570 | /* | ||
571 | * as_antic_waitnext starts anticipating that a nice request will soon be | ||
572 | * submitted. See also as_antic_waitreq | ||
573 | */ | ||
574 | static void as_antic_waitnext(struct as_data *ad) | ||
575 | { | ||
576 | unsigned long timeout; | ||
577 | |||
578 | BUG_ON(ad->antic_status != ANTIC_OFF | ||
579 | && ad->antic_status != ANTIC_WAIT_REQ); | ||
580 | |||
581 | timeout = ad->antic_start + ad->antic_expire; | ||
582 | |||
583 | mod_timer(&ad->antic_timer, timeout); | ||
584 | |||
585 | ad->antic_status = ANTIC_WAIT_NEXT; | ||
586 | } | ||
587 | |||
588 | /* | ||
589 | * as_antic_waitreq starts anticipating. We don't start timing the anticipation | ||
590 | * until the request that we're anticipating on has finished. This means we | ||
591 | * are timing from when the candidate process wakes up hopefully. | ||
592 | */ | ||
593 | static void as_antic_waitreq(struct as_data *ad) | ||
594 | { | ||
595 | BUG_ON(ad->antic_status == ANTIC_FINISHED); | ||
596 | if (ad->antic_status == ANTIC_OFF) { | ||
597 | if (!ad->io_context || ad->ioc_finished) | ||
598 | as_antic_waitnext(ad); | ||
599 | else | ||
600 | ad->antic_status = ANTIC_WAIT_REQ; | ||
601 | } | ||
602 | } | ||
603 | |||
604 | /* | ||
605 | * This is called directly by the functions in this file to stop anticipation. | ||
606 | * We kill the timer and schedule a call to the request_fn asap. | ||
607 | */ | ||
608 | static void as_antic_stop(struct as_data *ad) | ||
609 | { | ||
610 | int status = ad->antic_status; | ||
611 | |||
612 | if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) { | ||
613 | if (status == ANTIC_WAIT_NEXT) | ||
614 | del_timer(&ad->antic_timer); | ||
615 | ad->antic_status = ANTIC_FINISHED; | ||
616 | /* see as_work_handler */ | ||
617 | kblockd_schedule_work(&ad->antic_work); | ||
618 | } | ||
619 | } | ||
620 | |||
621 | /* | ||
622 | * as_antic_timeout is the timer function set by as_antic_waitnext. | ||
623 | */ | ||
624 | static void as_antic_timeout(unsigned long data) | ||
625 | { | ||
626 | struct request_queue *q = (struct request_queue *)data; | ||
627 | struct as_data *ad = q->elevator->elevator_data; | ||
628 | unsigned long flags; | ||
629 | |||
630 | spin_lock_irqsave(q->queue_lock, flags); | ||
631 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
632 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
633 | struct as_io_context *aic = ad->io_context->aic; | ||
634 | |||
635 | ad->antic_status = ANTIC_FINISHED; | ||
636 | kblockd_schedule_work(&ad->antic_work); | ||
637 | |||
638 | if (aic->ttime_samples == 0) { | ||
639 | /* process anticipated on has exitted or timed out*/ | ||
640 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
641 | } | ||
642 | } | ||
643 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
644 | } | ||
645 | |||
646 | /* | ||
647 | * as_close_req decides if one request is considered "close" to the | ||
648 | * previous one issued. | ||
649 | */ | ||
650 | static int as_close_req(struct as_data *ad, struct as_rq *arq) | ||
651 | { | ||
652 | unsigned long delay; /* milliseconds */ | ||
653 | sector_t last = ad->last_sector[ad->batch_data_dir]; | ||
654 | sector_t next = arq->request->sector; | ||
655 | sector_t delta; /* acceptable close offset (in sectors) */ | ||
656 | |||
657 | if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished) | ||
658 | delay = 0; | ||
659 | else | ||
660 | delay = ((jiffies - ad->antic_start) * 1000) / HZ; | ||
661 | |||
662 | if (delay <= 1) | ||
663 | delta = 64; | ||
664 | else if (delay <= 20 && delay <= ad->antic_expire) | ||
665 | delta = 64 << (delay-1); | ||
666 | else | ||
667 | return 1; | ||
668 | |||
669 | return (last - (delta>>1) <= next) && (next <= last + delta); | ||
670 | } | ||
671 | |||
672 | /* | ||
673 | * as_can_break_anticipation returns true if we have been anticipating this | ||
674 | * request. | ||
675 | * | ||
676 | * It also returns true if the process against which we are anticipating | ||
677 | * submits a write - that's presumably an fsync, O_SYNC write, etc. We want to | ||
678 | * dispatch it ASAP, because we know that application will not be submitting | ||
679 | * any new reads. | ||
680 | * | ||
681 | * If the task which has submitted the request has exitted, break anticipation. | ||
682 | * | ||
683 | * If this task has queued some other IO, do not enter enticipation. | ||
684 | */ | ||
685 | static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq) | ||
686 | { | ||
687 | struct io_context *ioc; | ||
688 | struct as_io_context *aic; | ||
689 | sector_t s; | ||
690 | |||
691 | ioc = ad->io_context; | ||
692 | BUG_ON(!ioc); | ||
693 | |||
694 | if (arq && ioc == arq->io_context) { | ||
695 | /* request from same process */ | ||
696 | return 1; | ||
697 | } | ||
698 | |||
699 | if (ad->ioc_finished && as_antic_expired(ad)) { | ||
700 | /* | ||
701 | * In this situation status should really be FINISHED, | ||
702 | * however the timer hasn't had the chance to run yet. | ||
703 | */ | ||
704 | return 1; | ||
705 | } | ||
706 | |||
707 | aic = ioc->aic; | ||
708 | if (!aic) | ||
709 | return 0; | ||
710 | |||
711 | if (!test_bit(AS_TASK_RUNNING, &aic->state)) { | ||
712 | /* process anticipated on has exitted */ | ||
713 | if (aic->ttime_samples == 0) | ||
714 | ad->exit_prob = (7*ad->exit_prob + 256)/8; | ||
715 | return 1; | ||
716 | } | ||
717 | |||
718 | if (atomic_read(&aic->nr_queued) > 0) { | ||
719 | /* process has more requests queued */ | ||
720 | return 1; | ||
721 | } | ||
722 | |||
723 | if (atomic_read(&aic->nr_dispatched) > 0) { | ||
724 | /* process has more requests dispatched */ | ||
725 | return 1; | ||
726 | } | ||
727 | |||
728 | if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, arq)) { | ||
729 | /* | ||
730 | * Found a close request that is not one of ours. | ||
731 | * | ||
732 | * This makes close requests from another process reset | ||
733 | * our thinktime delay. Is generally useful when there are | ||
734 | * two or more cooperating processes working in the same | ||
735 | * area. | ||
736 | */ | ||
737 | spin_lock(&aic->lock); | ||
738 | aic->last_end_request = jiffies; | ||
739 | spin_unlock(&aic->lock); | ||
740 | return 1; | ||
741 | } | ||
742 | |||
743 | |||
744 | if (aic->ttime_samples == 0) { | ||
745 | if (ad->new_ttime_mean > ad->antic_expire) | ||
746 | return 1; | ||
747 | if (ad->exit_prob > 128) | ||
748 | return 1; | ||
749 | } else if (aic->ttime_mean > ad->antic_expire) { | ||
750 | /* the process thinks too much between requests */ | ||
751 | return 1; | ||
752 | } | ||
753 | |||
754 | if (!arq) | ||
755 | return 0; | ||
756 | |||
757 | if (ad->last_sector[REQ_SYNC] < arq->request->sector) | ||
758 | s = arq->request->sector - ad->last_sector[REQ_SYNC]; | ||
759 | else | ||
760 | s = ad->last_sector[REQ_SYNC] - arq->request->sector; | ||
761 | |||
762 | if (aic->seek_samples == 0) { | ||
763 | /* | ||
764 | * Process has just started IO. Use past statistics to | ||
765 | * guage success possibility | ||
766 | */ | ||
767 | if (ad->new_seek_mean > s) { | ||
768 | /* this request is better than what we're expecting */ | ||
769 | return 1; | ||
770 | } | ||
771 | |||
772 | } else { | ||
773 | if (aic->seek_mean > s) { | ||
774 | /* this request is better than what we're expecting */ | ||
775 | return 1; | ||
776 | } | ||
777 | } | ||
778 | |||
779 | return 0; | ||
780 | } | ||
781 | |||
782 | /* | ||
783 | * as_can_anticipate indicates weather we should either run arq | ||
784 | * or keep anticipating a better request. | ||
785 | */ | ||
786 | static int as_can_anticipate(struct as_data *ad, struct as_rq *arq) | ||
787 | { | ||
788 | if (!ad->io_context) | ||
789 | /* | ||
790 | * Last request submitted was a write | ||
791 | */ | ||
792 | return 0; | ||
793 | |||
794 | if (ad->antic_status == ANTIC_FINISHED) | ||
795 | /* | ||
796 | * Don't restart if we have just finished. Run the next request | ||
797 | */ | ||
798 | return 0; | ||
799 | |||
800 | if (as_can_break_anticipation(ad, arq)) | ||
801 | /* | ||
802 | * This request is a good candidate. Don't keep anticipating, | ||
803 | * run it. | ||
804 | */ | ||
805 | return 0; | ||
806 | |||
807 | /* | ||
808 | * OK from here, we haven't finished, and don't have a decent request! | ||
809 | * Status is either ANTIC_OFF so start waiting, | ||
810 | * ANTIC_WAIT_REQ so continue waiting for request to finish | ||
811 | * or ANTIC_WAIT_NEXT so continue waiting for an acceptable request. | ||
812 | * | ||
813 | */ | ||
814 | |||
815 | return 1; | ||
816 | } | ||
817 | |||
818 | static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic, unsigned long ttime) | ||
819 | { | ||
820 | /* fixed point: 1.0 == 1<<8 */ | ||
821 | if (aic->ttime_samples == 0) { | ||
822 | ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8; | ||
823 | ad->new_ttime_mean = ad->new_ttime_total / 256; | ||
824 | |||
825 | ad->exit_prob = (7*ad->exit_prob)/8; | ||
826 | } | ||
827 | aic->ttime_samples = (7*aic->ttime_samples + 256) / 8; | ||
828 | aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8; | ||
829 | aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples; | ||
830 | } | ||
831 | |||
832 | static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic, sector_t sdist) | ||
833 | { | ||
834 | u64 total; | ||
835 | |||
836 | if (aic->seek_samples == 0) { | ||
837 | ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8; | ||
838 | ad->new_seek_mean = ad->new_seek_total / 256; | ||
839 | } | ||
840 | |||
841 | /* | ||
842 | * Don't allow the seek distance to get too large from the | ||
843 | * odd fragment, pagein, etc | ||
844 | */ | ||
845 | if (aic->seek_samples <= 60) /* second&third seek */ | ||
846 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024); | ||
847 | else | ||
848 | sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64); | ||
849 | |||
850 | aic->seek_samples = (7*aic->seek_samples + 256) / 8; | ||
851 | aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8; | ||
852 | total = aic->seek_total + (aic->seek_samples/2); | ||
853 | do_div(total, aic->seek_samples); | ||
854 | aic->seek_mean = (sector_t)total; | ||
855 | } | ||
856 | |||
857 | /* | ||
858 | * as_update_iohist keeps a decaying histogram of IO thinktimes, and | ||
859 | * updates @aic->ttime_mean based on that. It is called when a new | ||
860 | * request is queued. | ||
861 | */ | ||
862 | static void as_update_iohist(struct as_data *ad, struct as_io_context *aic, struct request *rq) | ||
863 | { | ||
864 | struct as_rq *arq = RQ_DATA(rq); | ||
865 | int data_dir = arq->is_sync; | ||
866 | unsigned long thinktime; | ||
867 | sector_t seek_dist; | ||
868 | |||
869 | if (aic == NULL) | ||
870 | return; | ||
871 | |||
872 | if (data_dir == REQ_SYNC) { | ||
873 | unsigned long in_flight = atomic_read(&aic->nr_queued) | ||
874 | + atomic_read(&aic->nr_dispatched); | ||
875 | spin_lock(&aic->lock); | ||
876 | if (test_bit(AS_TASK_IORUNNING, &aic->state) || | ||
877 | test_bit(AS_TASK_IOSTARTED, &aic->state)) { | ||
878 | /* Calculate read -> read thinktime */ | ||
879 | if (test_bit(AS_TASK_IORUNNING, &aic->state) | ||
880 | && in_flight == 0) { | ||
881 | thinktime = jiffies - aic->last_end_request; | ||
882 | thinktime = min(thinktime, MAX_THINKTIME-1); | ||
883 | } else | ||
884 | thinktime = 0; | ||
885 | as_update_thinktime(ad, aic, thinktime); | ||
886 | |||
887 | /* Calculate read -> read seek distance */ | ||
888 | if (aic->last_request_pos < rq->sector) | ||
889 | seek_dist = rq->sector - aic->last_request_pos; | ||
890 | else | ||
891 | seek_dist = aic->last_request_pos - rq->sector; | ||
892 | as_update_seekdist(ad, aic, seek_dist); | ||
893 | } | ||
894 | aic->last_request_pos = rq->sector + rq->nr_sectors; | ||
895 | set_bit(AS_TASK_IOSTARTED, &aic->state); | ||
896 | spin_unlock(&aic->lock); | ||
897 | } | ||
898 | } | ||
899 | |||
900 | /* | ||
901 | * as_update_arq must be called whenever a request (arq) is added to | ||
902 | * the sort_list. This function keeps caches up to date, and checks if the | ||
903 | * request might be one we are "anticipating" | ||
904 | */ | ||
905 | static void as_update_arq(struct as_data *ad, struct as_rq *arq) | ||
906 | { | ||
907 | const int data_dir = arq->is_sync; | ||
908 | |||
909 | /* keep the next_arq cache up to date */ | ||
910 | ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]); | ||
911 | |||
912 | /* | ||
913 | * have we been anticipating this request? | ||
914 | * or does it come from the same process as the one we are anticipating | ||
915 | * for? | ||
916 | */ | ||
917 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
918 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
919 | if (as_can_break_anticipation(ad, arq)) | ||
920 | as_antic_stop(ad); | ||
921 | } | ||
922 | } | ||
923 | |||
924 | /* | ||
925 | * Gathers timings and resizes the write batch automatically | ||
926 | */ | ||
927 | static void update_write_batch(struct as_data *ad) | ||
928 | { | ||
929 | unsigned long batch = ad->batch_expire[REQ_ASYNC]; | ||
930 | long write_time; | ||
931 | |||
932 | write_time = (jiffies - ad->current_batch_expires) + batch; | ||
933 | if (write_time < 0) | ||
934 | write_time = 0; | ||
935 | |||
936 | if (write_time > batch && !ad->write_batch_idled) { | ||
937 | if (write_time > batch * 3) | ||
938 | ad->write_batch_count /= 2; | ||
939 | else | ||
940 | ad->write_batch_count--; | ||
941 | } else if (write_time < batch && ad->current_write_count == 0) { | ||
942 | if (batch > write_time * 3) | ||
943 | ad->write_batch_count *= 2; | ||
944 | else | ||
945 | ad->write_batch_count++; | ||
946 | } | ||
947 | |||
948 | if (ad->write_batch_count < 1) | ||
949 | ad->write_batch_count = 1; | ||
950 | } | ||
951 | |||
952 | /* | ||
953 | * as_completed_request is to be called when a request has completed and | ||
954 | * returned something to the requesting process, be it an error or data. | ||
955 | */ | ||
956 | static void as_completed_request(request_queue_t *q, struct request *rq) | ||
957 | { | ||
958 | struct as_data *ad = q->elevator->elevator_data; | ||
959 | struct as_rq *arq = RQ_DATA(rq); | ||
960 | |||
961 | WARN_ON(!list_empty(&rq->queuelist)); | ||
962 | |||
963 | if (arq->state != AS_RQ_REMOVED) { | ||
964 | printk("arq->state %d\n", arq->state); | ||
965 | WARN_ON(1); | ||
966 | goto out; | ||
967 | } | ||
968 | |||
969 | if (ad->changed_batch && ad->nr_dispatched == 1) { | ||
970 | kblockd_schedule_work(&ad->antic_work); | ||
971 | ad->changed_batch = 0; | ||
972 | |||
973 | if (ad->batch_data_dir == REQ_SYNC) | ||
974 | ad->new_batch = 1; | ||
975 | } | ||
976 | WARN_ON(ad->nr_dispatched == 0); | ||
977 | ad->nr_dispatched--; | ||
978 | |||
979 | /* | ||
980 | * Start counting the batch from when a request of that direction is | ||
981 | * actually serviced. This should help devices with big TCQ windows | ||
982 | * and writeback caches | ||
983 | */ | ||
984 | if (ad->new_batch && ad->batch_data_dir == arq->is_sync) { | ||
985 | update_write_batch(ad); | ||
986 | ad->current_batch_expires = jiffies + | ||
987 | ad->batch_expire[REQ_SYNC]; | ||
988 | ad->new_batch = 0; | ||
989 | } | ||
990 | |||
991 | if (ad->io_context == arq->io_context && ad->io_context) { | ||
992 | ad->antic_start = jiffies; | ||
993 | ad->ioc_finished = 1; | ||
994 | if (ad->antic_status == ANTIC_WAIT_REQ) { | ||
995 | /* | ||
996 | * We were waiting on this request, now anticipate | ||
997 | * the next one | ||
998 | */ | ||
999 | as_antic_waitnext(ad); | ||
1000 | } | ||
1001 | } | ||
1002 | |||
1003 | as_put_io_context(arq); | ||
1004 | out: | ||
1005 | arq->state = AS_RQ_POSTSCHED; | ||
1006 | } | ||
1007 | |||
1008 | /* | ||
1009 | * as_remove_queued_request removes a request from the pre dispatch queue | ||
1010 | * without updating refcounts. It is expected the caller will drop the | ||
1011 | * reference unless it replaces the request at somepart of the elevator | ||
1012 | * (ie. the dispatch queue) | ||
1013 | */ | ||
1014 | static void as_remove_queued_request(request_queue_t *q, struct request *rq) | ||
1015 | { | ||
1016 | struct as_rq *arq = RQ_DATA(rq); | ||
1017 | const int data_dir = arq->is_sync; | ||
1018 | struct as_data *ad = q->elevator->elevator_data; | ||
1019 | |||
1020 | WARN_ON(arq->state != AS_RQ_QUEUED); | ||
1021 | |||
1022 | if (arq->io_context && arq->io_context->aic) { | ||
1023 | BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued)); | ||
1024 | atomic_dec(&arq->io_context->aic->nr_queued); | ||
1025 | } | ||
1026 | |||
1027 | /* | ||
1028 | * Update the "next_arq" cache if we are about to remove its | ||
1029 | * entry | ||
1030 | */ | ||
1031 | if (ad->next_arq[data_dir] == arq) | ||
1032 | ad->next_arq[data_dir] = as_find_next_arq(ad, arq); | ||
1033 | |||
1034 | list_del_init(&arq->fifo); | ||
1035 | as_del_arq_hash(arq); | ||
1036 | as_del_arq_rb(ad, arq); | ||
1037 | } | ||
1038 | |||
1039 | /* | ||
1040 | * as_fifo_expired returns 0 if there are no expired reads on the fifo, | ||
1041 | * 1 otherwise. It is ratelimited so that we only perform the check once per | ||
1042 | * `fifo_expire' interval. Otherwise a large number of expired requests | ||
1043 | * would create a hopeless seekstorm. | ||
1044 | * | ||
1045 | * See as_antic_expired comment. | ||
1046 | */ | ||
1047 | static int as_fifo_expired(struct as_data *ad, int adir) | ||
1048 | { | ||
1049 | struct as_rq *arq; | ||
1050 | long delta_jif; | ||
1051 | |||
1052 | delta_jif = jiffies - ad->last_check_fifo[adir]; | ||
1053 | if (unlikely(delta_jif < 0)) | ||
1054 | delta_jif = -delta_jif; | ||
1055 | if (delta_jif < ad->fifo_expire[adir]) | ||
1056 | return 0; | ||
1057 | |||
1058 | ad->last_check_fifo[adir] = jiffies; | ||
1059 | |||
1060 | if (list_empty(&ad->fifo_list[adir])) | ||
1061 | return 0; | ||
1062 | |||
1063 | arq = list_entry_fifo(ad->fifo_list[adir].next); | ||
1064 | |||
1065 | return time_after(jiffies, arq->expires); | ||
1066 | } | ||
1067 | |||
1068 | /* | ||
1069 | * as_batch_expired returns true if the current batch has expired. A batch | ||
1070 | * is a set of reads or a set of writes. | ||
1071 | */ | ||
1072 | static inline int as_batch_expired(struct as_data *ad) | ||
1073 | { | ||
1074 | if (ad->changed_batch || ad->new_batch) | ||
1075 | return 0; | ||
1076 | |||
1077 | if (ad->batch_data_dir == REQ_SYNC) | ||
1078 | /* TODO! add a check so a complete fifo gets written? */ | ||
1079 | return time_after(jiffies, ad->current_batch_expires); | ||
1080 | |||
1081 | return time_after(jiffies, ad->current_batch_expires) | ||
1082 | || ad->current_write_count == 0; | ||
1083 | } | ||
1084 | |||
1085 | /* | ||
1086 | * move an entry to dispatch queue | ||
1087 | */ | ||
1088 | static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq) | ||
1089 | { | ||
1090 | struct request *rq = arq->request; | ||
1091 | const int data_dir = arq->is_sync; | ||
1092 | |||
1093 | BUG_ON(!ON_RB(&arq->rb_node)); | ||
1094 | |||
1095 | as_antic_stop(ad); | ||
1096 | ad->antic_status = ANTIC_OFF; | ||
1097 | |||
1098 | /* | ||
1099 | * This has to be set in order to be correctly updated by | ||
1100 | * as_find_next_arq | ||
1101 | */ | ||
1102 | ad->last_sector[data_dir] = rq->sector + rq->nr_sectors; | ||
1103 | |||
1104 | if (data_dir == REQ_SYNC) { | ||
1105 | /* In case we have to anticipate after this */ | ||
1106 | copy_io_context(&ad->io_context, &arq->io_context); | ||
1107 | } else { | ||
1108 | if (ad->io_context) { | ||
1109 | put_io_context(ad->io_context); | ||
1110 | ad->io_context = NULL; | ||
1111 | } | ||
1112 | |||
1113 | if (ad->current_write_count != 0) | ||
1114 | ad->current_write_count--; | ||
1115 | } | ||
1116 | ad->ioc_finished = 0; | ||
1117 | |||
1118 | ad->next_arq[data_dir] = as_find_next_arq(ad, arq); | ||
1119 | |||
1120 | /* | ||
1121 | * take it off the sort and fifo list, add to dispatch queue | ||
1122 | */ | ||
1123 | while (!list_empty(&rq->queuelist)) { | ||
1124 | struct request *__rq = list_entry_rq(rq->queuelist.next); | ||
1125 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1126 | |||
1127 | list_del(&__rq->queuelist); | ||
1128 | |||
1129 | elv_dispatch_add_tail(ad->q, __rq); | ||
1130 | |||
1131 | if (__arq->io_context && __arq->io_context->aic) | ||
1132 | atomic_inc(&__arq->io_context->aic->nr_dispatched); | ||
1133 | |||
1134 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1135 | __arq->state = AS_RQ_DISPATCHED; | ||
1136 | |||
1137 | ad->nr_dispatched++; | ||
1138 | } | ||
1139 | |||
1140 | as_remove_queued_request(ad->q, rq); | ||
1141 | WARN_ON(arq->state != AS_RQ_QUEUED); | ||
1142 | |||
1143 | elv_dispatch_sort(ad->q, rq); | ||
1144 | |||
1145 | arq->state = AS_RQ_DISPATCHED; | ||
1146 | if (arq->io_context && arq->io_context->aic) | ||
1147 | atomic_inc(&arq->io_context->aic->nr_dispatched); | ||
1148 | ad->nr_dispatched++; | ||
1149 | } | ||
1150 | |||
1151 | /* | ||
1152 | * as_dispatch_request selects the best request according to | ||
1153 | * read/write expire, batch expire, etc, and moves it to the dispatch | ||
1154 | * queue. Returns 1 if a request was found, 0 otherwise. | ||
1155 | */ | ||
1156 | static int as_dispatch_request(request_queue_t *q, int force) | ||
1157 | { | ||
1158 | struct as_data *ad = q->elevator->elevator_data; | ||
1159 | struct as_rq *arq; | ||
1160 | const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]); | ||
1161 | const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]); | ||
1162 | |||
1163 | if (unlikely(force)) { | ||
1164 | /* | ||
1165 | * Forced dispatch, accounting is useless. Reset | ||
1166 | * accounting states and dump fifo_lists. Note that | ||
1167 | * batch_data_dir is reset to REQ_SYNC to avoid | ||
1168 | * screwing write batch accounting as write batch | ||
1169 | * accounting occurs on W->R transition. | ||
1170 | */ | ||
1171 | int dispatched = 0; | ||
1172 | |||
1173 | ad->batch_data_dir = REQ_SYNC; | ||
1174 | ad->changed_batch = 0; | ||
1175 | ad->new_batch = 0; | ||
1176 | |||
1177 | while (ad->next_arq[REQ_SYNC]) { | ||
1178 | as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]); | ||
1179 | dispatched++; | ||
1180 | } | ||
1181 | ad->last_check_fifo[REQ_SYNC] = jiffies; | ||
1182 | |||
1183 | while (ad->next_arq[REQ_ASYNC]) { | ||
1184 | as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]); | ||
1185 | dispatched++; | ||
1186 | } | ||
1187 | ad->last_check_fifo[REQ_ASYNC] = jiffies; | ||
1188 | |||
1189 | return dispatched; | ||
1190 | } | ||
1191 | |||
1192 | /* Signal that the write batch was uncontended, so we can't time it */ | ||
1193 | if (ad->batch_data_dir == REQ_ASYNC && !reads) { | ||
1194 | if (ad->current_write_count == 0 || !writes) | ||
1195 | ad->write_batch_idled = 1; | ||
1196 | } | ||
1197 | |||
1198 | if (!(reads || writes) | ||
1199 | || ad->antic_status == ANTIC_WAIT_REQ | ||
1200 | || ad->antic_status == ANTIC_WAIT_NEXT | ||
1201 | || ad->changed_batch) | ||
1202 | return 0; | ||
1203 | |||
1204 | if (!(reads && writes && as_batch_expired(ad)) ) { | ||
1205 | /* | ||
1206 | * batch is still running or no reads or no writes | ||
1207 | */ | ||
1208 | arq = ad->next_arq[ad->batch_data_dir]; | ||
1209 | |||
1210 | if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) { | ||
1211 | if (as_fifo_expired(ad, REQ_SYNC)) | ||
1212 | goto fifo_expired; | ||
1213 | |||
1214 | if (as_can_anticipate(ad, arq)) { | ||
1215 | as_antic_waitreq(ad); | ||
1216 | return 0; | ||
1217 | } | ||
1218 | } | ||
1219 | |||
1220 | if (arq) { | ||
1221 | /* we have a "next request" */ | ||
1222 | if (reads && !writes) | ||
1223 | ad->current_batch_expires = | ||
1224 | jiffies + ad->batch_expire[REQ_SYNC]; | ||
1225 | goto dispatch_request; | ||
1226 | } | ||
1227 | } | ||
1228 | |||
1229 | /* | ||
1230 | * at this point we are not running a batch. select the appropriate | ||
1231 | * data direction (read / write) | ||
1232 | */ | ||
1233 | |||
1234 | if (reads) { | ||
1235 | BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC])); | ||
1236 | |||
1237 | if (writes && ad->batch_data_dir == REQ_SYNC) | ||
1238 | /* | ||
1239 | * Last batch was a read, switch to writes | ||
1240 | */ | ||
1241 | goto dispatch_writes; | ||
1242 | |||
1243 | if (ad->batch_data_dir == REQ_ASYNC) { | ||
1244 | WARN_ON(ad->new_batch); | ||
1245 | ad->changed_batch = 1; | ||
1246 | } | ||
1247 | ad->batch_data_dir = REQ_SYNC; | ||
1248 | arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | ||
1249 | ad->last_check_fifo[ad->batch_data_dir] = jiffies; | ||
1250 | goto dispatch_request; | ||
1251 | } | ||
1252 | |||
1253 | /* | ||
1254 | * the last batch was a read | ||
1255 | */ | ||
1256 | |||
1257 | if (writes) { | ||
1258 | dispatch_writes: | ||
1259 | BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC])); | ||
1260 | |||
1261 | if (ad->batch_data_dir == REQ_SYNC) { | ||
1262 | ad->changed_batch = 1; | ||
1263 | |||
1264 | /* | ||
1265 | * new_batch might be 1 when the queue runs out of | ||
1266 | * reads. A subsequent submission of a write might | ||
1267 | * cause a change of batch before the read is finished. | ||
1268 | */ | ||
1269 | ad->new_batch = 0; | ||
1270 | } | ||
1271 | ad->batch_data_dir = REQ_ASYNC; | ||
1272 | ad->current_write_count = ad->write_batch_count; | ||
1273 | ad->write_batch_idled = 0; | ||
1274 | arq = ad->next_arq[ad->batch_data_dir]; | ||
1275 | goto dispatch_request; | ||
1276 | } | ||
1277 | |||
1278 | BUG(); | ||
1279 | return 0; | ||
1280 | |||
1281 | dispatch_request: | ||
1282 | /* | ||
1283 | * If a request has expired, service it. | ||
1284 | */ | ||
1285 | |||
1286 | if (as_fifo_expired(ad, ad->batch_data_dir)) { | ||
1287 | fifo_expired: | ||
1288 | arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next); | ||
1289 | BUG_ON(arq == NULL); | ||
1290 | } | ||
1291 | |||
1292 | if (ad->changed_batch) { | ||
1293 | WARN_ON(ad->new_batch); | ||
1294 | |||
1295 | if (ad->nr_dispatched) | ||
1296 | return 0; | ||
1297 | |||
1298 | if (ad->batch_data_dir == REQ_ASYNC) | ||
1299 | ad->current_batch_expires = jiffies + | ||
1300 | ad->batch_expire[REQ_ASYNC]; | ||
1301 | else | ||
1302 | ad->new_batch = 1; | ||
1303 | |||
1304 | ad->changed_batch = 0; | ||
1305 | } | ||
1306 | |||
1307 | /* | ||
1308 | * arq is the selected appropriate request. | ||
1309 | */ | ||
1310 | as_move_to_dispatch(ad, arq); | ||
1311 | |||
1312 | return 1; | ||
1313 | } | ||
1314 | |||
1315 | /* | ||
1316 | * Add arq to a list behind alias | ||
1317 | */ | ||
1318 | static inline void | ||
1319 | as_add_aliased_request(struct as_data *ad, struct as_rq *arq, struct as_rq *alias) | ||
1320 | { | ||
1321 | struct request *req = arq->request; | ||
1322 | struct list_head *insert = alias->request->queuelist.prev; | ||
1323 | |||
1324 | /* | ||
1325 | * Transfer list of aliases | ||
1326 | */ | ||
1327 | while (!list_empty(&req->queuelist)) { | ||
1328 | struct request *__rq = list_entry_rq(req->queuelist.next); | ||
1329 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1330 | |||
1331 | list_move_tail(&__rq->queuelist, &alias->request->queuelist); | ||
1332 | |||
1333 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1334 | } | ||
1335 | |||
1336 | /* | ||
1337 | * Another request with the same start sector on the rbtree. | ||
1338 | * Link this request to that sector. They are untangled in | ||
1339 | * as_move_to_dispatch | ||
1340 | */ | ||
1341 | list_add(&arq->request->queuelist, insert); | ||
1342 | |||
1343 | /* | ||
1344 | * Don't want to have to handle merges. | ||
1345 | */ | ||
1346 | as_del_arq_hash(arq); | ||
1347 | arq->request->flags |= REQ_NOMERGE; | ||
1348 | } | ||
1349 | |||
1350 | /* | ||
1351 | * add arq to rbtree and fifo | ||
1352 | */ | ||
1353 | static void as_add_request(request_queue_t *q, struct request *rq) | ||
1354 | { | ||
1355 | struct as_data *ad = q->elevator->elevator_data; | ||
1356 | struct as_rq *arq = RQ_DATA(rq); | ||
1357 | struct as_rq *alias; | ||
1358 | int data_dir; | ||
1359 | |||
1360 | if (arq->state != AS_RQ_PRESCHED) { | ||
1361 | printk("arq->state: %d\n", arq->state); | ||
1362 | WARN_ON(1); | ||
1363 | } | ||
1364 | arq->state = AS_RQ_NEW; | ||
1365 | |||
1366 | if (rq_data_dir(arq->request) == READ | ||
1367 | || current->flags&PF_SYNCWRITE) | ||
1368 | arq->is_sync = 1; | ||
1369 | else | ||
1370 | arq->is_sync = 0; | ||
1371 | data_dir = arq->is_sync; | ||
1372 | |||
1373 | arq->io_context = as_get_io_context(); | ||
1374 | |||
1375 | if (arq->io_context) { | ||
1376 | as_update_iohist(ad, arq->io_context->aic, arq->request); | ||
1377 | atomic_inc(&arq->io_context->aic->nr_queued); | ||
1378 | } | ||
1379 | |||
1380 | alias = as_add_arq_rb(ad, arq); | ||
1381 | if (!alias) { | ||
1382 | /* | ||
1383 | * set expire time (only used for reads) and add to fifo list | ||
1384 | */ | ||
1385 | arq->expires = jiffies + ad->fifo_expire[data_dir]; | ||
1386 | list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]); | ||
1387 | |||
1388 | if (rq_mergeable(arq->request)) | ||
1389 | as_add_arq_hash(ad, arq); | ||
1390 | as_update_arq(ad, arq); /* keep state machine up to date */ | ||
1391 | |||
1392 | } else { | ||
1393 | as_add_aliased_request(ad, arq, alias); | ||
1394 | |||
1395 | /* | ||
1396 | * have we been anticipating this request? | ||
1397 | * or does it come from the same process as the one we are | ||
1398 | * anticipating for? | ||
1399 | */ | ||
1400 | if (ad->antic_status == ANTIC_WAIT_REQ | ||
1401 | || ad->antic_status == ANTIC_WAIT_NEXT) { | ||
1402 | if (as_can_break_anticipation(ad, arq)) | ||
1403 | as_antic_stop(ad); | ||
1404 | } | ||
1405 | } | ||
1406 | |||
1407 | arq->state = AS_RQ_QUEUED; | ||
1408 | } | ||
1409 | |||
1410 | static void as_activate_request(request_queue_t *q, struct request *rq) | ||
1411 | { | ||
1412 | struct as_rq *arq = RQ_DATA(rq); | ||
1413 | |||
1414 | WARN_ON(arq->state != AS_RQ_DISPATCHED); | ||
1415 | arq->state = AS_RQ_REMOVED; | ||
1416 | if (arq->io_context && arq->io_context->aic) | ||
1417 | atomic_dec(&arq->io_context->aic->nr_dispatched); | ||
1418 | } | ||
1419 | |||
1420 | static void as_deactivate_request(request_queue_t *q, struct request *rq) | ||
1421 | { | ||
1422 | struct as_rq *arq = RQ_DATA(rq); | ||
1423 | |||
1424 | WARN_ON(arq->state != AS_RQ_REMOVED); | ||
1425 | arq->state = AS_RQ_DISPATCHED; | ||
1426 | if (arq->io_context && arq->io_context->aic) | ||
1427 | atomic_inc(&arq->io_context->aic->nr_dispatched); | ||
1428 | } | ||
1429 | |||
1430 | /* | ||
1431 | * as_queue_empty tells us if there are requests left in the device. It may | ||
1432 | * not be the case that a driver can get the next request even if the queue | ||
1433 | * is not empty - it is used in the block layer to check for plugging and | ||
1434 | * merging opportunities | ||
1435 | */ | ||
1436 | static int as_queue_empty(request_queue_t *q) | ||
1437 | { | ||
1438 | struct as_data *ad = q->elevator->elevator_data; | ||
1439 | |||
1440 | return list_empty(&ad->fifo_list[REQ_ASYNC]) | ||
1441 | && list_empty(&ad->fifo_list[REQ_SYNC]); | ||
1442 | } | ||
1443 | |||
1444 | static struct request * | ||
1445 | as_former_request(request_queue_t *q, struct request *rq) | ||
1446 | { | ||
1447 | struct as_rq *arq = RQ_DATA(rq); | ||
1448 | struct rb_node *rbprev = rb_prev(&arq->rb_node); | ||
1449 | struct request *ret = NULL; | ||
1450 | |||
1451 | if (rbprev) | ||
1452 | ret = rb_entry_arq(rbprev)->request; | ||
1453 | |||
1454 | return ret; | ||
1455 | } | ||
1456 | |||
1457 | static struct request * | ||
1458 | as_latter_request(request_queue_t *q, struct request *rq) | ||
1459 | { | ||
1460 | struct as_rq *arq = RQ_DATA(rq); | ||
1461 | struct rb_node *rbnext = rb_next(&arq->rb_node); | ||
1462 | struct request *ret = NULL; | ||
1463 | |||
1464 | if (rbnext) | ||
1465 | ret = rb_entry_arq(rbnext)->request; | ||
1466 | |||
1467 | return ret; | ||
1468 | } | ||
1469 | |||
1470 | static int | ||
1471 | as_merge(request_queue_t *q, struct request **req, struct bio *bio) | ||
1472 | { | ||
1473 | struct as_data *ad = q->elevator->elevator_data; | ||
1474 | sector_t rb_key = bio->bi_sector + bio_sectors(bio); | ||
1475 | struct request *__rq; | ||
1476 | int ret; | ||
1477 | |||
1478 | /* | ||
1479 | * see if the merge hash can satisfy a back merge | ||
1480 | */ | ||
1481 | __rq = as_find_arq_hash(ad, bio->bi_sector); | ||
1482 | if (__rq) { | ||
1483 | BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector); | ||
1484 | |||
1485 | if (elv_rq_merge_ok(__rq, bio)) { | ||
1486 | ret = ELEVATOR_BACK_MERGE; | ||
1487 | goto out; | ||
1488 | } | ||
1489 | } | ||
1490 | |||
1491 | /* | ||
1492 | * check for front merge | ||
1493 | */ | ||
1494 | __rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio)); | ||
1495 | if (__rq) { | ||
1496 | BUG_ON(rb_key != rq_rb_key(__rq)); | ||
1497 | |||
1498 | if (elv_rq_merge_ok(__rq, bio)) { | ||
1499 | ret = ELEVATOR_FRONT_MERGE; | ||
1500 | goto out; | ||
1501 | } | ||
1502 | } | ||
1503 | |||
1504 | return ELEVATOR_NO_MERGE; | ||
1505 | out: | ||
1506 | if (ret) { | ||
1507 | if (rq_mergeable(__rq)) | ||
1508 | as_hot_arq_hash(ad, RQ_DATA(__rq)); | ||
1509 | } | ||
1510 | *req = __rq; | ||
1511 | return ret; | ||
1512 | } | ||
1513 | |||
1514 | static void as_merged_request(request_queue_t *q, struct request *req) | ||
1515 | { | ||
1516 | struct as_data *ad = q->elevator->elevator_data; | ||
1517 | struct as_rq *arq = RQ_DATA(req); | ||
1518 | |||
1519 | /* | ||
1520 | * hash always needs to be repositioned, key is end sector | ||
1521 | */ | ||
1522 | as_del_arq_hash(arq); | ||
1523 | as_add_arq_hash(ad, arq); | ||
1524 | |||
1525 | /* | ||
1526 | * if the merge was a front merge, we need to reposition request | ||
1527 | */ | ||
1528 | if (rq_rb_key(req) != arq->rb_key) { | ||
1529 | struct as_rq *alias, *next_arq = NULL; | ||
1530 | |||
1531 | if (ad->next_arq[arq->is_sync] == arq) | ||
1532 | next_arq = as_find_next_arq(ad, arq); | ||
1533 | |||
1534 | /* | ||
1535 | * Note! We should really be moving any old aliased requests | ||
1536 | * off this request and try to insert them into the rbtree. We | ||
1537 | * currently don't bother. Ditto the next function. | ||
1538 | */ | ||
1539 | as_del_arq_rb(ad, arq); | ||
1540 | if ((alias = as_add_arq_rb(ad, arq)) ) { | ||
1541 | list_del_init(&arq->fifo); | ||
1542 | as_add_aliased_request(ad, arq, alias); | ||
1543 | if (next_arq) | ||
1544 | ad->next_arq[arq->is_sync] = next_arq; | ||
1545 | } | ||
1546 | /* | ||
1547 | * Note! At this stage of this and the next function, our next | ||
1548 | * request may not be optimal - eg the request may have "grown" | ||
1549 | * behind the disk head. We currently don't bother adjusting. | ||
1550 | */ | ||
1551 | } | ||
1552 | } | ||
1553 | |||
1554 | static void | ||
1555 | as_merged_requests(request_queue_t *q, struct request *req, | ||
1556 | struct request *next) | ||
1557 | { | ||
1558 | struct as_data *ad = q->elevator->elevator_data; | ||
1559 | struct as_rq *arq = RQ_DATA(req); | ||
1560 | struct as_rq *anext = RQ_DATA(next); | ||
1561 | |||
1562 | BUG_ON(!arq); | ||
1563 | BUG_ON(!anext); | ||
1564 | |||
1565 | /* | ||
1566 | * reposition arq (this is the merged request) in hash, and in rbtree | ||
1567 | * in case of a front merge | ||
1568 | */ | ||
1569 | as_del_arq_hash(arq); | ||
1570 | as_add_arq_hash(ad, arq); | ||
1571 | |||
1572 | if (rq_rb_key(req) != arq->rb_key) { | ||
1573 | struct as_rq *alias, *next_arq = NULL; | ||
1574 | |||
1575 | if (ad->next_arq[arq->is_sync] == arq) | ||
1576 | next_arq = as_find_next_arq(ad, arq); | ||
1577 | |||
1578 | as_del_arq_rb(ad, arq); | ||
1579 | if ((alias = as_add_arq_rb(ad, arq)) ) { | ||
1580 | list_del_init(&arq->fifo); | ||
1581 | as_add_aliased_request(ad, arq, alias); | ||
1582 | if (next_arq) | ||
1583 | ad->next_arq[arq->is_sync] = next_arq; | ||
1584 | } | ||
1585 | } | ||
1586 | |||
1587 | /* | ||
1588 | * if anext expires before arq, assign its expire time to arq | ||
1589 | * and move into anext position (anext will be deleted) in fifo | ||
1590 | */ | ||
1591 | if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) { | ||
1592 | if (time_before(anext->expires, arq->expires)) { | ||
1593 | list_move(&arq->fifo, &anext->fifo); | ||
1594 | arq->expires = anext->expires; | ||
1595 | /* | ||
1596 | * Don't copy here but swap, because when anext is | ||
1597 | * removed below, it must contain the unused context | ||
1598 | */ | ||
1599 | swap_io_context(&arq->io_context, &anext->io_context); | ||
1600 | } | ||
1601 | } | ||
1602 | |||
1603 | /* | ||
1604 | * Transfer list of aliases | ||
1605 | */ | ||
1606 | while (!list_empty(&next->queuelist)) { | ||
1607 | struct request *__rq = list_entry_rq(next->queuelist.next); | ||
1608 | struct as_rq *__arq = RQ_DATA(__rq); | ||
1609 | |||
1610 | list_move_tail(&__rq->queuelist, &req->queuelist); | ||
1611 | |||
1612 | WARN_ON(__arq->state != AS_RQ_QUEUED); | ||
1613 | } | ||
1614 | |||
1615 | /* | ||
1616 | * kill knowledge of next, this one is a goner | ||
1617 | */ | ||
1618 | as_remove_queued_request(q, next); | ||
1619 | as_put_io_context(anext); | ||
1620 | |||
1621 | anext->state = AS_RQ_MERGED; | ||
1622 | } | ||
1623 | |||
1624 | /* | ||
1625 | * This is executed in a "deferred" process context, by kblockd. It calls the | ||
1626 | * driver's request_fn so the driver can submit that request. | ||
1627 | * | ||
1628 | * IMPORTANT! This guy will reenter the elevator, so set up all queue global | ||
1629 | * state before calling, and don't rely on any state over calls. | ||
1630 | * | ||
1631 | * FIXME! dispatch queue is not a queue at all! | ||
1632 | */ | ||
1633 | static void as_work_handler(void *data) | ||
1634 | { | ||
1635 | struct request_queue *q = data; | ||
1636 | unsigned long flags; | ||
1637 | |||
1638 | spin_lock_irqsave(q->queue_lock, flags); | ||
1639 | if (!as_queue_empty(q)) | ||
1640 | q->request_fn(q); | ||
1641 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
1642 | } | ||
1643 | |||
1644 | static void as_put_request(request_queue_t *q, struct request *rq) | ||
1645 | { | ||
1646 | struct as_data *ad = q->elevator->elevator_data; | ||
1647 | struct as_rq *arq = RQ_DATA(rq); | ||
1648 | |||
1649 | if (!arq) { | ||
1650 | WARN_ON(1); | ||
1651 | return; | ||
1652 | } | ||
1653 | |||
1654 | if (unlikely(arq->state != AS_RQ_POSTSCHED && | ||
1655 | arq->state != AS_RQ_PRESCHED && | ||
1656 | arq->state != AS_RQ_MERGED)) { | ||
1657 | printk("arq->state %d\n", arq->state); | ||
1658 | WARN_ON(1); | ||
1659 | } | ||
1660 | |||
1661 | mempool_free(arq, ad->arq_pool); | ||
1662 | rq->elevator_private = NULL; | ||
1663 | } | ||
1664 | |||
1665 | static int as_set_request(request_queue_t *q, struct request *rq, | ||
1666 | struct bio *bio, gfp_t gfp_mask) | ||
1667 | { | ||
1668 | struct as_data *ad = q->elevator->elevator_data; | ||
1669 | struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask); | ||
1670 | |||
1671 | if (arq) { | ||
1672 | memset(arq, 0, sizeof(*arq)); | ||
1673 | RB_CLEAR(&arq->rb_node); | ||
1674 | arq->request = rq; | ||
1675 | arq->state = AS_RQ_PRESCHED; | ||
1676 | arq->io_context = NULL; | ||
1677 | INIT_LIST_HEAD(&arq->hash); | ||
1678 | arq->on_hash = 0; | ||
1679 | INIT_LIST_HEAD(&arq->fifo); | ||
1680 | rq->elevator_private = arq; | ||
1681 | return 0; | ||
1682 | } | ||
1683 | |||
1684 | return 1; | ||
1685 | } | ||
1686 | |||
1687 | static int as_may_queue(request_queue_t *q, int rw, struct bio *bio) | ||
1688 | { | ||
1689 | int ret = ELV_MQUEUE_MAY; | ||
1690 | struct as_data *ad = q->elevator->elevator_data; | ||
1691 | struct io_context *ioc; | ||
1692 | if (ad->antic_status == ANTIC_WAIT_REQ || | ||
1693 | ad->antic_status == ANTIC_WAIT_NEXT) { | ||
1694 | ioc = as_get_io_context(); | ||
1695 | if (ad->io_context == ioc) | ||
1696 | ret = ELV_MQUEUE_MUST; | ||
1697 | put_io_context(ioc); | ||
1698 | } | ||
1699 | |||
1700 | return ret; | ||
1701 | } | ||
1702 | |||
1703 | static void as_exit_queue(elevator_t *e) | ||
1704 | { | ||
1705 | struct as_data *ad = e->elevator_data; | ||
1706 | |||
1707 | del_timer_sync(&ad->antic_timer); | ||
1708 | kblockd_flush(); | ||
1709 | |||
1710 | BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC])); | ||
1711 | BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC])); | ||
1712 | |||
1713 | mempool_destroy(ad->arq_pool); | ||
1714 | put_io_context(ad->io_context); | ||
1715 | kfree(ad->hash); | ||
1716 | kfree(ad); | ||
1717 | } | ||
1718 | |||
1719 | /* | ||
1720 | * initialize elevator private data (as_data), and alloc a arq for | ||
1721 | * each request on the free lists | ||
1722 | */ | ||
1723 | static int as_init_queue(request_queue_t *q, elevator_t *e) | ||
1724 | { | ||
1725 | struct as_data *ad; | ||
1726 | int i; | ||
1727 | |||
1728 | if (!arq_pool) | ||
1729 | return -ENOMEM; | ||
1730 | |||
1731 | ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node); | ||
1732 | if (!ad) | ||
1733 | return -ENOMEM; | ||
1734 | memset(ad, 0, sizeof(*ad)); | ||
1735 | |||
1736 | ad->q = q; /* Identify what queue the data belongs to */ | ||
1737 | |||
1738 | ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES, | ||
1739 | GFP_KERNEL, q->node); | ||
1740 | if (!ad->hash) { | ||
1741 | kfree(ad); | ||
1742 | return -ENOMEM; | ||
1743 | } | ||
1744 | |||
1745 | ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, | ||
1746 | mempool_free_slab, arq_pool, q->node); | ||
1747 | if (!ad->arq_pool) { | ||
1748 | kfree(ad->hash); | ||
1749 | kfree(ad); | ||
1750 | return -ENOMEM; | ||
1751 | } | ||
1752 | |||
1753 | /* anticipatory scheduling helpers */ | ||
1754 | ad->antic_timer.function = as_antic_timeout; | ||
1755 | ad->antic_timer.data = (unsigned long)q; | ||
1756 | init_timer(&ad->antic_timer); | ||
1757 | INIT_WORK(&ad->antic_work, as_work_handler, q); | ||
1758 | |||
1759 | for (i = 0; i < AS_HASH_ENTRIES; i++) | ||
1760 | INIT_LIST_HEAD(&ad->hash[i]); | ||
1761 | |||
1762 | INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]); | ||
1763 | INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]); | ||
1764 | ad->sort_list[REQ_SYNC] = RB_ROOT; | ||
1765 | ad->sort_list[REQ_ASYNC] = RB_ROOT; | ||
1766 | ad->fifo_expire[REQ_SYNC] = default_read_expire; | ||
1767 | ad->fifo_expire[REQ_ASYNC] = default_write_expire; | ||
1768 | ad->antic_expire = default_antic_expire; | ||
1769 | ad->batch_expire[REQ_SYNC] = default_read_batch_expire; | ||
1770 | ad->batch_expire[REQ_ASYNC] = default_write_batch_expire; | ||
1771 | e->elevator_data = ad; | ||
1772 | |||
1773 | ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC]; | ||
1774 | ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10; | ||
1775 | if (ad->write_batch_count < 2) | ||
1776 | ad->write_batch_count = 2; | ||
1777 | |||
1778 | return 0; | ||
1779 | } | ||
1780 | |||
1781 | /* | ||
1782 | * sysfs parts below | ||
1783 | */ | ||
1784 | struct as_fs_entry { | ||
1785 | struct attribute attr; | ||
1786 | ssize_t (*show)(struct as_data *, char *); | ||
1787 | ssize_t (*store)(struct as_data *, const char *, size_t); | ||
1788 | }; | ||
1789 | |||
1790 | static ssize_t | ||
1791 | as_var_show(unsigned int var, char *page) | ||
1792 | { | ||
1793 | return sprintf(page, "%d\n", var); | ||
1794 | } | ||
1795 | |||
1796 | static ssize_t | ||
1797 | as_var_store(unsigned long *var, const char *page, size_t count) | ||
1798 | { | ||
1799 | char *p = (char *) page; | ||
1800 | |||
1801 | *var = simple_strtoul(p, &p, 10); | ||
1802 | return count; | ||
1803 | } | ||
1804 | |||
1805 | static ssize_t as_est_show(struct as_data *ad, char *page) | ||
1806 | { | ||
1807 | int pos = 0; | ||
1808 | |||
1809 | pos += sprintf(page+pos, "%lu %% exit probability\n", 100*ad->exit_prob/256); | ||
1810 | pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean); | ||
1811 | pos += sprintf(page+pos, "%llu sectors new seek distance\n", (unsigned long long)ad->new_seek_mean); | ||
1812 | |||
1813 | return pos; | ||
1814 | } | ||
1815 | |||
1816 | #define SHOW_FUNCTION(__FUNC, __VAR) \ | ||
1817 | static ssize_t __FUNC(struct as_data *ad, char *page) \ | ||
1818 | { \ | ||
1819 | return as_var_show(jiffies_to_msecs((__VAR)), (page)); \ | ||
1820 | } | ||
1821 | SHOW_FUNCTION(as_readexpire_show, ad->fifo_expire[REQ_SYNC]); | ||
1822 | SHOW_FUNCTION(as_writeexpire_show, ad->fifo_expire[REQ_ASYNC]); | ||
1823 | SHOW_FUNCTION(as_anticexpire_show, ad->antic_expire); | ||
1824 | SHOW_FUNCTION(as_read_batchexpire_show, ad->batch_expire[REQ_SYNC]); | ||
1825 | SHOW_FUNCTION(as_write_batchexpire_show, ad->batch_expire[REQ_ASYNC]); | ||
1826 | #undef SHOW_FUNCTION | ||
1827 | |||
1828 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ | ||
1829 | static ssize_t __FUNC(struct as_data *ad, const char *page, size_t count) \ | ||
1830 | { \ | ||
1831 | int ret = as_var_store(__PTR, (page), count); \ | ||
1832 | if (*(__PTR) < (MIN)) \ | ||
1833 | *(__PTR) = (MIN); \ | ||
1834 | else if (*(__PTR) > (MAX)) \ | ||
1835 | *(__PTR) = (MAX); \ | ||
1836 | *(__PTR) = msecs_to_jiffies(*(__PTR)); \ | ||
1837 | return ret; \ | ||
1838 | } | ||
1839 | STORE_FUNCTION(as_readexpire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX); | ||
1840 | STORE_FUNCTION(as_writeexpire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX); | ||
1841 | STORE_FUNCTION(as_anticexpire_store, &ad->antic_expire, 0, INT_MAX); | ||
1842 | STORE_FUNCTION(as_read_batchexpire_store, | ||
1843 | &ad->batch_expire[REQ_SYNC], 0, INT_MAX); | ||
1844 | STORE_FUNCTION(as_write_batchexpire_store, | ||
1845 | &ad->batch_expire[REQ_ASYNC], 0, INT_MAX); | ||
1846 | #undef STORE_FUNCTION | ||
1847 | |||
1848 | static struct as_fs_entry as_est_entry = { | ||
1849 | .attr = {.name = "est_time", .mode = S_IRUGO }, | ||
1850 | .show = as_est_show, | ||
1851 | }; | ||
1852 | static struct as_fs_entry as_readexpire_entry = { | ||
1853 | .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1854 | .show = as_readexpire_show, | ||
1855 | .store = as_readexpire_store, | ||
1856 | }; | ||
1857 | static struct as_fs_entry as_writeexpire_entry = { | ||
1858 | .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1859 | .show = as_writeexpire_show, | ||
1860 | .store = as_writeexpire_store, | ||
1861 | }; | ||
1862 | static struct as_fs_entry as_anticexpire_entry = { | ||
1863 | .attr = {.name = "antic_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1864 | .show = as_anticexpire_show, | ||
1865 | .store = as_anticexpire_store, | ||
1866 | }; | ||
1867 | static struct as_fs_entry as_read_batchexpire_entry = { | ||
1868 | .attr = {.name = "read_batch_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1869 | .show = as_read_batchexpire_show, | ||
1870 | .store = as_read_batchexpire_store, | ||
1871 | }; | ||
1872 | static struct as_fs_entry as_write_batchexpire_entry = { | ||
1873 | .attr = {.name = "write_batch_expire", .mode = S_IRUGO | S_IWUSR }, | ||
1874 | .show = as_write_batchexpire_show, | ||
1875 | .store = as_write_batchexpire_store, | ||
1876 | }; | ||
1877 | |||
1878 | static struct attribute *default_attrs[] = { | ||
1879 | &as_est_entry.attr, | ||
1880 | &as_readexpire_entry.attr, | ||
1881 | &as_writeexpire_entry.attr, | ||
1882 | &as_anticexpire_entry.attr, | ||
1883 | &as_read_batchexpire_entry.attr, | ||
1884 | &as_write_batchexpire_entry.attr, | ||
1885 | NULL, | ||
1886 | }; | ||
1887 | |||
1888 | #define to_as(atr) container_of((atr), struct as_fs_entry, attr) | ||
1889 | |||
1890 | static ssize_t | ||
1891 | as_attr_show(struct kobject *kobj, struct attribute *attr, char *page) | ||
1892 | { | ||
1893 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
1894 | struct as_fs_entry *entry = to_as(attr); | ||
1895 | |||
1896 | if (!entry->show) | ||
1897 | return -EIO; | ||
1898 | |||
1899 | return entry->show(e->elevator_data, page); | ||
1900 | } | ||
1901 | |||
1902 | static ssize_t | ||
1903 | as_attr_store(struct kobject *kobj, struct attribute *attr, | ||
1904 | const char *page, size_t length) | ||
1905 | { | ||
1906 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
1907 | struct as_fs_entry *entry = to_as(attr); | ||
1908 | |||
1909 | if (!entry->store) | ||
1910 | return -EIO; | ||
1911 | |||
1912 | return entry->store(e->elevator_data, page, length); | ||
1913 | } | ||
1914 | |||
1915 | static struct sysfs_ops as_sysfs_ops = { | ||
1916 | .show = as_attr_show, | ||
1917 | .store = as_attr_store, | ||
1918 | }; | ||
1919 | |||
1920 | static struct kobj_type as_ktype = { | ||
1921 | .sysfs_ops = &as_sysfs_ops, | ||
1922 | .default_attrs = default_attrs, | ||
1923 | }; | ||
1924 | |||
1925 | static struct elevator_type iosched_as = { | ||
1926 | .ops = { | ||
1927 | .elevator_merge_fn = as_merge, | ||
1928 | .elevator_merged_fn = as_merged_request, | ||
1929 | .elevator_merge_req_fn = as_merged_requests, | ||
1930 | .elevator_dispatch_fn = as_dispatch_request, | ||
1931 | .elevator_add_req_fn = as_add_request, | ||
1932 | .elevator_activate_req_fn = as_activate_request, | ||
1933 | .elevator_deactivate_req_fn = as_deactivate_request, | ||
1934 | .elevator_queue_empty_fn = as_queue_empty, | ||
1935 | .elevator_completed_req_fn = as_completed_request, | ||
1936 | .elevator_former_req_fn = as_former_request, | ||
1937 | .elevator_latter_req_fn = as_latter_request, | ||
1938 | .elevator_set_req_fn = as_set_request, | ||
1939 | .elevator_put_req_fn = as_put_request, | ||
1940 | .elevator_may_queue_fn = as_may_queue, | ||
1941 | .elevator_init_fn = as_init_queue, | ||
1942 | .elevator_exit_fn = as_exit_queue, | ||
1943 | }, | ||
1944 | |||
1945 | .elevator_ktype = &as_ktype, | ||
1946 | .elevator_name = "anticipatory", | ||
1947 | .elevator_owner = THIS_MODULE, | ||
1948 | }; | ||
1949 | |||
1950 | static int __init as_init(void) | ||
1951 | { | ||
1952 | int ret; | ||
1953 | |||
1954 | arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq), | ||
1955 | 0, 0, NULL, NULL); | ||
1956 | if (!arq_pool) | ||
1957 | return -ENOMEM; | ||
1958 | |||
1959 | ret = elv_register(&iosched_as); | ||
1960 | if (!ret) { | ||
1961 | /* | ||
1962 | * don't allow AS to get unregistered, since we would have | ||
1963 | * to browse all tasks in the system and release their | ||
1964 | * as_io_context first | ||
1965 | */ | ||
1966 | __module_get(THIS_MODULE); | ||
1967 | return 0; | ||
1968 | } | ||
1969 | |||
1970 | kmem_cache_destroy(arq_pool); | ||
1971 | return ret; | ||
1972 | } | ||
1973 | |||
1974 | static void __exit as_exit(void) | ||
1975 | { | ||
1976 | elv_unregister(&iosched_as); | ||
1977 | kmem_cache_destroy(arq_pool); | ||
1978 | } | ||
1979 | |||
1980 | module_init(as_init); | ||
1981 | module_exit(as_exit); | ||
1982 | |||
1983 | MODULE_AUTHOR("Nick Piggin"); | ||
1984 | MODULE_LICENSE("GPL"); | ||
1985 | MODULE_DESCRIPTION("anticipatory IO scheduler"); | ||
diff --git a/drivers/block/cfq-iosched.c b/drivers/block/cfq-iosched.c deleted file mode 100644 index ecacca9c877e..000000000000 --- a/drivers/block/cfq-iosched.c +++ /dev/null | |||
@@ -1,2428 +0,0 @@ | |||
1 | /* | ||
2 | * linux/drivers/block/cfq-iosched.c | ||
3 | * | ||
4 | * CFQ, or complete fairness queueing, disk scheduler. | ||
5 | * | ||
6 | * Based on ideas from a previously unfinished io | ||
7 | * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli. | ||
8 | * | ||
9 | * Copyright (C) 2003 Jens Axboe <axboe@suse.de> | ||
10 | */ | ||
11 | #include <linux/kernel.h> | ||
12 | #include <linux/fs.h> | ||
13 | #include <linux/blkdev.h> | ||
14 | #include <linux/elevator.h> | ||
15 | #include <linux/bio.h> | ||
16 | #include <linux/config.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/slab.h> | ||
19 | #include <linux/init.h> | ||
20 | #include <linux/compiler.h> | ||
21 | #include <linux/hash.h> | ||
22 | #include <linux/rbtree.h> | ||
23 | #include <linux/mempool.h> | ||
24 | #include <linux/ioprio.h> | ||
25 | #include <linux/writeback.h> | ||
26 | |||
27 | /* | ||
28 | * tunables | ||
29 | */ | ||
30 | static int cfq_quantum = 4; /* max queue in one round of service */ | ||
31 | static int cfq_queued = 8; /* minimum rq allocate limit per-queue*/ | ||
32 | static int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 }; | ||
33 | static int cfq_back_max = 16 * 1024; /* maximum backwards seek, in KiB */ | ||
34 | static int cfq_back_penalty = 2; /* penalty of a backwards seek */ | ||
35 | |||
36 | static int cfq_slice_sync = HZ / 10; | ||
37 | static int cfq_slice_async = HZ / 25; | ||
38 | static int cfq_slice_async_rq = 2; | ||
39 | static int cfq_slice_idle = HZ / 100; | ||
40 | |||
41 | #define CFQ_IDLE_GRACE (HZ / 10) | ||
42 | #define CFQ_SLICE_SCALE (5) | ||
43 | |||
44 | #define CFQ_KEY_ASYNC (0) | ||
45 | #define CFQ_KEY_ANY (0xffff) | ||
46 | |||
47 | /* | ||
48 | * disable queueing at the driver/hardware level | ||
49 | */ | ||
50 | static int cfq_max_depth = 2; | ||
51 | |||
52 | /* | ||
53 | * for the hash of cfqq inside the cfqd | ||
54 | */ | ||
55 | #define CFQ_QHASH_SHIFT 6 | ||
56 | #define CFQ_QHASH_ENTRIES (1 << CFQ_QHASH_SHIFT) | ||
57 | #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash) | ||
58 | |||
59 | /* | ||
60 | * for the hash of crq inside the cfqq | ||
61 | */ | ||
62 | #define CFQ_MHASH_SHIFT 6 | ||
63 | #define CFQ_MHASH_BLOCK(sec) ((sec) >> 3) | ||
64 | #define CFQ_MHASH_ENTRIES (1 << CFQ_MHASH_SHIFT) | ||
65 | #define CFQ_MHASH_FN(sec) hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT) | ||
66 | #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) | ||
67 | #define list_entry_hash(ptr) hlist_entry((ptr), struct cfq_rq, hash) | ||
68 | |||
69 | #define list_entry_cfqq(ptr) list_entry((ptr), struct cfq_queue, cfq_list) | ||
70 | #define list_entry_fifo(ptr) list_entry((ptr), struct request, queuelist) | ||
71 | |||
72 | #define RQ_DATA(rq) (rq)->elevator_private | ||
73 | |||
74 | /* | ||
75 | * rb-tree defines | ||
76 | */ | ||
77 | #define RB_NONE (2) | ||
78 | #define RB_EMPTY(node) ((node)->rb_node == NULL) | ||
79 | #define RB_CLEAR_COLOR(node) (node)->rb_color = RB_NONE | ||
80 | #define RB_CLEAR(node) do { \ | ||
81 | (node)->rb_parent = NULL; \ | ||
82 | RB_CLEAR_COLOR((node)); \ | ||
83 | (node)->rb_right = NULL; \ | ||
84 | (node)->rb_left = NULL; \ | ||
85 | } while (0) | ||
86 | #define RB_CLEAR_ROOT(root) ((root)->rb_node = NULL) | ||
87 | #define rb_entry_crq(node) rb_entry((node), struct cfq_rq, rb_node) | ||
88 | #define rq_rb_key(rq) (rq)->sector | ||
89 | |||
90 | static kmem_cache_t *crq_pool; | ||
91 | static kmem_cache_t *cfq_pool; | ||
92 | static kmem_cache_t *cfq_ioc_pool; | ||
93 | |||
94 | #define CFQ_PRIO_LISTS IOPRIO_BE_NR | ||
95 | #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE) | ||
96 | #define cfq_class_be(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_BE) | ||
97 | #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT) | ||
98 | |||
99 | #define ASYNC (0) | ||
100 | #define SYNC (1) | ||
101 | |||
102 | #define cfq_cfqq_dispatched(cfqq) \ | ||
103 | ((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC]) | ||
104 | |||
105 | #define cfq_cfqq_class_sync(cfqq) ((cfqq)->key != CFQ_KEY_ASYNC) | ||
106 | |||
107 | #define cfq_cfqq_sync(cfqq) \ | ||
108 | (cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC]) | ||
109 | |||
110 | /* | ||
111 | * Per block device queue structure | ||
112 | */ | ||
113 | struct cfq_data { | ||
114 | atomic_t ref; | ||
115 | request_queue_t *queue; | ||
116 | |||
117 | /* | ||
118 | * rr list of queues with requests and the count of them | ||
119 | */ | ||
120 | struct list_head rr_list[CFQ_PRIO_LISTS]; | ||
121 | struct list_head busy_rr; | ||
122 | struct list_head cur_rr; | ||
123 | struct list_head idle_rr; | ||
124 | unsigned int busy_queues; | ||
125 | |||
126 | /* | ||
127 | * non-ordered list of empty cfqq's | ||
128 | */ | ||
129 | struct list_head empty_list; | ||
130 | |||
131 | /* | ||
132 | * cfqq lookup hash | ||
133 | */ | ||
134 | struct hlist_head *cfq_hash; | ||
135 | |||
136 | /* | ||
137 | * global crq hash for all queues | ||
138 | */ | ||
139 | struct hlist_head *crq_hash; | ||
140 | |||
141 | unsigned int max_queued; | ||
142 | |||
143 | mempool_t *crq_pool; | ||
144 | |||
145 | int rq_in_driver; | ||
146 | |||
147 | /* | ||
148 | * schedule slice state info | ||
149 | */ | ||
150 | /* | ||
151 | * idle window management | ||
152 | */ | ||
153 | struct timer_list idle_slice_timer; | ||
154 | struct work_struct unplug_work; | ||
155 | |||
156 | struct cfq_queue *active_queue; | ||
157 | struct cfq_io_context *active_cic; | ||
158 | int cur_prio, cur_end_prio; | ||
159 | unsigned int dispatch_slice; | ||
160 | |||
161 | struct timer_list idle_class_timer; | ||
162 | |||
163 | sector_t last_sector; | ||
164 | unsigned long last_end_request; | ||
165 | |||
166 | unsigned int rq_starved; | ||
167 | |||
168 | /* | ||
169 | * tunables, see top of file | ||
170 | */ | ||
171 | unsigned int cfq_quantum; | ||
172 | unsigned int cfq_queued; | ||
173 | unsigned int cfq_fifo_expire[2]; | ||
174 | unsigned int cfq_back_penalty; | ||
175 | unsigned int cfq_back_max; | ||
176 | unsigned int cfq_slice[2]; | ||
177 | unsigned int cfq_slice_async_rq; | ||
178 | unsigned int cfq_slice_idle; | ||
179 | unsigned int cfq_max_depth; | ||
180 | }; | ||
181 | |||
182 | /* | ||
183 | * Per process-grouping structure | ||
184 | */ | ||
185 | struct cfq_queue { | ||
186 | /* reference count */ | ||
187 | atomic_t ref; | ||
188 | /* parent cfq_data */ | ||
189 | struct cfq_data *cfqd; | ||
190 | /* cfqq lookup hash */ | ||
191 | struct hlist_node cfq_hash; | ||
192 | /* hash key */ | ||
193 | unsigned int key; | ||
194 | /* on either rr or empty list of cfqd */ | ||
195 | struct list_head cfq_list; | ||
196 | /* sorted list of pending requests */ | ||
197 | struct rb_root sort_list; | ||
198 | /* if fifo isn't expired, next request to serve */ | ||
199 | struct cfq_rq *next_crq; | ||
200 | /* requests queued in sort_list */ | ||
201 | int queued[2]; | ||
202 | /* currently allocated requests */ | ||
203 | int allocated[2]; | ||
204 | /* fifo list of requests in sort_list */ | ||
205 | struct list_head fifo; | ||
206 | |||
207 | unsigned long slice_start; | ||
208 | unsigned long slice_end; | ||
209 | unsigned long slice_left; | ||
210 | unsigned long service_last; | ||
211 | |||
212 | /* number of requests that are on the dispatch list */ | ||
213 | int on_dispatch[2]; | ||
214 | |||
215 | /* io prio of this group */ | ||
216 | unsigned short ioprio, org_ioprio; | ||
217 | unsigned short ioprio_class, org_ioprio_class; | ||
218 | |||
219 | /* various state flags, see below */ | ||
220 | unsigned int flags; | ||
221 | }; | ||
222 | |||
223 | struct cfq_rq { | ||
224 | struct rb_node rb_node; | ||
225 | sector_t rb_key; | ||
226 | struct request *request; | ||
227 | struct hlist_node hash; | ||
228 | |||
229 | struct cfq_queue *cfq_queue; | ||
230 | struct cfq_io_context *io_context; | ||
231 | |||
232 | unsigned int crq_flags; | ||
233 | }; | ||
234 | |||
235 | enum cfqq_state_flags { | ||
236 | CFQ_CFQQ_FLAG_on_rr = 0, | ||
237 | CFQ_CFQQ_FLAG_wait_request, | ||
238 | CFQ_CFQQ_FLAG_must_alloc, | ||
239 | CFQ_CFQQ_FLAG_must_alloc_slice, | ||
240 | CFQ_CFQQ_FLAG_must_dispatch, | ||
241 | CFQ_CFQQ_FLAG_fifo_expire, | ||
242 | CFQ_CFQQ_FLAG_idle_window, | ||
243 | CFQ_CFQQ_FLAG_prio_changed, | ||
244 | CFQ_CFQQ_FLAG_expired, | ||
245 | }; | ||
246 | |||
247 | #define CFQ_CFQQ_FNS(name) \ | ||
248 | static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \ | ||
249 | { \ | ||
250 | cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name); \ | ||
251 | } \ | ||
252 | static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \ | ||
253 | { \ | ||
254 | cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \ | ||
255 | } \ | ||
256 | static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \ | ||
257 | { \ | ||
258 | return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \ | ||
259 | } | ||
260 | |||
261 | CFQ_CFQQ_FNS(on_rr); | ||
262 | CFQ_CFQQ_FNS(wait_request); | ||
263 | CFQ_CFQQ_FNS(must_alloc); | ||
264 | CFQ_CFQQ_FNS(must_alloc_slice); | ||
265 | CFQ_CFQQ_FNS(must_dispatch); | ||
266 | CFQ_CFQQ_FNS(fifo_expire); | ||
267 | CFQ_CFQQ_FNS(idle_window); | ||
268 | CFQ_CFQQ_FNS(prio_changed); | ||
269 | CFQ_CFQQ_FNS(expired); | ||
270 | #undef CFQ_CFQQ_FNS | ||
271 | |||
272 | enum cfq_rq_state_flags { | ||
273 | CFQ_CRQ_FLAG_is_sync = 0, | ||
274 | }; | ||
275 | |||
276 | #define CFQ_CRQ_FNS(name) \ | ||
277 | static inline void cfq_mark_crq_##name(struct cfq_rq *crq) \ | ||
278 | { \ | ||
279 | crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name); \ | ||
280 | } \ | ||
281 | static inline void cfq_clear_crq_##name(struct cfq_rq *crq) \ | ||
282 | { \ | ||
283 | crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name); \ | ||
284 | } \ | ||
285 | static inline int cfq_crq_##name(const struct cfq_rq *crq) \ | ||
286 | { \ | ||
287 | return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0; \ | ||
288 | } | ||
289 | |||
290 | CFQ_CRQ_FNS(is_sync); | ||
291 | #undef CFQ_CRQ_FNS | ||
292 | |||
293 | static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short); | ||
294 | static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *); | ||
295 | static void cfq_put_cfqd(struct cfq_data *cfqd); | ||
296 | |||
297 | #define process_sync(tsk) ((tsk)->flags & PF_SYNCWRITE) | ||
298 | |||
299 | /* | ||
300 | * lots of deadline iosched dupes, can be abstracted later... | ||
301 | */ | ||
302 | static inline void cfq_del_crq_hash(struct cfq_rq *crq) | ||
303 | { | ||
304 | hlist_del_init(&crq->hash); | ||
305 | } | ||
306 | |||
307 | static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq) | ||
308 | { | ||
309 | const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request)); | ||
310 | |||
311 | hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]); | ||
312 | } | ||
313 | |||
314 | static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset) | ||
315 | { | ||
316 | struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)]; | ||
317 | struct hlist_node *entry, *next; | ||
318 | |||
319 | hlist_for_each_safe(entry, next, hash_list) { | ||
320 | struct cfq_rq *crq = list_entry_hash(entry); | ||
321 | struct request *__rq = crq->request; | ||
322 | |||
323 | if (!rq_mergeable(__rq)) { | ||
324 | cfq_del_crq_hash(crq); | ||
325 | continue; | ||
326 | } | ||
327 | |||
328 | if (rq_hash_key(__rq) == offset) | ||
329 | return __rq; | ||
330 | } | ||
331 | |||
332 | return NULL; | ||
333 | } | ||
334 | |||
335 | /* | ||
336 | * scheduler run of queue, if there are requests pending and no one in the | ||
337 | * driver that will restart queueing | ||
338 | */ | ||
339 | static inline void cfq_schedule_dispatch(struct cfq_data *cfqd) | ||
340 | { | ||
341 | if (!cfqd->rq_in_driver && cfqd->busy_queues) | ||
342 | kblockd_schedule_work(&cfqd->unplug_work); | ||
343 | } | ||
344 | |||
345 | static int cfq_queue_empty(request_queue_t *q) | ||
346 | { | ||
347 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
348 | |||
349 | return !cfqd->busy_queues; | ||
350 | } | ||
351 | |||
352 | /* | ||
353 | * Lifted from AS - choose which of crq1 and crq2 that is best served now. | ||
354 | * We choose the request that is closest to the head right now. Distance | ||
355 | * behind the head are penalized and only allowed to a certain extent. | ||
356 | */ | ||
357 | static struct cfq_rq * | ||
358 | cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2) | ||
359 | { | ||
360 | sector_t last, s1, s2, d1 = 0, d2 = 0; | ||
361 | int r1_wrap = 0, r2_wrap = 0; /* requests are behind the disk head */ | ||
362 | unsigned long back_max; | ||
363 | |||
364 | if (crq1 == NULL || crq1 == crq2) | ||
365 | return crq2; | ||
366 | if (crq2 == NULL) | ||
367 | return crq1; | ||
368 | |||
369 | if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2)) | ||
370 | return crq1; | ||
371 | else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1)) | ||
372 | return crq2; | ||
373 | |||
374 | s1 = crq1->request->sector; | ||
375 | s2 = crq2->request->sector; | ||
376 | |||
377 | last = cfqd->last_sector; | ||
378 | |||
379 | /* | ||
380 | * by definition, 1KiB is 2 sectors | ||
381 | */ | ||
382 | back_max = cfqd->cfq_back_max * 2; | ||
383 | |||
384 | /* | ||
385 | * Strict one way elevator _except_ in the case where we allow | ||
386 | * short backward seeks which are biased as twice the cost of a | ||
387 | * similar forward seek. | ||
388 | */ | ||
389 | if (s1 >= last) | ||
390 | d1 = s1 - last; | ||
391 | else if (s1 + back_max >= last) | ||
392 | d1 = (last - s1) * cfqd->cfq_back_penalty; | ||
393 | else | ||
394 | r1_wrap = 1; | ||
395 | |||
396 | if (s2 >= last) | ||
397 | d2 = s2 - last; | ||
398 | else if (s2 + back_max >= last) | ||
399 | d2 = (last - s2) * cfqd->cfq_back_penalty; | ||
400 | else | ||
401 | r2_wrap = 1; | ||
402 | |||
403 | /* Found required data */ | ||
404 | if (!r1_wrap && r2_wrap) | ||
405 | return crq1; | ||
406 | else if (!r2_wrap && r1_wrap) | ||
407 | return crq2; | ||
408 | else if (r1_wrap && r2_wrap) { | ||
409 | /* both behind the head */ | ||
410 | if (s1 <= s2) | ||
411 | return crq1; | ||
412 | else | ||
413 | return crq2; | ||
414 | } | ||
415 | |||
416 | /* Both requests in front of the head */ | ||
417 | if (d1 < d2) | ||
418 | return crq1; | ||
419 | else if (d2 < d1) | ||
420 | return crq2; | ||
421 | else { | ||
422 | if (s1 >= s2) | ||
423 | return crq1; | ||
424 | else | ||
425 | return crq2; | ||
426 | } | ||
427 | } | ||
428 | |||
429 | /* | ||
430 | * would be nice to take fifo expire time into account as well | ||
431 | */ | ||
432 | static struct cfq_rq * | ||
433 | cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq, | ||
434 | struct cfq_rq *last) | ||
435 | { | ||
436 | struct cfq_rq *crq_next = NULL, *crq_prev = NULL; | ||
437 | struct rb_node *rbnext, *rbprev; | ||
438 | |||
439 | if (!(rbnext = rb_next(&last->rb_node))) { | ||
440 | rbnext = rb_first(&cfqq->sort_list); | ||
441 | if (rbnext == &last->rb_node) | ||
442 | rbnext = NULL; | ||
443 | } | ||
444 | |||
445 | rbprev = rb_prev(&last->rb_node); | ||
446 | |||
447 | if (rbprev) | ||
448 | crq_prev = rb_entry_crq(rbprev); | ||
449 | if (rbnext) | ||
450 | crq_next = rb_entry_crq(rbnext); | ||
451 | |||
452 | return cfq_choose_req(cfqd, crq_next, crq_prev); | ||
453 | } | ||
454 | |||
455 | static void cfq_update_next_crq(struct cfq_rq *crq) | ||
456 | { | ||
457 | struct cfq_queue *cfqq = crq->cfq_queue; | ||
458 | |||
459 | if (cfqq->next_crq == crq) | ||
460 | cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq); | ||
461 | } | ||
462 | |||
463 | static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted) | ||
464 | { | ||
465 | struct cfq_data *cfqd = cfqq->cfqd; | ||
466 | struct list_head *list, *entry; | ||
467 | |||
468 | BUG_ON(!cfq_cfqq_on_rr(cfqq)); | ||
469 | |||
470 | list_del(&cfqq->cfq_list); | ||
471 | |||
472 | if (cfq_class_rt(cfqq)) | ||
473 | list = &cfqd->cur_rr; | ||
474 | else if (cfq_class_idle(cfqq)) | ||
475 | list = &cfqd->idle_rr; | ||
476 | else { | ||
477 | /* | ||
478 | * if cfqq has requests in flight, don't allow it to be | ||
479 | * found in cfq_set_active_queue before it has finished them. | ||
480 | * this is done to increase fairness between a process that | ||
481 | * has lots of io pending vs one that only generates one | ||
482 | * sporadically or synchronously | ||
483 | */ | ||
484 | if (cfq_cfqq_dispatched(cfqq)) | ||
485 | list = &cfqd->busy_rr; | ||
486 | else | ||
487 | list = &cfqd->rr_list[cfqq->ioprio]; | ||
488 | } | ||
489 | |||
490 | /* | ||
491 | * if queue was preempted, just add to front to be fair. busy_rr | ||
492 | * isn't sorted. | ||
493 | */ | ||
494 | if (preempted || list == &cfqd->busy_rr) { | ||
495 | list_add(&cfqq->cfq_list, list); | ||
496 | return; | ||
497 | } | ||
498 | |||
499 | /* | ||
500 | * sort by when queue was last serviced | ||
501 | */ | ||
502 | entry = list; | ||
503 | while ((entry = entry->prev) != list) { | ||
504 | struct cfq_queue *__cfqq = list_entry_cfqq(entry); | ||
505 | |||
506 | if (!__cfqq->service_last) | ||
507 | break; | ||
508 | if (time_before(__cfqq->service_last, cfqq->service_last)) | ||
509 | break; | ||
510 | } | ||
511 | |||
512 | list_add(&cfqq->cfq_list, entry); | ||
513 | } | ||
514 | |||
515 | /* | ||
516 | * add to busy list of queues for service, trying to be fair in ordering | ||
517 | * the pending list according to last request service | ||
518 | */ | ||
519 | static inline void | ||
520 | cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) | ||
521 | { | ||
522 | BUG_ON(cfq_cfqq_on_rr(cfqq)); | ||
523 | cfq_mark_cfqq_on_rr(cfqq); | ||
524 | cfqd->busy_queues++; | ||
525 | |||
526 | cfq_resort_rr_list(cfqq, 0); | ||
527 | } | ||
528 | |||
529 | static inline void | ||
530 | cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq) | ||
531 | { | ||
532 | BUG_ON(!cfq_cfqq_on_rr(cfqq)); | ||
533 | cfq_clear_cfqq_on_rr(cfqq); | ||
534 | list_move(&cfqq->cfq_list, &cfqd->empty_list); | ||
535 | |||
536 | BUG_ON(!cfqd->busy_queues); | ||
537 | cfqd->busy_queues--; | ||
538 | } | ||
539 | |||
540 | /* | ||
541 | * rb tree support functions | ||
542 | */ | ||
543 | static inline void cfq_del_crq_rb(struct cfq_rq *crq) | ||
544 | { | ||
545 | struct cfq_queue *cfqq = crq->cfq_queue; | ||
546 | struct cfq_data *cfqd = cfqq->cfqd; | ||
547 | const int sync = cfq_crq_is_sync(crq); | ||
548 | |||
549 | BUG_ON(!cfqq->queued[sync]); | ||
550 | cfqq->queued[sync]--; | ||
551 | |||
552 | cfq_update_next_crq(crq); | ||
553 | |||
554 | rb_erase(&crq->rb_node, &cfqq->sort_list); | ||
555 | RB_CLEAR_COLOR(&crq->rb_node); | ||
556 | |||
557 | if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list)) | ||
558 | cfq_del_cfqq_rr(cfqd, cfqq); | ||
559 | } | ||
560 | |||
561 | static struct cfq_rq * | ||
562 | __cfq_add_crq_rb(struct cfq_rq *crq) | ||
563 | { | ||
564 | struct rb_node **p = &crq->cfq_queue->sort_list.rb_node; | ||
565 | struct rb_node *parent = NULL; | ||
566 | struct cfq_rq *__crq; | ||
567 | |||
568 | while (*p) { | ||
569 | parent = *p; | ||
570 | __crq = rb_entry_crq(parent); | ||
571 | |||
572 | if (crq->rb_key < __crq->rb_key) | ||
573 | p = &(*p)->rb_left; | ||
574 | else if (crq->rb_key > __crq->rb_key) | ||
575 | p = &(*p)->rb_right; | ||
576 | else | ||
577 | return __crq; | ||
578 | } | ||
579 | |||
580 | rb_link_node(&crq->rb_node, parent, p); | ||
581 | return NULL; | ||
582 | } | ||
583 | |||
584 | static void cfq_add_crq_rb(struct cfq_rq *crq) | ||
585 | { | ||
586 | struct cfq_queue *cfqq = crq->cfq_queue; | ||
587 | struct cfq_data *cfqd = cfqq->cfqd; | ||
588 | struct request *rq = crq->request; | ||
589 | struct cfq_rq *__alias; | ||
590 | |||
591 | crq->rb_key = rq_rb_key(rq); | ||
592 | cfqq->queued[cfq_crq_is_sync(crq)]++; | ||
593 | |||
594 | /* | ||
595 | * looks a little odd, but the first insert might return an alias. | ||
596 | * if that happens, put the alias on the dispatch list | ||
597 | */ | ||
598 | while ((__alias = __cfq_add_crq_rb(crq)) != NULL) | ||
599 | cfq_dispatch_insert(cfqd->queue, __alias); | ||
600 | |||
601 | rb_insert_color(&crq->rb_node, &cfqq->sort_list); | ||
602 | |||
603 | if (!cfq_cfqq_on_rr(cfqq)) | ||
604 | cfq_add_cfqq_rr(cfqd, cfqq); | ||
605 | |||
606 | /* | ||
607 | * check if this request is a better next-serve candidate | ||
608 | */ | ||
609 | cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq); | ||
610 | } | ||
611 | |||
612 | static inline void | ||
613 | cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq) | ||
614 | { | ||
615 | rb_erase(&crq->rb_node, &cfqq->sort_list); | ||
616 | cfqq->queued[cfq_crq_is_sync(crq)]--; | ||
617 | |||
618 | cfq_add_crq_rb(crq); | ||
619 | } | ||
620 | |||
621 | static struct request *cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector) | ||
622 | |||
623 | { | ||
624 | struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, current->pid, CFQ_KEY_ANY); | ||
625 | struct rb_node *n; | ||
626 | |||
627 | if (!cfqq) | ||
628 | goto out; | ||
629 | |||
630 | n = cfqq->sort_list.rb_node; | ||
631 | while (n) { | ||
632 | struct cfq_rq *crq = rb_entry_crq(n); | ||
633 | |||
634 | if (sector < crq->rb_key) | ||
635 | n = n->rb_left; | ||
636 | else if (sector > crq->rb_key) | ||
637 | n = n->rb_right; | ||
638 | else | ||
639 | return crq->request; | ||
640 | } | ||
641 | |||
642 | out: | ||
643 | return NULL; | ||
644 | } | ||
645 | |||
646 | static void cfq_activate_request(request_queue_t *q, struct request *rq) | ||
647 | { | ||
648 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
649 | |||
650 | cfqd->rq_in_driver++; | ||
651 | } | ||
652 | |||
653 | static void cfq_deactivate_request(request_queue_t *q, struct request *rq) | ||
654 | { | ||
655 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
656 | |||
657 | WARN_ON(!cfqd->rq_in_driver); | ||
658 | cfqd->rq_in_driver--; | ||
659 | } | ||
660 | |||
661 | static void cfq_remove_request(struct request *rq) | ||
662 | { | ||
663 | struct cfq_rq *crq = RQ_DATA(rq); | ||
664 | |||
665 | list_del_init(&rq->queuelist); | ||
666 | cfq_del_crq_rb(crq); | ||
667 | cfq_del_crq_hash(crq); | ||
668 | } | ||
669 | |||
670 | static int | ||
671 | cfq_merge(request_queue_t *q, struct request **req, struct bio *bio) | ||
672 | { | ||
673 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
674 | struct request *__rq; | ||
675 | int ret; | ||
676 | |||
677 | __rq = cfq_find_rq_hash(cfqd, bio->bi_sector); | ||
678 | if (__rq && elv_rq_merge_ok(__rq, bio)) { | ||
679 | ret = ELEVATOR_BACK_MERGE; | ||
680 | goto out; | ||
681 | } | ||
682 | |||
683 | __rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio)); | ||
684 | if (__rq && elv_rq_merge_ok(__rq, bio)) { | ||
685 | ret = ELEVATOR_FRONT_MERGE; | ||
686 | goto out; | ||
687 | } | ||
688 | |||
689 | return ELEVATOR_NO_MERGE; | ||
690 | out: | ||
691 | *req = __rq; | ||
692 | return ret; | ||
693 | } | ||
694 | |||
695 | static void cfq_merged_request(request_queue_t *q, struct request *req) | ||
696 | { | ||
697 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
698 | struct cfq_rq *crq = RQ_DATA(req); | ||
699 | |||
700 | cfq_del_crq_hash(crq); | ||
701 | cfq_add_crq_hash(cfqd, crq); | ||
702 | |||
703 | if (rq_rb_key(req) != crq->rb_key) { | ||
704 | struct cfq_queue *cfqq = crq->cfq_queue; | ||
705 | |||
706 | cfq_update_next_crq(crq); | ||
707 | cfq_reposition_crq_rb(cfqq, crq); | ||
708 | } | ||
709 | } | ||
710 | |||
711 | static void | ||
712 | cfq_merged_requests(request_queue_t *q, struct request *rq, | ||
713 | struct request *next) | ||
714 | { | ||
715 | cfq_merged_request(q, rq); | ||
716 | |||
717 | /* | ||
718 | * reposition in fifo if next is older than rq | ||
719 | */ | ||
720 | if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && | ||
721 | time_before(next->start_time, rq->start_time)) | ||
722 | list_move(&rq->queuelist, &next->queuelist); | ||
723 | |||
724 | cfq_remove_request(next); | ||
725 | } | ||
726 | |||
727 | static inline void | ||
728 | __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) | ||
729 | { | ||
730 | if (cfqq) { | ||
731 | /* | ||
732 | * stop potential idle class queues waiting service | ||
733 | */ | ||
734 | del_timer(&cfqd->idle_class_timer); | ||
735 | |||
736 | cfqq->slice_start = jiffies; | ||
737 | cfqq->slice_end = 0; | ||
738 | cfqq->slice_left = 0; | ||
739 | cfq_clear_cfqq_must_alloc_slice(cfqq); | ||
740 | cfq_clear_cfqq_fifo_expire(cfqq); | ||
741 | cfq_clear_cfqq_expired(cfqq); | ||
742 | } | ||
743 | |||
744 | cfqd->active_queue = cfqq; | ||
745 | } | ||
746 | |||
747 | /* | ||
748 | * 0 | ||
749 | * 0,1 | ||
750 | * 0,1,2 | ||
751 | * 0,1,2,3 | ||
752 | * 0,1,2,3,4 | ||
753 | * 0,1,2,3,4,5 | ||
754 | * 0,1,2,3,4,5,6 | ||
755 | * 0,1,2,3,4,5,6,7 | ||
756 | */ | ||
757 | static int cfq_get_next_prio_level(struct cfq_data *cfqd) | ||
758 | { | ||
759 | int prio, wrap; | ||
760 | |||
761 | prio = -1; | ||
762 | wrap = 0; | ||
763 | do { | ||
764 | int p; | ||
765 | |||
766 | for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) { | ||
767 | if (!list_empty(&cfqd->rr_list[p])) { | ||
768 | prio = p; | ||
769 | break; | ||
770 | } | ||
771 | } | ||
772 | |||
773 | if (prio != -1) | ||
774 | break; | ||
775 | cfqd->cur_prio = 0; | ||
776 | if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) { | ||
777 | cfqd->cur_end_prio = 0; | ||
778 | if (wrap) | ||
779 | break; | ||
780 | wrap = 1; | ||
781 | } | ||
782 | } while (1); | ||
783 | |||
784 | if (unlikely(prio == -1)) | ||
785 | return -1; | ||
786 | |||
787 | BUG_ON(prio >= CFQ_PRIO_LISTS); | ||
788 | |||
789 | list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr); | ||
790 | |||
791 | cfqd->cur_prio = prio + 1; | ||
792 | if (cfqd->cur_prio > cfqd->cur_end_prio) { | ||
793 | cfqd->cur_end_prio = cfqd->cur_prio; | ||
794 | cfqd->cur_prio = 0; | ||
795 | } | ||
796 | if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) { | ||
797 | cfqd->cur_prio = 0; | ||
798 | cfqd->cur_end_prio = 0; | ||
799 | } | ||
800 | |||
801 | return prio; | ||
802 | } | ||
803 | |||
804 | static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd) | ||
805 | { | ||
806 | struct cfq_queue *cfqq; | ||
807 | |||
808 | /* | ||
809 | * if current queue is expired but not done with its requests yet, | ||
810 | * wait for that to happen | ||
811 | */ | ||
812 | if ((cfqq = cfqd->active_queue) != NULL) { | ||
813 | if (cfq_cfqq_expired(cfqq) && cfq_cfqq_dispatched(cfqq)) | ||
814 | return NULL; | ||
815 | } | ||
816 | |||
817 | /* | ||
818 | * if current list is non-empty, grab first entry. if it is empty, | ||
819 | * get next prio level and grab first entry then if any are spliced | ||
820 | */ | ||
821 | if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) | ||
822 | cfqq = list_entry_cfqq(cfqd->cur_rr.next); | ||
823 | |||
824 | /* | ||
825 | * if we have idle queues and no rt or be queues had pending | ||
826 | * requests, either allow immediate service if the grace period | ||
827 | * has passed or arm the idle grace timer | ||
828 | */ | ||
829 | if (!cfqq && !list_empty(&cfqd->idle_rr)) { | ||
830 | unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE; | ||
831 | |||
832 | if (time_after_eq(jiffies, end)) | ||
833 | cfqq = list_entry_cfqq(cfqd->idle_rr.next); | ||
834 | else | ||
835 | mod_timer(&cfqd->idle_class_timer, end); | ||
836 | } | ||
837 | |||
838 | __cfq_set_active_queue(cfqd, cfqq); | ||
839 | return cfqq; | ||
840 | } | ||
841 | |||
842 | /* | ||
843 | * current cfqq expired its slice (or was too idle), select new one | ||
844 | */ | ||
845 | static void | ||
846 | __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq, | ||
847 | int preempted) | ||
848 | { | ||
849 | unsigned long now = jiffies; | ||
850 | |||
851 | if (cfq_cfqq_wait_request(cfqq)) | ||
852 | del_timer(&cfqd->idle_slice_timer); | ||
853 | |||
854 | if (!preempted && !cfq_cfqq_dispatched(cfqq)) | ||
855 | cfqq->service_last = now; | ||
856 | |||
857 | cfq_clear_cfqq_must_dispatch(cfqq); | ||
858 | cfq_clear_cfqq_wait_request(cfqq); | ||
859 | |||
860 | /* | ||
861 | * store what was left of this slice, if the queue idled out | ||
862 | * or was preempted | ||
863 | */ | ||
864 | if (time_after(now, cfqq->slice_end)) | ||
865 | cfqq->slice_left = now - cfqq->slice_end; | ||
866 | else | ||
867 | cfqq->slice_left = 0; | ||
868 | |||
869 | if (cfq_cfqq_on_rr(cfqq)) | ||
870 | cfq_resort_rr_list(cfqq, preempted); | ||
871 | |||
872 | if (cfqq == cfqd->active_queue) | ||
873 | cfqd->active_queue = NULL; | ||
874 | |||
875 | if (cfqd->active_cic) { | ||
876 | put_io_context(cfqd->active_cic->ioc); | ||
877 | cfqd->active_cic = NULL; | ||
878 | } | ||
879 | |||
880 | cfqd->dispatch_slice = 0; | ||
881 | } | ||
882 | |||
883 | static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted) | ||
884 | { | ||
885 | struct cfq_queue *cfqq = cfqd->active_queue; | ||
886 | |||
887 | if (cfqq) { | ||
888 | /* | ||
889 | * use deferred expiry, if there are requests in progress as | ||
890 | * not to disturb the slice of the next queue | ||
891 | */ | ||
892 | if (cfq_cfqq_dispatched(cfqq)) | ||
893 | cfq_mark_cfqq_expired(cfqq); | ||
894 | else | ||
895 | __cfq_slice_expired(cfqd, cfqq, preempted); | ||
896 | } | ||
897 | } | ||
898 | |||
899 | static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq) | ||
900 | |||
901 | { | ||
902 | WARN_ON(!RB_EMPTY(&cfqq->sort_list)); | ||
903 | WARN_ON(cfqq != cfqd->active_queue); | ||
904 | |||
905 | /* | ||
906 | * idle is disabled, either manually or by past process history | ||
907 | */ | ||
908 | if (!cfqd->cfq_slice_idle) | ||
909 | return 0; | ||
910 | if (!cfq_cfqq_idle_window(cfqq)) | ||
911 | return 0; | ||
912 | /* | ||
913 | * task has exited, don't wait | ||
914 | */ | ||
915 | if (cfqd->active_cic && !cfqd->active_cic->ioc->task) | ||
916 | return 0; | ||
917 | |||
918 | cfq_mark_cfqq_must_dispatch(cfqq); | ||
919 | cfq_mark_cfqq_wait_request(cfqq); | ||
920 | |||
921 | if (!timer_pending(&cfqd->idle_slice_timer)) { | ||
922 | unsigned long slice_left = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle); | ||
923 | |||
924 | cfqd->idle_slice_timer.expires = jiffies + slice_left; | ||
925 | add_timer(&cfqd->idle_slice_timer); | ||
926 | } | ||
927 | |||
928 | return 1; | ||
929 | } | ||
930 | |||
931 | static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq) | ||
932 | { | ||
933 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
934 | struct cfq_queue *cfqq = crq->cfq_queue; | ||
935 | |||
936 | cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq); | ||
937 | cfq_remove_request(crq->request); | ||
938 | cfqq->on_dispatch[cfq_crq_is_sync(crq)]++; | ||
939 | elv_dispatch_sort(q, crq->request); | ||
940 | } | ||
941 | |||
942 | /* | ||
943 | * return expired entry, or NULL to just start from scratch in rbtree | ||
944 | */ | ||
945 | static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq) | ||
946 | { | ||
947 | struct cfq_data *cfqd = cfqq->cfqd; | ||
948 | struct request *rq; | ||
949 | struct cfq_rq *crq; | ||
950 | |||
951 | if (cfq_cfqq_fifo_expire(cfqq)) | ||
952 | return NULL; | ||
953 | |||
954 | if (!list_empty(&cfqq->fifo)) { | ||
955 | int fifo = cfq_cfqq_class_sync(cfqq); | ||
956 | |||
957 | crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next)); | ||
958 | rq = crq->request; | ||
959 | if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) { | ||
960 | cfq_mark_cfqq_fifo_expire(cfqq); | ||
961 | return crq; | ||
962 | } | ||
963 | } | ||
964 | |||
965 | return NULL; | ||
966 | } | ||
967 | |||
968 | /* | ||
969 | * Scale schedule slice based on io priority. Use the sync time slice only | ||
970 | * if a queue is marked sync and has sync io queued. A sync queue with async | ||
971 | * io only, should not get full sync slice length. | ||
972 | */ | ||
973 | static inline int | ||
974 | cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | ||
975 | { | ||
976 | const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)]; | ||
977 | |||
978 | WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); | ||
979 | |||
980 | return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio)); | ||
981 | } | ||
982 | |||
983 | static inline void | ||
984 | cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq) | ||
985 | { | ||
986 | cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies; | ||
987 | } | ||
988 | |||
989 | static inline int | ||
990 | cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq) | ||
991 | { | ||
992 | const int base_rq = cfqd->cfq_slice_async_rq; | ||
993 | |||
994 | WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR); | ||
995 | |||
996 | return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio)); | ||
997 | } | ||
998 | |||
999 | /* | ||
1000 | * get next queue for service | ||
1001 | */ | ||
1002 | static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd, int force) | ||
1003 | { | ||
1004 | unsigned long now = jiffies; | ||
1005 | struct cfq_queue *cfqq; | ||
1006 | |||
1007 | cfqq = cfqd->active_queue; | ||
1008 | if (!cfqq) | ||
1009 | goto new_queue; | ||
1010 | |||
1011 | if (cfq_cfqq_expired(cfqq)) | ||
1012 | goto new_queue; | ||
1013 | |||
1014 | /* | ||
1015 | * slice has expired | ||
1016 | */ | ||
1017 | if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end)) | ||
1018 | goto expire; | ||
1019 | |||
1020 | /* | ||
1021 | * if queue has requests, dispatch one. if not, check if | ||
1022 | * enough slice is left to wait for one | ||
1023 | */ | ||
1024 | if (!RB_EMPTY(&cfqq->sort_list)) | ||
1025 | goto keep_queue; | ||
1026 | else if (!force && cfq_cfqq_class_sync(cfqq) && | ||
1027 | time_before(now, cfqq->slice_end)) { | ||
1028 | if (cfq_arm_slice_timer(cfqd, cfqq)) | ||
1029 | return NULL; | ||
1030 | } | ||
1031 | |||
1032 | expire: | ||
1033 | cfq_slice_expired(cfqd, 0); | ||
1034 | new_queue: | ||
1035 | cfqq = cfq_set_active_queue(cfqd); | ||
1036 | keep_queue: | ||
1037 | return cfqq; | ||
1038 | } | ||
1039 | |||
1040 | static int | ||
1041 | __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq, | ||
1042 | int max_dispatch) | ||
1043 | { | ||
1044 | int dispatched = 0; | ||
1045 | |||
1046 | BUG_ON(RB_EMPTY(&cfqq->sort_list)); | ||
1047 | |||
1048 | do { | ||
1049 | struct cfq_rq *crq; | ||
1050 | |||
1051 | /* | ||
1052 | * follow expired path, else get first next available | ||
1053 | */ | ||
1054 | if ((crq = cfq_check_fifo(cfqq)) == NULL) | ||
1055 | crq = cfqq->next_crq; | ||
1056 | |||
1057 | /* | ||
1058 | * finally, insert request into driver dispatch list | ||
1059 | */ | ||
1060 | cfq_dispatch_insert(cfqd->queue, crq); | ||
1061 | |||
1062 | cfqd->dispatch_slice++; | ||
1063 | dispatched++; | ||
1064 | |||
1065 | if (!cfqd->active_cic) { | ||
1066 | atomic_inc(&crq->io_context->ioc->refcount); | ||
1067 | cfqd->active_cic = crq->io_context; | ||
1068 | } | ||
1069 | |||
1070 | if (RB_EMPTY(&cfqq->sort_list)) | ||
1071 | break; | ||
1072 | |||
1073 | } while (dispatched < max_dispatch); | ||
1074 | |||
1075 | /* | ||
1076 | * if slice end isn't set yet, set it. if at least one request was | ||
1077 | * sync, use the sync time slice value | ||
1078 | */ | ||
1079 | if (!cfqq->slice_end) | ||
1080 | cfq_set_prio_slice(cfqd, cfqq); | ||
1081 | |||
1082 | /* | ||
1083 | * expire an async queue immediately if it has used up its slice. idle | ||
1084 | * queue always expire after 1 dispatch round. | ||
1085 | */ | ||
1086 | if ((!cfq_cfqq_sync(cfqq) && | ||
1087 | cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) || | ||
1088 | cfq_class_idle(cfqq)) | ||
1089 | cfq_slice_expired(cfqd, 0); | ||
1090 | |||
1091 | return dispatched; | ||
1092 | } | ||
1093 | |||
1094 | static int | ||
1095 | cfq_dispatch_requests(request_queue_t *q, int force) | ||
1096 | { | ||
1097 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
1098 | struct cfq_queue *cfqq; | ||
1099 | |||
1100 | if (!cfqd->busy_queues) | ||
1101 | return 0; | ||
1102 | |||
1103 | cfqq = cfq_select_queue(cfqd, force); | ||
1104 | if (cfqq) { | ||
1105 | int max_dispatch; | ||
1106 | |||
1107 | /* | ||
1108 | * if idle window is disabled, allow queue buildup | ||
1109 | */ | ||
1110 | if (!cfq_cfqq_idle_window(cfqq) && | ||
1111 | cfqd->rq_in_driver >= cfqd->cfq_max_depth) | ||
1112 | return 0; | ||
1113 | |||
1114 | cfq_clear_cfqq_must_dispatch(cfqq); | ||
1115 | cfq_clear_cfqq_wait_request(cfqq); | ||
1116 | del_timer(&cfqd->idle_slice_timer); | ||
1117 | |||
1118 | if (!force) { | ||
1119 | max_dispatch = cfqd->cfq_quantum; | ||
1120 | if (cfq_class_idle(cfqq)) | ||
1121 | max_dispatch = 1; | ||
1122 | } else | ||
1123 | max_dispatch = INT_MAX; | ||
1124 | |||
1125 | return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch); | ||
1126 | } | ||
1127 | |||
1128 | return 0; | ||
1129 | } | ||
1130 | |||
1131 | /* | ||
1132 | * task holds one reference to the queue, dropped when task exits. each crq | ||
1133 | * in-flight on this queue also holds a reference, dropped when crq is freed. | ||
1134 | * | ||
1135 | * queue lock must be held here. | ||
1136 | */ | ||
1137 | static void cfq_put_queue(struct cfq_queue *cfqq) | ||
1138 | { | ||
1139 | struct cfq_data *cfqd = cfqq->cfqd; | ||
1140 | |||
1141 | BUG_ON(atomic_read(&cfqq->ref) <= 0); | ||
1142 | |||
1143 | if (!atomic_dec_and_test(&cfqq->ref)) | ||
1144 | return; | ||
1145 | |||
1146 | BUG_ON(rb_first(&cfqq->sort_list)); | ||
1147 | BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]); | ||
1148 | BUG_ON(cfq_cfqq_on_rr(cfqq)); | ||
1149 | |||
1150 | if (unlikely(cfqd->active_queue == cfqq)) { | ||
1151 | __cfq_slice_expired(cfqd, cfqq, 0); | ||
1152 | cfq_schedule_dispatch(cfqd); | ||
1153 | } | ||
1154 | |||
1155 | cfq_put_cfqd(cfqq->cfqd); | ||
1156 | |||
1157 | /* | ||
1158 | * it's on the empty list and still hashed | ||
1159 | */ | ||
1160 | list_del(&cfqq->cfq_list); | ||
1161 | hlist_del(&cfqq->cfq_hash); | ||
1162 | kmem_cache_free(cfq_pool, cfqq); | ||
1163 | } | ||
1164 | |||
1165 | static inline struct cfq_queue * | ||
1166 | __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio, | ||
1167 | const int hashval) | ||
1168 | { | ||
1169 | struct hlist_head *hash_list = &cfqd->cfq_hash[hashval]; | ||
1170 | struct hlist_node *entry, *next; | ||
1171 | |||
1172 | hlist_for_each_safe(entry, next, hash_list) { | ||
1173 | struct cfq_queue *__cfqq = list_entry_qhash(entry); | ||
1174 | const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->ioprio_class, __cfqq->ioprio); | ||
1175 | |||
1176 | if (__cfqq->key == key && (__p == prio || prio == CFQ_KEY_ANY)) | ||
1177 | return __cfqq; | ||
1178 | } | ||
1179 | |||
1180 | return NULL; | ||
1181 | } | ||
1182 | |||
1183 | static struct cfq_queue * | ||
1184 | cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio) | ||
1185 | { | ||
1186 | return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT)); | ||
1187 | } | ||
1188 | |||
1189 | static void cfq_free_io_context(struct cfq_io_context *cic) | ||
1190 | { | ||
1191 | struct cfq_io_context *__cic; | ||
1192 | struct list_head *entry, *next; | ||
1193 | |||
1194 | list_for_each_safe(entry, next, &cic->list) { | ||
1195 | __cic = list_entry(entry, struct cfq_io_context, list); | ||
1196 | kmem_cache_free(cfq_ioc_pool, __cic); | ||
1197 | } | ||
1198 | |||
1199 | kmem_cache_free(cfq_ioc_pool, cic); | ||
1200 | } | ||
1201 | |||
1202 | /* | ||
1203 | * Called with interrupts disabled | ||
1204 | */ | ||
1205 | static void cfq_exit_single_io_context(struct cfq_io_context *cic) | ||
1206 | { | ||
1207 | struct cfq_data *cfqd = cic->cfqq->cfqd; | ||
1208 | request_queue_t *q = cfqd->queue; | ||
1209 | |||
1210 | WARN_ON(!irqs_disabled()); | ||
1211 | |||
1212 | spin_lock(q->queue_lock); | ||
1213 | |||
1214 | if (unlikely(cic->cfqq == cfqd->active_queue)) { | ||
1215 | __cfq_slice_expired(cfqd, cic->cfqq, 0); | ||
1216 | cfq_schedule_dispatch(cfqd); | ||
1217 | } | ||
1218 | |||
1219 | cfq_put_queue(cic->cfqq); | ||
1220 | cic->cfqq = NULL; | ||
1221 | spin_unlock(q->queue_lock); | ||
1222 | } | ||
1223 | |||
1224 | /* | ||
1225 | * Another task may update the task cic list, if it is doing a queue lookup | ||
1226 | * on its behalf. cfq_cic_lock excludes such concurrent updates | ||
1227 | */ | ||
1228 | static void cfq_exit_io_context(struct cfq_io_context *cic) | ||
1229 | { | ||
1230 | struct cfq_io_context *__cic; | ||
1231 | struct list_head *entry; | ||
1232 | unsigned long flags; | ||
1233 | |||
1234 | local_irq_save(flags); | ||
1235 | |||
1236 | /* | ||
1237 | * put the reference this task is holding to the various queues | ||
1238 | */ | ||
1239 | list_for_each(entry, &cic->list) { | ||
1240 | __cic = list_entry(entry, struct cfq_io_context, list); | ||
1241 | cfq_exit_single_io_context(__cic); | ||
1242 | } | ||
1243 | |||
1244 | cfq_exit_single_io_context(cic); | ||
1245 | local_irq_restore(flags); | ||
1246 | } | ||
1247 | |||
1248 | static struct cfq_io_context * | ||
1249 | cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask) | ||
1250 | { | ||
1251 | struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask); | ||
1252 | |||
1253 | if (cic) { | ||
1254 | INIT_LIST_HEAD(&cic->list); | ||
1255 | cic->cfqq = NULL; | ||
1256 | cic->key = NULL; | ||
1257 | cic->last_end_request = jiffies; | ||
1258 | cic->ttime_total = 0; | ||
1259 | cic->ttime_samples = 0; | ||
1260 | cic->ttime_mean = 0; | ||
1261 | cic->dtor = cfq_free_io_context; | ||
1262 | cic->exit = cfq_exit_io_context; | ||
1263 | } | ||
1264 | |||
1265 | return cic; | ||
1266 | } | ||
1267 | |||
1268 | static void cfq_init_prio_data(struct cfq_queue *cfqq) | ||
1269 | { | ||
1270 | struct task_struct *tsk = current; | ||
1271 | int ioprio_class; | ||
1272 | |||
1273 | if (!cfq_cfqq_prio_changed(cfqq)) | ||
1274 | return; | ||
1275 | |||
1276 | ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio); | ||
1277 | switch (ioprio_class) { | ||
1278 | default: | ||
1279 | printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class); | ||
1280 | case IOPRIO_CLASS_NONE: | ||
1281 | /* | ||
1282 | * no prio set, place us in the middle of the BE classes | ||
1283 | */ | ||
1284 | cfqq->ioprio = task_nice_ioprio(tsk); | ||
1285 | cfqq->ioprio_class = IOPRIO_CLASS_BE; | ||
1286 | break; | ||
1287 | case IOPRIO_CLASS_RT: | ||
1288 | cfqq->ioprio = task_ioprio(tsk); | ||
1289 | cfqq->ioprio_class = IOPRIO_CLASS_RT; | ||
1290 | break; | ||
1291 | case IOPRIO_CLASS_BE: | ||
1292 | cfqq->ioprio = task_ioprio(tsk); | ||
1293 | cfqq->ioprio_class = IOPRIO_CLASS_BE; | ||
1294 | break; | ||
1295 | case IOPRIO_CLASS_IDLE: | ||
1296 | cfqq->ioprio_class = IOPRIO_CLASS_IDLE; | ||
1297 | cfqq->ioprio = 7; | ||
1298 | cfq_clear_cfqq_idle_window(cfqq); | ||
1299 | break; | ||
1300 | } | ||
1301 | |||
1302 | /* | ||
1303 | * keep track of original prio settings in case we have to temporarily | ||
1304 | * elevate the priority of this queue | ||
1305 | */ | ||
1306 | cfqq->org_ioprio = cfqq->ioprio; | ||
1307 | cfqq->org_ioprio_class = cfqq->ioprio_class; | ||
1308 | |||
1309 | if (cfq_cfqq_on_rr(cfqq)) | ||
1310 | cfq_resort_rr_list(cfqq, 0); | ||
1311 | |||
1312 | cfq_clear_cfqq_prio_changed(cfqq); | ||
1313 | } | ||
1314 | |||
1315 | static inline void changed_ioprio(struct cfq_queue *cfqq) | ||
1316 | { | ||
1317 | if (cfqq) { | ||
1318 | struct cfq_data *cfqd = cfqq->cfqd; | ||
1319 | |||
1320 | spin_lock(cfqd->queue->queue_lock); | ||
1321 | cfq_mark_cfqq_prio_changed(cfqq); | ||
1322 | cfq_init_prio_data(cfqq); | ||
1323 | spin_unlock(cfqd->queue->queue_lock); | ||
1324 | } | ||
1325 | } | ||
1326 | |||
1327 | /* | ||
1328 | * callback from sys_ioprio_set, irqs are disabled | ||
1329 | */ | ||
1330 | static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio) | ||
1331 | { | ||
1332 | struct cfq_io_context *cic = ioc->cic; | ||
1333 | |||
1334 | changed_ioprio(cic->cfqq); | ||
1335 | |||
1336 | list_for_each_entry(cic, &cic->list, list) | ||
1337 | changed_ioprio(cic->cfqq); | ||
1338 | |||
1339 | return 0; | ||
1340 | } | ||
1341 | |||
1342 | static struct cfq_queue * | ||
1343 | cfq_get_queue(struct cfq_data *cfqd, unsigned int key, unsigned short ioprio, | ||
1344 | gfp_t gfp_mask) | ||
1345 | { | ||
1346 | const int hashval = hash_long(key, CFQ_QHASH_SHIFT); | ||
1347 | struct cfq_queue *cfqq, *new_cfqq = NULL; | ||
1348 | |||
1349 | retry: | ||
1350 | cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval); | ||
1351 | |||
1352 | if (!cfqq) { | ||
1353 | if (new_cfqq) { | ||
1354 | cfqq = new_cfqq; | ||
1355 | new_cfqq = NULL; | ||
1356 | } else if (gfp_mask & __GFP_WAIT) { | ||
1357 | spin_unlock_irq(cfqd->queue->queue_lock); | ||
1358 | new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask); | ||
1359 | spin_lock_irq(cfqd->queue->queue_lock); | ||
1360 | goto retry; | ||
1361 | } else { | ||
1362 | cfqq = kmem_cache_alloc(cfq_pool, gfp_mask); | ||
1363 | if (!cfqq) | ||
1364 | goto out; | ||
1365 | } | ||
1366 | |||
1367 | memset(cfqq, 0, sizeof(*cfqq)); | ||
1368 | |||
1369 | INIT_HLIST_NODE(&cfqq->cfq_hash); | ||
1370 | INIT_LIST_HEAD(&cfqq->cfq_list); | ||
1371 | RB_CLEAR_ROOT(&cfqq->sort_list); | ||
1372 | INIT_LIST_HEAD(&cfqq->fifo); | ||
1373 | |||
1374 | cfqq->key = key; | ||
1375 | hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]); | ||
1376 | atomic_set(&cfqq->ref, 0); | ||
1377 | cfqq->cfqd = cfqd; | ||
1378 | atomic_inc(&cfqd->ref); | ||
1379 | cfqq->service_last = 0; | ||
1380 | /* | ||
1381 | * set ->slice_left to allow preemption for a new process | ||
1382 | */ | ||
1383 | cfqq->slice_left = 2 * cfqd->cfq_slice_idle; | ||
1384 | cfq_mark_cfqq_idle_window(cfqq); | ||
1385 | cfq_mark_cfqq_prio_changed(cfqq); | ||
1386 | cfq_init_prio_data(cfqq); | ||
1387 | } | ||
1388 | |||
1389 | if (new_cfqq) | ||
1390 | kmem_cache_free(cfq_pool, new_cfqq); | ||
1391 | |||
1392 | atomic_inc(&cfqq->ref); | ||
1393 | out: | ||
1394 | WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq); | ||
1395 | return cfqq; | ||
1396 | } | ||
1397 | |||
1398 | /* | ||
1399 | * Setup general io context and cfq io context. There can be several cfq | ||
1400 | * io contexts per general io context, if this process is doing io to more | ||
1401 | * than one device managed by cfq. Note that caller is holding a reference to | ||
1402 | * cfqq, so we don't need to worry about it disappearing | ||
1403 | */ | ||
1404 | static struct cfq_io_context * | ||
1405 | cfq_get_io_context(struct cfq_data *cfqd, pid_t pid, gfp_t gfp_mask) | ||
1406 | { | ||
1407 | struct io_context *ioc = NULL; | ||
1408 | struct cfq_io_context *cic; | ||
1409 | |||
1410 | might_sleep_if(gfp_mask & __GFP_WAIT); | ||
1411 | |||
1412 | ioc = get_io_context(gfp_mask); | ||
1413 | if (!ioc) | ||
1414 | return NULL; | ||
1415 | |||
1416 | if ((cic = ioc->cic) == NULL) { | ||
1417 | cic = cfq_alloc_io_context(cfqd, gfp_mask); | ||
1418 | |||
1419 | if (cic == NULL) | ||
1420 | goto err; | ||
1421 | |||
1422 | /* | ||
1423 | * manually increment generic io_context usage count, it | ||
1424 | * cannot go away since we are already holding one ref to it | ||
1425 | */ | ||
1426 | ioc->cic = cic; | ||
1427 | ioc->set_ioprio = cfq_ioc_set_ioprio; | ||
1428 | cic->ioc = ioc; | ||
1429 | cic->key = cfqd; | ||
1430 | atomic_inc(&cfqd->ref); | ||
1431 | } else { | ||
1432 | struct cfq_io_context *__cic; | ||
1433 | |||
1434 | /* | ||
1435 | * the first cic on the list is actually the head itself | ||
1436 | */ | ||
1437 | if (cic->key == cfqd) | ||
1438 | goto out; | ||
1439 | |||
1440 | /* | ||
1441 | * cic exists, check if we already are there. linear search | ||
1442 | * should be ok here, the list will usually not be more than | ||
1443 | * 1 or a few entries long | ||
1444 | */ | ||
1445 | list_for_each_entry(__cic, &cic->list, list) { | ||
1446 | /* | ||
1447 | * this process is already holding a reference to | ||
1448 | * this queue, so no need to get one more | ||
1449 | */ | ||
1450 | if (__cic->key == cfqd) { | ||
1451 | cic = __cic; | ||
1452 | goto out; | ||
1453 | } | ||
1454 | } | ||
1455 | |||
1456 | /* | ||
1457 | * nope, process doesn't have a cic assoicated with this | ||
1458 | * cfqq yet. get a new one and add to list | ||
1459 | */ | ||
1460 | __cic = cfq_alloc_io_context(cfqd, gfp_mask); | ||
1461 | if (__cic == NULL) | ||
1462 | goto err; | ||
1463 | |||
1464 | __cic->ioc = ioc; | ||
1465 | __cic->key = cfqd; | ||
1466 | atomic_inc(&cfqd->ref); | ||
1467 | list_add(&__cic->list, &cic->list); | ||
1468 | cic = __cic; | ||
1469 | } | ||
1470 | |||
1471 | out: | ||
1472 | return cic; | ||
1473 | err: | ||
1474 | put_io_context(ioc); | ||
1475 | return NULL; | ||
1476 | } | ||
1477 | |||
1478 | static void | ||
1479 | cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic) | ||
1480 | { | ||
1481 | unsigned long elapsed, ttime; | ||
1482 | |||
1483 | /* | ||
1484 | * if this context already has stuff queued, thinktime is from | ||
1485 | * last queue not last end | ||
1486 | */ | ||
1487 | #if 0 | ||
1488 | if (time_after(cic->last_end_request, cic->last_queue)) | ||
1489 | elapsed = jiffies - cic->last_end_request; | ||
1490 | else | ||
1491 | elapsed = jiffies - cic->last_queue; | ||
1492 | #else | ||
1493 | elapsed = jiffies - cic->last_end_request; | ||
1494 | #endif | ||
1495 | |||
1496 | ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle); | ||
1497 | |||
1498 | cic->ttime_samples = (7*cic->ttime_samples + 256) / 8; | ||
1499 | cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8; | ||
1500 | cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples; | ||
1501 | } | ||
1502 | |||
1503 | #define sample_valid(samples) ((samples) > 80) | ||
1504 | |||
1505 | /* | ||
1506 | * Disable idle window if the process thinks too long or seeks so much that | ||
1507 | * it doesn't matter | ||
1508 | */ | ||
1509 | static void | ||
1510 | cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq, | ||
1511 | struct cfq_io_context *cic) | ||
1512 | { | ||
1513 | int enable_idle = cfq_cfqq_idle_window(cfqq); | ||
1514 | |||
1515 | if (!cic->ioc->task || !cfqd->cfq_slice_idle) | ||
1516 | enable_idle = 0; | ||
1517 | else if (sample_valid(cic->ttime_samples)) { | ||
1518 | if (cic->ttime_mean > cfqd->cfq_slice_idle) | ||
1519 | enable_idle = 0; | ||
1520 | else | ||
1521 | enable_idle = 1; | ||
1522 | } | ||
1523 | |||
1524 | if (enable_idle) | ||
1525 | cfq_mark_cfqq_idle_window(cfqq); | ||
1526 | else | ||
1527 | cfq_clear_cfqq_idle_window(cfqq); | ||
1528 | } | ||
1529 | |||
1530 | |||
1531 | /* | ||
1532 | * Check if new_cfqq should preempt the currently active queue. Return 0 for | ||
1533 | * no or if we aren't sure, a 1 will cause a preempt. | ||
1534 | */ | ||
1535 | static int | ||
1536 | cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq, | ||
1537 | struct cfq_rq *crq) | ||
1538 | { | ||
1539 | struct cfq_queue *cfqq = cfqd->active_queue; | ||
1540 | |||
1541 | if (cfq_class_idle(new_cfqq)) | ||
1542 | return 0; | ||
1543 | |||
1544 | if (!cfqq) | ||
1545 | return 1; | ||
1546 | |||
1547 | if (cfq_class_idle(cfqq)) | ||
1548 | return 1; | ||
1549 | if (!cfq_cfqq_wait_request(new_cfqq)) | ||
1550 | return 0; | ||
1551 | /* | ||
1552 | * if it doesn't have slice left, forget it | ||
1553 | */ | ||
1554 | if (new_cfqq->slice_left < cfqd->cfq_slice_idle) | ||
1555 | return 0; | ||
1556 | if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq)) | ||
1557 | return 1; | ||
1558 | |||
1559 | return 0; | ||
1560 | } | ||
1561 | |||
1562 | /* | ||
1563 | * cfqq preempts the active queue. if we allowed preempt with no slice left, | ||
1564 | * let it have half of its nominal slice. | ||
1565 | */ | ||
1566 | static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq) | ||
1567 | { | ||
1568 | struct cfq_queue *__cfqq, *next; | ||
1569 | |||
1570 | list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list) | ||
1571 | cfq_resort_rr_list(__cfqq, 1); | ||
1572 | |||
1573 | if (!cfqq->slice_left) | ||
1574 | cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2; | ||
1575 | |||
1576 | cfqq->slice_end = cfqq->slice_left + jiffies; | ||
1577 | __cfq_slice_expired(cfqd, cfqq, 1); | ||
1578 | __cfq_set_active_queue(cfqd, cfqq); | ||
1579 | } | ||
1580 | |||
1581 | /* | ||
1582 | * should really be a ll_rw_blk.c helper | ||
1583 | */ | ||
1584 | static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq) | ||
1585 | { | ||
1586 | request_queue_t *q = cfqd->queue; | ||
1587 | |||
1588 | if (!blk_queue_plugged(q)) | ||
1589 | q->request_fn(q); | ||
1590 | else | ||
1591 | __generic_unplug_device(q); | ||
1592 | } | ||
1593 | |||
1594 | /* | ||
1595 | * Called when a new fs request (crq) is added (to cfqq). Check if there's | ||
1596 | * something we should do about it | ||
1597 | */ | ||
1598 | static void | ||
1599 | cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq, | ||
1600 | struct cfq_rq *crq) | ||
1601 | { | ||
1602 | struct cfq_io_context *cic; | ||
1603 | |||
1604 | cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq); | ||
1605 | |||
1606 | /* | ||
1607 | * we never wait for an async request and we don't allow preemption | ||
1608 | * of an async request. so just return early | ||
1609 | */ | ||
1610 | if (!cfq_crq_is_sync(crq)) | ||
1611 | return; | ||
1612 | |||
1613 | cic = crq->io_context; | ||
1614 | |||
1615 | cfq_update_io_thinktime(cfqd, cic); | ||
1616 | cfq_update_idle_window(cfqd, cfqq, cic); | ||
1617 | |||
1618 | cic->last_queue = jiffies; | ||
1619 | |||
1620 | if (cfqq == cfqd->active_queue) { | ||
1621 | /* | ||
1622 | * if we are waiting for a request for this queue, let it rip | ||
1623 | * immediately and flag that we must not expire this queue | ||
1624 | * just now | ||
1625 | */ | ||
1626 | if (cfq_cfqq_wait_request(cfqq)) { | ||
1627 | cfq_mark_cfqq_must_dispatch(cfqq); | ||
1628 | del_timer(&cfqd->idle_slice_timer); | ||
1629 | cfq_start_queueing(cfqd, cfqq); | ||
1630 | } | ||
1631 | } else if (cfq_should_preempt(cfqd, cfqq, crq)) { | ||
1632 | /* | ||
1633 | * not the active queue - expire current slice if it is | ||
1634 | * idle and has expired it's mean thinktime or this new queue | ||
1635 | * has some old slice time left and is of higher priority | ||
1636 | */ | ||
1637 | cfq_preempt_queue(cfqd, cfqq); | ||
1638 | cfq_mark_cfqq_must_dispatch(cfqq); | ||
1639 | cfq_start_queueing(cfqd, cfqq); | ||
1640 | } | ||
1641 | } | ||
1642 | |||
1643 | static void cfq_insert_request(request_queue_t *q, struct request *rq) | ||
1644 | { | ||
1645 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
1646 | struct cfq_rq *crq = RQ_DATA(rq); | ||
1647 | struct cfq_queue *cfqq = crq->cfq_queue; | ||
1648 | |||
1649 | cfq_init_prio_data(cfqq); | ||
1650 | |||
1651 | cfq_add_crq_rb(crq); | ||
1652 | |||
1653 | list_add_tail(&rq->queuelist, &cfqq->fifo); | ||
1654 | |||
1655 | if (rq_mergeable(rq)) | ||
1656 | cfq_add_crq_hash(cfqd, crq); | ||
1657 | |||
1658 | cfq_crq_enqueued(cfqd, cfqq, crq); | ||
1659 | } | ||
1660 | |||
1661 | static void cfq_completed_request(request_queue_t *q, struct request *rq) | ||
1662 | { | ||
1663 | struct cfq_rq *crq = RQ_DATA(rq); | ||
1664 | struct cfq_queue *cfqq = crq->cfq_queue; | ||
1665 | struct cfq_data *cfqd = cfqq->cfqd; | ||
1666 | const int sync = cfq_crq_is_sync(crq); | ||
1667 | unsigned long now; | ||
1668 | |||
1669 | now = jiffies; | ||
1670 | |||
1671 | WARN_ON(!cfqd->rq_in_driver); | ||
1672 | WARN_ON(!cfqq->on_dispatch[sync]); | ||
1673 | cfqd->rq_in_driver--; | ||
1674 | cfqq->on_dispatch[sync]--; | ||
1675 | |||
1676 | if (!cfq_class_idle(cfqq)) | ||
1677 | cfqd->last_end_request = now; | ||
1678 | |||
1679 | if (!cfq_cfqq_dispatched(cfqq)) { | ||
1680 | if (cfq_cfqq_on_rr(cfqq)) { | ||
1681 | cfqq->service_last = now; | ||
1682 | cfq_resort_rr_list(cfqq, 0); | ||
1683 | } | ||
1684 | if (cfq_cfqq_expired(cfqq)) { | ||
1685 | __cfq_slice_expired(cfqd, cfqq, 0); | ||
1686 | cfq_schedule_dispatch(cfqd); | ||
1687 | } | ||
1688 | } | ||
1689 | |||
1690 | if (cfq_crq_is_sync(crq)) | ||
1691 | crq->io_context->last_end_request = now; | ||
1692 | } | ||
1693 | |||
1694 | static struct request * | ||
1695 | cfq_former_request(request_queue_t *q, struct request *rq) | ||
1696 | { | ||
1697 | struct cfq_rq *crq = RQ_DATA(rq); | ||
1698 | struct rb_node *rbprev = rb_prev(&crq->rb_node); | ||
1699 | |||
1700 | if (rbprev) | ||
1701 | return rb_entry_crq(rbprev)->request; | ||
1702 | |||
1703 | return NULL; | ||
1704 | } | ||
1705 | |||
1706 | static struct request * | ||
1707 | cfq_latter_request(request_queue_t *q, struct request *rq) | ||
1708 | { | ||
1709 | struct cfq_rq *crq = RQ_DATA(rq); | ||
1710 | struct rb_node *rbnext = rb_next(&crq->rb_node); | ||
1711 | |||
1712 | if (rbnext) | ||
1713 | return rb_entry_crq(rbnext)->request; | ||
1714 | |||
1715 | return NULL; | ||
1716 | } | ||
1717 | |||
1718 | /* | ||
1719 | * we temporarily boost lower priority queues if they are holding fs exclusive | ||
1720 | * resources. they are boosted to normal prio (CLASS_BE/4) | ||
1721 | */ | ||
1722 | static void cfq_prio_boost(struct cfq_queue *cfqq) | ||
1723 | { | ||
1724 | const int ioprio_class = cfqq->ioprio_class; | ||
1725 | const int ioprio = cfqq->ioprio; | ||
1726 | |||
1727 | if (has_fs_excl()) { | ||
1728 | /* | ||
1729 | * boost idle prio on transactions that would lock out other | ||
1730 | * users of the filesystem | ||
1731 | */ | ||
1732 | if (cfq_class_idle(cfqq)) | ||
1733 | cfqq->ioprio_class = IOPRIO_CLASS_BE; | ||
1734 | if (cfqq->ioprio > IOPRIO_NORM) | ||
1735 | cfqq->ioprio = IOPRIO_NORM; | ||
1736 | } else { | ||
1737 | /* | ||
1738 | * check if we need to unboost the queue | ||
1739 | */ | ||
1740 | if (cfqq->ioprio_class != cfqq->org_ioprio_class) | ||
1741 | cfqq->ioprio_class = cfqq->org_ioprio_class; | ||
1742 | if (cfqq->ioprio != cfqq->org_ioprio) | ||
1743 | cfqq->ioprio = cfqq->org_ioprio; | ||
1744 | } | ||
1745 | |||
1746 | /* | ||
1747 | * refile between round-robin lists if we moved the priority class | ||
1748 | */ | ||
1749 | if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) && | ||
1750 | cfq_cfqq_on_rr(cfqq)) | ||
1751 | cfq_resort_rr_list(cfqq, 0); | ||
1752 | } | ||
1753 | |||
1754 | static inline pid_t cfq_queue_pid(struct task_struct *task, int rw) | ||
1755 | { | ||
1756 | if (rw == READ || process_sync(task)) | ||
1757 | return task->pid; | ||
1758 | |||
1759 | return CFQ_KEY_ASYNC; | ||
1760 | } | ||
1761 | |||
1762 | static inline int | ||
1763 | __cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq, | ||
1764 | struct task_struct *task, int rw) | ||
1765 | { | ||
1766 | #if 1 | ||
1767 | if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) && | ||
1768 | !cfq_cfqq_must_alloc_slice(cfqq)) { | ||
1769 | cfq_mark_cfqq_must_alloc_slice(cfqq); | ||
1770 | return ELV_MQUEUE_MUST; | ||
1771 | } | ||
1772 | |||
1773 | return ELV_MQUEUE_MAY; | ||
1774 | #else | ||
1775 | if (!cfqq || task->flags & PF_MEMALLOC) | ||
1776 | return ELV_MQUEUE_MAY; | ||
1777 | if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) { | ||
1778 | if (cfq_cfqq_wait_request(cfqq)) | ||
1779 | return ELV_MQUEUE_MUST; | ||
1780 | |||
1781 | /* | ||
1782 | * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we | ||
1783 | * can quickly flood the queue with writes from a single task | ||
1784 | */ | ||
1785 | if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) { | ||
1786 | cfq_mark_cfqq_must_alloc_slice(cfqq); | ||
1787 | return ELV_MQUEUE_MUST; | ||
1788 | } | ||
1789 | |||
1790 | return ELV_MQUEUE_MAY; | ||
1791 | } | ||
1792 | if (cfq_class_idle(cfqq)) | ||
1793 | return ELV_MQUEUE_NO; | ||
1794 | if (cfqq->allocated[rw] >= cfqd->max_queued) { | ||
1795 | struct io_context *ioc = get_io_context(GFP_ATOMIC); | ||
1796 | int ret = ELV_MQUEUE_NO; | ||
1797 | |||
1798 | if (ioc && ioc->nr_batch_requests) | ||
1799 | ret = ELV_MQUEUE_MAY; | ||
1800 | |||
1801 | put_io_context(ioc); | ||
1802 | return ret; | ||
1803 | } | ||
1804 | |||
1805 | return ELV_MQUEUE_MAY; | ||
1806 | #endif | ||
1807 | } | ||
1808 | |||
1809 | static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio) | ||
1810 | { | ||
1811 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
1812 | struct task_struct *tsk = current; | ||
1813 | struct cfq_queue *cfqq; | ||
1814 | |||
1815 | /* | ||
1816 | * don't force setup of a queue from here, as a call to may_queue | ||
1817 | * does not necessarily imply that a request actually will be queued. | ||
1818 | * so just lookup a possibly existing queue, or return 'may queue' | ||
1819 | * if that fails | ||
1820 | */ | ||
1821 | cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio); | ||
1822 | if (cfqq) { | ||
1823 | cfq_init_prio_data(cfqq); | ||
1824 | cfq_prio_boost(cfqq); | ||
1825 | |||
1826 | return __cfq_may_queue(cfqd, cfqq, tsk, rw); | ||
1827 | } | ||
1828 | |||
1829 | return ELV_MQUEUE_MAY; | ||
1830 | } | ||
1831 | |||
1832 | static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq) | ||
1833 | { | ||
1834 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
1835 | struct request_list *rl = &q->rq; | ||
1836 | |||
1837 | if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) { | ||
1838 | smp_mb(); | ||
1839 | if (waitqueue_active(&rl->wait[READ])) | ||
1840 | wake_up(&rl->wait[READ]); | ||
1841 | } | ||
1842 | |||
1843 | if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) { | ||
1844 | smp_mb(); | ||
1845 | if (waitqueue_active(&rl->wait[WRITE])) | ||
1846 | wake_up(&rl->wait[WRITE]); | ||
1847 | } | ||
1848 | } | ||
1849 | |||
1850 | /* | ||
1851 | * queue lock held here | ||
1852 | */ | ||
1853 | static void cfq_put_request(request_queue_t *q, struct request *rq) | ||
1854 | { | ||
1855 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
1856 | struct cfq_rq *crq = RQ_DATA(rq); | ||
1857 | |||
1858 | if (crq) { | ||
1859 | struct cfq_queue *cfqq = crq->cfq_queue; | ||
1860 | const int rw = rq_data_dir(rq); | ||
1861 | |||
1862 | BUG_ON(!cfqq->allocated[rw]); | ||
1863 | cfqq->allocated[rw]--; | ||
1864 | |||
1865 | put_io_context(crq->io_context->ioc); | ||
1866 | |||
1867 | mempool_free(crq, cfqd->crq_pool); | ||
1868 | rq->elevator_private = NULL; | ||
1869 | |||
1870 | cfq_check_waiters(q, cfqq); | ||
1871 | cfq_put_queue(cfqq); | ||
1872 | } | ||
1873 | } | ||
1874 | |||
1875 | /* | ||
1876 | * Allocate cfq data structures associated with this request. | ||
1877 | */ | ||
1878 | static int | ||
1879 | cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio, | ||
1880 | gfp_t gfp_mask) | ||
1881 | { | ||
1882 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
1883 | struct task_struct *tsk = current; | ||
1884 | struct cfq_io_context *cic; | ||
1885 | const int rw = rq_data_dir(rq); | ||
1886 | pid_t key = cfq_queue_pid(tsk, rw); | ||
1887 | struct cfq_queue *cfqq; | ||
1888 | struct cfq_rq *crq; | ||
1889 | unsigned long flags; | ||
1890 | |||
1891 | might_sleep_if(gfp_mask & __GFP_WAIT); | ||
1892 | |||
1893 | cic = cfq_get_io_context(cfqd, key, gfp_mask); | ||
1894 | |||
1895 | spin_lock_irqsave(q->queue_lock, flags); | ||
1896 | |||
1897 | if (!cic) | ||
1898 | goto queue_fail; | ||
1899 | |||
1900 | if (!cic->cfqq) { | ||
1901 | cfqq = cfq_get_queue(cfqd, key, tsk->ioprio, gfp_mask); | ||
1902 | if (!cfqq) | ||
1903 | goto queue_fail; | ||
1904 | |||
1905 | cic->cfqq = cfqq; | ||
1906 | } else | ||
1907 | cfqq = cic->cfqq; | ||
1908 | |||
1909 | cfqq->allocated[rw]++; | ||
1910 | cfq_clear_cfqq_must_alloc(cfqq); | ||
1911 | cfqd->rq_starved = 0; | ||
1912 | atomic_inc(&cfqq->ref); | ||
1913 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
1914 | |||
1915 | crq = mempool_alloc(cfqd->crq_pool, gfp_mask); | ||
1916 | if (crq) { | ||
1917 | RB_CLEAR(&crq->rb_node); | ||
1918 | crq->rb_key = 0; | ||
1919 | crq->request = rq; | ||
1920 | INIT_HLIST_NODE(&crq->hash); | ||
1921 | crq->cfq_queue = cfqq; | ||
1922 | crq->io_context = cic; | ||
1923 | |||
1924 | if (rw == READ || process_sync(tsk)) | ||
1925 | cfq_mark_crq_is_sync(crq); | ||
1926 | else | ||
1927 | cfq_clear_crq_is_sync(crq); | ||
1928 | |||
1929 | rq->elevator_private = crq; | ||
1930 | return 0; | ||
1931 | } | ||
1932 | |||
1933 | spin_lock_irqsave(q->queue_lock, flags); | ||
1934 | cfqq->allocated[rw]--; | ||
1935 | if (!(cfqq->allocated[0] + cfqq->allocated[1])) | ||
1936 | cfq_mark_cfqq_must_alloc(cfqq); | ||
1937 | cfq_put_queue(cfqq); | ||
1938 | queue_fail: | ||
1939 | if (cic) | ||
1940 | put_io_context(cic->ioc); | ||
1941 | /* | ||
1942 | * mark us rq allocation starved. we need to kickstart the process | ||
1943 | * ourselves if there are no pending requests that can do it for us. | ||
1944 | * that would be an extremely rare OOM situation | ||
1945 | */ | ||
1946 | cfqd->rq_starved = 1; | ||
1947 | cfq_schedule_dispatch(cfqd); | ||
1948 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
1949 | return 1; | ||
1950 | } | ||
1951 | |||
1952 | static void cfq_kick_queue(void *data) | ||
1953 | { | ||
1954 | request_queue_t *q = data; | ||
1955 | struct cfq_data *cfqd = q->elevator->elevator_data; | ||
1956 | unsigned long flags; | ||
1957 | |||
1958 | spin_lock_irqsave(q->queue_lock, flags); | ||
1959 | |||
1960 | if (cfqd->rq_starved) { | ||
1961 | struct request_list *rl = &q->rq; | ||
1962 | |||
1963 | /* | ||
1964 | * we aren't guaranteed to get a request after this, but we | ||
1965 | * have to be opportunistic | ||
1966 | */ | ||
1967 | smp_mb(); | ||
1968 | if (waitqueue_active(&rl->wait[READ])) | ||
1969 | wake_up(&rl->wait[READ]); | ||
1970 | if (waitqueue_active(&rl->wait[WRITE])) | ||
1971 | wake_up(&rl->wait[WRITE]); | ||
1972 | } | ||
1973 | |||
1974 | blk_remove_plug(q); | ||
1975 | q->request_fn(q); | ||
1976 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
1977 | } | ||
1978 | |||
1979 | /* | ||
1980 | * Timer running if the active_queue is currently idling inside its time slice | ||
1981 | */ | ||
1982 | static void cfq_idle_slice_timer(unsigned long data) | ||
1983 | { | ||
1984 | struct cfq_data *cfqd = (struct cfq_data *) data; | ||
1985 | struct cfq_queue *cfqq; | ||
1986 | unsigned long flags; | ||
1987 | |||
1988 | spin_lock_irqsave(cfqd->queue->queue_lock, flags); | ||
1989 | |||
1990 | if ((cfqq = cfqd->active_queue) != NULL) { | ||
1991 | unsigned long now = jiffies; | ||
1992 | |||
1993 | /* | ||
1994 | * expired | ||
1995 | */ | ||
1996 | if (time_after(now, cfqq->slice_end)) | ||
1997 | goto expire; | ||
1998 | |||
1999 | /* | ||
2000 | * only expire and reinvoke request handler, if there are | ||
2001 | * other queues with pending requests | ||
2002 | */ | ||
2003 | if (!cfqd->busy_queues) { | ||
2004 | cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end); | ||
2005 | add_timer(&cfqd->idle_slice_timer); | ||
2006 | goto out_cont; | ||
2007 | } | ||
2008 | |||
2009 | /* | ||
2010 | * not expired and it has a request pending, let it dispatch | ||
2011 | */ | ||
2012 | if (!RB_EMPTY(&cfqq->sort_list)) { | ||
2013 | cfq_mark_cfqq_must_dispatch(cfqq); | ||
2014 | goto out_kick; | ||
2015 | } | ||
2016 | } | ||
2017 | expire: | ||
2018 | cfq_slice_expired(cfqd, 0); | ||
2019 | out_kick: | ||
2020 | cfq_schedule_dispatch(cfqd); | ||
2021 | out_cont: | ||
2022 | spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); | ||
2023 | } | ||
2024 | |||
2025 | /* | ||
2026 | * Timer running if an idle class queue is waiting for service | ||
2027 | */ | ||
2028 | static void cfq_idle_class_timer(unsigned long data) | ||
2029 | { | ||
2030 | struct cfq_data *cfqd = (struct cfq_data *) data; | ||
2031 | unsigned long flags, end; | ||
2032 | |||
2033 | spin_lock_irqsave(cfqd->queue->queue_lock, flags); | ||
2034 | |||
2035 | /* | ||
2036 | * race with a non-idle queue, reset timer | ||
2037 | */ | ||
2038 | end = cfqd->last_end_request + CFQ_IDLE_GRACE; | ||
2039 | if (!time_after_eq(jiffies, end)) { | ||
2040 | cfqd->idle_class_timer.expires = end; | ||
2041 | add_timer(&cfqd->idle_class_timer); | ||
2042 | } else | ||
2043 | cfq_schedule_dispatch(cfqd); | ||
2044 | |||
2045 | spin_unlock_irqrestore(cfqd->queue->queue_lock, flags); | ||
2046 | } | ||
2047 | |||
2048 | static void cfq_shutdown_timer_wq(struct cfq_data *cfqd) | ||
2049 | { | ||
2050 | del_timer_sync(&cfqd->idle_slice_timer); | ||
2051 | del_timer_sync(&cfqd->idle_class_timer); | ||
2052 | blk_sync_queue(cfqd->queue); | ||
2053 | } | ||
2054 | |||
2055 | static void cfq_put_cfqd(struct cfq_data *cfqd) | ||
2056 | { | ||
2057 | request_queue_t *q = cfqd->queue; | ||
2058 | |||
2059 | if (!atomic_dec_and_test(&cfqd->ref)) | ||
2060 | return; | ||
2061 | |||
2062 | cfq_shutdown_timer_wq(cfqd); | ||
2063 | blk_put_queue(q); | ||
2064 | |||
2065 | mempool_destroy(cfqd->crq_pool); | ||
2066 | kfree(cfqd->crq_hash); | ||
2067 | kfree(cfqd->cfq_hash); | ||
2068 | kfree(cfqd); | ||
2069 | } | ||
2070 | |||
2071 | static void cfq_exit_queue(elevator_t *e) | ||
2072 | { | ||
2073 | struct cfq_data *cfqd = e->elevator_data; | ||
2074 | |||
2075 | cfq_shutdown_timer_wq(cfqd); | ||
2076 | cfq_put_cfqd(cfqd); | ||
2077 | } | ||
2078 | |||
2079 | static int cfq_init_queue(request_queue_t *q, elevator_t *e) | ||
2080 | { | ||
2081 | struct cfq_data *cfqd; | ||
2082 | int i; | ||
2083 | |||
2084 | cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL); | ||
2085 | if (!cfqd) | ||
2086 | return -ENOMEM; | ||
2087 | |||
2088 | memset(cfqd, 0, sizeof(*cfqd)); | ||
2089 | |||
2090 | for (i = 0; i < CFQ_PRIO_LISTS; i++) | ||
2091 | INIT_LIST_HEAD(&cfqd->rr_list[i]); | ||
2092 | |||
2093 | INIT_LIST_HEAD(&cfqd->busy_rr); | ||
2094 | INIT_LIST_HEAD(&cfqd->cur_rr); | ||
2095 | INIT_LIST_HEAD(&cfqd->idle_rr); | ||
2096 | INIT_LIST_HEAD(&cfqd->empty_list); | ||
2097 | |||
2098 | cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL); | ||
2099 | if (!cfqd->crq_hash) | ||
2100 | goto out_crqhash; | ||
2101 | |||
2102 | cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL); | ||
2103 | if (!cfqd->cfq_hash) | ||
2104 | goto out_cfqhash; | ||
2105 | |||
2106 | cfqd->crq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, crq_pool); | ||
2107 | if (!cfqd->crq_pool) | ||
2108 | goto out_crqpool; | ||
2109 | |||
2110 | for (i = 0; i < CFQ_MHASH_ENTRIES; i++) | ||
2111 | INIT_HLIST_HEAD(&cfqd->crq_hash[i]); | ||
2112 | for (i = 0; i < CFQ_QHASH_ENTRIES; i++) | ||
2113 | INIT_HLIST_HEAD(&cfqd->cfq_hash[i]); | ||
2114 | |||
2115 | e->elevator_data = cfqd; | ||
2116 | |||
2117 | cfqd->queue = q; | ||
2118 | atomic_inc(&q->refcnt); | ||
2119 | |||
2120 | cfqd->max_queued = q->nr_requests / 4; | ||
2121 | q->nr_batching = cfq_queued; | ||
2122 | |||
2123 | init_timer(&cfqd->idle_slice_timer); | ||
2124 | cfqd->idle_slice_timer.function = cfq_idle_slice_timer; | ||
2125 | cfqd->idle_slice_timer.data = (unsigned long) cfqd; | ||
2126 | |||
2127 | init_timer(&cfqd->idle_class_timer); | ||
2128 | cfqd->idle_class_timer.function = cfq_idle_class_timer; | ||
2129 | cfqd->idle_class_timer.data = (unsigned long) cfqd; | ||
2130 | |||
2131 | INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q); | ||
2132 | |||
2133 | atomic_set(&cfqd->ref, 1); | ||
2134 | |||
2135 | cfqd->cfq_queued = cfq_queued; | ||
2136 | cfqd->cfq_quantum = cfq_quantum; | ||
2137 | cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0]; | ||
2138 | cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1]; | ||
2139 | cfqd->cfq_back_max = cfq_back_max; | ||
2140 | cfqd->cfq_back_penalty = cfq_back_penalty; | ||
2141 | cfqd->cfq_slice[0] = cfq_slice_async; | ||
2142 | cfqd->cfq_slice[1] = cfq_slice_sync; | ||
2143 | cfqd->cfq_slice_async_rq = cfq_slice_async_rq; | ||
2144 | cfqd->cfq_slice_idle = cfq_slice_idle; | ||
2145 | cfqd->cfq_max_depth = cfq_max_depth; | ||
2146 | |||
2147 | return 0; | ||
2148 | out_crqpool: | ||
2149 | kfree(cfqd->cfq_hash); | ||
2150 | out_cfqhash: | ||
2151 | kfree(cfqd->crq_hash); | ||
2152 | out_crqhash: | ||
2153 | kfree(cfqd); | ||
2154 | return -ENOMEM; | ||
2155 | } | ||
2156 | |||
2157 | static void cfq_slab_kill(void) | ||
2158 | { | ||
2159 | if (crq_pool) | ||
2160 | kmem_cache_destroy(crq_pool); | ||
2161 | if (cfq_pool) | ||
2162 | kmem_cache_destroy(cfq_pool); | ||
2163 | if (cfq_ioc_pool) | ||
2164 | kmem_cache_destroy(cfq_ioc_pool); | ||
2165 | } | ||
2166 | |||
2167 | static int __init cfq_slab_setup(void) | ||
2168 | { | ||
2169 | crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0, | ||
2170 | NULL, NULL); | ||
2171 | if (!crq_pool) | ||
2172 | goto fail; | ||
2173 | |||
2174 | cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0, | ||
2175 | NULL, NULL); | ||
2176 | if (!cfq_pool) | ||
2177 | goto fail; | ||
2178 | |||
2179 | cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool", | ||
2180 | sizeof(struct cfq_io_context), 0, 0, NULL, NULL); | ||
2181 | if (!cfq_ioc_pool) | ||
2182 | goto fail; | ||
2183 | |||
2184 | return 0; | ||
2185 | fail: | ||
2186 | cfq_slab_kill(); | ||
2187 | return -ENOMEM; | ||
2188 | } | ||
2189 | |||
2190 | /* | ||
2191 | * sysfs parts below --> | ||
2192 | */ | ||
2193 | struct cfq_fs_entry { | ||
2194 | struct attribute attr; | ||
2195 | ssize_t (*show)(struct cfq_data *, char *); | ||
2196 | ssize_t (*store)(struct cfq_data *, const char *, size_t); | ||
2197 | }; | ||
2198 | |||
2199 | static ssize_t | ||
2200 | cfq_var_show(unsigned int var, char *page) | ||
2201 | { | ||
2202 | return sprintf(page, "%d\n", var); | ||
2203 | } | ||
2204 | |||
2205 | static ssize_t | ||
2206 | cfq_var_store(unsigned int *var, const char *page, size_t count) | ||
2207 | { | ||
2208 | char *p = (char *) page; | ||
2209 | |||
2210 | *var = simple_strtoul(p, &p, 10); | ||
2211 | return count; | ||
2212 | } | ||
2213 | |||
2214 | #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ | ||
2215 | static ssize_t __FUNC(struct cfq_data *cfqd, char *page) \ | ||
2216 | { \ | ||
2217 | unsigned int __data = __VAR; \ | ||
2218 | if (__CONV) \ | ||
2219 | __data = jiffies_to_msecs(__data); \ | ||
2220 | return cfq_var_show(__data, (page)); \ | ||
2221 | } | ||
2222 | SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0); | ||
2223 | SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0); | ||
2224 | SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1); | ||
2225 | SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1); | ||
2226 | SHOW_FUNCTION(cfq_back_max_show, cfqd->cfq_back_max, 0); | ||
2227 | SHOW_FUNCTION(cfq_back_penalty_show, cfqd->cfq_back_penalty, 0); | ||
2228 | SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1); | ||
2229 | SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1); | ||
2230 | SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1); | ||
2231 | SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0); | ||
2232 | SHOW_FUNCTION(cfq_max_depth_show, cfqd->cfq_max_depth, 0); | ||
2233 | #undef SHOW_FUNCTION | ||
2234 | |||
2235 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ | ||
2236 | static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count) \ | ||
2237 | { \ | ||
2238 | unsigned int __data; \ | ||
2239 | int ret = cfq_var_store(&__data, (page), count); \ | ||
2240 | if (__data < (MIN)) \ | ||
2241 | __data = (MIN); \ | ||
2242 | else if (__data > (MAX)) \ | ||
2243 | __data = (MAX); \ | ||
2244 | if (__CONV) \ | ||
2245 | *(__PTR) = msecs_to_jiffies(__data); \ | ||
2246 | else \ | ||
2247 | *(__PTR) = __data; \ | ||
2248 | return ret; \ | ||
2249 | } | ||
2250 | STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0); | ||
2251 | STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0); | ||
2252 | STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1); | ||
2253 | STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1); | ||
2254 | STORE_FUNCTION(cfq_back_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0); | ||
2255 | STORE_FUNCTION(cfq_back_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0); | ||
2256 | STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1); | ||
2257 | STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1); | ||
2258 | STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1); | ||
2259 | STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0); | ||
2260 | STORE_FUNCTION(cfq_max_depth_store, &cfqd->cfq_max_depth, 1, UINT_MAX, 0); | ||
2261 | #undef STORE_FUNCTION | ||
2262 | |||
2263 | static struct cfq_fs_entry cfq_quantum_entry = { | ||
2264 | .attr = {.name = "quantum", .mode = S_IRUGO | S_IWUSR }, | ||
2265 | .show = cfq_quantum_show, | ||
2266 | .store = cfq_quantum_store, | ||
2267 | }; | ||
2268 | static struct cfq_fs_entry cfq_queued_entry = { | ||
2269 | .attr = {.name = "queued", .mode = S_IRUGO | S_IWUSR }, | ||
2270 | .show = cfq_queued_show, | ||
2271 | .store = cfq_queued_store, | ||
2272 | }; | ||
2273 | static struct cfq_fs_entry cfq_fifo_expire_sync_entry = { | ||
2274 | .attr = {.name = "fifo_expire_sync", .mode = S_IRUGO | S_IWUSR }, | ||
2275 | .show = cfq_fifo_expire_sync_show, | ||
2276 | .store = cfq_fifo_expire_sync_store, | ||
2277 | }; | ||
2278 | static struct cfq_fs_entry cfq_fifo_expire_async_entry = { | ||
2279 | .attr = {.name = "fifo_expire_async", .mode = S_IRUGO | S_IWUSR }, | ||
2280 | .show = cfq_fifo_expire_async_show, | ||
2281 | .store = cfq_fifo_expire_async_store, | ||
2282 | }; | ||
2283 | static struct cfq_fs_entry cfq_back_max_entry = { | ||
2284 | .attr = {.name = "back_seek_max", .mode = S_IRUGO | S_IWUSR }, | ||
2285 | .show = cfq_back_max_show, | ||
2286 | .store = cfq_back_max_store, | ||
2287 | }; | ||
2288 | static struct cfq_fs_entry cfq_back_penalty_entry = { | ||
2289 | .attr = {.name = "back_seek_penalty", .mode = S_IRUGO | S_IWUSR }, | ||
2290 | .show = cfq_back_penalty_show, | ||
2291 | .store = cfq_back_penalty_store, | ||
2292 | }; | ||
2293 | static struct cfq_fs_entry cfq_slice_sync_entry = { | ||
2294 | .attr = {.name = "slice_sync", .mode = S_IRUGO | S_IWUSR }, | ||
2295 | .show = cfq_slice_sync_show, | ||
2296 | .store = cfq_slice_sync_store, | ||
2297 | }; | ||
2298 | static struct cfq_fs_entry cfq_slice_async_entry = { | ||
2299 | .attr = {.name = "slice_async", .mode = S_IRUGO | S_IWUSR }, | ||
2300 | .show = cfq_slice_async_show, | ||
2301 | .store = cfq_slice_async_store, | ||
2302 | }; | ||
2303 | static struct cfq_fs_entry cfq_slice_async_rq_entry = { | ||
2304 | .attr = {.name = "slice_async_rq", .mode = S_IRUGO | S_IWUSR }, | ||
2305 | .show = cfq_slice_async_rq_show, | ||
2306 | .store = cfq_slice_async_rq_store, | ||
2307 | }; | ||
2308 | static struct cfq_fs_entry cfq_slice_idle_entry = { | ||
2309 | .attr = {.name = "slice_idle", .mode = S_IRUGO | S_IWUSR }, | ||
2310 | .show = cfq_slice_idle_show, | ||
2311 | .store = cfq_slice_idle_store, | ||
2312 | }; | ||
2313 | static struct cfq_fs_entry cfq_max_depth_entry = { | ||
2314 | .attr = {.name = "max_depth", .mode = S_IRUGO | S_IWUSR }, | ||
2315 | .show = cfq_max_depth_show, | ||
2316 | .store = cfq_max_depth_store, | ||
2317 | }; | ||
2318 | |||
2319 | static struct attribute *default_attrs[] = { | ||
2320 | &cfq_quantum_entry.attr, | ||
2321 | &cfq_queued_entry.attr, | ||
2322 | &cfq_fifo_expire_sync_entry.attr, | ||
2323 | &cfq_fifo_expire_async_entry.attr, | ||
2324 | &cfq_back_max_entry.attr, | ||
2325 | &cfq_back_penalty_entry.attr, | ||
2326 | &cfq_slice_sync_entry.attr, | ||
2327 | &cfq_slice_async_entry.attr, | ||
2328 | &cfq_slice_async_rq_entry.attr, | ||
2329 | &cfq_slice_idle_entry.attr, | ||
2330 | &cfq_max_depth_entry.attr, | ||
2331 | NULL, | ||
2332 | }; | ||
2333 | |||
2334 | #define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr) | ||
2335 | |||
2336 | static ssize_t | ||
2337 | cfq_attr_show(struct kobject *kobj, struct attribute *attr, char *page) | ||
2338 | { | ||
2339 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
2340 | struct cfq_fs_entry *entry = to_cfq(attr); | ||
2341 | |||
2342 | if (!entry->show) | ||
2343 | return -EIO; | ||
2344 | |||
2345 | return entry->show(e->elevator_data, page); | ||
2346 | } | ||
2347 | |||
2348 | static ssize_t | ||
2349 | cfq_attr_store(struct kobject *kobj, struct attribute *attr, | ||
2350 | const char *page, size_t length) | ||
2351 | { | ||
2352 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
2353 | struct cfq_fs_entry *entry = to_cfq(attr); | ||
2354 | |||
2355 | if (!entry->store) | ||
2356 | return -EIO; | ||
2357 | |||
2358 | return entry->store(e->elevator_data, page, length); | ||
2359 | } | ||
2360 | |||
2361 | static struct sysfs_ops cfq_sysfs_ops = { | ||
2362 | .show = cfq_attr_show, | ||
2363 | .store = cfq_attr_store, | ||
2364 | }; | ||
2365 | |||
2366 | static struct kobj_type cfq_ktype = { | ||
2367 | .sysfs_ops = &cfq_sysfs_ops, | ||
2368 | .default_attrs = default_attrs, | ||
2369 | }; | ||
2370 | |||
2371 | static struct elevator_type iosched_cfq = { | ||
2372 | .ops = { | ||
2373 | .elevator_merge_fn = cfq_merge, | ||
2374 | .elevator_merged_fn = cfq_merged_request, | ||
2375 | .elevator_merge_req_fn = cfq_merged_requests, | ||
2376 | .elevator_dispatch_fn = cfq_dispatch_requests, | ||
2377 | .elevator_add_req_fn = cfq_insert_request, | ||
2378 | .elevator_activate_req_fn = cfq_activate_request, | ||
2379 | .elevator_deactivate_req_fn = cfq_deactivate_request, | ||
2380 | .elevator_queue_empty_fn = cfq_queue_empty, | ||
2381 | .elevator_completed_req_fn = cfq_completed_request, | ||
2382 | .elevator_former_req_fn = cfq_former_request, | ||
2383 | .elevator_latter_req_fn = cfq_latter_request, | ||
2384 | .elevator_set_req_fn = cfq_set_request, | ||
2385 | .elevator_put_req_fn = cfq_put_request, | ||
2386 | .elevator_may_queue_fn = cfq_may_queue, | ||
2387 | .elevator_init_fn = cfq_init_queue, | ||
2388 | .elevator_exit_fn = cfq_exit_queue, | ||
2389 | }, | ||
2390 | .elevator_ktype = &cfq_ktype, | ||
2391 | .elevator_name = "cfq", | ||
2392 | .elevator_owner = THIS_MODULE, | ||
2393 | }; | ||
2394 | |||
2395 | static int __init cfq_init(void) | ||
2396 | { | ||
2397 | int ret; | ||
2398 | |||
2399 | /* | ||
2400 | * could be 0 on HZ < 1000 setups | ||
2401 | */ | ||
2402 | if (!cfq_slice_async) | ||
2403 | cfq_slice_async = 1; | ||
2404 | if (!cfq_slice_idle) | ||
2405 | cfq_slice_idle = 1; | ||
2406 | |||
2407 | if (cfq_slab_setup()) | ||
2408 | return -ENOMEM; | ||
2409 | |||
2410 | ret = elv_register(&iosched_cfq); | ||
2411 | if (ret) | ||
2412 | cfq_slab_kill(); | ||
2413 | |||
2414 | return ret; | ||
2415 | } | ||
2416 | |||
2417 | static void __exit cfq_exit(void) | ||
2418 | { | ||
2419 | elv_unregister(&iosched_cfq); | ||
2420 | cfq_slab_kill(); | ||
2421 | } | ||
2422 | |||
2423 | module_init(cfq_init); | ||
2424 | module_exit(cfq_exit); | ||
2425 | |||
2426 | MODULE_AUTHOR("Jens Axboe"); | ||
2427 | MODULE_LICENSE("GPL"); | ||
2428 | MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler"); | ||
diff --git a/drivers/block/deadline-iosched.c b/drivers/block/deadline-iosched.c deleted file mode 100644 index 7929471d7df7..000000000000 --- a/drivers/block/deadline-iosched.c +++ /dev/null | |||
@@ -1,878 +0,0 @@ | |||
1 | /* | ||
2 | * linux/drivers/block/deadline-iosched.c | ||
3 | * | ||
4 | * Deadline i/o scheduler. | ||
5 | * | ||
6 | * Copyright (C) 2002 Jens Axboe <axboe@suse.de> | ||
7 | */ | ||
8 | #include <linux/kernel.h> | ||
9 | #include <linux/fs.h> | ||
10 | #include <linux/blkdev.h> | ||
11 | #include <linux/elevator.h> | ||
12 | #include <linux/bio.h> | ||
13 | #include <linux/config.h> | ||
14 | #include <linux/module.h> | ||
15 | #include <linux/slab.h> | ||
16 | #include <linux/init.h> | ||
17 | #include <linux/compiler.h> | ||
18 | #include <linux/hash.h> | ||
19 | #include <linux/rbtree.h> | ||
20 | |||
21 | /* | ||
22 | * See Documentation/block/deadline-iosched.txt | ||
23 | */ | ||
24 | static int read_expire = HZ / 2; /* max time before a read is submitted. */ | ||
25 | static int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */ | ||
26 | static int writes_starved = 2; /* max times reads can starve a write */ | ||
27 | static int fifo_batch = 16; /* # of sequential requests treated as one | ||
28 | by the above parameters. For throughput. */ | ||
29 | |||
30 | static const int deadline_hash_shift = 5; | ||
31 | #define DL_HASH_BLOCK(sec) ((sec) >> 3) | ||
32 | #define DL_HASH_FN(sec) (hash_long(DL_HASH_BLOCK((sec)), deadline_hash_shift)) | ||
33 | #define DL_HASH_ENTRIES (1 << deadline_hash_shift) | ||
34 | #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors) | ||
35 | #define list_entry_hash(ptr) list_entry((ptr), struct deadline_rq, hash) | ||
36 | #define ON_HASH(drq) (drq)->on_hash | ||
37 | |||
38 | struct deadline_data { | ||
39 | /* | ||
40 | * run time data | ||
41 | */ | ||
42 | |||
43 | /* | ||
44 | * requests (deadline_rq s) are present on both sort_list and fifo_list | ||
45 | */ | ||
46 | struct rb_root sort_list[2]; | ||
47 | struct list_head fifo_list[2]; | ||
48 | |||
49 | /* | ||
50 | * next in sort order. read, write or both are NULL | ||
51 | */ | ||
52 | struct deadline_rq *next_drq[2]; | ||
53 | struct list_head *hash; /* request hash */ | ||
54 | unsigned int batching; /* number of sequential requests made */ | ||
55 | sector_t last_sector; /* head position */ | ||
56 | unsigned int starved; /* times reads have starved writes */ | ||
57 | |||
58 | /* | ||
59 | * settings that change how the i/o scheduler behaves | ||
60 | */ | ||
61 | int fifo_expire[2]; | ||
62 | int fifo_batch; | ||
63 | int writes_starved; | ||
64 | int front_merges; | ||
65 | |||
66 | mempool_t *drq_pool; | ||
67 | }; | ||
68 | |||
69 | /* | ||
70 | * pre-request data. | ||
71 | */ | ||
72 | struct deadline_rq { | ||
73 | /* | ||
74 | * rbtree index, key is the starting offset | ||
75 | */ | ||
76 | struct rb_node rb_node; | ||
77 | sector_t rb_key; | ||
78 | |||
79 | struct request *request; | ||
80 | |||
81 | /* | ||
82 | * request hash, key is the ending offset (for back merge lookup) | ||
83 | */ | ||
84 | struct list_head hash; | ||
85 | char on_hash; | ||
86 | |||
87 | /* | ||
88 | * expire fifo | ||
89 | */ | ||
90 | struct list_head fifo; | ||
91 | unsigned long expires; | ||
92 | }; | ||
93 | |||
94 | static void deadline_move_request(struct deadline_data *dd, struct deadline_rq *drq); | ||
95 | |||
96 | static kmem_cache_t *drq_pool; | ||
97 | |||
98 | #define RQ_DATA(rq) ((struct deadline_rq *) (rq)->elevator_private) | ||
99 | |||
100 | /* | ||
101 | * the back merge hash support functions | ||
102 | */ | ||
103 | static inline void __deadline_del_drq_hash(struct deadline_rq *drq) | ||
104 | { | ||
105 | drq->on_hash = 0; | ||
106 | list_del_init(&drq->hash); | ||
107 | } | ||
108 | |||
109 | static inline void deadline_del_drq_hash(struct deadline_rq *drq) | ||
110 | { | ||
111 | if (ON_HASH(drq)) | ||
112 | __deadline_del_drq_hash(drq); | ||
113 | } | ||
114 | |||
115 | static inline void | ||
116 | deadline_add_drq_hash(struct deadline_data *dd, struct deadline_rq *drq) | ||
117 | { | ||
118 | struct request *rq = drq->request; | ||
119 | |||
120 | BUG_ON(ON_HASH(drq)); | ||
121 | |||
122 | drq->on_hash = 1; | ||
123 | list_add(&drq->hash, &dd->hash[DL_HASH_FN(rq_hash_key(rq))]); | ||
124 | } | ||
125 | |||
126 | /* | ||
127 | * move hot entry to front of chain | ||
128 | */ | ||
129 | static inline void | ||
130 | deadline_hot_drq_hash(struct deadline_data *dd, struct deadline_rq *drq) | ||
131 | { | ||
132 | struct request *rq = drq->request; | ||
133 | struct list_head *head = &dd->hash[DL_HASH_FN(rq_hash_key(rq))]; | ||
134 | |||
135 | if (ON_HASH(drq) && drq->hash.prev != head) { | ||
136 | list_del(&drq->hash); | ||
137 | list_add(&drq->hash, head); | ||
138 | } | ||
139 | } | ||
140 | |||
141 | static struct request * | ||
142 | deadline_find_drq_hash(struct deadline_data *dd, sector_t offset) | ||
143 | { | ||
144 | struct list_head *hash_list = &dd->hash[DL_HASH_FN(offset)]; | ||
145 | struct list_head *entry, *next = hash_list->next; | ||
146 | |||
147 | while ((entry = next) != hash_list) { | ||
148 | struct deadline_rq *drq = list_entry_hash(entry); | ||
149 | struct request *__rq = drq->request; | ||
150 | |||
151 | next = entry->next; | ||
152 | |||
153 | BUG_ON(!ON_HASH(drq)); | ||
154 | |||
155 | if (!rq_mergeable(__rq)) { | ||
156 | __deadline_del_drq_hash(drq); | ||
157 | continue; | ||
158 | } | ||
159 | |||
160 | if (rq_hash_key(__rq) == offset) | ||
161 | return __rq; | ||
162 | } | ||
163 | |||
164 | return NULL; | ||
165 | } | ||
166 | |||
167 | /* | ||
168 | * rb tree support functions | ||
169 | */ | ||
170 | #define RB_NONE (2) | ||
171 | #define RB_EMPTY(root) ((root)->rb_node == NULL) | ||
172 | #define ON_RB(node) ((node)->rb_color != RB_NONE) | ||
173 | #define RB_CLEAR(node) ((node)->rb_color = RB_NONE) | ||
174 | #define rb_entry_drq(node) rb_entry((node), struct deadline_rq, rb_node) | ||
175 | #define DRQ_RB_ROOT(dd, drq) (&(dd)->sort_list[rq_data_dir((drq)->request)]) | ||
176 | #define rq_rb_key(rq) (rq)->sector | ||
177 | |||
178 | static struct deadline_rq * | ||
179 | __deadline_add_drq_rb(struct deadline_data *dd, struct deadline_rq *drq) | ||
180 | { | ||
181 | struct rb_node **p = &DRQ_RB_ROOT(dd, drq)->rb_node; | ||
182 | struct rb_node *parent = NULL; | ||
183 | struct deadline_rq *__drq; | ||
184 | |||
185 | while (*p) { | ||
186 | parent = *p; | ||
187 | __drq = rb_entry_drq(parent); | ||
188 | |||
189 | if (drq->rb_key < __drq->rb_key) | ||
190 | p = &(*p)->rb_left; | ||
191 | else if (drq->rb_key > __drq->rb_key) | ||
192 | p = &(*p)->rb_right; | ||
193 | else | ||
194 | return __drq; | ||
195 | } | ||
196 | |||
197 | rb_link_node(&drq->rb_node, parent, p); | ||
198 | return NULL; | ||
199 | } | ||
200 | |||
201 | static void | ||
202 | deadline_add_drq_rb(struct deadline_data *dd, struct deadline_rq *drq) | ||
203 | { | ||
204 | struct deadline_rq *__alias; | ||
205 | |||
206 | drq->rb_key = rq_rb_key(drq->request); | ||
207 | |||
208 | retry: | ||
209 | __alias = __deadline_add_drq_rb(dd, drq); | ||
210 | if (!__alias) { | ||
211 | rb_insert_color(&drq->rb_node, DRQ_RB_ROOT(dd, drq)); | ||
212 | return; | ||
213 | } | ||
214 | |||
215 | deadline_move_request(dd, __alias); | ||
216 | goto retry; | ||
217 | } | ||
218 | |||
219 | static inline void | ||
220 | deadline_del_drq_rb(struct deadline_data *dd, struct deadline_rq *drq) | ||
221 | { | ||
222 | const int data_dir = rq_data_dir(drq->request); | ||
223 | |||
224 | if (dd->next_drq[data_dir] == drq) { | ||
225 | struct rb_node *rbnext = rb_next(&drq->rb_node); | ||
226 | |||
227 | dd->next_drq[data_dir] = NULL; | ||
228 | if (rbnext) | ||
229 | dd->next_drq[data_dir] = rb_entry_drq(rbnext); | ||
230 | } | ||
231 | |||
232 | BUG_ON(!ON_RB(&drq->rb_node)); | ||
233 | rb_erase(&drq->rb_node, DRQ_RB_ROOT(dd, drq)); | ||
234 | RB_CLEAR(&drq->rb_node); | ||
235 | } | ||
236 | |||
237 | static struct request * | ||
238 | deadline_find_drq_rb(struct deadline_data *dd, sector_t sector, int data_dir) | ||
239 | { | ||
240 | struct rb_node *n = dd->sort_list[data_dir].rb_node; | ||
241 | struct deadline_rq *drq; | ||
242 | |||
243 | while (n) { | ||
244 | drq = rb_entry_drq(n); | ||
245 | |||
246 | if (sector < drq->rb_key) | ||
247 | n = n->rb_left; | ||
248 | else if (sector > drq->rb_key) | ||
249 | n = n->rb_right; | ||
250 | else | ||
251 | return drq->request; | ||
252 | } | ||
253 | |||
254 | return NULL; | ||
255 | } | ||
256 | |||
257 | /* | ||
258 | * deadline_find_first_drq finds the first (lowest sector numbered) request | ||
259 | * for the specified data_dir. Used to sweep back to the start of the disk | ||
260 | * (1-way elevator) after we process the last (highest sector) request. | ||
261 | */ | ||
262 | static struct deadline_rq * | ||
263 | deadline_find_first_drq(struct deadline_data *dd, int data_dir) | ||
264 | { | ||
265 | struct rb_node *n = dd->sort_list[data_dir].rb_node; | ||
266 | |||
267 | for (;;) { | ||
268 | if (n->rb_left == NULL) | ||
269 | return rb_entry_drq(n); | ||
270 | |||
271 | n = n->rb_left; | ||
272 | } | ||
273 | } | ||
274 | |||
275 | /* | ||
276 | * add drq to rbtree and fifo | ||
277 | */ | ||
278 | static void | ||
279 | deadline_add_request(struct request_queue *q, struct request *rq) | ||
280 | { | ||
281 | struct deadline_data *dd = q->elevator->elevator_data; | ||
282 | struct deadline_rq *drq = RQ_DATA(rq); | ||
283 | |||
284 | const int data_dir = rq_data_dir(drq->request); | ||
285 | |||
286 | deadline_add_drq_rb(dd, drq); | ||
287 | /* | ||
288 | * set expire time (only used for reads) and add to fifo list | ||
289 | */ | ||
290 | drq->expires = jiffies + dd->fifo_expire[data_dir]; | ||
291 | list_add_tail(&drq->fifo, &dd->fifo_list[data_dir]); | ||
292 | |||
293 | if (rq_mergeable(rq)) | ||
294 | deadline_add_drq_hash(dd, drq); | ||
295 | } | ||
296 | |||
297 | /* | ||
298 | * remove rq from rbtree, fifo, and hash | ||
299 | */ | ||
300 | static void deadline_remove_request(request_queue_t *q, struct request *rq) | ||
301 | { | ||
302 | struct deadline_rq *drq = RQ_DATA(rq); | ||
303 | struct deadline_data *dd = q->elevator->elevator_data; | ||
304 | |||
305 | list_del_init(&drq->fifo); | ||
306 | deadline_del_drq_rb(dd, drq); | ||
307 | deadline_del_drq_hash(drq); | ||
308 | } | ||
309 | |||
310 | static int | ||
311 | deadline_merge(request_queue_t *q, struct request **req, struct bio *bio) | ||
312 | { | ||
313 | struct deadline_data *dd = q->elevator->elevator_data; | ||
314 | struct request *__rq; | ||
315 | int ret; | ||
316 | |||
317 | /* | ||
318 | * see if the merge hash can satisfy a back merge | ||
319 | */ | ||
320 | __rq = deadline_find_drq_hash(dd, bio->bi_sector); | ||
321 | if (__rq) { | ||
322 | BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector); | ||
323 | |||
324 | if (elv_rq_merge_ok(__rq, bio)) { | ||
325 | ret = ELEVATOR_BACK_MERGE; | ||
326 | goto out; | ||
327 | } | ||
328 | } | ||
329 | |||
330 | /* | ||
331 | * check for front merge | ||
332 | */ | ||
333 | if (dd->front_merges) { | ||
334 | sector_t rb_key = bio->bi_sector + bio_sectors(bio); | ||
335 | |||
336 | __rq = deadline_find_drq_rb(dd, rb_key, bio_data_dir(bio)); | ||
337 | if (__rq) { | ||
338 | BUG_ON(rb_key != rq_rb_key(__rq)); | ||
339 | |||
340 | if (elv_rq_merge_ok(__rq, bio)) { | ||
341 | ret = ELEVATOR_FRONT_MERGE; | ||
342 | goto out; | ||
343 | } | ||
344 | } | ||
345 | } | ||
346 | |||
347 | return ELEVATOR_NO_MERGE; | ||
348 | out: | ||
349 | if (ret) | ||
350 | deadline_hot_drq_hash(dd, RQ_DATA(__rq)); | ||
351 | *req = __rq; | ||
352 | return ret; | ||
353 | } | ||
354 | |||
355 | static void deadline_merged_request(request_queue_t *q, struct request *req) | ||
356 | { | ||
357 | struct deadline_data *dd = q->elevator->elevator_data; | ||
358 | struct deadline_rq *drq = RQ_DATA(req); | ||
359 | |||
360 | /* | ||
361 | * hash always needs to be repositioned, key is end sector | ||
362 | */ | ||
363 | deadline_del_drq_hash(drq); | ||
364 | deadline_add_drq_hash(dd, drq); | ||
365 | |||
366 | /* | ||
367 | * if the merge was a front merge, we need to reposition request | ||
368 | */ | ||
369 | if (rq_rb_key(req) != drq->rb_key) { | ||
370 | deadline_del_drq_rb(dd, drq); | ||
371 | deadline_add_drq_rb(dd, drq); | ||
372 | } | ||
373 | } | ||
374 | |||
375 | static void | ||
376 | deadline_merged_requests(request_queue_t *q, struct request *req, | ||
377 | struct request *next) | ||
378 | { | ||
379 | struct deadline_data *dd = q->elevator->elevator_data; | ||
380 | struct deadline_rq *drq = RQ_DATA(req); | ||
381 | struct deadline_rq *dnext = RQ_DATA(next); | ||
382 | |||
383 | BUG_ON(!drq); | ||
384 | BUG_ON(!dnext); | ||
385 | |||
386 | /* | ||
387 | * reposition drq (this is the merged request) in hash, and in rbtree | ||
388 | * in case of a front merge | ||
389 | */ | ||
390 | deadline_del_drq_hash(drq); | ||
391 | deadline_add_drq_hash(dd, drq); | ||
392 | |||
393 | if (rq_rb_key(req) != drq->rb_key) { | ||
394 | deadline_del_drq_rb(dd, drq); | ||
395 | deadline_add_drq_rb(dd, drq); | ||
396 | } | ||
397 | |||
398 | /* | ||
399 | * if dnext expires before drq, assign its expire time to drq | ||
400 | * and move into dnext position (dnext will be deleted) in fifo | ||
401 | */ | ||
402 | if (!list_empty(&drq->fifo) && !list_empty(&dnext->fifo)) { | ||
403 | if (time_before(dnext->expires, drq->expires)) { | ||
404 | list_move(&drq->fifo, &dnext->fifo); | ||
405 | drq->expires = dnext->expires; | ||
406 | } | ||
407 | } | ||
408 | |||
409 | /* | ||
410 | * kill knowledge of next, this one is a goner | ||
411 | */ | ||
412 | deadline_remove_request(q, next); | ||
413 | } | ||
414 | |||
415 | /* | ||
416 | * move request from sort list to dispatch queue. | ||
417 | */ | ||
418 | static inline void | ||
419 | deadline_move_to_dispatch(struct deadline_data *dd, struct deadline_rq *drq) | ||
420 | { | ||
421 | request_queue_t *q = drq->request->q; | ||
422 | |||
423 | deadline_remove_request(q, drq->request); | ||
424 | elv_dispatch_add_tail(q, drq->request); | ||
425 | } | ||
426 | |||
427 | /* | ||
428 | * move an entry to dispatch queue | ||
429 | */ | ||
430 | static void | ||
431 | deadline_move_request(struct deadline_data *dd, struct deadline_rq *drq) | ||
432 | { | ||
433 | const int data_dir = rq_data_dir(drq->request); | ||
434 | struct rb_node *rbnext = rb_next(&drq->rb_node); | ||
435 | |||
436 | dd->next_drq[READ] = NULL; | ||
437 | dd->next_drq[WRITE] = NULL; | ||
438 | |||
439 | if (rbnext) | ||
440 | dd->next_drq[data_dir] = rb_entry_drq(rbnext); | ||
441 | |||
442 | dd->last_sector = drq->request->sector + drq->request->nr_sectors; | ||
443 | |||
444 | /* | ||
445 | * take it off the sort and fifo list, move | ||
446 | * to dispatch queue | ||
447 | */ | ||
448 | deadline_move_to_dispatch(dd, drq); | ||
449 | } | ||
450 | |||
451 | #define list_entry_fifo(ptr) list_entry((ptr), struct deadline_rq, fifo) | ||
452 | |||
453 | /* | ||
454 | * deadline_check_fifo returns 0 if there are no expired reads on the fifo, | ||
455 | * 1 otherwise. Requires !list_empty(&dd->fifo_list[data_dir]) | ||
456 | */ | ||
457 | static inline int deadline_check_fifo(struct deadline_data *dd, int ddir) | ||
458 | { | ||
459 | struct deadline_rq *drq = list_entry_fifo(dd->fifo_list[ddir].next); | ||
460 | |||
461 | /* | ||
462 | * drq is expired! | ||
463 | */ | ||
464 | if (time_after(jiffies, drq->expires)) | ||
465 | return 1; | ||
466 | |||
467 | return 0; | ||
468 | } | ||
469 | |||
470 | /* | ||
471 | * deadline_dispatch_requests selects the best request according to | ||
472 | * read/write expire, fifo_batch, etc | ||
473 | */ | ||
474 | static int deadline_dispatch_requests(request_queue_t *q, int force) | ||
475 | { | ||
476 | struct deadline_data *dd = q->elevator->elevator_data; | ||
477 | const int reads = !list_empty(&dd->fifo_list[READ]); | ||
478 | const int writes = !list_empty(&dd->fifo_list[WRITE]); | ||
479 | struct deadline_rq *drq; | ||
480 | int data_dir; | ||
481 | |||
482 | /* | ||
483 | * batches are currently reads XOR writes | ||
484 | */ | ||
485 | if (dd->next_drq[WRITE]) | ||
486 | drq = dd->next_drq[WRITE]; | ||
487 | else | ||
488 | drq = dd->next_drq[READ]; | ||
489 | |||
490 | if (drq) { | ||
491 | /* we have a "next request" */ | ||
492 | |||
493 | if (dd->last_sector != drq->request->sector) | ||
494 | /* end the batch on a non sequential request */ | ||
495 | dd->batching += dd->fifo_batch; | ||
496 | |||
497 | if (dd->batching < dd->fifo_batch) | ||
498 | /* we are still entitled to batch */ | ||
499 | goto dispatch_request; | ||
500 | } | ||
501 | |||
502 | /* | ||
503 | * at this point we are not running a batch. select the appropriate | ||
504 | * data direction (read / write) | ||
505 | */ | ||
506 | |||
507 | if (reads) { | ||
508 | BUG_ON(RB_EMPTY(&dd->sort_list[READ])); | ||
509 | |||
510 | if (writes && (dd->starved++ >= dd->writes_starved)) | ||
511 | goto dispatch_writes; | ||
512 | |||
513 | data_dir = READ; | ||
514 | |||
515 | goto dispatch_find_request; | ||
516 | } | ||
517 | |||
518 | /* | ||
519 | * there are either no reads or writes have been starved | ||
520 | */ | ||
521 | |||
522 | if (writes) { | ||
523 | dispatch_writes: | ||
524 | BUG_ON(RB_EMPTY(&dd->sort_list[WRITE])); | ||
525 | |||
526 | dd->starved = 0; | ||
527 | |||
528 | data_dir = WRITE; | ||
529 | |||
530 | goto dispatch_find_request; | ||
531 | } | ||
532 | |||
533 | return 0; | ||
534 | |||
535 | dispatch_find_request: | ||
536 | /* | ||
537 | * we are not running a batch, find best request for selected data_dir | ||
538 | */ | ||
539 | if (deadline_check_fifo(dd, data_dir)) { | ||
540 | /* An expired request exists - satisfy it */ | ||
541 | dd->batching = 0; | ||
542 | drq = list_entry_fifo(dd->fifo_list[data_dir].next); | ||
543 | |||
544 | } else if (dd->next_drq[data_dir]) { | ||
545 | /* | ||
546 | * The last req was the same dir and we have a next request in | ||
547 | * sort order. No expired requests so continue on from here. | ||
548 | */ | ||
549 | drq = dd->next_drq[data_dir]; | ||
550 | } else { | ||
551 | /* | ||
552 | * The last req was the other direction or we have run out of | ||
553 | * higher-sectored requests. Go back to the lowest sectored | ||
554 | * request (1 way elevator) and start a new batch. | ||
555 | */ | ||
556 | dd->batching = 0; | ||
557 | drq = deadline_find_first_drq(dd, data_dir); | ||
558 | } | ||
559 | |||
560 | dispatch_request: | ||
561 | /* | ||
562 | * drq is the selected appropriate request. | ||
563 | */ | ||
564 | dd->batching++; | ||
565 | deadline_move_request(dd, drq); | ||
566 | |||
567 | return 1; | ||
568 | } | ||
569 | |||
570 | static int deadline_queue_empty(request_queue_t *q) | ||
571 | { | ||
572 | struct deadline_data *dd = q->elevator->elevator_data; | ||
573 | |||
574 | return list_empty(&dd->fifo_list[WRITE]) | ||
575 | && list_empty(&dd->fifo_list[READ]); | ||
576 | } | ||
577 | |||
578 | static struct request * | ||
579 | deadline_former_request(request_queue_t *q, struct request *rq) | ||
580 | { | ||
581 | struct deadline_rq *drq = RQ_DATA(rq); | ||
582 | struct rb_node *rbprev = rb_prev(&drq->rb_node); | ||
583 | |||
584 | if (rbprev) | ||
585 | return rb_entry_drq(rbprev)->request; | ||
586 | |||
587 | return NULL; | ||
588 | } | ||
589 | |||
590 | static struct request * | ||
591 | deadline_latter_request(request_queue_t *q, struct request *rq) | ||
592 | { | ||
593 | struct deadline_rq *drq = RQ_DATA(rq); | ||
594 | struct rb_node *rbnext = rb_next(&drq->rb_node); | ||
595 | |||
596 | if (rbnext) | ||
597 | return rb_entry_drq(rbnext)->request; | ||
598 | |||
599 | return NULL; | ||
600 | } | ||
601 | |||
602 | static void deadline_exit_queue(elevator_t *e) | ||
603 | { | ||
604 | struct deadline_data *dd = e->elevator_data; | ||
605 | |||
606 | BUG_ON(!list_empty(&dd->fifo_list[READ])); | ||
607 | BUG_ON(!list_empty(&dd->fifo_list[WRITE])); | ||
608 | |||
609 | mempool_destroy(dd->drq_pool); | ||
610 | kfree(dd->hash); | ||
611 | kfree(dd); | ||
612 | } | ||
613 | |||
614 | /* | ||
615 | * initialize elevator private data (deadline_data), and alloc a drq for | ||
616 | * each request on the free lists | ||
617 | */ | ||
618 | static int deadline_init_queue(request_queue_t *q, elevator_t *e) | ||
619 | { | ||
620 | struct deadline_data *dd; | ||
621 | int i; | ||
622 | |||
623 | if (!drq_pool) | ||
624 | return -ENOMEM; | ||
625 | |||
626 | dd = kmalloc_node(sizeof(*dd), GFP_KERNEL, q->node); | ||
627 | if (!dd) | ||
628 | return -ENOMEM; | ||
629 | memset(dd, 0, sizeof(*dd)); | ||
630 | |||
631 | dd->hash = kmalloc_node(sizeof(struct list_head)*DL_HASH_ENTRIES, | ||
632 | GFP_KERNEL, q->node); | ||
633 | if (!dd->hash) { | ||
634 | kfree(dd); | ||
635 | return -ENOMEM; | ||
636 | } | ||
637 | |||
638 | dd->drq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, | ||
639 | mempool_free_slab, drq_pool, q->node); | ||
640 | if (!dd->drq_pool) { | ||
641 | kfree(dd->hash); | ||
642 | kfree(dd); | ||
643 | return -ENOMEM; | ||
644 | } | ||
645 | |||
646 | for (i = 0; i < DL_HASH_ENTRIES; i++) | ||
647 | INIT_LIST_HEAD(&dd->hash[i]); | ||
648 | |||
649 | INIT_LIST_HEAD(&dd->fifo_list[READ]); | ||
650 | INIT_LIST_HEAD(&dd->fifo_list[WRITE]); | ||
651 | dd->sort_list[READ] = RB_ROOT; | ||
652 | dd->sort_list[WRITE] = RB_ROOT; | ||
653 | dd->fifo_expire[READ] = read_expire; | ||
654 | dd->fifo_expire[WRITE] = write_expire; | ||
655 | dd->writes_starved = writes_starved; | ||
656 | dd->front_merges = 1; | ||
657 | dd->fifo_batch = fifo_batch; | ||
658 | e->elevator_data = dd; | ||
659 | return 0; | ||
660 | } | ||
661 | |||
662 | static void deadline_put_request(request_queue_t *q, struct request *rq) | ||
663 | { | ||
664 | struct deadline_data *dd = q->elevator->elevator_data; | ||
665 | struct deadline_rq *drq = RQ_DATA(rq); | ||
666 | |||
667 | mempool_free(drq, dd->drq_pool); | ||
668 | rq->elevator_private = NULL; | ||
669 | } | ||
670 | |||
671 | static int | ||
672 | deadline_set_request(request_queue_t *q, struct request *rq, struct bio *bio, | ||
673 | gfp_t gfp_mask) | ||
674 | { | ||
675 | struct deadline_data *dd = q->elevator->elevator_data; | ||
676 | struct deadline_rq *drq; | ||
677 | |||
678 | drq = mempool_alloc(dd->drq_pool, gfp_mask); | ||
679 | if (drq) { | ||
680 | memset(drq, 0, sizeof(*drq)); | ||
681 | RB_CLEAR(&drq->rb_node); | ||
682 | drq->request = rq; | ||
683 | |||
684 | INIT_LIST_HEAD(&drq->hash); | ||
685 | drq->on_hash = 0; | ||
686 | |||
687 | INIT_LIST_HEAD(&drq->fifo); | ||
688 | |||
689 | rq->elevator_private = drq; | ||
690 | return 0; | ||
691 | } | ||
692 | |||
693 | return 1; | ||
694 | } | ||
695 | |||
696 | /* | ||
697 | * sysfs parts below | ||
698 | */ | ||
699 | struct deadline_fs_entry { | ||
700 | struct attribute attr; | ||
701 | ssize_t (*show)(struct deadline_data *, char *); | ||
702 | ssize_t (*store)(struct deadline_data *, const char *, size_t); | ||
703 | }; | ||
704 | |||
705 | static ssize_t | ||
706 | deadline_var_show(int var, char *page) | ||
707 | { | ||
708 | return sprintf(page, "%d\n", var); | ||
709 | } | ||
710 | |||
711 | static ssize_t | ||
712 | deadline_var_store(int *var, const char *page, size_t count) | ||
713 | { | ||
714 | char *p = (char *) page; | ||
715 | |||
716 | *var = simple_strtol(p, &p, 10); | ||
717 | return count; | ||
718 | } | ||
719 | |||
720 | #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ | ||
721 | static ssize_t __FUNC(struct deadline_data *dd, char *page) \ | ||
722 | { \ | ||
723 | int __data = __VAR; \ | ||
724 | if (__CONV) \ | ||
725 | __data = jiffies_to_msecs(__data); \ | ||
726 | return deadline_var_show(__data, (page)); \ | ||
727 | } | ||
728 | SHOW_FUNCTION(deadline_readexpire_show, dd->fifo_expire[READ], 1); | ||
729 | SHOW_FUNCTION(deadline_writeexpire_show, dd->fifo_expire[WRITE], 1); | ||
730 | SHOW_FUNCTION(deadline_writesstarved_show, dd->writes_starved, 0); | ||
731 | SHOW_FUNCTION(deadline_frontmerges_show, dd->front_merges, 0); | ||
732 | SHOW_FUNCTION(deadline_fifobatch_show, dd->fifo_batch, 0); | ||
733 | #undef SHOW_FUNCTION | ||
734 | |||
735 | #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ | ||
736 | static ssize_t __FUNC(struct deadline_data *dd, const char *page, size_t count) \ | ||
737 | { \ | ||
738 | int __data; \ | ||
739 | int ret = deadline_var_store(&__data, (page), count); \ | ||
740 | if (__data < (MIN)) \ | ||
741 | __data = (MIN); \ | ||
742 | else if (__data > (MAX)) \ | ||
743 | __data = (MAX); \ | ||
744 | if (__CONV) \ | ||
745 | *(__PTR) = msecs_to_jiffies(__data); \ | ||
746 | else \ | ||
747 | *(__PTR) = __data; \ | ||
748 | return ret; \ | ||
749 | } | ||
750 | STORE_FUNCTION(deadline_readexpire_store, &dd->fifo_expire[READ], 0, INT_MAX, 1); | ||
751 | STORE_FUNCTION(deadline_writeexpire_store, &dd->fifo_expire[WRITE], 0, INT_MAX, 1); | ||
752 | STORE_FUNCTION(deadline_writesstarved_store, &dd->writes_starved, INT_MIN, INT_MAX, 0); | ||
753 | STORE_FUNCTION(deadline_frontmerges_store, &dd->front_merges, 0, 1, 0); | ||
754 | STORE_FUNCTION(deadline_fifobatch_store, &dd->fifo_batch, 0, INT_MAX, 0); | ||
755 | #undef STORE_FUNCTION | ||
756 | |||
757 | static struct deadline_fs_entry deadline_readexpire_entry = { | ||
758 | .attr = {.name = "read_expire", .mode = S_IRUGO | S_IWUSR }, | ||
759 | .show = deadline_readexpire_show, | ||
760 | .store = deadline_readexpire_store, | ||
761 | }; | ||
762 | static struct deadline_fs_entry deadline_writeexpire_entry = { | ||
763 | .attr = {.name = "write_expire", .mode = S_IRUGO | S_IWUSR }, | ||
764 | .show = deadline_writeexpire_show, | ||
765 | .store = deadline_writeexpire_store, | ||
766 | }; | ||
767 | static struct deadline_fs_entry deadline_writesstarved_entry = { | ||
768 | .attr = {.name = "writes_starved", .mode = S_IRUGO | S_IWUSR }, | ||
769 | .show = deadline_writesstarved_show, | ||
770 | .store = deadline_writesstarved_store, | ||
771 | }; | ||
772 | static struct deadline_fs_entry deadline_frontmerges_entry = { | ||
773 | .attr = {.name = "front_merges", .mode = S_IRUGO | S_IWUSR }, | ||
774 | .show = deadline_frontmerges_show, | ||
775 | .store = deadline_frontmerges_store, | ||
776 | }; | ||
777 | static struct deadline_fs_entry deadline_fifobatch_entry = { | ||
778 | .attr = {.name = "fifo_batch", .mode = S_IRUGO | S_IWUSR }, | ||
779 | .show = deadline_fifobatch_show, | ||
780 | .store = deadline_fifobatch_store, | ||
781 | }; | ||
782 | |||
783 | static struct attribute *default_attrs[] = { | ||
784 | &deadline_readexpire_entry.attr, | ||
785 | &deadline_writeexpire_entry.attr, | ||
786 | &deadline_writesstarved_entry.attr, | ||
787 | &deadline_frontmerges_entry.attr, | ||
788 | &deadline_fifobatch_entry.attr, | ||
789 | NULL, | ||
790 | }; | ||
791 | |||
792 | #define to_deadline(atr) container_of((atr), struct deadline_fs_entry, attr) | ||
793 | |||
794 | static ssize_t | ||
795 | deadline_attr_show(struct kobject *kobj, struct attribute *attr, char *page) | ||
796 | { | ||
797 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
798 | struct deadline_fs_entry *entry = to_deadline(attr); | ||
799 | |||
800 | if (!entry->show) | ||
801 | return -EIO; | ||
802 | |||
803 | return entry->show(e->elevator_data, page); | ||
804 | } | ||
805 | |||
806 | static ssize_t | ||
807 | deadline_attr_store(struct kobject *kobj, struct attribute *attr, | ||
808 | const char *page, size_t length) | ||
809 | { | ||
810 | elevator_t *e = container_of(kobj, elevator_t, kobj); | ||
811 | struct deadline_fs_entry *entry = to_deadline(attr); | ||
812 | |||
813 | if (!entry->store) | ||
814 | return -EIO; | ||
815 | |||
816 | return entry->store(e->elevator_data, page, length); | ||
817 | } | ||
818 | |||
819 | static struct sysfs_ops deadline_sysfs_ops = { | ||
820 | .show = deadline_attr_show, | ||
821 | .store = deadline_attr_store, | ||
822 | }; | ||
823 | |||
824 | static struct kobj_type deadline_ktype = { | ||
825 | .sysfs_ops = &deadline_sysfs_ops, | ||
826 | .default_attrs = default_attrs, | ||
827 | }; | ||
828 | |||
829 | static struct elevator_type iosched_deadline = { | ||
830 | .ops = { | ||
831 | .elevator_merge_fn = deadline_merge, | ||
832 | .elevator_merged_fn = deadline_merged_request, | ||
833 | .elevator_merge_req_fn = deadline_merged_requests, | ||
834 | .elevator_dispatch_fn = deadline_dispatch_requests, | ||
835 | .elevator_add_req_fn = deadline_add_request, | ||
836 | .elevator_queue_empty_fn = deadline_queue_empty, | ||
837 | .elevator_former_req_fn = deadline_former_request, | ||
838 | .elevator_latter_req_fn = deadline_latter_request, | ||
839 | .elevator_set_req_fn = deadline_set_request, | ||
840 | .elevator_put_req_fn = deadline_put_request, | ||
841 | .elevator_init_fn = deadline_init_queue, | ||
842 | .elevator_exit_fn = deadline_exit_queue, | ||
843 | }, | ||
844 | |||
845 | .elevator_ktype = &deadline_ktype, | ||
846 | .elevator_name = "deadline", | ||
847 | .elevator_owner = THIS_MODULE, | ||
848 | }; | ||
849 | |||
850 | static int __init deadline_init(void) | ||
851 | { | ||
852 | int ret; | ||
853 | |||
854 | drq_pool = kmem_cache_create("deadline_drq", sizeof(struct deadline_rq), | ||
855 | 0, 0, NULL, NULL); | ||
856 | |||
857 | if (!drq_pool) | ||
858 | return -ENOMEM; | ||
859 | |||
860 | ret = elv_register(&iosched_deadline); | ||
861 | if (ret) | ||
862 | kmem_cache_destroy(drq_pool); | ||
863 | |||
864 | return ret; | ||
865 | } | ||
866 | |||
867 | static void __exit deadline_exit(void) | ||
868 | { | ||
869 | kmem_cache_destroy(drq_pool); | ||
870 | elv_unregister(&iosched_deadline); | ||
871 | } | ||
872 | |||
873 | module_init(deadline_init); | ||
874 | module_exit(deadline_exit); | ||
875 | |||
876 | MODULE_AUTHOR("Jens Axboe"); | ||
877 | MODULE_LICENSE("GPL"); | ||
878 | MODULE_DESCRIPTION("deadline IO scheduler"); | ||
diff --git a/drivers/block/elevator.c b/drivers/block/elevator.c deleted file mode 100644 index d4a49a3df829..000000000000 --- a/drivers/block/elevator.c +++ /dev/null | |||
@@ -1,802 +0,0 @@ | |||
1 | /* | ||
2 | * linux/drivers/block/elevator.c | ||
3 | * | ||
4 | * Block device elevator/IO-scheduler. | ||
5 | * | ||
6 | * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE | ||
7 | * | ||
8 | * 30042000 Jens Axboe <axboe@suse.de> : | ||
9 | * | ||
10 | * Split the elevator a bit so that it is possible to choose a different | ||
11 | * one or even write a new "plug in". There are three pieces: | ||
12 | * - elevator_fn, inserts a new request in the queue list | ||
13 | * - elevator_merge_fn, decides whether a new buffer can be merged with | ||
14 | * an existing request | ||
15 | * - elevator_dequeue_fn, called when a request is taken off the active list | ||
16 | * | ||
17 | * 20082000 Dave Jones <davej@suse.de> : | ||
18 | * Removed tests for max-bomb-segments, which was breaking elvtune | ||
19 | * when run without -bN | ||
20 | * | ||
21 | * Jens: | ||
22 | * - Rework again to work with bio instead of buffer_heads | ||
23 | * - loose bi_dev comparisons, partition handling is right now | ||
24 | * - completely modularize elevator setup and teardown | ||
25 | * | ||
26 | */ | ||
27 | #include <linux/kernel.h> | ||
28 | #include <linux/fs.h> | ||
29 | #include <linux/blkdev.h> | ||
30 | #include <linux/elevator.h> | ||
31 | #include <linux/bio.h> | ||
32 | #include <linux/config.h> | ||
33 | #include <linux/module.h> | ||
34 | #include <linux/slab.h> | ||
35 | #include <linux/init.h> | ||
36 | #include <linux/compiler.h> | ||
37 | #include <linux/delay.h> | ||
38 | |||
39 | #include <asm/uaccess.h> | ||
40 | |||
41 | static DEFINE_SPINLOCK(elv_list_lock); | ||
42 | static LIST_HEAD(elv_list); | ||
43 | |||
44 | /* | ||
45 | * can we safely merge with this request? | ||
46 | */ | ||
47 | inline int elv_rq_merge_ok(struct request *rq, struct bio *bio) | ||
48 | { | ||
49 | if (!rq_mergeable(rq)) | ||
50 | return 0; | ||
51 | |||
52 | /* | ||
53 | * different data direction or already started, don't merge | ||
54 | */ | ||
55 | if (bio_data_dir(bio) != rq_data_dir(rq)) | ||
56 | return 0; | ||
57 | |||
58 | /* | ||
59 | * same device and no special stuff set, merge is ok | ||
60 | */ | ||
61 | if (rq->rq_disk == bio->bi_bdev->bd_disk && | ||
62 | !rq->waiting && !rq->special) | ||
63 | return 1; | ||
64 | |||
65 | return 0; | ||
66 | } | ||
67 | EXPORT_SYMBOL(elv_rq_merge_ok); | ||
68 | |||
69 | inline int elv_try_merge(struct request *__rq, struct bio *bio) | ||
70 | { | ||
71 | int ret = ELEVATOR_NO_MERGE; | ||
72 | |||
73 | /* | ||
74 | * we can merge and sequence is ok, check if it's possible | ||
75 | */ | ||
76 | if (elv_rq_merge_ok(__rq, bio)) { | ||
77 | if (__rq->sector + __rq->nr_sectors == bio->bi_sector) | ||
78 | ret = ELEVATOR_BACK_MERGE; | ||
79 | else if (__rq->sector - bio_sectors(bio) == bio->bi_sector) | ||
80 | ret = ELEVATOR_FRONT_MERGE; | ||
81 | } | ||
82 | |||
83 | return ret; | ||
84 | } | ||
85 | EXPORT_SYMBOL(elv_try_merge); | ||
86 | |||
87 | static struct elevator_type *elevator_find(const char *name) | ||
88 | { | ||
89 | struct elevator_type *e = NULL; | ||
90 | struct list_head *entry; | ||
91 | |||
92 | list_for_each(entry, &elv_list) { | ||
93 | struct elevator_type *__e; | ||
94 | |||
95 | __e = list_entry(entry, struct elevator_type, list); | ||
96 | |||
97 | if (!strcmp(__e->elevator_name, name)) { | ||
98 | e = __e; | ||
99 | break; | ||
100 | } | ||
101 | } | ||
102 | |||
103 | return e; | ||
104 | } | ||
105 | |||
106 | static void elevator_put(struct elevator_type *e) | ||
107 | { | ||
108 | module_put(e->elevator_owner); | ||
109 | } | ||
110 | |||
111 | static struct elevator_type *elevator_get(const char *name) | ||
112 | { | ||
113 | struct elevator_type *e; | ||
114 | |||
115 | spin_lock_irq(&elv_list_lock); | ||
116 | |||
117 | e = elevator_find(name); | ||
118 | if (e && !try_module_get(e->elevator_owner)) | ||
119 | e = NULL; | ||
120 | |||
121 | spin_unlock_irq(&elv_list_lock); | ||
122 | |||
123 | return e; | ||
124 | } | ||
125 | |||
126 | static int elevator_attach(request_queue_t *q, struct elevator_type *e, | ||
127 | struct elevator_queue *eq) | ||
128 | { | ||
129 | int ret = 0; | ||
130 | |||
131 | memset(eq, 0, sizeof(*eq)); | ||
132 | eq->ops = &e->ops; | ||
133 | eq->elevator_type = e; | ||
134 | |||
135 | q->elevator = eq; | ||
136 | |||
137 | if (eq->ops->elevator_init_fn) | ||
138 | ret = eq->ops->elevator_init_fn(q, eq); | ||
139 | |||
140 | return ret; | ||
141 | } | ||
142 | |||
143 | static char chosen_elevator[16]; | ||
144 | |||
145 | static void elevator_setup_default(void) | ||
146 | { | ||
147 | struct elevator_type *e; | ||
148 | |||
149 | /* | ||
150 | * If default has not been set, use the compiled-in selection. | ||
151 | */ | ||
152 | if (!chosen_elevator[0]) | ||
153 | strcpy(chosen_elevator, CONFIG_DEFAULT_IOSCHED); | ||
154 | |||
155 | /* | ||
156 | * If the given scheduler is not available, fall back to no-op. | ||
157 | */ | ||
158 | if (!(e = elevator_find(chosen_elevator))) | ||
159 | strcpy(chosen_elevator, "noop"); | ||
160 | elevator_put(e); | ||
161 | } | ||
162 | |||
163 | static int __init elevator_setup(char *str) | ||
164 | { | ||
165 | strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1); | ||
166 | return 0; | ||
167 | } | ||
168 | |||
169 | __setup("elevator=", elevator_setup); | ||
170 | |||
171 | int elevator_init(request_queue_t *q, char *name) | ||
172 | { | ||
173 | struct elevator_type *e = NULL; | ||
174 | struct elevator_queue *eq; | ||
175 | int ret = 0; | ||
176 | |||
177 | INIT_LIST_HEAD(&q->queue_head); | ||
178 | q->last_merge = NULL; | ||
179 | q->end_sector = 0; | ||
180 | q->boundary_rq = NULL; | ||
181 | |||
182 | elevator_setup_default(); | ||
183 | |||
184 | if (!name) | ||
185 | name = chosen_elevator; | ||
186 | |||
187 | e = elevator_get(name); | ||
188 | if (!e) | ||
189 | return -EINVAL; | ||
190 | |||
191 | eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL); | ||
192 | if (!eq) { | ||
193 | elevator_put(e->elevator_type); | ||
194 | return -ENOMEM; | ||
195 | } | ||
196 | |||
197 | ret = elevator_attach(q, e, eq); | ||
198 | if (ret) { | ||
199 | kfree(eq); | ||
200 | elevator_put(e->elevator_type); | ||
201 | } | ||
202 | |||
203 | return ret; | ||
204 | } | ||
205 | |||
206 | void elevator_exit(elevator_t *e) | ||
207 | { | ||
208 | if (e->ops->elevator_exit_fn) | ||
209 | e->ops->elevator_exit_fn(e); | ||
210 | |||
211 | elevator_put(e->elevator_type); | ||
212 | e->elevator_type = NULL; | ||
213 | kfree(e); | ||
214 | } | ||
215 | |||
216 | /* | ||
217 | * Insert rq into dispatch queue of q. Queue lock must be held on | ||
218 | * entry. If sort != 0, rq is sort-inserted; otherwise, rq will be | ||
219 | * appended to the dispatch queue. To be used by specific elevators. | ||
220 | */ | ||
221 | void elv_dispatch_sort(request_queue_t *q, struct request *rq) | ||
222 | { | ||
223 | sector_t boundary; | ||
224 | struct list_head *entry; | ||
225 | |||
226 | if (q->last_merge == rq) | ||
227 | q->last_merge = NULL; | ||
228 | |||
229 | boundary = q->end_sector; | ||
230 | |||
231 | list_for_each_prev(entry, &q->queue_head) { | ||
232 | struct request *pos = list_entry_rq(entry); | ||
233 | |||
234 | if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED)) | ||
235 | break; | ||
236 | if (rq->sector >= boundary) { | ||
237 | if (pos->sector < boundary) | ||
238 | continue; | ||
239 | } else { | ||
240 | if (pos->sector >= boundary) | ||
241 | break; | ||
242 | } | ||
243 | if (rq->sector >= pos->sector) | ||
244 | break; | ||
245 | } | ||
246 | |||
247 | list_add(&rq->queuelist, entry); | ||
248 | } | ||
249 | |||
250 | int elv_merge(request_queue_t *q, struct request **req, struct bio *bio) | ||
251 | { | ||
252 | elevator_t *e = q->elevator; | ||
253 | int ret; | ||
254 | |||
255 | if (q->last_merge) { | ||
256 | ret = elv_try_merge(q->last_merge, bio); | ||
257 | if (ret != ELEVATOR_NO_MERGE) { | ||
258 | *req = q->last_merge; | ||
259 | return ret; | ||
260 | } | ||
261 | } | ||
262 | |||
263 | if (e->ops->elevator_merge_fn) | ||
264 | return e->ops->elevator_merge_fn(q, req, bio); | ||
265 | |||
266 | return ELEVATOR_NO_MERGE; | ||
267 | } | ||
268 | |||
269 | void elv_merged_request(request_queue_t *q, struct request *rq) | ||
270 | { | ||
271 | elevator_t *e = q->elevator; | ||
272 | |||
273 | if (e->ops->elevator_merged_fn) | ||
274 | e->ops->elevator_merged_fn(q, rq); | ||
275 | |||
276 | q->last_merge = rq; | ||
277 | } | ||
278 | |||
279 | void elv_merge_requests(request_queue_t *q, struct request *rq, | ||
280 | struct request *next) | ||
281 | { | ||
282 | elevator_t *e = q->elevator; | ||
283 | |||
284 | if (e->ops->elevator_merge_req_fn) | ||
285 | e->ops->elevator_merge_req_fn(q, rq, next); | ||
286 | |||
287 | q->last_merge = rq; | ||
288 | } | ||
289 | |||
290 | void elv_requeue_request(request_queue_t *q, struct request *rq) | ||
291 | { | ||
292 | elevator_t *e = q->elevator; | ||
293 | |||
294 | /* | ||
295 | * it already went through dequeue, we need to decrement the | ||
296 | * in_flight count again | ||
297 | */ | ||
298 | if (blk_account_rq(rq)) { | ||
299 | q->in_flight--; | ||
300 | if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn) | ||
301 | e->ops->elevator_deactivate_req_fn(q, rq); | ||
302 | } | ||
303 | |||
304 | rq->flags &= ~REQ_STARTED; | ||
305 | |||
306 | /* | ||
307 | * if this is the flush, requeue the original instead and drop the flush | ||
308 | */ | ||
309 | if (rq->flags & REQ_BAR_FLUSH) { | ||
310 | clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags); | ||
311 | rq = rq->end_io_data; | ||
312 | } | ||
313 | |||
314 | __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0); | ||
315 | } | ||
316 | |||
317 | void __elv_add_request(request_queue_t *q, struct request *rq, int where, | ||
318 | int plug) | ||
319 | { | ||
320 | if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) { | ||
321 | /* | ||
322 | * barriers implicitly indicate back insertion | ||
323 | */ | ||
324 | if (where == ELEVATOR_INSERT_SORT) | ||
325 | where = ELEVATOR_INSERT_BACK; | ||
326 | |||
327 | /* | ||
328 | * this request is scheduling boundary, update end_sector | ||
329 | */ | ||
330 | if (blk_fs_request(rq)) { | ||
331 | q->end_sector = rq_end_sector(rq); | ||
332 | q->boundary_rq = rq; | ||
333 | } | ||
334 | } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT) | ||
335 | where = ELEVATOR_INSERT_BACK; | ||
336 | |||
337 | if (plug) | ||
338 | blk_plug_device(q); | ||
339 | |||
340 | rq->q = q; | ||
341 | |||
342 | switch (where) { | ||
343 | case ELEVATOR_INSERT_FRONT: | ||
344 | rq->flags |= REQ_SOFTBARRIER; | ||
345 | |||
346 | list_add(&rq->queuelist, &q->queue_head); | ||
347 | break; | ||
348 | |||
349 | case ELEVATOR_INSERT_BACK: | ||
350 | rq->flags |= REQ_SOFTBARRIER; | ||
351 | |||
352 | while (q->elevator->ops->elevator_dispatch_fn(q, 1)) | ||
353 | ; | ||
354 | list_add_tail(&rq->queuelist, &q->queue_head); | ||
355 | /* | ||
356 | * We kick the queue here for the following reasons. | ||
357 | * - The elevator might have returned NULL previously | ||
358 | * to delay requests and returned them now. As the | ||
359 | * queue wasn't empty before this request, ll_rw_blk | ||
360 | * won't run the queue on return, resulting in hang. | ||
361 | * - Usually, back inserted requests won't be merged | ||
362 | * with anything. There's no point in delaying queue | ||
363 | * processing. | ||
364 | */ | ||
365 | blk_remove_plug(q); | ||
366 | q->request_fn(q); | ||
367 | break; | ||
368 | |||
369 | case ELEVATOR_INSERT_SORT: | ||
370 | BUG_ON(!blk_fs_request(rq)); | ||
371 | rq->flags |= REQ_SORTED; | ||
372 | if (q->last_merge == NULL && rq_mergeable(rq)) | ||
373 | q->last_merge = rq; | ||
374 | /* | ||
375 | * Some ioscheds (cfq) run q->request_fn directly, so | ||
376 | * rq cannot be accessed after calling | ||
377 | * elevator_add_req_fn. | ||
378 | */ | ||
379 | q->elevator->ops->elevator_add_req_fn(q, rq); | ||
380 | break; | ||
381 | |||
382 | default: | ||
383 | printk(KERN_ERR "%s: bad insertion point %d\n", | ||
384 | __FUNCTION__, where); | ||
385 | BUG(); | ||
386 | } | ||
387 | |||
388 | if (blk_queue_plugged(q)) { | ||
389 | int nrq = q->rq.count[READ] + q->rq.count[WRITE] | ||
390 | - q->in_flight; | ||
391 | |||
392 | if (nrq >= q->unplug_thresh) | ||
393 | __generic_unplug_device(q); | ||
394 | } | ||
395 | } | ||
396 | |||
397 | void elv_add_request(request_queue_t *q, struct request *rq, int where, | ||
398 | int plug) | ||
399 | { | ||
400 | unsigned long flags; | ||
401 | |||
402 | spin_lock_irqsave(q->queue_lock, flags); | ||
403 | __elv_add_request(q, rq, where, plug); | ||
404 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
405 | } | ||
406 | |||
407 | static inline struct request *__elv_next_request(request_queue_t *q) | ||
408 | { | ||
409 | struct request *rq; | ||
410 | |||
411 | if (unlikely(list_empty(&q->queue_head) && | ||
412 | !q->elevator->ops->elevator_dispatch_fn(q, 0))) | ||
413 | return NULL; | ||
414 | |||
415 | rq = list_entry_rq(q->queue_head.next); | ||
416 | |||
417 | /* | ||
418 | * if this is a barrier write and the device has to issue a | ||
419 | * flush sequence to support it, check how far we are | ||
420 | */ | ||
421 | if (blk_fs_request(rq) && blk_barrier_rq(rq)) { | ||
422 | BUG_ON(q->ordered == QUEUE_ORDERED_NONE); | ||
423 | |||
424 | if (q->ordered == QUEUE_ORDERED_FLUSH && | ||
425 | !blk_barrier_preflush(rq)) | ||
426 | rq = blk_start_pre_flush(q, rq); | ||
427 | } | ||
428 | |||
429 | return rq; | ||
430 | } | ||
431 | |||
432 | struct request *elv_next_request(request_queue_t *q) | ||
433 | { | ||
434 | struct request *rq; | ||
435 | int ret; | ||
436 | |||
437 | while ((rq = __elv_next_request(q)) != NULL) { | ||
438 | if (!(rq->flags & REQ_STARTED)) { | ||
439 | elevator_t *e = q->elevator; | ||
440 | |||
441 | /* | ||
442 | * This is the first time the device driver | ||
443 | * sees this request (possibly after | ||
444 | * requeueing). Notify IO scheduler. | ||
445 | */ | ||
446 | if (blk_sorted_rq(rq) && | ||
447 | e->ops->elevator_activate_req_fn) | ||
448 | e->ops->elevator_activate_req_fn(q, rq); | ||
449 | |||
450 | /* | ||
451 | * just mark as started even if we don't start | ||
452 | * it, a request that has been delayed should | ||
453 | * not be passed by new incoming requests | ||
454 | */ | ||
455 | rq->flags |= REQ_STARTED; | ||
456 | } | ||
457 | |||
458 | if (!q->boundary_rq || q->boundary_rq == rq) { | ||
459 | q->end_sector = rq_end_sector(rq); | ||
460 | q->boundary_rq = NULL; | ||
461 | } | ||
462 | |||
463 | if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn) | ||
464 | break; | ||
465 | |||
466 | ret = q->prep_rq_fn(q, rq); | ||
467 | if (ret == BLKPREP_OK) { | ||
468 | break; | ||
469 | } else if (ret == BLKPREP_DEFER) { | ||
470 | /* | ||
471 | * the request may have been (partially) prepped. | ||
472 | * we need to keep this request in the front to | ||
473 | * avoid resource deadlock. REQ_STARTED will | ||
474 | * prevent other fs requests from passing this one. | ||
475 | */ | ||
476 | rq = NULL; | ||
477 | break; | ||
478 | } else if (ret == BLKPREP_KILL) { | ||
479 | int nr_bytes = rq->hard_nr_sectors << 9; | ||
480 | |||
481 | if (!nr_bytes) | ||
482 | nr_bytes = rq->data_len; | ||
483 | |||
484 | blkdev_dequeue_request(rq); | ||
485 | rq->flags |= REQ_QUIET; | ||
486 | end_that_request_chunk(rq, 0, nr_bytes); | ||
487 | end_that_request_last(rq); | ||
488 | } else { | ||
489 | printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__, | ||
490 | ret); | ||
491 | break; | ||
492 | } | ||
493 | } | ||
494 | |||
495 | return rq; | ||
496 | } | ||
497 | |||
498 | void elv_dequeue_request(request_queue_t *q, struct request *rq) | ||
499 | { | ||
500 | BUG_ON(list_empty(&rq->queuelist)); | ||
501 | |||
502 | list_del_init(&rq->queuelist); | ||
503 | |||
504 | /* | ||
505 | * the time frame between a request being removed from the lists | ||
506 | * and to it is freed is accounted as io that is in progress at | ||
507 | * the driver side. | ||
508 | */ | ||
509 | if (blk_account_rq(rq)) | ||
510 | q->in_flight++; | ||
511 | } | ||
512 | |||
513 | int elv_queue_empty(request_queue_t *q) | ||
514 | { | ||
515 | elevator_t *e = q->elevator; | ||
516 | |||
517 | if (!list_empty(&q->queue_head)) | ||
518 | return 0; | ||
519 | |||
520 | if (e->ops->elevator_queue_empty_fn) | ||
521 | return e->ops->elevator_queue_empty_fn(q); | ||
522 | |||
523 | return 1; | ||
524 | } | ||
525 | |||
526 | struct request *elv_latter_request(request_queue_t *q, struct request *rq) | ||
527 | { | ||
528 | struct list_head *next; | ||
529 | |||
530 | elevator_t *e = q->elevator; | ||
531 | |||
532 | if (e->ops->elevator_latter_req_fn) | ||
533 | return e->ops->elevator_latter_req_fn(q, rq); | ||
534 | |||
535 | next = rq->queuelist.next; | ||
536 | if (next != &q->queue_head && next != &rq->queuelist) | ||
537 | return list_entry_rq(next); | ||
538 | |||
539 | return NULL; | ||
540 | } | ||
541 | |||
542 | struct request *elv_former_request(request_queue_t *q, struct request *rq) | ||
543 | { | ||
544 | struct list_head *prev; | ||
545 | |||
546 | elevator_t *e = q->elevator; | ||
547 | |||
548 | if (e->ops->elevator_former_req_fn) | ||
549 | return e->ops->elevator_former_req_fn(q, rq); | ||
550 | |||
551 | prev = rq->queuelist.prev; | ||
552 | if (prev != &q->queue_head && prev != &rq->queuelist) | ||
553 | return list_entry_rq(prev); | ||
554 | |||
555 | return NULL; | ||
556 | } | ||
557 | |||
558 | int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio, | ||
559 | gfp_t gfp_mask) | ||
560 | { | ||
561 | elevator_t *e = q->elevator; | ||
562 | |||
563 | if (e->ops->elevator_set_req_fn) | ||
564 | return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask); | ||
565 | |||
566 | rq->elevator_private = NULL; | ||
567 | return 0; | ||
568 | } | ||
569 | |||
570 | void elv_put_request(request_queue_t *q, struct request *rq) | ||
571 | { | ||
572 | elevator_t *e = q->elevator; | ||
573 | |||
574 | if (e->ops->elevator_put_req_fn) | ||
575 | e->ops->elevator_put_req_fn(q, rq); | ||
576 | } | ||
577 | |||
578 | int elv_may_queue(request_queue_t *q, int rw, struct bio *bio) | ||
579 | { | ||
580 | elevator_t *e = q->elevator; | ||
581 | |||
582 | if (e->ops->elevator_may_queue_fn) | ||
583 | return e->ops->elevator_may_queue_fn(q, rw, bio); | ||
584 | |||
585 | return ELV_MQUEUE_MAY; | ||
586 | } | ||
587 | |||
588 | void elv_completed_request(request_queue_t *q, struct request *rq) | ||
589 | { | ||
590 | elevator_t *e = q->elevator; | ||
591 | |||
592 | /* | ||
593 | * request is released from the driver, io must be done | ||
594 | */ | ||
595 | if (blk_account_rq(rq)) { | ||
596 | q->in_flight--; | ||
597 | if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn) | ||
598 | e->ops->elevator_completed_req_fn(q, rq); | ||
599 | } | ||
600 | } | ||
601 | |||
602 | int elv_register_queue(struct request_queue *q) | ||
603 | { | ||
604 | elevator_t *e = q->elevator; | ||
605 | |||
606 | e->kobj.parent = kobject_get(&q->kobj); | ||
607 | if (!e->kobj.parent) | ||
608 | return -EBUSY; | ||
609 | |||
610 | snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched"); | ||
611 | e->kobj.ktype = e->elevator_type->elevator_ktype; | ||
612 | |||
613 | return kobject_register(&e->kobj); | ||
614 | } | ||
615 | |||
616 | void elv_unregister_queue(struct request_queue *q) | ||
617 | { | ||
618 | if (q) { | ||
619 | elevator_t *e = q->elevator; | ||
620 | kobject_unregister(&e->kobj); | ||
621 | kobject_put(&q->kobj); | ||
622 | } | ||
623 | } | ||
624 | |||
625 | int elv_register(struct elevator_type *e) | ||
626 | { | ||
627 | spin_lock_irq(&elv_list_lock); | ||
628 | if (elevator_find(e->elevator_name)) | ||
629 | BUG(); | ||
630 | list_add_tail(&e->list, &elv_list); | ||
631 | spin_unlock_irq(&elv_list_lock); | ||
632 | |||
633 | printk(KERN_INFO "io scheduler %s registered", e->elevator_name); | ||
634 | if (!strcmp(e->elevator_name, chosen_elevator)) | ||
635 | printk(" (default)"); | ||
636 | printk("\n"); | ||
637 | return 0; | ||
638 | } | ||
639 | EXPORT_SYMBOL_GPL(elv_register); | ||
640 | |||
641 | void elv_unregister(struct elevator_type *e) | ||
642 | { | ||
643 | struct task_struct *g, *p; | ||
644 | |||
645 | /* | ||
646 | * Iterate every thread in the process to remove the io contexts. | ||
647 | */ | ||
648 | read_lock(&tasklist_lock); | ||
649 | do_each_thread(g, p) { | ||
650 | struct io_context *ioc = p->io_context; | ||
651 | if (ioc && ioc->cic) { | ||
652 | ioc->cic->exit(ioc->cic); | ||
653 | ioc->cic->dtor(ioc->cic); | ||
654 | ioc->cic = NULL; | ||
655 | } | ||
656 | if (ioc && ioc->aic) { | ||
657 | ioc->aic->exit(ioc->aic); | ||
658 | ioc->aic->dtor(ioc->aic); | ||
659 | ioc->aic = NULL; | ||
660 | } | ||
661 | } while_each_thread(g, p); | ||
662 | read_unlock(&tasklist_lock); | ||
663 | |||
664 | spin_lock_irq(&elv_list_lock); | ||
665 | list_del_init(&e->list); | ||
666 | spin_unlock_irq(&elv_list_lock); | ||
667 | } | ||
668 | EXPORT_SYMBOL_GPL(elv_unregister); | ||
669 | |||
670 | /* | ||
671 | * switch to new_e io scheduler. be careful not to introduce deadlocks - | ||
672 | * we don't free the old io scheduler, before we have allocated what we | ||
673 | * need for the new one. this way we have a chance of going back to the old | ||
674 | * one, if the new one fails init for some reason. | ||
675 | */ | ||
676 | static void elevator_switch(request_queue_t *q, struct elevator_type *new_e) | ||
677 | { | ||
678 | elevator_t *old_elevator, *e; | ||
679 | |||
680 | /* | ||
681 | * Allocate new elevator | ||
682 | */ | ||
683 | e = kmalloc(sizeof(elevator_t), GFP_KERNEL); | ||
684 | if (!e) | ||
685 | goto error; | ||
686 | |||
687 | /* | ||
688 | * Turn on BYPASS and drain all requests w/ elevator private data | ||
689 | */ | ||
690 | spin_lock_irq(q->queue_lock); | ||
691 | |||
692 | set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); | ||
693 | |||
694 | while (q->elevator->ops->elevator_dispatch_fn(q, 1)) | ||
695 | ; | ||
696 | |||
697 | while (q->rq.elvpriv) { | ||
698 | spin_unlock_irq(q->queue_lock); | ||
699 | msleep(10); | ||
700 | spin_lock_irq(q->queue_lock); | ||
701 | } | ||
702 | |||
703 | spin_unlock_irq(q->queue_lock); | ||
704 | |||
705 | /* | ||
706 | * unregister old elevator data | ||
707 | */ | ||
708 | elv_unregister_queue(q); | ||
709 | old_elevator = q->elevator; | ||
710 | |||
711 | /* | ||
712 | * attach and start new elevator | ||
713 | */ | ||
714 | if (elevator_attach(q, new_e, e)) | ||
715 | goto fail; | ||
716 | |||
717 | if (elv_register_queue(q)) | ||
718 | goto fail_register; | ||
719 | |||
720 | /* | ||
721 | * finally exit old elevator and turn off BYPASS. | ||
722 | */ | ||
723 | elevator_exit(old_elevator); | ||
724 | clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); | ||
725 | return; | ||
726 | |||
727 | fail_register: | ||
728 | /* | ||
729 | * switch failed, exit the new io scheduler and reattach the old | ||
730 | * one again (along with re-adding the sysfs dir) | ||
731 | */ | ||
732 | elevator_exit(e); | ||
733 | e = NULL; | ||
734 | fail: | ||
735 | q->elevator = old_elevator; | ||
736 | elv_register_queue(q); | ||
737 | clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); | ||
738 | kfree(e); | ||
739 | error: | ||
740 | elevator_put(new_e); | ||
741 | printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name); | ||
742 | } | ||
743 | |||
744 | ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count) | ||
745 | { | ||
746 | char elevator_name[ELV_NAME_MAX]; | ||
747 | struct elevator_type *e; | ||
748 | |||
749 | memset(elevator_name, 0, sizeof(elevator_name)); | ||
750 | strncpy(elevator_name, name, sizeof(elevator_name)); | ||
751 | |||
752 | if (elevator_name[strlen(elevator_name) - 1] == '\n') | ||
753 | elevator_name[strlen(elevator_name) - 1] = '\0'; | ||
754 | |||
755 | e = elevator_get(elevator_name); | ||
756 | if (!e) { | ||
757 | printk(KERN_ERR "elevator: type %s not found\n", elevator_name); | ||
758 | return -EINVAL; | ||
759 | } | ||
760 | |||
761 | if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) { | ||
762 | elevator_put(e); | ||
763 | return count; | ||
764 | } | ||
765 | |||
766 | elevator_switch(q, e); | ||
767 | return count; | ||
768 | } | ||
769 | |||
770 | ssize_t elv_iosched_show(request_queue_t *q, char *name) | ||
771 | { | ||
772 | elevator_t *e = q->elevator; | ||
773 | struct elevator_type *elv = e->elevator_type; | ||
774 | struct list_head *entry; | ||
775 | int len = 0; | ||
776 | |||
777 | spin_lock_irq(q->queue_lock); | ||
778 | list_for_each(entry, &elv_list) { | ||
779 | struct elevator_type *__e; | ||
780 | |||
781 | __e = list_entry(entry, struct elevator_type, list); | ||
782 | if (!strcmp(elv->elevator_name, __e->elevator_name)) | ||
783 | len += sprintf(name+len, "[%s] ", elv->elevator_name); | ||
784 | else | ||
785 | len += sprintf(name+len, "%s ", __e->elevator_name); | ||
786 | } | ||
787 | spin_unlock_irq(q->queue_lock); | ||
788 | |||
789 | len += sprintf(len+name, "\n"); | ||
790 | return len; | ||
791 | } | ||
792 | |||
793 | EXPORT_SYMBOL(elv_dispatch_sort); | ||
794 | EXPORT_SYMBOL(elv_add_request); | ||
795 | EXPORT_SYMBOL(__elv_add_request); | ||
796 | EXPORT_SYMBOL(elv_requeue_request); | ||
797 | EXPORT_SYMBOL(elv_next_request); | ||
798 | EXPORT_SYMBOL(elv_dequeue_request); | ||
799 | EXPORT_SYMBOL(elv_queue_empty); | ||
800 | EXPORT_SYMBOL(elv_completed_request); | ||
801 | EXPORT_SYMBOL(elevator_exit); | ||
802 | EXPORT_SYMBOL(elevator_init); | ||
diff --git a/drivers/block/genhd.c b/drivers/block/genhd.c deleted file mode 100644 index 54aec4a1ae13..000000000000 --- a/drivers/block/genhd.c +++ /dev/null | |||
@@ -1,726 +0,0 @@ | |||
1 | /* | ||
2 | * gendisk handling | ||
3 | */ | ||
4 | |||
5 | #include <linux/config.h> | ||
6 | #include <linux/module.h> | ||
7 | #include <linux/fs.h> | ||
8 | #include <linux/genhd.h> | ||
9 | #include <linux/kernel.h> | ||
10 | #include <linux/blkdev.h> | ||
11 | #include <linux/init.h> | ||
12 | #include <linux/spinlock.h> | ||
13 | #include <linux/seq_file.h> | ||
14 | #include <linux/slab.h> | ||
15 | #include <linux/kmod.h> | ||
16 | #include <linux/kobj_map.h> | ||
17 | #include <linux/buffer_head.h> | ||
18 | |||
19 | #define MAX_PROBE_HASH 255 /* random */ | ||
20 | |||
21 | static struct subsystem block_subsys; | ||
22 | |||
23 | static DECLARE_MUTEX(block_subsys_sem); | ||
24 | |||
25 | /* | ||
26 | * Can be deleted altogether. Later. | ||
27 | * | ||
28 | */ | ||
29 | static struct blk_major_name { | ||
30 | struct blk_major_name *next; | ||
31 | int major; | ||
32 | char name[16]; | ||
33 | } *major_names[MAX_PROBE_HASH]; | ||
34 | |||
35 | /* index in the above - for now: assume no multimajor ranges */ | ||
36 | static inline int major_to_index(int major) | ||
37 | { | ||
38 | return major % MAX_PROBE_HASH; | ||
39 | } | ||
40 | |||
41 | #ifdef CONFIG_PROC_FS | ||
42 | /* get block device names in somewhat random order */ | ||
43 | int get_blkdev_list(char *p, int used) | ||
44 | { | ||
45 | struct blk_major_name *n; | ||
46 | int i, len; | ||
47 | |||
48 | len = snprintf(p, (PAGE_SIZE-used), "\nBlock devices:\n"); | ||
49 | |||
50 | down(&block_subsys_sem); | ||
51 | for (i = 0; i < ARRAY_SIZE(major_names); i++) { | ||
52 | for (n = major_names[i]; n; n = n->next) { | ||
53 | /* | ||
54 | * If the curent string plus the 5 extra characters | ||
55 | * in the line would run us off the page, then we're done | ||
56 | */ | ||
57 | if ((len + used + strlen(n->name) + 5) >= PAGE_SIZE) | ||
58 | goto page_full; | ||
59 | len += sprintf(p+len, "%3d %s\n", | ||
60 | n->major, n->name); | ||
61 | } | ||
62 | } | ||
63 | page_full: | ||
64 | up(&block_subsys_sem); | ||
65 | |||
66 | return len; | ||
67 | } | ||
68 | #endif | ||
69 | |||
70 | int register_blkdev(unsigned int major, const char *name) | ||
71 | { | ||
72 | struct blk_major_name **n, *p; | ||
73 | int index, ret = 0; | ||
74 | |||
75 | down(&block_subsys_sem); | ||
76 | |||
77 | /* temporary */ | ||
78 | if (major == 0) { | ||
79 | for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { | ||
80 | if (major_names[index] == NULL) | ||
81 | break; | ||
82 | } | ||
83 | |||
84 | if (index == 0) { | ||
85 | printk("register_blkdev: failed to get major for %s\n", | ||
86 | name); | ||
87 | ret = -EBUSY; | ||
88 | goto out; | ||
89 | } | ||
90 | major = index; | ||
91 | ret = major; | ||
92 | } | ||
93 | |||
94 | p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); | ||
95 | if (p == NULL) { | ||
96 | ret = -ENOMEM; | ||
97 | goto out; | ||
98 | } | ||
99 | |||
100 | p->major = major; | ||
101 | strlcpy(p->name, name, sizeof(p->name)); | ||
102 | p->next = NULL; | ||
103 | index = major_to_index(major); | ||
104 | |||
105 | for (n = &major_names[index]; *n; n = &(*n)->next) { | ||
106 | if ((*n)->major == major) | ||
107 | break; | ||
108 | } | ||
109 | if (!*n) | ||
110 | *n = p; | ||
111 | else | ||
112 | ret = -EBUSY; | ||
113 | |||
114 | if (ret < 0) { | ||
115 | printk("register_blkdev: cannot get major %d for %s\n", | ||
116 | major, name); | ||
117 | kfree(p); | ||
118 | } | ||
119 | out: | ||
120 | up(&block_subsys_sem); | ||
121 | return ret; | ||
122 | } | ||
123 | |||
124 | EXPORT_SYMBOL(register_blkdev); | ||
125 | |||
126 | /* todo: make void - error printk here */ | ||
127 | int unregister_blkdev(unsigned int major, const char *name) | ||
128 | { | ||
129 | struct blk_major_name **n; | ||
130 | struct blk_major_name *p = NULL; | ||
131 | int index = major_to_index(major); | ||
132 | int ret = 0; | ||
133 | |||
134 | down(&block_subsys_sem); | ||
135 | for (n = &major_names[index]; *n; n = &(*n)->next) | ||
136 | if ((*n)->major == major) | ||
137 | break; | ||
138 | if (!*n || strcmp((*n)->name, name)) | ||
139 | ret = -EINVAL; | ||
140 | else { | ||
141 | p = *n; | ||
142 | *n = p->next; | ||
143 | } | ||
144 | up(&block_subsys_sem); | ||
145 | kfree(p); | ||
146 | |||
147 | return ret; | ||
148 | } | ||
149 | |||
150 | EXPORT_SYMBOL(unregister_blkdev); | ||
151 | |||
152 | static struct kobj_map *bdev_map; | ||
153 | |||
154 | /* | ||
155 | * Register device numbers dev..(dev+range-1) | ||
156 | * range must be nonzero | ||
157 | * The hash chain is sorted on range, so that subranges can override. | ||
158 | */ | ||
159 | void blk_register_region(dev_t dev, unsigned long range, struct module *module, | ||
160 | struct kobject *(*probe)(dev_t, int *, void *), | ||
161 | int (*lock)(dev_t, void *), void *data) | ||
162 | { | ||
163 | kobj_map(bdev_map, dev, range, module, probe, lock, data); | ||
164 | } | ||
165 | |||
166 | EXPORT_SYMBOL(blk_register_region); | ||
167 | |||
168 | void blk_unregister_region(dev_t dev, unsigned long range) | ||
169 | { | ||
170 | kobj_unmap(bdev_map, dev, range); | ||
171 | } | ||
172 | |||
173 | EXPORT_SYMBOL(blk_unregister_region); | ||
174 | |||
175 | static struct kobject *exact_match(dev_t dev, int *part, void *data) | ||
176 | { | ||
177 | struct gendisk *p = data; | ||
178 | return &p->kobj; | ||
179 | } | ||
180 | |||
181 | static int exact_lock(dev_t dev, void *data) | ||
182 | { | ||
183 | struct gendisk *p = data; | ||
184 | |||
185 | if (!get_disk(p)) | ||
186 | return -1; | ||
187 | return 0; | ||
188 | } | ||
189 | |||
190 | /** | ||
191 | * add_disk - add partitioning information to kernel list | ||
192 | * @disk: per-device partitioning information | ||
193 | * | ||
194 | * This function registers the partitioning information in @disk | ||
195 | * with the kernel. | ||
196 | */ | ||
197 | void add_disk(struct gendisk *disk) | ||
198 | { | ||
199 | disk->flags |= GENHD_FL_UP; | ||
200 | blk_register_region(MKDEV(disk->major, disk->first_minor), | ||
201 | disk->minors, NULL, exact_match, exact_lock, disk); | ||
202 | register_disk(disk); | ||
203 | blk_register_queue(disk); | ||
204 | } | ||
205 | |||
206 | EXPORT_SYMBOL(add_disk); | ||
207 | EXPORT_SYMBOL(del_gendisk); /* in partitions/check.c */ | ||
208 | |||
209 | void unlink_gendisk(struct gendisk *disk) | ||
210 | { | ||
211 | blk_unregister_queue(disk); | ||
212 | blk_unregister_region(MKDEV(disk->major, disk->first_minor), | ||
213 | disk->minors); | ||
214 | } | ||
215 | |||
216 | #define to_disk(obj) container_of(obj,struct gendisk,kobj) | ||
217 | |||
218 | /** | ||
219 | * get_gendisk - get partitioning information for a given device | ||
220 | * @dev: device to get partitioning information for | ||
221 | * | ||
222 | * This function gets the structure containing partitioning | ||
223 | * information for the given device @dev. | ||
224 | */ | ||
225 | struct gendisk *get_gendisk(dev_t dev, int *part) | ||
226 | { | ||
227 | struct kobject *kobj = kobj_lookup(bdev_map, dev, part); | ||
228 | return kobj ? to_disk(kobj) : NULL; | ||
229 | } | ||
230 | |||
231 | #ifdef CONFIG_PROC_FS | ||
232 | /* iterator */ | ||
233 | static void *part_start(struct seq_file *part, loff_t *pos) | ||
234 | { | ||
235 | struct list_head *p; | ||
236 | loff_t l = *pos; | ||
237 | |||
238 | down(&block_subsys_sem); | ||
239 | list_for_each(p, &block_subsys.kset.list) | ||
240 | if (!l--) | ||
241 | return list_entry(p, struct gendisk, kobj.entry); | ||
242 | return NULL; | ||
243 | } | ||
244 | |||
245 | static void *part_next(struct seq_file *part, void *v, loff_t *pos) | ||
246 | { | ||
247 | struct list_head *p = ((struct gendisk *)v)->kobj.entry.next; | ||
248 | ++*pos; | ||
249 | return p==&block_subsys.kset.list ? NULL : | ||
250 | list_entry(p, struct gendisk, kobj.entry); | ||
251 | } | ||
252 | |||
253 | static void part_stop(struct seq_file *part, void *v) | ||
254 | { | ||
255 | up(&block_subsys_sem); | ||
256 | } | ||
257 | |||
258 | static int show_partition(struct seq_file *part, void *v) | ||
259 | { | ||
260 | struct gendisk *sgp = v; | ||
261 | int n; | ||
262 | char buf[BDEVNAME_SIZE]; | ||
263 | |||
264 | if (&sgp->kobj.entry == block_subsys.kset.list.next) | ||
265 | seq_puts(part, "major minor #blocks name\n\n"); | ||
266 | |||
267 | /* Don't show non-partitionable removeable devices or empty devices */ | ||
268 | if (!get_capacity(sgp) || | ||
269 | (sgp->minors == 1 && (sgp->flags & GENHD_FL_REMOVABLE))) | ||
270 | return 0; | ||
271 | if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) | ||
272 | return 0; | ||
273 | |||
274 | /* show the full disk and all non-0 size partitions of it */ | ||
275 | seq_printf(part, "%4d %4d %10llu %s\n", | ||
276 | sgp->major, sgp->first_minor, | ||
277 | (unsigned long long)get_capacity(sgp) >> 1, | ||
278 | disk_name(sgp, 0, buf)); | ||
279 | for (n = 0; n < sgp->minors - 1; n++) { | ||
280 | if (!sgp->part[n]) | ||
281 | continue; | ||
282 | if (sgp->part[n]->nr_sects == 0) | ||
283 | continue; | ||
284 | seq_printf(part, "%4d %4d %10llu %s\n", | ||
285 | sgp->major, n + 1 + sgp->first_minor, | ||
286 | (unsigned long long)sgp->part[n]->nr_sects >> 1 , | ||
287 | disk_name(sgp, n + 1, buf)); | ||
288 | } | ||
289 | |||
290 | return 0; | ||
291 | } | ||
292 | |||
293 | struct seq_operations partitions_op = { | ||
294 | .start =part_start, | ||
295 | .next = part_next, | ||
296 | .stop = part_stop, | ||
297 | .show = show_partition | ||
298 | }; | ||
299 | #endif | ||
300 | |||
301 | |||
302 | extern int blk_dev_init(void); | ||
303 | |||
304 | static struct kobject *base_probe(dev_t dev, int *part, void *data) | ||
305 | { | ||
306 | if (request_module("block-major-%d-%d", MAJOR(dev), MINOR(dev)) > 0) | ||
307 | /* Make old-style 2.4 aliases work */ | ||
308 | request_module("block-major-%d", MAJOR(dev)); | ||
309 | return NULL; | ||
310 | } | ||
311 | |||
312 | static int __init genhd_device_init(void) | ||
313 | { | ||
314 | bdev_map = kobj_map_init(base_probe, &block_subsys_sem); | ||
315 | blk_dev_init(); | ||
316 | subsystem_register(&block_subsys); | ||
317 | return 0; | ||
318 | } | ||
319 | |||
320 | subsys_initcall(genhd_device_init); | ||
321 | |||
322 | |||
323 | |||
324 | /* | ||
325 | * kobject & sysfs bindings for block devices | ||
326 | */ | ||
327 | static ssize_t disk_attr_show(struct kobject *kobj, struct attribute *attr, | ||
328 | char *page) | ||
329 | { | ||
330 | struct gendisk *disk = to_disk(kobj); | ||
331 | struct disk_attribute *disk_attr = | ||
332 | container_of(attr,struct disk_attribute,attr); | ||
333 | ssize_t ret = -EIO; | ||
334 | |||
335 | if (disk_attr->show) | ||
336 | ret = disk_attr->show(disk,page); | ||
337 | return ret; | ||
338 | } | ||
339 | |||
340 | static ssize_t disk_attr_store(struct kobject * kobj, struct attribute * attr, | ||
341 | const char *page, size_t count) | ||
342 | { | ||
343 | struct gendisk *disk = to_disk(kobj); | ||
344 | struct disk_attribute *disk_attr = | ||
345 | container_of(attr,struct disk_attribute,attr); | ||
346 | ssize_t ret = 0; | ||
347 | |||
348 | if (disk_attr->store) | ||
349 | ret = disk_attr->store(disk, page, count); | ||
350 | return ret; | ||
351 | } | ||
352 | |||
353 | static struct sysfs_ops disk_sysfs_ops = { | ||
354 | .show = &disk_attr_show, | ||
355 | .store = &disk_attr_store, | ||
356 | }; | ||
357 | |||
358 | static ssize_t disk_uevent_store(struct gendisk * disk, | ||
359 | const char *buf, size_t count) | ||
360 | { | ||
361 | kobject_hotplug(&disk->kobj, KOBJ_ADD); | ||
362 | return count; | ||
363 | } | ||
364 | static ssize_t disk_dev_read(struct gendisk * disk, char *page) | ||
365 | { | ||
366 | dev_t base = MKDEV(disk->major, disk->first_minor); | ||
367 | return print_dev_t(page, base); | ||
368 | } | ||
369 | static ssize_t disk_range_read(struct gendisk * disk, char *page) | ||
370 | { | ||
371 | return sprintf(page, "%d\n", disk->minors); | ||
372 | } | ||
373 | static ssize_t disk_removable_read(struct gendisk * disk, char *page) | ||
374 | { | ||
375 | return sprintf(page, "%d\n", | ||
376 | (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); | ||
377 | |||
378 | } | ||
379 | static ssize_t disk_size_read(struct gendisk * disk, char *page) | ||
380 | { | ||
381 | return sprintf(page, "%llu\n", (unsigned long long)get_capacity(disk)); | ||
382 | } | ||
383 | |||
384 | static ssize_t disk_stats_read(struct gendisk * disk, char *page) | ||
385 | { | ||
386 | preempt_disable(); | ||
387 | disk_round_stats(disk); | ||
388 | preempt_enable(); | ||
389 | return sprintf(page, | ||
390 | "%8u %8u %8llu %8u " | ||
391 | "%8u %8u %8llu %8u " | ||
392 | "%8u %8u %8u" | ||
393 | "\n", | ||
394 | disk_stat_read(disk, ios[0]), disk_stat_read(disk, merges[0]), | ||
395 | (unsigned long long)disk_stat_read(disk, sectors[0]), | ||
396 | jiffies_to_msecs(disk_stat_read(disk, ticks[0])), | ||
397 | disk_stat_read(disk, ios[1]), disk_stat_read(disk, merges[1]), | ||
398 | (unsigned long long)disk_stat_read(disk, sectors[1]), | ||
399 | jiffies_to_msecs(disk_stat_read(disk, ticks[1])), | ||
400 | disk->in_flight, | ||
401 | jiffies_to_msecs(disk_stat_read(disk, io_ticks)), | ||
402 | jiffies_to_msecs(disk_stat_read(disk, time_in_queue))); | ||
403 | } | ||
404 | static struct disk_attribute disk_attr_uevent = { | ||
405 | .attr = {.name = "uevent", .mode = S_IWUSR }, | ||
406 | .store = disk_uevent_store | ||
407 | }; | ||
408 | static struct disk_attribute disk_attr_dev = { | ||
409 | .attr = {.name = "dev", .mode = S_IRUGO }, | ||
410 | .show = disk_dev_read | ||
411 | }; | ||
412 | static struct disk_attribute disk_attr_range = { | ||
413 | .attr = {.name = "range", .mode = S_IRUGO }, | ||
414 | .show = disk_range_read | ||
415 | }; | ||
416 | static struct disk_attribute disk_attr_removable = { | ||
417 | .attr = {.name = "removable", .mode = S_IRUGO }, | ||
418 | .show = disk_removable_read | ||
419 | }; | ||
420 | static struct disk_attribute disk_attr_size = { | ||
421 | .attr = {.name = "size", .mode = S_IRUGO }, | ||
422 | .show = disk_size_read | ||
423 | }; | ||
424 | static struct disk_attribute disk_attr_stat = { | ||
425 | .attr = {.name = "stat", .mode = S_IRUGO }, | ||
426 | .show = disk_stats_read | ||
427 | }; | ||
428 | |||
429 | static struct attribute * default_attrs[] = { | ||
430 | &disk_attr_uevent.attr, | ||
431 | &disk_attr_dev.attr, | ||
432 | &disk_attr_range.attr, | ||
433 | &disk_attr_removable.attr, | ||
434 | &disk_attr_size.attr, | ||
435 | &disk_attr_stat.attr, | ||
436 | NULL, | ||
437 | }; | ||
438 | |||
439 | static void disk_release(struct kobject * kobj) | ||
440 | { | ||
441 | struct gendisk *disk = to_disk(kobj); | ||
442 | kfree(disk->random); | ||
443 | kfree(disk->part); | ||
444 | free_disk_stats(disk); | ||
445 | kfree(disk); | ||
446 | } | ||
447 | |||
448 | static struct kobj_type ktype_block = { | ||
449 | .release = disk_release, | ||
450 | .sysfs_ops = &disk_sysfs_ops, | ||
451 | .default_attrs = default_attrs, | ||
452 | }; | ||
453 | |||
454 | extern struct kobj_type ktype_part; | ||
455 | |||
456 | static int block_hotplug_filter(struct kset *kset, struct kobject *kobj) | ||
457 | { | ||
458 | struct kobj_type *ktype = get_ktype(kobj); | ||
459 | |||
460 | return ((ktype == &ktype_block) || (ktype == &ktype_part)); | ||
461 | } | ||
462 | |||
463 | static int block_hotplug(struct kset *kset, struct kobject *kobj, char **envp, | ||
464 | int num_envp, char *buffer, int buffer_size) | ||
465 | { | ||
466 | struct kobj_type *ktype = get_ktype(kobj); | ||
467 | struct device *physdev; | ||
468 | struct gendisk *disk; | ||
469 | struct hd_struct *part; | ||
470 | int length = 0; | ||
471 | int i = 0; | ||
472 | |||
473 | if (ktype == &ktype_block) { | ||
474 | disk = container_of(kobj, struct gendisk, kobj); | ||
475 | add_hotplug_env_var(envp, num_envp, &i, buffer, buffer_size, | ||
476 | &length, "MINOR=%u", disk->first_minor); | ||
477 | } else if (ktype == &ktype_part) { | ||
478 | disk = container_of(kobj->parent, struct gendisk, kobj); | ||
479 | part = container_of(kobj, struct hd_struct, kobj); | ||
480 | add_hotplug_env_var(envp, num_envp, &i, buffer, buffer_size, | ||
481 | &length, "MINOR=%u", | ||
482 | disk->first_minor + part->partno); | ||
483 | } else | ||
484 | return 0; | ||
485 | |||
486 | add_hotplug_env_var(envp, num_envp, &i, buffer, buffer_size, &length, | ||
487 | "MAJOR=%u", disk->major); | ||
488 | |||
489 | /* add physical device, backing this device */ | ||
490 | physdev = disk->driverfs_dev; | ||
491 | if (physdev) { | ||
492 | char *path = kobject_get_path(&physdev->kobj, GFP_KERNEL); | ||
493 | |||
494 | add_hotplug_env_var(envp, num_envp, &i, buffer, buffer_size, | ||
495 | &length, "PHYSDEVPATH=%s", path); | ||
496 | kfree(path); | ||
497 | |||
498 | if (physdev->bus) | ||
499 | add_hotplug_env_var(envp, num_envp, &i, | ||
500 | buffer, buffer_size, &length, | ||
501 | "PHYSDEVBUS=%s", | ||
502 | physdev->bus->name); | ||
503 | |||
504 | if (physdev->driver) | ||
505 | add_hotplug_env_var(envp, num_envp, &i, | ||
506 | buffer, buffer_size, &length, | ||
507 | "PHYSDEVDRIVER=%s", | ||
508 | physdev->driver->name); | ||
509 | } | ||
510 | |||
511 | /* terminate, set to next free slot, shrink available space */ | ||
512 | envp[i] = NULL; | ||
513 | envp = &envp[i]; | ||
514 | num_envp -= i; | ||
515 | buffer = &buffer[length]; | ||
516 | buffer_size -= length; | ||
517 | |||
518 | return 0; | ||
519 | } | ||
520 | |||
521 | static struct kset_hotplug_ops block_hotplug_ops = { | ||
522 | .filter = block_hotplug_filter, | ||
523 | .hotplug = block_hotplug, | ||
524 | }; | ||
525 | |||
526 | /* declare block_subsys. */ | ||
527 | static decl_subsys(block, &ktype_block, &block_hotplug_ops); | ||
528 | |||
529 | |||
530 | /* | ||
531 | * aggregate disk stat collector. Uses the same stats that the sysfs | ||
532 | * entries do, above, but makes them available through one seq_file. | ||
533 | * Watching a few disks may be efficient through sysfs, but watching | ||
534 | * all of them will be more efficient through this interface. | ||
535 | * | ||
536 | * The output looks suspiciously like /proc/partitions with a bunch of | ||
537 | * extra fields. | ||
538 | */ | ||
539 | |||
540 | /* iterator */ | ||
541 | static void *diskstats_start(struct seq_file *part, loff_t *pos) | ||
542 | { | ||
543 | loff_t k = *pos; | ||
544 | struct list_head *p; | ||
545 | |||
546 | down(&block_subsys_sem); | ||
547 | list_for_each(p, &block_subsys.kset.list) | ||
548 | if (!k--) | ||
549 | return list_entry(p, struct gendisk, kobj.entry); | ||
550 | return NULL; | ||
551 | } | ||
552 | |||
553 | static void *diskstats_next(struct seq_file *part, void *v, loff_t *pos) | ||
554 | { | ||
555 | struct list_head *p = ((struct gendisk *)v)->kobj.entry.next; | ||
556 | ++*pos; | ||
557 | return p==&block_subsys.kset.list ? NULL : | ||
558 | list_entry(p, struct gendisk, kobj.entry); | ||
559 | } | ||
560 | |||
561 | static void diskstats_stop(struct seq_file *part, void *v) | ||
562 | { | ||
563 | up(&block_subsys_sem); | ||
564 | } | ||
565 | |||
566 | static int diskstats_show(struct seq_file *s, void *v) | ||
567 | { | ||
568 | struct gendisk *gp = v; | ||
569 | char buf[BDEVNAME_SIZE]; | ||
570 | int n = 0; | ||
571 | |||
572 | /* | ||
573 | if (&sgp->kobj.entry == block_subsys.kset.list.next) | ||
574 | seq_puts(s, "major minor name" | ||
575 | " rio rmerge rsect ruse wio wmerge " | ||
576 | "wsect wuse running use aveq" | ||
577 | "\n\n"); | ||
578 | */ | ||
579 | |||
580 | preempt_disable(); | ||
581 | disk_round_stats(gp); | ||
582 | preempt_enable(); | ||
583 | seq_printf(s, "%4d %4d %s %u %u %llu %u %u %u %llu %u %u %u %u\n", | ||
584 | gp->major, n + gp->first_minor, disk_name(gp, n, buf), | ||
585 | disk_stat_read(gp, ios[0]), disk_stat_read(gp, merges[0]), | ||
586 | (unsigned long long)disk_stat_read(gp, sectors[0]), | ||
587 | jiffies_to_msecs(disk_stat_read(gp, ticks[0])), | ||
588 | disk_stat_read(gp, ios[1]), disk_stat_read(gp, merges[1]), | ||
589 | (unsigned long long)disk_stat_read(gp, sectors[1]), | ||
590 | jiffies_to_msecs(disk_stat_read(gp, ticks[1])), | ||
591 | gp->in_flight, | ||
592 | jiffies_to_msecs(disk_stat_read(gp, io_ticks)), | ||
593 | jiffies_to_msecs(disk_stat_read(gp, time_in_queue))); | ||
594 | |||
595 | /* now show all non-0 size partitions of it */ | ||
596 | for (n = 0; n < gp->minors - 1; n++) { | ||
597 | struct hd_struct *hd = gp->part[n]; | ||
598 | |||
599 | if (hd && hd->nr_sects) | ||
600 | seq_printf(s, "%4d %4d %s %u %u %u %u\n", | ||
601 | gp->major, n + gp->first_minor + 1, | ||
602 | disk_name(gp, n + 1, buf), | ||
603 | hd->ios[0], hd->sectors[0], | ||
604 | hd->ios[1], hd->sectors[1]); | ||
605 | } | ||
606 | |||
607 | return 0; | ||
608 | } | ||
609 | |||
610 | struct seq_operations diskstats_op = { | ||
611 | .start = diskstats_start, | ||
612 | .next = diskstats_next, | ||
613 | .stop = diskstats_stop, | ||
614 | .show = diskstats_show | ||
615 | }; | ||
616 | |||
617 | struct gendisk *alloc_disk(int minors) | ||
618 | { | ||
619 | return alloc_disk_node(minors, -1); | ||
620 | } | ||
621 | |||
622 | struct gendisk *alloc_disk_node(int minors, int node_id) | ||
623 | { | ||
624 | struct gendisk *disk; | ||
625 | |||
626 | disk = kmalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); | ||
627 | if (disk) { | ||
628 | memset(disk, 0, sizeof(struct gendisk)); | ||
629 | if (!init_disk_stats(disk)) { | ||
630 | kfree(disk); | ||
631 | return NULL; | ||
632 | } | ||
633 | if (minors > 1) { | ||
634 | int size = (minors - 1) * sizeof(struct hd_struct *); | ||
635 | disk->part = kmalloc_node(size, GFP_KERNEL, node_id); | ||
636 | if (!disk->part) { | ||
637 | kfree(disk); | ||
638 | return NULL; | ||
639 | } | ||
640 | memset(disk->part, 0, size); | ||
641 | } | ||
642 | disk->minors = minors; | ||
643 | kobj_set_kset_s(disk,block_subsys); | ||
644 | kobject_init(&disk->kobj); | ||
645 | rand_initialize_disk(disk); | ||
646 | } | ||
647 | return disk; | ||
648 | } | ||
649 | |||
650 | EXPORT_SYMBOL(alloc_disk); | ||
651 | EXPORT_SYMBOL(alloc_disk_node); | ||
652 | |||
653 | struct kobject *get_disk(struct gendisk *disk) | ||
654 | { | ||
655 | struct module *owner; | ||
656 | struct kobject *kobj; | ||
657 | |||
658 | if (!disk->fops) | ||
659 | return NULL; | ||
660 | owner = disk->fops->owner; | ||
661 | if (owner && !try_module_get(owner)) | ||
662 | return NULL; | ||
663 | kobj = kobject_get(&disk->kobj); | ||
664 | if (kobj == NULL) { | ||
665 | module_put(owner); | ||
666 | return NULL; | ||
667 | } | ||
668 | return kobj; | ||
669 | |||
670 | } | ||
671 | |||
672 | EXPORT_SYMBOL(get_disk); | ||
673 | |||
674 | void put_disk(struct gendisk *disk) | ||
675 | { | ||
676 | if (disk) | ||
677 | kobject_put(&disk->kobj); | ||
678 | } | ||
679 | |||
680 | EXPORT_SYMBOL(put_disk); | ||
681 | |||
682 | void set_device_ro(struct block_device *bdev, int flag) | ||
683 | { | ||
684 | if (bdev->bd_contains != bdev) | ||
685 | bdev->bd_part->policy = flag; | ||
686 | else | ||
687 | bdev->bd_disk->policy = flag; | ||
688 | } | ||
689 | |||
690 | EXPORT_SYMBOL(set_device_ro); | ||
691 | |||
692 | void set_disk_ro(struct gendisk *disk, int flag) | ||
693 | { | ||
694 | int i; | ||
695 | disk->policy = flag; | ||
696 | for (i = 0; i < disk->minors - 1; i++) | ||
697 | if (disk->part[i]) disk->part[i]->policy = flag; | ||
698 | } | ||
699 | |||
700 | EXPORT_SYMBOL(set_disk_ro); | ||
701 | |||
702 | int bdev_read_only(struct block_device *bdev) | ||
703 | { | ||
704 | if (!bdev) | ||
705 | return 0; | ||
706 | else if (bdev->bd_contains != bdev) | ||
707 | return bdev->bd_part->policy; | ||
708 | else | ||
709 | return bdev->bd_disk->policy; | ||
710 | } | ||
711 | |||
712 | EXPORT_SYMBOL(bdev_read_only); | ||
713 | |||
714 | int invalidate_partition(struct gendisk *disk, int index) | ||
715 | { | ||
716 | int res = 0; | ||
717 | struct block_device *bdev = bdget_disk(disk, index); | ||
718 | if (bdev) { | ||
719 | fsync_bdev(bdev); | ||
720 | res = __invalidate_device(bdev); | ||
721 | bdput(bdev); | ||
722 | } | ||
723 | return res; | ||
724 | } | ||
725 | |||
726 | EXPORT_SYMBOL(invalidate_partition); | ||
diff --git a/drivers/block/ioctl.c b/drivers/block/ioctl.c deleted file mode 100644 index 6e278474f9a8..000000000000 --- a/drivers/block/ioctl.c +++ /dev/null | |||
@@ -1,275 +0,0 @@ | |||
1 | #include <linux/sched.h> /* for capable() */ | ||
2 | #include <linux/blkdev.h> | ||
3 | #include <linux/blkpg.h> | ||
4 | #include <linux/backing-dev.h> | ||
5 | #include <linux/buffer_head.h> | ||
6 | #include <linux/smp_lock.h> | ||
7 | #include <asm/uaccess.h> | ||
8 | |||
9 | static int blkpg_ioctl(struct block_device *bdev, struct blkpg_ioctl_arg __user *arg) | ||
10 | { | ||
11 | struct block_device *bdevp; | ||
12 | struct gendisk *disk; | ||
13 | struct blkpg_ioctl_arg a; | ||
14 | struct blkpg_partition p; | ||
15 | long long start, length; | ||
16 | int part; | ||
17 | int i; | ||
18 | |||
19 | if (!capable(CAP_SYS_ADMIN)) | ||
20 | return -EACCES; | ||
21 | if (copy_from_user(&a, arg, sizeof(struct blkpg_ioctl_arg))) | ||
22 | return -EFAULT; | ||
23 | if (copy_from_user(&p, a.data, sizeof(struct blkpg_partition))) | ||
24 | return -EFAULT; | ||
25 | disk = bdev->bd_disk; | ||
26 | if (bdev != bdev->bd_contains) | ||
27 | return -EINVAL; | ||
28 | part = p.pno; | ||
29 | if (part <= 0 || part >= disk->minors) | ||
30 | return -EINVAL; | ||
31 | switch (a.op) { | ||
32 | case BLKPG_ADD_PARTITION: | ||
33 | start = p.start >> 9; | ||
34 | length = p.length >> 9; | ||
35 | /* check for fit in a hd_struct */ | ||
36 | if (sizeof(sector_t) == sizeof(long) && | ||
37 | sizeof(long long) > sizeof(long)) { | ||
38 | long pstart = start, plength = length; | ||
39 | if (pstart != start || plength != length | ||
40 | || pstart < 0 || plength < 0) | ||
41 | return -EINVAL; | ||
42 | } | ||
43 | /* partition number in use? */ | ||
44 | down(&bdev->bd_sem); | ||
45 | if (disk->part[part - 1]) { | ||
46 | up(&bdev->bd_sem); | ||
47 | return -EBUSY; | ||
48 | } | ||
49 | /* overlap? */ | ||
50 | for (i = 0; i < disk->minors - 1; i++) { | ||
51 | struct hd_struct *s = disk->part[i]; | ||
52 | |||
53 | if (!s) | ||
54 | continue; | ||
55 | if (!(start+length <= s->start_sect || | ||
56 | start >= s->start_sect + s->nr_sects)) { | ||
57 | up(&bdev->bd_sem); | ||
58 | return -EBUSY; | ||
59 | } | ||
60 | } | ||
61 | /* all seems OK */ | ||
62 | add_partition(disk, part, start, length); | ||
63 | up(&bdev->bd_sem); | ||
64 | return 0; | ||
65 | case BLKPG_DEL_PARTITION: | ||
66 | if (!disk->part[part-1]) | ||
67 | return -ENXIO; | ||
68 | if (disk->part[part - 1]->nr_sects == 0) | ||
69 | return -ENXIO; | ||
70 | bdevp = bdget_disk(disk, part); | ||
71 | if (!bdevp) | ||
72 | return -ENOMEM; | ||
73 | down(&bdevp->bd_sem); | ||
74 | if (bdevp->bd_openers) { | ||
75 | up(&bdevp->bd_sem); | ||
76 | bdput(bdevp); | ||
77 | return -EBUSY; | ||
78 | } | ||
79 | /* all seems OK */ | ||
80 | fsync_bdev(bdevp); | ||
81 | invalidate_bdev(bdevp, 0); | ||
82 | |||
83 | down(&bdev->bd_sem); | ||
84 | delete_partition(disk, part); | ||
85 | up(&bdev->bd_sem); | ||
86 | up(&bdevp->bd_sem); | ||
87 | bdput(bdevp); | ||
88 | |||
89 | return 0; | ||
90 | default: | ||
91 | return -EINVAL; | ||
92 | } | ||
93 | } | ||
94 | |||
95 | static int blkdev_reread_part(struct block_device *bdev) | ||
96 | { | ||
97 | struct gendisk *disk = bdev->bd_disk; | ||
98 | int res; | ||
99 | |||
100 | if (disk->minors == 1 || bdev != bdev->bd_contains) | ||
101 | return -EINVAL; | ||
102 | if (!capable(CAP_SYS_ADMIN)) | ||
103 | return -EACCES; | ||
104 | if (down_trylock(&bdev->bd_sem)) | ||
105 | return -EBUSY; | ||
106 | res = rescan_partitions(disk, bdev); | ||
107 | up(&bdev->bd_sem); | ||
108 | return res; | ||
109 | } | ||
110 | |||
111 | static int put_ushort(unsigned long arg, unsigned short val) | ||
112 | { | ||
113 | return put_user(val, (unsigned short __user *)arg); | ||
114 | } | ||
115 | |||
116 | static int put_int(unsigned long arg, int val) | ||
117 | { | ||
118 | return put_user(val, (int __user *)arg); | ||
119 | } | ||
120 | |||
121 | static int put_long(unsigned long arg, long val) | ||
122 | { | ||
123 | return put_user(val, (long __user *)arg); | ||
124 | } | ||
125 | |||
126 | static int put_ulong(unsigned long arg, unsigned long val) | ||
127 | { | ||
128 | return put_user(val, (unsigned long __user *)arg); | ||
129 | } | ||
130 | |||
131 | static int put_u64(unsigned long arg, u64 val) | ||
132 | { | ||
133 | return put_user(val, (u64 __user *)arg); | ||
134 | } | ||
135 | |||
136 | static int blkdev_locked_ioctl(struct file *file, struct block_device *bdev, | ||
137 | unsigned cmd, unsigned long arg) | ||
138 | { | ||
139 | struct backing_dev_info *bdi; | ||
140 | int ret, n; | ||
141 | |||
142 | switch (cmd) { | ||
143 | case BLKRAGET: | ||
144 | case BLKFRAGET: | ||
145 | if (!arg) | ||
146 | return -EINVAL; | ||
147 | bdi = blk_get_backing_dev_info(bdev); | ||
148 | if (bdi == NULL) | ||
149 | return -ENOTTY; | ||
150 | return put_long(arg, (bdi->ra_pages * PAGE_CACHE_SIZE) / 512); | ||
151 | case BLKROGET: | ||
152 | return put_int(arg, bdev_read_only(bdev) != 0); | ||
153 | case BLKBSZGET: /* get the logical block size (cf. BLKSSZGET) */ | ||
154 | return put_int(arg, block_size(bdev)); | ||
155 | case BLKSSZGET: /* get block device hardware sector size */ | ||
156 | return put_int(arg, bdev_hardsect_size(bdev)); | ||
157 | case BLKSECTGET: | ||
158 | return put_ushort(arg, bdev_get_queue(bdev)->max_sectors); | ||
159 | case BLKRASET: | ||
160 | case BLKFRASET: | ||
161 | if(!capable(CAP_SYS_ADMIN)) | ||
162 | return -EACCES; | ||
163 | bdi = blk_get_backing_dev_info(bdev); | ||
164 | if (bdi == NULL) | ||
165 | return -ENOTTY; | ||
166 | bdi->ra_pages = (arg * 512) / PAGE_CACHE_SIZE; | ||
167 | return 0; | ||
168 | case BLKBSZSET: | ||
169 | /* set the logical block size */ | ||
170 | if (!capable(CAP_SYS_ADMIN)) | ||
171 | return -EACCES; | ||
172 | if (!arg) | ||
173 | return -EINVAL; | ||
174 | if (get_user(n, (int __user *) arg)) | ||
175 | return -EFAULT; | ||
176 | if (bd_claim(bdev, file) < 0) | ||
177 | return -EBUSY; | ||
178 | ret = set_blocksize(bdev, n); | ||
179 | bd_release(bdev); | ||
180 | return ret; | ||
181 | case BLKPG: | ||
182 | return blkpg_ioctl(bdev, (struct blkpg_ioctl_arg __user *) arg); | ||
183 | case BLKRRPART: | ||
184 | return blkdev_reread_part(bdev); | ||
185 | case BLKGETSIZE: | ||
186 | if ((bdev->bd_inode->i_size >> 9) > ~0UL) | ||
187 | return -EFBIG; | ||
188 | return put_ulong(arg, bdev->bd_inode->i_size >> 9); | ||
189 | case BLKGETSIZE64: | ||
190 | return put_u64(arg, bdev->bd_inode->i_size); | ||
191 | } | ||
192 | return -ENOIOCTLCMD; | ||
193 | } | ||
194 | |||
195 | static int blkdev_driver_ioctl(struct inode *inode, struct file *file, | ||
196 | struct gendisk *disk, unsigned cmd, unsigned long arg) | ||
197 | { | ||
198 | int ret; | ||
199 | if (disk->fops->unlocked_ioctl) | ||
200 | return disk->fops->unlocked_ioctl(file, cmd, arg); | ||
201 | |||
202 | if (disk->fops->ioctl) { | ||
203 | lock_kernel(); | ||
204 | ret = disk->fops->ioctl(inode, file, cmd, arg); | ||
205 | unlock_kernel(); | ||
206 | return ret; | ||
207 | } | ||
208 | |||
209 | return -ENOTTY; | ||
210 | } | ||
211 | |||
212 | int blkdev_ioctl(struct inode *inode, struct file *file, unsigned cmd, | ||
213 | unsigned long arg) | ||
214 | { | ||
215 | struct block_device *bdev = inode->i_bdev; | ||
216 | struct gendisk *disk = bdev->bd_disk; | ||
217 | int ret, n; | ||
218 | |||
219 | switch(cmd) { | ||
220 | case BLKFLSBUF: | ||
221 | if (!capable(CAP_SYS_ADMIN)) | ||
222 | return -EACCES; | ||
223 | |||
224 | ret = blkdev_driver_ioctl(inode, file, disk, cmd, arg); | ||
225 | /* -EINVAL to handle old uncorrected drivers */ | ||
226 | if (ret != -EINVAL && ret != -ENOTTY) | ||
227 | return ret; | ||
228 | |||
229 | lock_kernel(); | ||
230 | fsync_bdev(bdev); | ||
231 | invalidate_bdev(bdev, 0); | ||
232 | unlock_kernel(); | ||
233 | return 0; | ||
234 | |||
235 | case BLKROSET: | ||
236 | ret = blkdev_driver_ioctl(inode, file, disk, cmd, arg); | ||
237 | /* -EINVAL to handle old uncorrected drivers */ | ||
238 | if (ret != -EINVAL && ret != -ENOTTY) | ||
239 | return ret; | ||
240 | if (!capable(CAP_SYS_ADMIN)) | ||
241 | return -EACCES; | ||
242 | if (get_user(n, (int __user *)(arg))) | ||
243 | return -EFAULT; | ||
244 | lock_kernel(); | ||
245 | set_device_ro(bdev, n); | ||
246 | unlock_kernel(); | ||
247 | return 0; | ||
248 | } | ||
249 | |||
250 | lock_kernel(); | ||
251 | ret = blkdev_locked_ioctl(file, bdev, cmd, arg); | ||
252 | unlock_kernel(); | ||
253 | if (ret != -ENOIOCTLCMD) | ||
254 | return ret; | ||
255 | |||
256 | return blkdev_driver_ioctl(inode, file, disk, cmd, arg); | ||
257 | } | ||
258 | |||
259 | /* Most of the generic ioctls are handled in the normal fallback path. | ||
260 | This assumes the blkdev's low level compat_ioctl always returns | ||
261 | ENOIOCTLCMD for unknown ioctls. */ | ||
262 | long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg) | ||
263 | { | ||
264 | struct block_device *bdev = file->f_dentry->d_inode->i_bdev; | ||
265 | struct gendisk *disk = bdev->bd_disk; | ||
266 | int ret = -ENOIOCTLCMD; | ||
267 | if (disk->fops->compat_ioctl) { | ||
268 | lock_kernel(); | ||
269 | ret = disk->fops->compat_ioctl(file, cmd, arg); | ||
270 | unlock_kernel(); | ||
271 | } | ||
272 | return ret; | ||
273 | } | ||
274 | |||
275 | EXPORT_SYMBOL_GPL(blkdev_ioctl); | ||
diff --git a/drivers/block/ll_rw_blk.c b/drivers/block/ll_rw_blk.c deleted file mode 100644 index 2747741677fb..000000000000 --- a/drivers/block/ll_rw_blk.c +++ /dev/null | |||
@@ -1,3613 +0,0 @@ | |||
1 | /* | ||
2 | * linux/drivers/block/ll_rw_blk.c | ||
3 | * | ||
4 | * Copyright (C) 1991, 1992 Linus Torvalds | ||
5 | * Copyright (C) 1994, Karl Keyte: Added support for disk statistics | ||
6 | * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE | ||
7 | * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> | ||
8 | * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000 | ||
9 | * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 | ||
10 | */ | ||
11 | |||
12 | /* | ||
13 | * This handles all read/write requests to block devices | ||
14 | */ | ||
15 | #include <linux/config.h> | ||
16 | #include <linux/kernel.h> | ||
17 | #include <linux/module.h> | ||
18 | #include <linux/backing-dev.h> | ||
19 | #include <linux/bio.h> | ||
20 | #include <linux/blkdev.h> | ||
21 | #include <linux/highmem.h> | ||
22 | #include <linux/mm.h> | ||
23 | #include <linux/kernel_stat.h> | ||
24 | #include <linux/string.h> | ||
25 | #include <linux/init.h> | ||
26 | #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ | ||
27 | #include <linux/completion.h> | ||
28 | #include <linux/slab.h> | ||
29 | #include <linux/swap.h> | ||
30 | #include <linux/writeback.h> | ||
31 | #include <linux/blkdev.h> | ||
32 | |||
33 | /* | ||
34 | * for max sense size | ||
35 | */ | ||
36 | #include <scsi/scsi_cmnd.h> | ||
37 | |||
38 | static void blk_unplug_work(void *data); | ||
39 | static void blk_unplug_timeout(unsigned long data); | ||
40 | static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io); | ||
41 | |||
42 | /* | ||
43 | * For the allocated request tables | ||
44 | */ | ||
45 | static kmem_cache_t *request_cachep; | ||
46 | |||
47 | /* | ||
48 | * For queue allocation | ||
49 | */ | ||
50 | static kmem_cache_t *requestq_cachep; | ||
51 | |||
52 | /* | ||
53 | * For io context allocations | ||
54 | */ | ||
55 | static kmem_cache_t *iocontext_cachep; | ||
56 | |||
57 | static wait_queue_head_t congestion_wqh[2] = { | ||
58 | __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]), | ||
59 | __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1]) | ||
60 | }; | ||
61 | |||
62 | /* | ||
63 | * Controlling structure to kblockd | ||
64 | */ | ||
65 | static struct workqueue_struct *kblockd_workqueue; | ||
66 | |||
67 | unsigned long blk_max_low_pfn, blk_max_pfn; | ||
68 | |||
69 | EXPORT_SYMBOL(blk_max_low_pfn); | ||
70 | EXPORT_SYMBOL(blk_max_pfn); | ||
71 | |||
72 | /* Amount of time in which a process may batch requests */ | ||
73 | #define BLK_BATCH_TIME (HZ/50UL) | ||
74 | |||
75 | /* Number of requests a "batching" process may submit */ | ||
76 | #define BLK_BATCH_REQ 32 | ||
77 | |||
78 | /* | ||
79 | * Return the threshold (number of used requests) at which the queue is | ||
80 | * considered to be congested. It include a little hysteresis to keep the | ||
81 | * context switch rate down. | ||
82 | */ | ||
83 | static inline int queue_congestion_on_threshold(struct request_queue *q) | ||
84 | { | ||
85 | return q->nr_congestion_on; | ||
86 | } | ||
87 | |||
88 | /* | ||
89 | * The threshold at which a queue is considered to be uncongested | ||
90 | */ | ||
91 | static inline int queue_congestion_off_threshold(struct request_queue *q) | ||
92 | { | ||
93 | return q->nr_congestion_off; | ||
94 | } | ||
95 | |||
96 | static void blk_queue_congestion_threshold(struct request_queue *q) | ||
97 | { | ||
98 | int nr; | ||
99 | |||
100 | nr = q->nr_requests - (q->nr_requests / 8) + 1; | ||
101 | if (nr > q->nr_requests) | ||
102 | nr = q->nr_requests; | ||
103 | q->nr_congestion_on = nr; | ||
104 | |||
105 | nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; | ||
106 | if (nr < 1) | ||
107 | nr = 1; | ||
108 | q->nr_congestion_off = nr; | ||
109 | } | ||
110 | |||
111 | /* | ||
112 | * A queue has just exitted congestion. Note this in the global counter of | ||
113 | * congested queues, and wake up anyone who was waiting for requests to be | ||
114 | * put back. | ||
115 | */ | ||
116 | static void clear_queue_congested(request_queue_t *q, int rw) | ||
117 | { | ||
118 | enum bdi_state bit; | ||
119 | wait_queue_head_t *wqh = &congestion_wqh[rw]; | ||
120 | |||
121 | bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested; | ||
122 | clear_bit(bit, &q->backing_dev_info.state); | ||
123 | smp_mb__after_clear_bit(); | ||
124 | if (waitqueue_active(wqh)) | ||
125 | wake_up(wqh); | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | * A queue has just entered congestion. Flag that in the queue's VM-visible | ||
130 | * state flags and increment the global gounter of congested queues. | ||
131 | */ | ||
132 | static void set_queue_congested(request_queue_t *q, int rw) | ||
133 | { | ||
134 | enum bdi_state bit; | ||
135 | |||
136 | bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested; | ||
137 | set_bit(bit, &q->backing_dev_info.state); | ||
138 | } | ||
139 | |||
140 | /** | ||
141 | * blk_get_backing_dev_info - get the address of a queue's backing_dev_info | ||
142 | * @bdev: device | ||
143 | * | ||
144 | * Locates the passed device's request queue and returns the address of its | ||
145 | * backing_dev_info | ||
146 | * | ||
147 | * Will return NULL if the request queue cannot be located. | ||
148 | */ | ||
149 | struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) | ||
150 | { | ||
151 | struct backing_dev_info *ret = NULL; | ||
152 | request_queue_t *q = bdev_get_queue(bdev); | ||
153 | |||
154 | if (q) | ||
155 | ret = &q->backing_dev_info; | ||
156 | return ret; | ||
157 | } | ||
158 | |||
159 | EXPORT_SYMBOL(blk_get_backing_dev_info); | ||
160 | |||
161 | void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data) | ||
162 | { | ||
163 | q->activity_fn = fn; | ||
164 | q->activity_data = data; | ||
165 | } | ||
166 | |||
167 | EXPORT_SYMBOL(blk_queue_activity_fn); | ||
168 | |||
169 | /** | ||
170 | * blk_queue_prep_rq - set a prepare_request function for queue | ||
171 | * @q: queue | ||
172 | * @pfn: prepare_request function | ||
173 | * | ||
174 | * It's possible for a queue to register a prepare_request callback which | ||
175 | * is invoked before the request is handed to the request_fn. The goal of | ||
176 | * the function is to prepare a request for I/O, it can be used to build a | ||
177 | * cdb from the request data for instance. | ||
178 | * | ||
179 | */ | ||
180 | void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn) | ||
181 | { | ||
182 | q->prep_rq_fn = pfn; | ||
183 | } | ||
184 | |||
185 | EXPORT_SYMBOL(blk_queue_prep_rq); | ||
186 | |||
187 | /** | ||
188 | * blk_queue_merge_bvec - set a merge_bvec function for queue | ||
189 | * @q: queue | ||
190 | * @mbfn: merge_bvec_fn | ||
191 | * | ||
192 | * Usually queues have static limitations on the max sectors or segments that | ||
193 | * we can put in a request. Stacking drivers may have some settings that | ||
194 | * are dynamic, and thus we have to query the queue whether it is ok to | ||
195 | * add a new bio_vec to a bio at a given offset or not. If the block device | ||
196 | * has such limitations, it needs to register a merge_bvec_fn to control | ||
197 | * the size of bio's sent to it. Note that a block device *must* allow a | ||
198 | * single page to be added to an empty bio. The block device driver may want | ||
199 | * to use the bio_split() function to deal with these bio's. By default | ||
200 | * no merge_bvec_fn is defined for a queue, and only the fixed limits are | ||
201 | * honored. | ||
202 | */ | ||
203 | void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn) | ||
204 | { | ||
205 | q->merge_bvec_fn = mbfn; | ||
206 | } | ||
207 | |||
208 | EXPORT_SYMBOL(blk_queue_merge_bvec); | ||
209 | |||
210 | /** | ||
211 | * blk_queue_make_request - define an alternate make_request function for a device | ||
212 | * @q: the request queue for the device to be affected | ||
213 | * @mfn: the alternate make_request function | ||
214 | * | ||
215 | * Description: | ||
216 | * The normal way for &struct bios to be passed to a device | ||
217 | * driver is for them to be collected into requests on a request | ||
218 | * queue, and then to allow the device driver to select requests | ||
219 | * off that queue when it is ready. This works well for many block | ||
220 | * devices. However some block devices (typically virtual devices | ||
221 | * such as md or lvm) do not benefit from the processing on the | ||
222 | * request queue, and are served best by having the requests passed | ||
223 | * directly to them. This can be achieved by providing a function | ||
224 | * to blk_queue_make_request(). | ||
225 | * | ||
226 | * Caveat: | ||
227 | * The driver that does this *must* be able to deal appropriately | ||
228 | * with buffers in "highmemory". This can be accomplished by either calling | ||
229 | * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling | ||
230 | * blk_queue_bounce() to create a buffer in normal memory. | ||
231 | **/ | ||
232 | void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn) | ||
233 | { | ||
234 | /* | ||
235 | * set defaults | ||
236 | */ | ||
237 | q->nr_requests = BLKDEV_MAX_RQ; | ||
238 | blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); | ||
239 | blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); | ||
240 | q->make_request_fn = mfn; | ||
241 | q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; | ||
242 | q->backing_dev_info.state = 0; | ||
243 | q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; | ||
244 | blk_queue_max_sectors(q, MAX_SECTORS); | ||
245 | blk_queue_hardsect_size(q, 512); | ||
246 | blk_queue_dma_alignment(q, 511); | ||
247 | blk_queue_congestion_threshold(q); | ||
248 | q->nr_batching = BLK_BATCH_REQ; | ||
249 | |||
250 | q->unplug_thresh = 4; /* hmm */ | ||
251 | q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */ | ||
252 | if (q->unplug_delay == 0) | ||
253 | q->unplug_delay = 1; | ||
254 | |||
255 | INIT_WORK(&q->unplug_work, blk_unplug_work, q); | ||
256 | |||
257 | q->unplug_timer.function = blk_unplug_timeout; | ||
258 | q->unplug_timer.data = (unsigned long)q; | ||
259 | |||
260 | /* | ||
261 | * by default assume old behaviour and bounce for any highmem page | ||
262 | */ | ||
263 | blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH); | ||
264 | |||
265 | blk_queue_activity_fn(q, NULL, NULL); | ||
266 | } | ||
267 | |||
268 | EXPORT_SYMBOL(blk_queue_make_request); | ||
269 | |||
270 | static inline void rq_init(request_queue_t *q, struct request *rq) | ||
271 | { | ||
272 | INIT_LIST_HEAD(&rq->queuelist); | ||
273 | |||
274 | rq->errors = 0; | ||
275 | rq->rq_status = RQ_ACTIVE; | ||
276 | rq->bio = rq->biotail = NULL; | ||
277 | rq->ioprio = 0; | ||
278 | rq->buffer = NULL; | ||
279 | rq->ref_count = 1; | ||
280 | rq->q = q; | ||
281 | rq->waiting = NULL; | ||
282 | rq->special = NULL; | ||
283 | rq->data_len = 0; | ||
284 | rq->data = NULL; | ||
285 | rq->nr_phys_segments = 0; | ||
286 | rq->sense = NULL; | ||
287 | rq->end_io = NULL; | ||
288 | rq->end_io_data = NULL; | ||
289 | } | ||
290 | |||
291 | /** | ||
292 | * blk_queue_ordered - does this queue support ordered writes | ||
293 | * @q: the request queue | ||
294 | * @flag: see below | ||
295 | * | ||
296 | * Description: | ||
297 | * For journalled file systems, doing ordered writes on a commit | ||
298 | * block instead of explicitly doing wait_on_buffer (which is bad | ||
299 | * for performance) can be a big win. Block drivers supporting this | ||
300 | * feature should call this function and indicate so. | ||
301 | * | ||
302 | **/ | ||
303 | void blk_queue_ordered(request_queue_t *q, int flag) | ||
304 | { | ||
305 | switch (flag) { | ||
306 | case QUEUE_ORDERED_NONE: | ||
307 | if (q->flush_rq) | ||
308 | kmem_cache_free(request_cachep, q->flush_rq); | ||
309 | q->flush_rq = NULL; | ||
310 | q->ordered = flag; | ||
311 | break; | ||
312 | case QUEUE_ORDERED_TAG: | ||
313 | q->ordered = flag; | ||
314 | break; | ||
315 | case QUEUE_ORDERED_FLUSH: | ||
316 | q->ordered = flag; | ||
317 | if (!q->flush_rq) | ||
318 | q->flush_rq = kmem_cache_alloc(request_cachep, | ||
319 | GFP_KERNEL); | ||
320 | break; | ||
321 | default: | ||
322 | printk("blk_queue_ordered: bad value %d\n", flag); | ||
323 | break; | ||
324 | } | ||
325 | } | ||
326 | |||
327 | EXPORT_SYMBOL(blk_queue_ordered); | ||
328 | |||
329 | /** | ||
330 | * blk_queue_issue_flush_fn - set function for issuing a flush | ||
331 | * @q: the request queue | ||
332 | * @iff: the function to be called issuing the flush | ||
333 | * | ||
334 | * Description: | ||
335 | * If a driver supports issuing a flush command, the support is notified | ||
336 | * to the block layer by defining it through this call. | ||
337 | * | ||
338 | **/ | ||
339 | void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff) | ||
340 | { | ||
341 | q->issue_flush_fn = iff; | ||
342 | } | ||
343 | |||
344 | EXPORT_SYMBOL(blk_queue_issue_flush_fn); | ||
345 | |||
346 | /* | ||
347 | * Cache flushing for ordered writes handling | ||
348 | */ | ||
349 | static void blk_pre_flush_end_io(struct request *flush_rq) | ||
350 | { | ||
351 | struct request *rq = flush_rq->end_io_data; | ||
352 | request_queue_t *q = rq->q; | ||
353 | |||
354 | elv_completed_request(q, flush_rq); | ||
355 | |||
356 | rq->flags |= REQ_BAR_PREFLUSH; | ||
357 | |||
358 | if (!flush_rq->errors) | ||
359 | elv_requeue_request(q, rq); | ||
360 | else { | ||
361 | q->end_flush_fn(q, flush_rq); | ||
362 | clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags); | ||
363 | q->request_fn(q); | ||
364 | } | ||
365 | } | ||
366 | |||
367 | static void blk_post_flush_end_io(struct request *flush_rq) | ||
368 | { | ||
369 | struct request *rq = flush_rq->end_io_data; | ||
370 | request_queue_t *q = rq->q; | ||
371 | |||
372 | elv_completed_request(q, flush_rq); | ||
373 | |||
374 | rq->flags |= REQ_BAR_POSTFLUSH; | ||
375 | |||
376 | q->end_flush_fn(q, flush_rq); | ||
377 | clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags); | ||
378 | q->request_fn(q); | ||
379 | } | ||
380 | |||
381 | struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq) | ||
382 | { | ||
383 | struct request *flush_rq = q->flush_rq; | ||
384 | |||
385 | BUG_ON(!blk_barrier_rq(rq)); | ||
386 | |||
387 | if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags)) | ||
388 | return NULL; | ||
389 | |||
390 | rq_init(q, flush_rq); | ||
391 | flush_rq->elevator_private = NULL; | ||
392 | flush_rq->flags = REQ_BAR_FLUSH; | ||
393 | flush_rq->rq_disk = rq->rq_disk; | ||
394 | flush_rq->rl = NULL; | ||
395 | |||
396 | /* | ||
397 | * prepare_flush returns 0 if no flush is needed, just mark both | ||
398 | * pre and post flush as done in that case | ||
399 | */ | ||
400 | if (!q->prepare_flush_fn(q, flush_rq)) { | ||
401 | rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH; | ||
402 | clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags); | ||
403 | return rq; | ||
404 | } | ||
405 | |||
406 | /* | ||
407 | * some drivers dequeue requests right away, some only after io | ||
408 | * completion. make sure the request is dequeued. | ||
409 | */ | ||
410 | if (!list_empty(&rq->queuelist)) | ||
411 | blkdev_dequeue_request(rq); | ||
412 | |||
413 | flush_rq->end_io_data = rq; | ||
414 | flush_rq->end_io = blk_pre_flush_end_io; | ||
415 | |||
416 | __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0); | ||
417 | return flush_rq; | ||
418 | } | ||
419 | |||
420 | static void blk_start_post_flush(request_queue_t *q, struct request *rq) | ||
421 | { | ||
422 | struct request *flush_rq = q->flush_rq; | ||
423 | |||
424 | BUG_ON(!blk_barrier_rq(rq)); | ||
425 | |||
426 | rq_init(q, flush_rq); | ||
427 | flush_rq->elevator_private = NULL; | ||
428 | flush_rq->flags = REQ_BAR_FLUSH; | ||
429 | flush_rq->rq_disk = rq->rq_disk; | ||
430 | flush_rq->rl = NULL; | ||
431 | |||
432 | if (q->prepare_flush_fn(q, flush_rq)) { | ||
433 | flush_rq->end_io_data = rq; | ||
434 | flush_rq->end_io = blk_post_flush_end_io; | ||
435 | |||
436 | __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0); | ||
437 | q->request_fn(q); | ||
438 | } | ||
439 | } | ||
440 | |||
441 | static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq, | ||
442 | int sectors) | ||
443 | { | ||
444 | if (sectors > rq->nr_sectors) | ||
445 | sectors = rq->nr_sectors; | ||
446 | |||
447 | rq->nr_sectors -= sectors; | ||
448 | return rq->nr_sectors; | ||
449 | } | ||
450 | |||
451 | static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq, | ||
452 | int sectors, int queue_locked) | ||
453 | { | ||
454 | if (q->ordered != QUEUE_ORDERED_FLUSH) | ||
455 | return 0; | ||
456 | if (!blk_fs_request(rq) || !blk_barrier_rq(rq)) | ||
457 | return 0; | ||
458 | if (blk_barrier_postflush(rq)) | ||
459 | return 0; | ||
460 | |||
461 | if (!blk_check_end_barrier(q, rq, sectors)) { | ||
462 | unsigned long flags = 0; | ||
463 | |||
464 | if (!queue_locked) | ||
465 | spin_lock_irqsave(q->queue_lock, flags); | ||
466 | |||
467 | blk_start_post_flush(q, rq); | ||
468 | |||
469 | if (!queue_locked) | ||
470 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
471 | } | ||
472 | |||
473 | return 1; | ||
474 | } | ||
475 | |||
476 | /** | ||
477 | * blk_complete_barrier_rq - complete possible barrier request | ||
478 | * @q: the request queue for the device | ||
479 | * @rq: the request | ||
480 | * @sectors: number of sectors to complete | ||
481 | * | ||
482 | * Description: | ||
483 | * Used in driver end_io handling to determine whether to postpone | ||
484 | * completion of a barrier request until a post flush has been done. This | ||
485 | * is the unlocked variant, used if the caller doesn't already hold the | ||
486 | * queue lock. | ||
487 | **/ | ||
488 | int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors) | ||
489 | { | ||
490 | return __blk_complete_barrier_rq(q, rq, sectors, 0); | ||
491 | } | ||
492 | EXPORT_SYMBOL(blk_complete_barrier_rq); | ||
493 | |||
494 | /** | ||
495 | * blk_complete_barrier_rq_locked - complete possible barrier request | ||
496 | * @q: the request queue for the device | ||
497 | * @rq: the request | ||
498 | * @sectors: number of sectors to complete | ||
499 | * | ||
500 | * Description: | ||
501 | * See blk_complete_barrier_rq(). This variant must be used if the caller | ||
502 | * holds the queue lock. | ||
503 | **/ | ||
504 | int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq, | ||
505 | int sectors) | ||
506 | { | ||
507 | return __blk_complete_barrier_rq(q, rq, sectors, 1); | ||
508 | } | ||
509 | EXPORT_SYMBOL(blk_complete_barrier_rq_locked); | ||
510 | |||
511 | /** | ||
512 | * blk_queue_bounce_limit - set bounce buffer limit for queue | ||
513 | * @q: the request queue for the device | ||
514 | * @dma_addr: bus address limit | ||
515 | * | ||
516 | * Description: | ||
517 | * Different hardware can have different requirements as to what pages | ||
518 | * it can do I/O directly to. A low level driver can call | ||
519 | * blk_queue_bounce_limit to have lower memory pages allocated as bounce | ||
520 | * buffers for doing I/O to pages residing above @page. By default | ||
521 | * the block layer sets this to the highest numbered "low" memory page. | ||
522 | **/ | ||
523 | void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr) | ||
524 | { | ||
525 | unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT; | ||
526 | |||
527 | /* | ||
528 | * set appropriate bounce gfp mask -- unfortunately we don't have a | ||
529 | * full 4GB zone, so we have to resort to low memory for any bounces. | ||
530 | * ISA has its own < 16MB zone. | ||
531 | */ | ||
532 | if (bounce_pfn < blk_max_low_pfn) { | ||
533 | BUG_ON(dma_addr < BLK_BOUNCE_ISA); | ||
534 | init_emergency_isa_pool(); | ||
535 | q->bounce_gfp = GFP_NOIO | GFP_DMA; | ||
536 | } else | ||
537 | q->bounce_gfp = GFP_NOIO; | ||
538 | |||
539 | q->bounce_pfn = bounce_pfn; | ||
540 | } | ||
541 | |||
542 | EXPORT_SYMBOL(blk_queue_bounce_limit); | ||
543 | |||
544 | /** | ||
545 | * blk_queue_max_sectors - set max sectors for a request for this queue | ||
546 | * @q: the request queue for the device | ||
547 | * @max_sectors: max sectors in the usual 512b unit | ||
548 | * | ||
549 | * Description: | ||
550 | * Enables a low level driver to set an upper limit on the size of | ||
551 | * received requests. | ||
552 | **/ | ||
553 | void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors) | ||
554 | { | ||
555 | if ((max_sectors << 9) < PAGE_CACHE_SIZE) { | ||
556 | max_sectors = 1 << (PAGE_CACHE_SHIFT - 9); | ||
557 | printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors); | ||
558 | } | ||
559 | |||
560 | q->max_sectors = q->max_hw_sectors = max_sectors; | ||
561 | } | ||
562 | |||
563 | EXPORT_SYMBOL(blk_queue_max_sectors); | ||
564 | |||
565 | /** | ||
566 | * blk_queue_max_phys_segments - set max phys segments for a request for this queue | ||
567 | * @q: the request queue for the device | ||
568 | * @max_segments: max number of segments | ||
569 | * | ||
570 | * Description: | ||
571 | * Enables a low level driver to set an upper limit on the number of | ||
572 | * physical data segments in a request. This would be the largest sized | ||
573 | * scatter list the driver could handle. | ||
574 | **/ | ||
575 | void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments) | ||
576 | { | ||
577 | if (!max_segments) { | ||
578 | max_segments = 1; | ||
579 | printk("%s: set to minimum %d\n", __FUNCTION__, max_segments); | ||
580 | } | ||
581 | |||
582 | q->max_phys_segments = max_segments; | ||
583 | } | ||
584 | |||
585 | EXPORT_SYMBOL(blk_queue_max_phys_segments); | ||
586 | |||
587 | /** | ||
588 | * blk_queue_max_hw_segments - set max hw segments for a request for this queue | ||
589 | * @q: the request queue for the device | ||
590 | * @max_segments: max number of segments | ||
591 | * | ||
592 | * Description: | ||
593 | * Enables a low level driver to set an upper limit on the number of | ||
594 | * hw data segments in a request. This would be the largest number of | ||
595 | * address/length pairs the host adapter can actually give as once | ||
596 | * to the device. | ||
597 | **/ | ||
598 | void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments) | ||
599 | { | ||
600 | if (!max_segments) { | ||
601 | max_segments = 1; | ||
602 | printk("%s: set to minimum %d\n", __FUNCTION__, max_segments); | ||
603 | } | ||
604 | |||
605 | q->max_hw_segments = max_segments; | ||
606 | } | ||
607 | |||
608 | EXPORT_SYMBOL(blk_queue_max_hw_segments); | ||
609 | |||
610 | /** | ||
611 | * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg | ||
612 | * @q: the request queue for the device | ||
613 | * @max_size: max size of segment in bytes | ||
614 | * | ||
615 | * Description: | ||
616 | * Enables a low level driver to set an upper limit on the size of a | ||
617 | * coalesced segment | ||
618 | **/ | ||
619 | void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size) | ||
620 | { | ||
621 | if (max_size < PAGE_CACHE_SIZE) { | ||
622 | max_size = PAGE_CACHE_SIZE; | ||
623 | printk("%s: set to minimum %d\n", __FUNCTION__, max_size); | ||
624 | } | ||
625 | |||
626 | q->max_segment_size = max_size; | ||
627 | } | ||
628 | |||
629 | EXPORT_SYMBOL(blk_queue_max_segment_size); | ||
630 | |||
631 | /** | ||
632 | * blk_queue_hardsect_size - set hardware sector size for the queue | ||
633 | * @q: the request queue for the device | ||
634 | * @size: the hardware sector size, in bytes | ||
635 | * | ||
636 | * Description: | ||
637 | * This should typically be set to the lowest possible sector size | ||
638 | * that the hardware can operate on (possible without reverting to | ||
639 | * even internal read-modify-write operations). Usually the default | ||
640 | * of 512 covers most hardware. | ||
641 | **/ | ||
642 | void blk_queue_hardsect_size(request_queue_t *q, unsigned short size) | ||
643 | { | ||
644 | q->hardsect_size = size; | ||
645 | } | ||
646 | |||
647 | EXPORT_SYMBOL(blk_queue_hardsect_size); | ||
648 | |||
649 | /* | ||
650 | * Returns the minimum that is _not_ zero, unless both are zero. | ||
651 | */ | ||
652 | #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r)) | ||
653 | |||
654 | /** | ||
655 | * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers | ||
656 | * @t: the stacking driver (top) | ||
657 | * @b: the underlying device (bottom) | ||
658 | **/ | ||
659 | void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b) | ||
660 | { | ||
661 | /* zero is "infinity" */ | ||
662 | t->max_sectors = t->max_hw_sectors = | ||
663 | min_not_zero(t->max_sectors,b->max_sectors); | ||
664 | |||
665 | t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments); | ||
666 | t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments); | ||
667 | t->max_segment_size = min(t->max_segment_size,b->max_segment_size); | ||
668 | t->hardsect_size = max(t->hardsect_size,b->hardsect_size); | ||
669 | } | ||
670 | |||
671 | EXPORT_SYMBOL(blk_queue_stack_limits); | ||
672 | |||
673 | /** | ||
674 | * blk_queue_segment_boundary - set boundary rules for segment merging | ||
675 | * @q: the request queue for the device | ||
676 | * @mask: the memory boundary mask | ||
677 | **/ | ||
678 | void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask) | ||
679 | { | ||
680 | if (mask < PAGE_CACHE_SIZE - 1) { | ||
681 | mask = PAGE_CACHE_SIZE - 1; | ||
682 | printk("%s: set to minimum %lx\n", __FUNCTION__, mask); | ||
683 | } | ||
684 | |||
685 | q->seg_boundary_mask = mask; | ||
686 | } | ||
687 | |||
688 | EXPORT_SYMBOL(blk_queue_segment_boundary); | ||
689 | |||
690 | /** | ||
691 | * blk_queue_dma_alignment - set dma length and memory alignment | ||
692 | * @q: the request queue for the device | ||
693 | * @mask: alignment mask | ||
694 | * | ||
695 | * description: | ||
696 | * set required memory and length aligment for direct dma transactions. | ||
697 | * this is used when buiding direct io requests for the queue. | ||
698 | * | ||
699 | **/ | ||
700 | void blk_queue_dma_alignment(request_queue_t *q, int mask) | ||
701 | { | ||
702 | q->dma_alignment = mask; | ||
703 | } | ||
704 | |||
705 | EXPORT_SYMBOL(blk_queue_dma_alignment); | ||
706 | |||
707 | /** | ||
708 | * blk_queue_find_tag - find a request by its tag and queue | ||
709 | * | ||
710 | * @q: The request queue for the device | ||
711 | * @tag: The tag of the request | ||
712 | * | ||
713 | * Notes: | ||
714 | * Should be used when a device returns a tag and you want to match | ||
715 | * it with a request. | ||
716 | * | ||
717 | * no locks need be held. | ||
718 | **/ | ||
719 | struct request *blk_queue_find_tag(request_queue_t *q, int tag) | ||
720 | { | ||
721 | struct blk_queue_tag *bqt = q->queue_tags; | ||
722 | |||
723 | if (unlikely(bqt == NULL || tag >= bqt->real_max_depth)) | ||
724 | return NULL; | ||
725 | |||
726 | return bqt->tag_index[tag]; | ||
727 | } | ||
728 | |||
729 | EXPORT_SYMBOL(blk_queue_find_tag); | ||
730 | |||
731 | /** | ||
732 | * __blk_queue_free_tags - release tag maintenance info | ||
733 | * @q: the request queue for the device | ||
734 | * | ||
735 | * Notes: | ||
736 | * blk_cleanup_queue() will take care of calling this function, if tagging | ||
737 | * has been used. So there's no need to call this directly. | ||
738 | **/ | ||
739 | static void __blk_queue_free_tags(request_queue_t *q) | ||
740 | { | ||
741 | struct blk_queue_tag *bqt = q->queue_tags; | ||
742 | |||
743 | if (!bqt) | ||
744 | return; | ||
745 | |||
746 | if (atomic_dec_and_test(&bqt->refcnt)) { | ||
747 | BUG_ON(bqt->busy); | ||
748 | BUG_ON(!list_empty(&bqt->busy_list)); | ||
749 | |||
750 | kfree(bqt->tag_index); | ||
751 | bqt->tag_index = NULL; | ||
752 | |||
753 | kfree(bqt->tag_map); | ||
754 | bqt->tag_map = NULL; | ||
755 | |||
756 | kfree(bqt); | ||
757 | } | ||
758 | |||
759 | q->queue_tags = NULL; | ||
760 | q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED); | ||
761 | } | ||
762 | |||
763 | /** | ||
764 | * blk_queue_free_tags - release tag maintenance info | ||
765 | * @q: the request queue for the device | ||
766 | * | ||
767 | * Notes: | ||
768 | * This is used to disabled tagged queuing to a device, yet leave | ||
769 | * queue in function. | ||
770 | **/ | ||
771 | void blk_queue_free_tags(request_queue_t *q) | ||
772 | { | ||
773 | clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags); | ||
774 | } | ||
775 | |||
776 | EXPORT_SYMBOL(blk_queue_free_tags); | ||
777 | |||
778 | static int | ||
779 | init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth) | ||
780 | { | ||
781 | struct request **tag_index; | ||
782 | unsigned long *tag_map; | ||
783 | int nr_ulongs; | ||
784 | |||
785 | if (depth > q->nr_requests * 2) { | ||
786 | depth = q->nr_requests * 2; | ||
787 | printk(KERN_ERR "%s: adjusted depth to %d\n", | ||
788 | __FUNCTION__, depth); | ||
789 | } | ||
790 | |||
791 | tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC); | ||
792 | if (!tag_index) | ||
793 | goto fail; | ||
794 | |||
795 | nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG; | ||
796 | tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC); | ||
797 | if (!tag_map) | ||
798 | goto fail; | ||
799 | |||
800 | memset(tag_index, 0, depth * sizeof(struct request *)); | ||
801 | memset(tag_map, 0, nr_ulongs * sizeof(unsigned long)); | ||
802 | tags->real_max_depth = depth; | ||
803 | tags->max_depth = depth; | ||
804 | tags->tag_index = tag_index; | ||
805 | tags->tag_map = tag_map; | ||
806 | |||
807 | return 0; | ||
808 | fail: | ||
809 | kfree(tag_index); | ||
810 | return -ENOMEM; | ||
811 | } | ||
812 | |||
813 | /** | ||
814 | * blk_queue_init_tags - initialize the queue tag info | ||
815 | * @q: the request queue for the device | ||
816 | * @depth: the maximum queue depth supported | ||
817 | * @tags: the tag to use | ||
818 | **/ | ||
819 | int blk_queue_init_tags(request_queue_t *q, int depth, | ||
820 | struct blk_queue_tag *tags) | ||
821 | { | ||
822 | int rc; | ||
823 | |||
824 | BUG_ON(tags && q->queue_tags && tags != q->queue_tags); | ||
825 | |||
826 | if (!tags && !q->queue_tags) { | ||
827 | tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC); | ||
828 | if (!tags) | ||
829 | goto fail; | ||
830 | |||
831 | if (init_tag_map(q, tags, depth)) | ||
832 | goto fail; | ||
833 | |||
834 | INIT_LIST_HEAD(&tags->busy_list); | ||
835 | tags->busy = 0; | ||
836 | atomic_set(&tags->refcnt, 1); | ||
837 | } else if (q->queue_tags) { | ||
838 | if ((rc = blk_queue_resize_tags(q, depth))) | ||
839 | return rc; | ||
840 | set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags); | ||
841 | return 0; | ||
842 | } else | ||
843 | atomic_inc(&tags->refcnt); | ||
844 | |||
845 | /* | ||
846 | * assign it, all done | ||
847 | */ | ||
848 | q->queue_tags = tags; | ||
849 | q->queue_flags |= (1 << QUEUE_FLAG_QUEUED); | ||
850 | return 0; | ||
851 | fail: | ||
852 | kfree(tags); | ||
853 | return -ENOMEM; | ||
854 | } | ||
855 | |||
856 | EXPORT_SYMBOL(blk_queue_init_tags); | ||
857 | |||
858 | /** | ||
859 | * blk_queue_resize_tags - change the queueing depth | ||
860 | * @q: the request queue for the device | ||
861 | * @new_depth: the new max command queueing depth | ||
862 | * | ||
863 | * Notes: | ||
864 | * Must be called with the queue lock held. | ||
865 | **/ | ||
866 | int blk_queue_resize_tags(request_queue_t *q, int new_depth) | ||
867 | { | ||
868 | struct blk_queue_tag *bqt = q->queue_tags; | ||
869 | struct request **tag_index; | ||
870 | unsigned long *tag_map; | ||
871 | int max_depth, nr_ulongs; | ||
872 | |||
873 | if (!bqt) | ||
874 | return -ENXIO; | ||
875 | |||
876 | /* | ||
877 | * if we already have large enough real_max_depth. just | ||
878 | * adjust max_depth. *NOTE* as requests with tag value | ||
879 | * between new_depth and real_max_depth can be in-flight, tag | ||
880 | * map can not be shrunk blindly here. | ||
881 | */ | ||
882 | if (new_depth <= bqt->real_max_depth) { | ||
883 | bqt->max_depth = new_depth; | ||
884 | return 0; | ||
885 | } | ||
886 | |||
887 | /* | ||
888 | * save the old state info, so we can copy it back | ||
889 | */ | ||
890 | tag_index = bqt->tag_index; | ||
891 | tag_map = bqt->tag_map; | ||
892 | max_depth = bqt->real_max_depth; | ||
893 | |||
894 | if (init_tag_map(q, bqt, new_depth)) | ||
895 | return -ENOMEM; | ||
896 | |||
897 | memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *)); | ||
898 | nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG; | ||
899 | memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long)); | ||
900 | |||
901 | kfree(tag_index); | ||
902 | kfree(tag_map); | ||
903 | return 0; | ||
904 | } | ||
905 | |||
906 | EXPORT_SYMBOL(blk_queue_resize_tags); | ||
907 | |||
908 | /** | ||
909 | * blk_queue_end_tag - end tag operations for a request | ||
910 | * @q: the request queue for the device | ||
911 | * @rq: the request that has completed | ||
912 | * | ||
913 | * Description: | ||
914 | * Typically called when end_that_request_first() returns 0, meaning | ||
915 | * all transfers have been done for a request. It's important to call | ||
916 | * this function before end_that_request_last(), as that will put the | ||
917 | * request back on the free list thus corrupting the internal tag list. | ||
918 | * | ||
919 | * Notes: | ||
920 | * queue lock must be held. | ||
921 | **/ | ||
922 | void blk_queue_end_tag(request_queue_t *q, struct request *rq) | ||
923 | { | ||
924 | struct blk_queue_tag *bqt = q->queue_tags; | ||
925 | int tag = rq->tag; | ||
926 | |||
927 | BUG_ON(tag == -1); | ||
928 | |||
929 | if (unlikely(tag >= bqt->real_max_depth)) | ||
930 | /* | ||
931 | * This can happen after tag depth has been reduced. | ||
932 | * FIXME: how about a warning or info message here? | ||
933 | */ | ||
934 | return; | ||
935 | |||
936 | if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) { | ||
937 | printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n", | ||
938 | __FUNCTION__, tag); | ||
939 | return; | ||
940 | } | ||
941 | |||
942 | list_del_init(&rq->queuelist); | ||
943 | rq->flags &= ~REQ_QUEUED; | ||
944 | rq->tag = -1; | ||
945 | |||
946 | if (unlikely(bqt->tag_index[tag] == NULL)) | ||
947 | printk(KERN_ERR "%s: tag %d is missing\n", | ||
948 | __FUNCTION__, tag); | ||
949 | |||
950 | bqt->tag_index[tag] = NULL; | ||
951 | bqt->busy--; | ||
952 | } | ||
953 | |||
954 | EXPORT_SYMBOL(blk_queue_end_tag); | ||
955 | |||
956 | /** | ||
957 | * blk_queue_start_tag - find a free tag and assign it | ||
958 | * @q: the request queue for the device | ||
959 | * @rq: the block request that needs tagging | ||
960 | * | ||
961 | * Description: | ||
962 | * This can either be used as a stand-alone helper, or possibly be | ||
963 | * assigned as the queue &prep_rq_fn (in which case &struct request | ||
964 | * automagically gets a tag assigned). Note that this function | ||
965 | * assumes that any type of request can be queued! if this is not | ||
966 | * true for your device, you must check the request type before | ||
967 | * calling this function. The request will also be removed from | ||
968 | * the request queue, so it's the drivers responsibility to readd | ||
969 | * it if it should need to be restarted for some reason. | ||
970 | * | ||
971 | * Notes: | ||
972 | * queue lock must be held. | ||
973 | **/ | ||
974 | int blk_queue_start_tag(request_queue_t *q, struct request *rq) | ||
975 | { | ||
976 | struct blk_queue_tag *bqt = q->queue_tags; | ||
977 | int tag; | ||
978 | |||
979 | if (unlikely((rq->flags & REQ_QUEUED))) { | ||
980 | printk(KERN_ERR | ||
981 | "%s: request %p for device [%s] already tagged %d", | ||
982 | __FUNCTION__, rq, | ||
983 | rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag); | ||
984 | BUG(); | ||
985 | } | ||
986 | |||
987 | tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth); | ||
988 | if (tag >= bqt->max_depth) | ||
989 | return 1; | ||
990 | |||
991 | __set_bit(tag, bqt->tag_map); | ||
992 | |||
993 | rq->flags |= REQ_QUEUED; | ||
994 | rq->tag = tag; | ||
995 | bqt->tag_index[tag] = rq; | ||
996 | blkdev_dequeue_request(rq); | ||
997 | list_add(&rq->queuelist, &bqt->busy_list); | ||
998 | bqt->busy++; | ||
999 | return 0; | ||
1000 | } | ||
1001 | |||
1002 | EXPORT_SYMBOL(blk_queue_start_tag); | ||
1003 | |||
1004 | /** | ||
1005 | * blk_queue_invalidate_tags - invalidate all pending tags | ||
1006 | * @q: the request queue for the device | ||
1007 | * | ||
1008 | * Description: | ||
1009 | * Hardware conditions may dictate a need to stop all pending requests. | ||
1010 | * In this case, we will safely clear the block side of the tag queue and | ||
1011 | * readd all requests to the request queue in the right order. | ||
1012 | * | ||
1013 | * Notes: | ||
1014 | * queue lock must be held. | ||
1015 | **/ | ||
1016 | void blk_queue_invalidate_tags(request_queue_t *q) | ||
1017 | { | ||
1018 | struct blk_queue_tag *bqt = q->queue_tags; | ||
1019 | struct list_head *tmp, *n; | ||
1020 | struct request *rq; | ||
1021 | |||
1022 | list_for_each_safe(tmp, n, &bqt->busy_list) { | ||
1023 | rq = list_entry_rq(tmp); | ||
1024 | |||
1025 | if (rq->tag == -1) { | ||
1026 | printk(KERN_ERR | ||
1027 | "%s: bad tag found on list\n", __FUNCTION__); | ||
1028 | list_del_init(&rq->queuelist); | ||
1029 | rq->flags &= ~REQ_QUEUED; | ||
1030 | } else | ||
1031 | blk_queue_end_tag(q, rq); | ||
1032 | |||
1033 | rq->flags &= ~REQ_STARTED; | ||
1034 | __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); | ||
1035 | } | ||
1036 | } | ||
1037 | |||
1038 | EXPORT_SYMBOL(blk_queue_invalidate_tags); | ||
1039 | |||
1040 | static char *rq_flags[] = { | ||
1041 | "REQ_RW", | ||
1042 | "REQ_FAILFAST", | ||
1043 | "REQ_SORTED", | ||
1044 | "REQ_SOFTBARRIER", | ||
1045 | "REQ_HARDBARRIER", | ||
1046 | "REQ_CMD", | ||
1047 | "REQ_NOMERGE", | ||
1048 | "REQ_STARTED", | ||
1049 | "REQ_DONTPREP", | ||
1050 | "REQ_QUEUED", | ||
1051 | "REQ_ELVPRIV", | ||
1052 | "REQ_PC", | ||
1053 | "REQ_BLOCK_PC", | ||
1054 | "REQ_SENSE", | ||
1055 | "REQ_FAILED", | ||
1056 | "REQ_QUIET", | ||
1057 | "REQ_SPECIAL", | ||
1058 | "REQ_DRIVE_CMD", | ||
1059 | "REQ_DRIVE_TASK", | ||
1060 | "REQ_DRIVE_TASKFILE", | ||
1061 | "REQ_PREEMPT", | ||
1062 | "REQ_PM_SUSPEND", | ||
1063 | "REQ_PM_RESUME", | ||
1064 | "REQ_PM_SHUTDOWN", | ||
1065 | }; | ||
1066 | |||
1067 | void blk_dump_rq_flags(struct request *rq, char *msg) | ||
1068 | { | ||
1069 | int bit; | ||
1070 | |||
1071 | printk("%s: dev %s: flags = ", msg, | ||
1072 | rq->rq_disk ? rq->rq_disk->disk_name : "?"); | ||
1073 | bit = 0; | ||
1074 | do { | ||
1075 | if (rq->flags & (1 << bit)) | ||
1076 | printk("%s ", rq_flags[bit]); | ||
1077 | bit++; | ||
1078 | } while (bit < __REQ_NR_BITS); | ||
1079 | |||
1080 | printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector, | ||
1081 | rq->nr_sectors, | ||
1082 | rq->current_nr_sectors); | ||
1083 | printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len); | ||
1084 | |||
1085 | if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) { | ||
1086 | printk("cdb: "); | ||
1087 | for (bit = 0; bit < sizeof(rq->cmd); bit++) | ||
1088 | printk("%02x ", rq->cmd[bit]); | ||
1089 | printk("\n"); | ||
1090 | } | ||
1091 | } | ||
1092 | |||
1093 | EXPORT_SYMBOL(blk_dump_rq_flags); | ||
1094 | |||
1095 | void blk_recount_segments(request_queue_t *q, struct bio *bio) | ||
1096 | { | ||
1097 | struct bio_vec *bv, *bvprv = NULL; | ||
1098 | int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster; | ||
1099 | int high, highprv = 1; | ||
1100 | |||
1101 | if (unlikely(!bio->bi_io_vec)) | ||
1102 | return; | ||
1103 | |||
1104 | cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER); | ||
1105 | hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0; | ||
1106 | bio_for_each_segment(bv, bio, i) { | ||
1107 | /* | ||
1108 | * the trick here is making sure that a high page is never | ||
1109 | * considered part of another segment, since that might | ||
1110 | * change with the bounce page. | ||
1111 | */ | ||
1112 | high = page_to_pfn(bv->bv_page) >= q->bounce_pfn; | ||
1113 | if (high || highprv) | ||
1114 | goto new_hw_segment; | ||
1115 | if (cluster) { | ||
1116 | if (seg_size + bv->bv_len > q->max_segment_size) | ||
1117 | goto new_segment; | ||
1118 | if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv)) | ||
1119 | goto new_segment; | ||
1120 | if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv)) | ||
1121 | goto new_segment; | ||
1122 | if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) | ||
1123 | goto new_hw_segment; | ||
1124 | |||
1125 | seg_size += bv->bv_len; | ||
1126 | hw_seg_size += bv->bv_len; | ||
1127 | bvprv = bv; | ||
1128 | continue; | ||
1129 | } | ||
1130 | new_segment: | ||
1131 | if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) && | ||
1132 | !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) { | ||
1133 | hw_seg_size += bv->bv_len; | ||
1134 | } else { | ||
1135 | new_hw_segment: | ||
1136 | if (hw_seg_size > bio->bi_hw_front_size) | ||
1137 | bio->bi_hw_front_size = hw_seg_size; | ||
1138 | hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len; | ||
1139 | nr_hw_segs++; | ||
1140 | } | ||
1141 | |||
1142 | nr_phys_segs++; | ||
1143 | bvprv = bv; | ||
1144 | seg_size = bv->bv_len; | ||
1145 | highprv = high; | ||
1146 | } | ||
1147 | if (hw_seg_size > bio->bi_hw_back_size) | ||
1148 | bio->bi_hw_back_size = hw_seg_size; | ||
1149 | if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size) | ||
1150 | bio->bi_hw_front_size = hw_seg_size; | ||
1151 | bio->bi_phys_segments = nr_phys_segs; | ||
1152 | bio->bi_hw_segments = nr_hw_segs; | ||
1153 | bio->bi_flags |= (1 << BIO_SEG_VALID); | ||
1154 | } | ||
1155 | |||
1156 | |||
1157 | static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio, | ||
1158 | struct bio *nxt) | ||
1159 | { | ||
1160 | if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER))) | ||
1161 | return 0; | ||
1162 | |||
1163 | if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt))) | ||
1164 | return 0; | ||
1165 | if (bio->bi_size + nxt->bi_size > q->max_segment_size) | ||
1166 | return 0; | ||
1167 | |||
1168 | /* | ||
1169 | * bio and nxt are contigous in memory, check if the queue allows | ||
1170 | * these two to be merged into one | ||
1171 | */ | ||
1172 | if (BIO_SEG_BOUNDARY(q, bio, nxt)) | ||
1173 | return 1; | ||
1174 | |||
1175 | return 0; | ||
1176 | } | ||
1177 | |||
1178 | static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio, | ||
1179 | struct bio *nxt) | ||
1180 | { | ||
1181 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | ||
1182 | blk_recount_segments(q, bio); | ||
1183 | if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID))) | ||
1184 | blk_recount_segments(q, nxt); | ||
1185 | if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) || | ||
1186 | BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size)) | ||
1187 | return 0; | ||
1188 | if (bio->bi_size + nxt->bi_size > q->max_segment_size) | ||
1189 | return 0; | ||
1190 | |||
1191 | return 1; | ||
1192 | } | ||
1193 | |||
1194 | /* | ||
1195 | * map a request to scatterlist, return number of sg entries setup. Caller | ||
1196 | * must make sure sg can hold rq->nr_phys_segments entries | ||
1197 | */ | ||
1198 | int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg) | ||
1199 | { | ||
1200 | struct bio_vec *bvec, *bvprv; | ||
1201 | struct bio *bio; | ||
1202 | int nsegs, i, cluster; | ||
1203 | |||
1204 | nsegs = 0; | ||
1205 | cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER); | ||
1206 | |||
1207 | /* | ||
1208 | * for each bio in rq | ||
1209 | */ | ||
1210 | bvprv = NULL; | ||
1211 | rq_for_each_bio(bio, rq) { | ||
1212 | /* | ||
1213 | * for each segment in bio | ||
1214 | */ | ||
1215 | bio_for_each_segment(bvec, bio, i) { | ||
1216 | int nbytes = bvec->bv_len; | ||
1217 | |||
1218 | if (bvprv && cluster) { | ||
1219 | if (sg[nsegs - 1].length + nbytes > q->max_segment_size) | ||
1220 | goto new_segment; | ||
1221 | |||
1222 | if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) | ||
1223 | goto new_segment; | ||
1224 | if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec)) | ||
1225 | goto new_segment; | ||
1226 | |||
1227 | sg[nsegs - 1].length += nbytes; | ||
1228 | } else { | ||
1229 | new_segment: | ||
1230 | memset(&sg[nsegs],0,sizeof(struct scatterlist)); | ||
1231 | sg[nsegs].page = bvec->bv_page; | ||
1232 | sg[nsegs].length = nbytes; | ||
1233 | sg[nsegs].offset = bvec->bv_offset; | ||
1234 | |||
1235 | nsegs++; | ||
1236 | } | ||
1237 | bvprv = bvec; | ||
1238 | } /* segments in bio */ | ||
1239 | } /* bios in rq */ | ||
1240 | |||
1241 | return nsegs; | ||
1242 | } | ||
1243 | |||
1244 | EXPORT_SYMBOL(blk_rq_map_sg); | ||
1245 | |||
1246 | /* | ||
1247 | * the standard queue merge functions, can be overridden with device | ||
1248 | * specific ones if so desired | ||
1249 | */ | ||
1250 | |||
1251 | static inline int ll_new_mergeable(request_queue_t *q, | ||
1252 | struct request *req, | ||
1253 | struct bio *bio) | ||
1254 | { | ||
1255 | int nr_phys_segs = bio_phys_segments(q, bio); | ||
1256 | |||
1257 | if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) { | ||
1258 | req->flags |= REQ_NOMERGE; | ||
1259 | if (req == q->last_merge) | ||
1260 | q->last_merge = NULL; | ||
1261 | return 0; | ||
1262 | } | ||
1263 | |||
1264 | /* | ||
1265 | * A hw segment is just getting larger, bump just the phys | ||
1266 | * counter. | ||
1267 | */ | ||
1268 | req->nr_phys_segments += nr_phys_segs; | ||
1269 | return 1; | ||
1270 | } | ||
1271 | |||
1272 | static inline int ll_new_hw_segment(request_queue_t *q, | ||
1273 | struct request *req, | ||
1274 | struct bio *bio) | ||
1275 | { | ||
1276 | int nr_hw_segs = bio_hw_segments(q, bio); | ||
1277 | int nr_phys_segs = bio_phys_segments(q, bio); | ||
1278 | |||
1279 | if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments | ||
1280 | || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) { | ||
1281 | req->flags |= REQ_NOMERGE; | ||
1282 | if (req == q->last_merge) | ||
1283 | q->last_merge = NULL; | ||
1284 | return 0; | ||
1285 | } | ||
1286 | |||
1287 | /* | ||
1288 | * This will form the start of a new hw segment. Bump both | ||
1289 | * counters. | ||
1290 | */ | ||
1291 | req->nr_hw_segments += nr_hw_segs; | ||
1292 | req->nr_phys_segments += nr_phys_segs; | ||
1293 | return 1; | ||
1294 | } | ||
1295 | |||
1296 | static int ll_back_merge_fn(request_queue_t *q, struct request *req, | ||
1297 | struct bio *bio) | ||
1298 | { | ||
1299 | int len; | ||
1300 | |||
1301 | if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) { | ||
1302 | req->flags |= REQ_NOMERGE; | ||
1303 | if (req == q->last_merge) | ||
1304 | q->last_merge = NULL; | ||
1305 | return 0; | ||
1306 | } | ||
1307 | if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID))) | ||
1308 | blk_recount_segments(q, req->biotail); | ||
1309 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | ||
1310 | blk_recount_segments(q, bio); | ||
1311 | len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size; | ||
1312 | if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) && | ||
1313 | !BIOVEC_VIRT_OVERSIZE(len)) { | ||
1314 | int mergeable = ll_new_mergeable(q, req, bio); | ||
1315 | |||
1316 | if (mergeable) { | ||
1317 | if (req->nr_hw_segments == 1) | ||
1318 | req->bio->bi_hw_front_size = len; | ||
1319 | if (bio->bi_hw_segments == 1) | ||
1320 | bio->bi_hw_back_size = len; | ||
1321 | } | ||
1322 | return mergeable; | ||
1323 | } | ||
1324 | |||
1325 | return ll_new_hw_segment(q, req, bio); | ||
1326 | } | ||
1327 | |||
1328 | static int ll_front_merge_fn(request_queue_t *q, struct request *req, | ||
1329 | struct bio *bio) | ||
1330 | { | ||
1331 | int len; | ||
1332 | |||
1333 | if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) { | ||
1334 | req->flags |= REQ_NOMERGE; | ||
1335 | if (req == q->last_merge) | ||
1336 | q->last_merge = NULL; | ||
1337 | return 0; | ||
1338 | } | ||
1339 | len = bio->bi_hw_back_size + req->bio->bi_hw_front_size; | ||
1340 | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | ||
1341 | blk_recount_segments(q, bio); | ||
1342 | if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID))) | ||
1343 | blk_recount_segments(q, req->bio); | ||
1344 | if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) && | ||
1345 | !BIOVEC_VIRT_OVERSIZE(len)) { | ||
1346 | int mergeable = ll_new_mergeable(q, req, bio); | ||
1347 | |||
1348 | if (mergeable) { | ||
1349 | if (bio->bi_hw_segments == 1) | ||
1350 | bio->bi_hw_front_size = len; | ||
1351 | if (req->nr_hw_segments == 1) | ||
1352 | req->biotail->bi_hw_back_size = len; | ||
1353 | } | ||
1354 | return mergeable; | ||
1355 | } | ||
1356 | |||
1357 | return ll_new_hw_segment(q, req, bio); | ||
1358 | } | ||
1359 | |||
1360 | static int ll_merge_requests_fn(request_queue_t *q, struct request *req, | ||
1361 | struct request *next) | ||
1362 | { | ||
1363 | int total_phys_segments; | ||
1364 | int total_hw_segments; | ||
1365 | |||
1366 | /* | ||
1367 | * First check if the either of the requests are re-queued | ||
1368 | * requests. Can't merge them if they are. | ||
1369 | */ | ||
1370 | if (req->special || next->special) | ||
1371 | return 0; | ||
1372 | |||
1373 | /* | ||
1374 | * Will it become too large? | ||
1375 | */ | ||
1376 | if ((req->nr_sectors + next->nr_sectors) > q->max_sectors) | ||
1377 | return 0; | ||
1378 | |||
1379 | total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; | ||
1380 | if (blk_phys_contig_segment(q, req->biotail, next->bio)) | ||
1381 | total_phys_segments--; | ||
1382 | |||
1383 | if (total_phys_segments > q->max_phys_segments) | ||
1384 | return 0; | ||
1385 | |||
1386 | total_hw_segments = req->nr_hw_segments + next->nr_hw_segments; | ||
1387 | if (blk_hw_contig_segment(q, req->biotail, next->bio)) { | ||
1388 | int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size; | ||
1389 | /* | ||
1390 | * propagate the combined length to the end of the requests | ||
1391 | */ | ||
1392 | if (req->nr_hw_segments == 1) | ||
1393 | req->bio->bi_hw_front_size = len; | ||
1394 | if (next->nr_hw_segments == 1) | ||
1395 | next->biotail->bi_hw_back_size = len; | ||
1396 | total_hw_segments--; | ||
1397 | } | ||
1398 | |||
1399 | if (total_hw_segments > q->max_hw_segments) | ||
1400 | return 0; | ||
1401 | |||
1402 | /* Merge is OK... */ | ||
1403 | req->nr_phys_segments = total_phys_segments; | ||
1404 | req->nr_hw_segments = total_hw_segments; | ||
1405 | return 1; | ||
1406 | } | ||
1407 | |||
1408 | /* | ||
1409 | * "plug" the device if there are no outstanding requests: this will | ||
1410 | * force the transfer to start only after we have put all the requests | ||
1411 | * on the list. | ||
1412 | * | ||
1413 | * This is called with interrupts off and no requests on the queue and | ||
1414 | * with the queue lock held. | ||
1415 | */ | ||
1416 | void blk_plug_device(request_queue_t *q) | ||
1417 | { | ||
1418 | WARN_ON(!irqs_disabled()); | ||
1419 | |||
1420 | /* | ||
1421 | * don't plug a stopped queue, it must be paired with blk_start_queue() | ||
1422 | * which will restart the queueing | ||
1423 | */ | ||
1424 | if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)) | ||
1425 | return; | ||
1426 | |||
1427 | if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) | ||
1428 | mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); | ||
1429 | } | ||
1430 | |||
1431 | EXPORT_SYMBOL(blk_plug_device); | ||
1432 | |||
1433 | /* | ||
1434 | * remove the queue from the plugged list, if present. called with | ||
1435 | * queue lock held and interrupts disabled. | ||
1436 | */ | ||
1437 | int blk_remove_plug(request_queue_t *q) | ||
1438 | { | ||
1439 | WARN_ON(!irqs_disabled()); | ||
1440 | |||
1441 | if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) | ||
1442 | return 0; | ||
1443 | |||
1444 | del_timer(&q->unplug_timer); | ||
1445 | return 1; | ||
1446 | } | ||
1447 | |||
1448 | EXPORT_SYMBOL(blk_remove_plug); | ||
1449 | |||
1450 | /* | ||
1451 | * remove the plug and let it rip.. | ||
1452 | */ | ||
1453 | void __generic_unplug_device(request_queue_t *q) | ||
1454 | { | ||
1455 | if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))) | ||
1456 | return; | ||
1457 | |||
1458 | if (!blk_remove_plug(q)) | ||
1459 | return; | ||
1460 | |||
1461 | q->request_fn(q); | ||
1462 | } | ||
1463 | EXPORT_SYMBOL(__generic_unplug_device); | ||
1464 | |||
1465 | /** | ||
1466 | * generic_unplug_device - fire a request queue | ||
1467 | * @q: The &request_queue_t in question | ||
1468 | * | ||
1469 | * Description: | ||
1470 | * Linux uses plugging to build bigger requests queues before letting | ||
1471 | * the device have at them. If a queue is plugged, the I/O scheduler | ||
1472 | * is still adding and merging requests on the queue. Once the queue | ||
1473 | * gets unplugged, the request_fn defined for the queue is invoked and | ||
1474 | * transfers started. | ||
1475 | **/ | ||
1476 | void generic_unplug_device(request_queue_t *q) | ||
1477 | { | ||
1478 | spin_lock_irq(q->queue_lock); | ||
1479 | __generic_unplug_device(q); | ||
1480 | spin_unlock_irq(q->queue_lock); | ||
1481 | } | ||
1482 | EXPORT_SYMBOL(generic_unplug_device); | ||
1483 | |||
1484 | static void blk_backing_dev_unplug(struct backing_dev_info *bdi, | ||
1485 | struct page *page) | ||
1486 | { | ||
1487 | request_queue_t *q = bdi->unplug_io_data; | ||
1488 | |||
1489 | /* | ||
1490 | * devices don't necessarily have an ->unplug_fn defined | ||
1491 | */ | ||
1492 | if (q->unplug_fn) | ||
1493 | q->unplug_fn(q); | ||
1494 | } | ||
1495 | |||
1496 | static void blk_unplug_work(void *data) | ||
1497 | { | ||
1498 | request_queue_t *q = data; | ||
1499 | |||
1500 | q->unplug_fn(q); | ||
1501 | } | ||
1502 | |||
1503 | static void blk_unplug_timeout(unsigned long data) | ||
1504 | { | ||
1505 | request_queue_t *q = (request_queue_t *)data; | ||
1506 | |||
1507 | kblockd_schedule_work(&q->unplug_work); | ||
1508 | } | ||
1509 | |||
1510 | /** | ||
1511 | * blk_start_queue - restart a previously stopped queue | ||
1512 | * @q: The &request_queue_t in question | ||
1513 | * | ||
1514 | * Description: | ||
1515 | * blk_start_queue() will clear the stop flag on the queue, and call | ||
1516 | * the request_fn for the queue if it was in a stopped state when | ||
1517 | * entered. Also see blk_stop_queue(). Queue lock must be held. | ||
1518 | **/ | ||
1519 | void blk_start_queue(request_queue_t *q) | ||
1520 | { | ||
1521 | clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags); | ||
1522 | |||
1523 | /* | ||
1524 | * one level of recursion is ok and is much faster than kicking | ||
1525 | * the unplug handling | ||
1526 | */ | ||
1527 | if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) { | ||
1528 | q->request_fn(q); | ||
1529 | clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags); | ||
1530 | } else { | ||
1531 | blk_plug_device(q); | ||
1532 | kblockd_schedule_work(&q->unplug_work); | ||
1533 | } | ||
1534 | } | ||
1535 | |||
1536 | EXPORT_SYMBOL(blk_start_queue); | ||
1537 | |||
1538 | /** | ||
1539 | * blk_stop_queue - stop a queue | ||
1540 | * @q: The &request_queue_t in question | ||
1541 | * | ||
1542 | * Description: | ||
1543 | * The Linux block layer assumes that a block driver will consume all | ||
1544 | * entries on the request queue when the request_fn strategy is called. | ||
1545 | * Often this will not happen, because of hardware limitations (queue | ||
1546 | * depth settings). If a device driver gets a 'queue full' response, | ||
1547 | * or if it simply chooses not to queue more I/O at one point, it can | ||
1548 | * call this function to prevent the request_fn from being called until | ||
1549 | * the driver has signalled it's ready to go again. This happens by calling | ||
1550 | * blk_start_queue() to restart queue operations. Queue lock must be held. | ||
1551 | **/ | ||
1552 | void blk_stop_queue(request_queue_t *q) | ||
1553 | { | ||
1554 | blk_remove_plug(q); | ||
1555 | set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags); | ||
1556 | } | ||
1557 | EXPORT_SYMBOL(blk_stop_queue); | ||
1558 | |||
1559 | /** | ||
1560 | * blk_sync_queue - cancel any pending callbacks on a queue | ||
1561 | * @q: the queue | ||
1562 | * | ||
1563 | * Description: | ||
1564 | * The block layer may perform asynchronous callback activity | ||
1565 | * on a queue, such as calling the unplug function after a timeout. | ||
1566 | * A block device may call blk_sync_queue to ensure that any | ||
1567 | * such activity is cancelled, thus allowing it to release resources | ||
1568 | * the the callbacks might use. The caller must already have made sure | ||
1569 | * that its ->make_request_fn will not re-add plugging prior to calling | ||
1570 | * this function. | ||
1571 | * | ||
1572 | */ | ||
1573 | void blk_sync_queue(struct request_queue *q) | ||
1574 | { | ||
1575 | del_timer_sync(&q->unplug_timer); | ||
1576 | kblockd_flush(); | ||
1577 | } | ||
1578 | EXPORT_SYMBOL(blk_sync_queue); | ||
1579 | |||
1580 | /** | ||
1581 | * blk_run_queue - run a single device queue | ||
1582 | * @q: The queue to run | ||
1583 | */ | ||
1584 | void blk_run_queue(struct request_queue *q) | ||
1585 | { | ||
1586 | unsigned long flags; | ||
1587 | |||
1588 | spin_lock_irqsave(q->queue_lock, flags); | ||
1589 | blk_remove_plug(q); | ||
1590 | if (!elv_queue_empty(q)) | ||
1591 | q->request_fn(q); | ||
1592 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
1593 | } | ||
1594 | EXPORT_SYMBOL(blk_run_queue); | ||
1595 | |||
1596 | /** | ||
1597 | * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed | ||
1598 | * @q: the request queue to be released | ||
1599 | * | ||
1600 | * Description: | ||
1601 | * blk_cleanup_queue is the pair to blk_init_queue() or | ||
1602 | * blk_queue_make_request(). It should be called when a request queue is | ||
1603 | * being released; typically when a block device is being de-registered. | ||
1604 | * Currently, its primary task it to free all the &struct request | ||
1605 | * structures that were allocated to the queue and the queue itself. | ||
1606 | * | ||
1607 | * Caveat: | ||
1608 | * Hopefully the low level driver will have finished any | ||
1609 | * outstanding requests first... | ||
1610 | **/ | ||
1611 | void blk_cleanup_queue(request_queue_t * q) | ||
1612 | { | ||
1613 | struct request_list *rl = &q->rq; | ||
1614 | |||
1615 | if (!atomic_dec_and_test(&q->refcnt)) | ||
1616 | return; | ||
1617 | |||
1618 | if (q->elevator) | ||
1619 | elevator_exit(q->elevator); | ||
1620 | |||
1621 | blk_sync_queue(q); | ||
1622 | |||
1623 | if (rl->rq_pool) | ||
1624 | mempool_destroy(rl->rq_pool); | ||
1625 | |||
1626 | if (q->queue_tags) | ||
1627 | __blk_queue_free_tags(q); | ||
1628 | |||
1629 | blk_queue_ordered(q, QUEUE_ORDERED_NONE); | ||
1630 | |||
1631 | kmem_cache_free(requestq_cachep, q); | ||
1632 | } | ||
1633 | |||
1634 | EXPORT_SYMBOL(blk_cleanup_queue); | ||
1635 | |||
1636 | static int blk_init_free_list(request_queue_t *q) | ||
1637 | { | ||
1638 | struct request_list *rl = &q->rq; | ||
1639 | |||
1640 | rl->count[READ] = rl->count[WRITE] = 0; | ||
1641 | rl->starved[READ] = rl->starved[WRITE] = 0; | ||
1642 | rl->elvpriv = 0; | ||
1643 | init_waitqueue_head(&rl->wait[READ]); | ||
1644 | init_waitqueue_head(&rl->wait[WRITE]); | ||
1645 | |||
1646 | rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, | ||
1647 | mempool_free_slab, request_cachep, q->node); | ||
1648 | |||
1649 | if (!rl->rq_pool) | ||
1650 | return -ENOMEM; | ||
1651 | |||
1652 | return 0; | ||
1653 | } | ||
1654 | |||
1655 | static int __make_request(request_queue_t *, struct bio *); | ||
1656 | |||
1657 | request_queue_t *blk_alloc_queue(gfp_t gfp_mask) | ||
1658 | { | ||
1659 | return blk_alloc_queue_node(gfp_mask, -1); | ||
1660 | } | ||
1661 | EXPORT_SYMBOL(blk_alloc_queue); | ||
1662 | |||
1663 | request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) | ||
1664 | { | ||
1665 | request_queue_t *q; | ||
1666 | |||
1667 | q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id); | ||
1668 | if (!q) | ||
1669 | return NULL; | ||
1670 | |||
1671 | memset(q, 0, sizeof(*q)); | ||
1672 | init_timer(&q->unplug_timer); | ||
1673 | atomic_set(&q->refcnt, 1); | ||
1674 | |||
1675 | q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; | ||
1676 | q->backing_dev_info.unplug_io_data = q; | ||
1677 | |||
1678 | return q; | ||
1679 | } | ||
1680 | EXPORT_SYMBOL(blk_alloc_queue_node); | ||
1681 | |||
1682 | /** | ||
1683 | * blk_init_queue - prepare a request queue for use with a block device | ||
1684 | * @rfn: The function to be called to process requests that have been | ||
1685 | * placed on the queue. | ||
1686 | * @lock: Request queue spin lock | ||
1687 | * | ||
1688 | * Description: | ||
1689 | * If a block device wishes to use the standard request handling procedures, | ||
1690 | * which sorts requests and coalesces adjacent requests, then it must | ||
1691 | * call blk_init_queue(). The function @rfn will be called when there | ||
1692 | * are requests on the queue that need to be processed. If the device | ||
1693 | * supports plugging, then @rfn may not be called immediately when requests | ||
1694 | * are available on the queue, but may be called at some time later instead. | ||
1695 | * Plugged queues are generally unplugged when a buffer belonging to one | ||
1696 | * of the requests on the queue is needed, or due to memory pressure. | ||
1697 | * | ||
1698 | * @rfn is not required, or even expected, to remove all requests off the | ||
1699 | * queue, but only as many as it can handle at a time. If it does leave | ||
1700 | * requests on the queue, it is responsible for arranging that the requests | ||
1701 | * get dealt with eventually. | ||
1702 | * | ||
1703 | * The queue spin lock must be held while manipulating the requests on the | ||
1704 | * request queue. | ||
1705 | * | ||
1706 | * Function returns a pointer to the initialized request queue, or NULL if | ||
1707 | * it didn't succeed. | ||
1708 | * | ||
1709 | * Note: | ||
1710 | * blk_init_queue() must be paired with a blk_cleanup_queue() call | ||
1711 | * when the block device is deactivated (such as at module unload). | ||
1712 | **/ | ||
1713 | |||
1714 | request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) | ||
1715 | { | ||
1716 | return blk_init_queue_node(rfn, lock, -1); | ||
1717 | } | ||
1718 | EXPORT_SYMBOL(blk_init_queue); | ||
1719 | |||
1720 | request_queue_t * | ||
1721 | blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) | ||
1722 | { | ||
1723 | request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id); | ||
1724 | |||
1725 | if (!q) | ||
1726 | return NULL; | ||
1727 | |||
1728 | q->node = node_id; | ||
1729 | if (blk_init_free_list(q)) | ||
1730 | goto out_init; | ||
1731 | |||
1732 | /* | ||
1733 | * if caller didn't supply a lock, they get per-queue locking with | ||
1734 | * our embedded lock | ||
1735 | */ | ||
1736 | if (!lock) { | ||
1737 | spin_lock_init(&q->__queue_lock); | ||
1738 | lock = &q->__queue_lock; | ||
1739 | } | ||
1740 | |||
1741 | q->request_fn = rfn; | ||
1742 | q->back_merge_fn = ll_back_merge_fn; | ||
1743 | q->front_merge_fn = ll_front_merge_fn; | ||
1744 | q->merge_requests_fn = ll_merge_requests_fn; | ||
1745 | q->prep_rq_fn = NULL; | ||
1746 | q->unplug_fn = generic_unplug_device; | ||
1747 | q->queue_flags = (1 << QUEUE_FLAG_CLUSTER); | ||
1748 | q->queue_lock = lock; | ||
1749 | |||
1750 | blk_queue_segment_boundary(q, 0xffffffff); | ||
1751 | |||
1752 | blk_queue_make_request(q, __make_request); | ||
1753 | blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); | ||
1754 | |||
1755 | blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); | ||
1756 | blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); | ||
1757 | |||
1758 | /* | ||
1759 | * all done | ||
1760 | */ | ||
1761 | if (!elevator_init(q, NULL)) { | ||
1762 | blk_queue_congestion_threshold(q); | ||
1763 | return q; | ||
1764 | } | ||
1765 | |||
1766 | blk_cleanup_queue(q); | ||
1767 | out_init: | ||
1768 | kmem_cache_free(requestq_cachep, q); | ||
1769 | return NULL; | ||
1770 | } | ||
1771 | EXPORT_SYMBOL(blk_init_queue_node); | ||
1772 | |||
1773 | int blk_get_queue(request_queue_t *q) | ||
1774 | { | ||
1775 | if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { | ||
1776 | atomic_inc(&q->refcnt); | ||
1777 | return 0; | ||
1778 | } | ||
1779 | |||
1780 | return 1; | ||
1781 | } | ||
1782 | |||
1783 | EXPORT_SYMBOL(blk_get_queue); | ||
1784 | |||
1785 | static inline void blk_free_request(request_queue_t *q, struct request *rq) | ||
1786 | { | ||
1787 | if (rq->flags & REQ_ELVPRIV) | ||
1788 | elv_put_request(q, rq); | ||
1789 | mempool_free(rq, q->rq.rq_pool); | ||
1790 | } | ||
1791 | |||
1792 | static inline struct request * | ||
1793 | blk_alloc_request(request_queue_t *q, int rw, struct bio *bio, | ||
1794 | int priv, gfp_t gfp_mask) | ||
1795 | { | ||
1796 | struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); | ||
1797 | |||
1798 | if (!rq) | ||
1799 | return NULL; | ||
1800 | |||
1801 | /* | ||
1802 | * first three bits are identical in rq->flags and bio->bi_rw, | ||
1803 | * see bio.h and blkdev.h | ||
1804 | */ | ||
1805 | rq->flags = rw; | ||
1806 | |||
1807 | if (priv) { | ||
1808 | if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) { | ||
1809 | mempool_free(rq, q->rq.rq_pool); | ||
1810 | return NULL; | ||
1811 | } | ||
1812 | rq->flags |= REQ_ELVPRIV; | ||
1813 | } | ||
1814 | |||
1815 | return rq; | ||
1816 | } | ||
1817 | |||
1818 | /* | ||
1819 | * ioc_batching returns true if the ioc is a valid batching request and | ||
1820 | * should be given priority access to a request. | ||
1821 | */ | ||
1822 | static inline int ioc_batching(request_queue_t *q, struct io_context *ioc) | ||
1823 | { | ||
1824 | if (!ioc) | ||
1825 | return 0; | ||
1826 | |||
1827 | /* | ||
1828 | * Make sure the process is able to allocate at least 1 request | ||
1829 | * even if the batch times out, otherwise we could theoretically | ||
1830 | * lose wakeups. | ||
1831 | */ | ||
1832 | return ioc->nr_batch_requests == q->nr_batching || | ||
1833 | (ioc->nr_batch_requests > 0 | ||
1834 | && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); | ||
1835 | } | ||
1836 | |||
1837 | /* | ||
1838 | * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This | ||
1839 | * will cause the process to be a "batcher" on all queues in the system. This | ||
1840 | * is the behaviour we want though - once it gets a wakeup it should be given | ||
1841 | * a nice run. | ||
1842 | */ | ||
1843 | static void ioc_set_batching(request_queue_t *q, struct io_context *ioc) | ||
1844 | { | ||
1845 | if (!ioc || ioc_batching(q, ioc)) | ||
1846 | return; | ||
1847 | |||
1848 | ioc->nr_batch_requests = q->nr_batching; | ||
1849 | ioc->last_waited = jiffies; | ||
1850 | } | ||
1851 | |||
1852 | static void __freed_request(request_queue_t *q, int rw) | ||
1853 | { | ||
1854 | struct request_list *rl = &q->rq; | ||
1855 | |||
1856 | if (rl->count[rw] < queue_congestion_off_threshold(q)) | ||
1857 | clear_queue_congested(q, rw); | ||
1858 | |||
1859 | if (rl->count[rw] + 1 <= q->nr_requests) { | ||
1860 | if (waitqueue_active(&rl->wait[rw])) | ||
1861 | wake_up(&rl->wait[rw]); | ||
1862 | |||
1863 | blk_clear_queue_full(q, rw); | ||
1864 | } | ||
1865 | } | ||
1866 | |||
1867 | /* | ||
1868 | * A request has just been released. Account for it, update the full and | ||
1869 | * congestion status, wake up any waiters. Called under q->queue_lock. | ||
1870 | */ | ||
1871 | static void freed_request(request_queue_t *q, int rw, int priv) | ||
1872 | { | ||
1873 | struct request_list *rl = &q->rq; | ||
1874 | |||
1875 | rl->count[rw]--; | ||
1876 | if (priv) | ||
1877 | rl->elvpriv--; | ||
1878 | |||
1879 | __freed_request(q, rw); | ||
1880 | |||
1881 | if (unlikely(rl->starved[rw ^ 1])) | ||
1882 | __freed_request(q, rw ^ 1); | ||
1883 | } | ||
1884 | |||
1885 | #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) | ||
1886 | /* | ||
1887 | * Get a free request, queue_lock must be held. | ||
1888 | * Returns NULL on failure, with queue_lock held. | ||
1889 | * Returns !NULL on success, with queue_lock *not held*. | ||
1890 | */ | ||
1891 | static struct request *get_request(request_queue_t *q, int rw, struct bio *bio, | ||
1892 | gfp_t gfp_mask) | ||
1893 | { | ||
1894 | struct request *rq = NULL; | ||
1895 | struct request_list *rl = &q->rq; | ||
1896 | struct io_context *ioc = current_io_context(GFP_ATOMIC); | ||
1897 | int priv; | ||
1898 | |||
1899 | if (rl->count[rw]+1 >= q->nr_requests) { | ||
1900 | /* | ||
1901 | * The queue will fill after this allocation, so set it as | ||
1902 | * full, and mark this process as "batching". This process | ||
1903 | * will be allowed to complete a batch of requests, others | ||
1904 | * will be blocked. | ||
1905 | */ | ||
1906 | if (!blk_queue_full(q, rw)) { | ||
1907 | ioc_set_batching(q, ioc); | ||
1908 | blk_set_queue_full(q, rw); | ||
1909 | } | ||
1910 | } | ||
1911 | |||
1912 | switch (elv_may_queue(q, rw, bio)) { | ||
1913 | case ELV_MQUEUE_NO: | ||
1914 | goto rq_starved; | ||
1915 | case ELV_MQUEUE_MAY: | ||
1916 | break; | ||
1917 | case ELV_MQUEUE_MUST: | ||
1918 | goto get_rq; | ||
1919 | } | ||
1920 | |||
1921 | if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) { | ||
1922 | /* | ||
1923 | * The queue is full and the allocating process is not a | ||
1924 | * "batcher", and not exempted by the IO scheduler | ||
1925 | */ | ||
1926 | goto out; | ||
1927 | } | ||
1928 | |||
1929 | get_rq: | ||
1930 | /* | ||
1931 | * Only allow batching queuers to allocate up to 50% over the defined | ||
1932 | * limit of requests, otherwise we could have thousands of requests | ||
1933 | * allocated with any setting of ->nr_requests | ||
1934 | */ | ||
1935 | if (rl->count[rw] >= (3 * q->nr_requests / 2)) | ||
1936 | goto out; | ||
1937 | |||
1938 | rl->count[rw]++; | ||
1939 | rl->starved[rw] = 0; | ||
1940 | if (rl->count[rw] >= queue_congestion_on_threshold(q)) | ||
1941 | set_queue_congested(q, rw); | ||
1942 | |||
1943 | priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); | ||
1944 | if (priv) | ||
1945 | rl->elvpriv++; | ||
1946 | |||
1947 | spin_unlock_irq(q->queue_lock); | ||
1948 | |||
1949 | rq = blk_alloc_request(q, rw, bio, priv, gfp_mask); | ||
1950 | if (!rq) { | ||
1951 | /* | ||
1952 | * Allocation failed presumably due to memory. Undo anything | ||
1953 | * we might have messed up. | ||
1954 | * | ||
1955 | * Allocating task should really be put onto the front of the | ||
1956 | * wait queue, but this is pretty rare. | ||
1957 | */ | ||
1958 | spin_lock_irq(q->queue_lock); | ||
1959 | freed_request(q, rw, priv); | ||
1960 | |||
1961 | /* | ||
1962 | * in the very unlikely event that allocation failed and no | ||
1963 | * requests for this direction was pending, mark us starved | ||
1964 | * so that freeing of a request in the other direction will | ||
1965 | * notice us. another possible fix would be to split the | ||
1966 | * rq mempool into READ and WRITE | ||
1967 | */ | ||
1968 | rq_starved: | ||
1969 | if (unlikely(rl->count[rw] == 0)) | ||
1970 | rl->starved[rw] = 1; | ||
1971 | |||
1972 | goto out; | ||
1973 | } | ||
1974 | |||
1975 | if (ioc_batching(q, ioc)) | ||
1976 | ioc->nr_batch_requests--; | ||
1977 | |||
1978 | rq_init(q, rq); | ||
1979 | rq->rl = rl; | ||
1980 | out: | ||
1981 | return rq; | ||
1982 | } | ||
1983 | |||
1984 | /* | ||
1985 | * No available requests for this queue, unplug the device and wait for some | ||
1986 | * requests to become available. | ||
1987 | * | ||
1988 | * Called with q->queue_lock held, and returns with it unlocked. | ||
1989 | */ | ||
1990 | static struct request *get_request_wait(request_queue_t *q, int rw, | ||
1991 | struct bio *bio) | ||
1992 | { | ||
1993 | struct request *rq; | ||
1994 | |||
1995 | rq = get_request(q, rw, bio, GFP_NOIO); | ||
1996 | while (!rq) { | ||
1997 | DEFINE_WAIT(wait); | ||
1998 | struct request_list *rl = &q->rq; | ||
1999 | |||
2000 | prepare_to_wait_exclusive(&rl->wait[rw], &wait, | ||
2001 | TASK_UNINTERRUPTIBLE); | ||
2002 | |||
2003 | rq = get_request(q, rw, bio, GFP_NOIO); | ||
2004 | |||
2005 | if (!rq) { | ||
2006 | struct io_context *ioc; | ||
2007 | |||
2008 | __generic_unplug_device(q); | ||
2009 | spin_unlock_irq(q->queue_lock); | ||
2010 | io_schedule(); | ||
2011 | |||
2012 | /* | ||
2013 | * After sleeping, we become a "batching" process and | ||
2014 | * will be able to allocate at least one request, and | ||
2015 | * up to a big batch of them for a small period time. | ||
2016 | * See ioc_batching, ioc_set_batching | ||
2017 | */ | ||
2018 | ioc = current_io_context(GFP_NOIO); | ||
2019 | ioc_set_batching(q, ioc); | ||
2020 | |||
2021 | spin_lock_irq(q->queue_lock); | ||
2022 | } | ||
2023 | finish_wait(&rl->wait[rw], &wait); | ||
2024 | } | ||
2025 | |||
2026 | return rq; | ||
2027 | } | ||
2028 | |||
2029 | struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask) | ||
2030 | { | ||
2031 | struct request *rq; | ||
2032 | |||
2033 | BUG_ON(rw != READ && rw != WRITE); | ||
2034 | |||
2035 | spin_lock_irq(q->queue_lock); | ||
2036 | if (gfp_mask & __GFP_WAIT) { | ||
2037 | rq = get_request_wait(q, rw, NULL); | ||
2038 | } else { | ||
2039 | rq = get_request(q, rw, NULL, gfp_mask); | ||
2040 | if (!rq) | ||
2041 | spin_unlock_irq(q->queue_lock); | ||
2042 | } | ||
2043 | /* q->queue_lock is unlocked at this point */ | ||
2044 | |||
2045 | return rq; | ||
2046 | } | ||
2047 | EXPORT_SYMBOL(blk_get_request); | ||
2048 | |||
2049 | /** | ||
2050 | * blk_requeue_request - put a request back on queue | ||
2051 | * @q: request queue where request should be inserted | ||
2052 | * @rq: request to be inserted | ||
2053 | * | ||
2054 | * Description: | ||
2055 | * Drivers often keep queueing requests until the hardware cannot accept | ||
2056 | * more, when that condition happens we need to put the request back | ||
2057 | * on the queue. Must be called with queue lock held. | ||
2058 | */ | ||
2059 | void blk_requeue_request(request_queue_t *q, struct request *rq) | ||
2060 | { | ||
2061 | if (blk_rq_tagged(rq)) | ||
2062 | blk_queue_end_tag(q, rq); | ||
2063 | |||
2064 | elv_requeue_request(q, rq); | ||
2065 | } | ||
2066 | |||
2067 | EXPORT_SYMBOL(blk_requeue_request); | ||
2068 | |||
2069 | /** | ||
2070 | * blk_insert_request - insert a special request in to a request queue | ||
2071 | * @q: request queue where request should be inserted | ||
2072 | * @rq: request to be inserted | ||
2073 | * @at_head: insert request at head or tail of queue | ||
2074 | * @data: private data | ||
2075 | * | ||
2076 | * Description: | ||
2077 | * Many block devices need to execute commands asynchronously, so they don't | ||
2078 | * block the whole kernel from preemption during request execution. This is | ||
2079 | * accomplished normally by inserting aritficial requests tagged as | ||
2080 | * REQ_SPECIAL in to the corresponding request queue, and letting them be | ||
2081 | * scheduled for actual execution by the request queue. | ||
2082 | * | ||
2083 | * We have the option of inserting the head or the tail of the queue. | ||
2084 | * Typically we use the tail for new ioctls and so forth. We use the head | ||
2085 | * of the queue for things like a QUEUE_FULL message from a device, or a | ||
2086 | * host that is unable to accept a particular command. | ||
2087 | */ | ||
2088 | void blk_insert_request(request_queue_t *q, struct request *rq, | ||
2089 | int at_head, void *data) | ||
2090 | { | ||
2091 | int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; | ||
2092 | unsigned long flags; | ||
2093 | |||
2094 | /* | ||
2095 | * tell I/O scheduler that this isn't a regular read/write (ie it | ||
2096 | * must not attempt merges on this) and that it acts as a soft | ||
2097 | * barrier | ||
2098 | */ | ||
2099 | rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER; | ||
2100 | |||
2101 | rq->special = data; | ||
2102 | |||
2103 | spin_lock_irqsave(q->queue_lock, flags); | ||
2104 | |||
2105 | /* | ||
2106 | * If command is tagged, release the tag | ||
2107 | */ | ||
2108 | if (blk_rq_tagged(rq)) | ||
2109 | blk_queue_end_tag(q, rq); | ||
2110 | |||
2111 | drive_stat_acct(rq, rq->nr_sectors, 1); | ||
2112 | __elv_add_request(q, rq, where, 0); | ||
2113 | |||
2114 | if (blk_queue_plugged(q)) | ||
2115 | __generic_unplug_device(q); | ||
2116 | else | ||
2117 | q->request_fn(q); | ||
2118 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
2119 | } | ||
2120 | |||
2121 | EXPORT_SYMBOL(blk_insert_request); | ||
2122 | |||
2123 | /** | ||
2124 | * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage | ||
2125 | * @q: request queue where request should be inserted | ||
2126 | * @rq: request structure to fill | ||
2127 | * @ubuf: the user buffer | ||
2128 | * @len: length of user data | ||
2129 | * | ||
2130 | * Description: | ||
2131 | * Data will be mapped directly for zero copy io, if possible. Otherwise | ||
2132 | * a kernel bounce buffer is used. | ||
2133 | * | ||
2134 | * A matching blk_rq_unmap_user() must be issued at the end of io, while | ||
2135 | * still in process context. | ||
2136 | * | ||
2137 | * Note: The mapped bio may need to be bounced through blk_queue_bounce() | ||
2138 | * before being submitted to the device, as pages mapped may be out of | ||
2139 | * reach. It's the callers responsibility to make sure this happens. The | ||
2140 | * original bio must be passed back in to blk_rq_unmap_user() for proper | ||
2141 | * unmapping. | ||
2142 | */ | ||
2143 | int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf, | ||
2144 | unsigned int len) | ||
2145 | { | ||
2146 | unsigned long uaddr; | ||
2147 | struct bio *bio; | ||
2148 | int reading; | ||
2149 | |||
2150 | if (len > (q->max_sectors << 9)) | ||
2151 | return -EINVAL; | ||
2152 | if (!len || !ubuf) | ||
2153 | return -EINVAL; | ||
2154 | |||
2155 | reading = rq_data_dir(rq) == READ; | ||
2156 | |||
2157 | /* | ||
2158 | * if alignment requirement is satisfied, map in user pages for | ||
2159 | * direct dma. else, set up kernel bounce buffers | ||
2160 | */ | ||
2161 | uaddr = (unsigned long) ubuf; | ||
2162 | if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q))) | ||
2163 | bio = bio_map_user(q, NULL, uaddr, len, reading); | ||
2164 | else | ||
2165 | bio = bio_copy_user(q, uaddr, len, reading); | ||
2166 | |||
2167 | if (!IS_ERR(bio)) { | ||
2168 | rq->bio = rq->biotail = bio; | ||
2169 | blk_rq_bio_prep(q, rq, bio); | ||
2170 | |||
2171 | rq->buffer = rq->data = NULL; | ||
2172 | rq->data_len = len; | ||
2173 | return 0; | ||
2174 | } | ||
2175 | |||
2176 | /* | ||
2177 | * bio is the err-ptr | ||
2178 | */ | ||
2179 | return PTR_ERR(bio); | ||
2180 | } | ||
2181 | |||
2182 | EXPORT_SYMBOL(blk_rq_map_user); | ||
2183 | |||
2184 | /** | ||
2185 | * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage | ||
2186 | * @q: request queue where request should be inserted | ||
2187 | * @rq: request to map data to | ||
2188 | * @iov: pointer to the iovec | ||
2189 | * @iov_count: number of elements in the iovec | ||
2190 | * | ||
2191 | * Description: | ||
2192 | * Data will be mapped directly for zero copy io, if possible. Otherwise | ||
2193 | * a kernel bounce buffer is used. | ||
2194 | * | ||
2195 | * A matching blk_rq_unmap_user() must be issued at the end of io, while | ||
2196 | * still in process context. | ||
2197 | * | ||
2198 | * Note: The mapped bio may need to be bounced through blk_queue_bounce() | ||
2199 | * before being submitted to the device, as pages mapped may be out of | ||
2200 | * reach. It's the callers responsibility to make sure this happens. The | ||
2201 | * original bio must be passed back in to blk_rq_unmap_user() for proper | ||
2202 | * unmapping. | ||
2203 | */ | ||
2204 | int blk_rq_map_user_iov(request_queue_t *q, struct request *rq, | ||
2205 | struct sg_iovec *iov, int iov_count) | ||
2206 | { | ||
2207 | struct bio *bio; | ||
2208 | |||
2209 | if (!iov || iov_count <= 0) | ||
2210 | return -EINVAL; | ||
2211 | |||
2212 | /* we don't allow misaligned data like bio_map_user() does. If the | ||
2213 | * user is using sg, they're expected to know the alignment constraints | ||
2214 | * and respect them accordingly */ | ||
2215 | bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ); | ||
2216 | if (IS_ERR(bio)) | ||
2217 | return PTR_ERR(bio); | ||
2218 | |||
2219 | rq->bio = rq->biotail = bio; | ||
2220 | blk_rq_bio_prep(q, rq, bio); | ||
2221 | rq->buffer = rq->data = NULL; | ||
2222 | rq->data_len = bio->bi_size; | ||
2223 | return 0; | ||
2224 | } | ||
2225 | |||
2226 | EXPORT_SYMBOL(blk_rq_map_user_iov); | ||
2227 | |||
2228 | /** | ||
2229 | * blk_rq_unmap_user - unmap a request with user data | ||
2230 | * @bio: bio to be unmapped | ||
2231 | * @ulen: length of user buffer | ||
2232 | * | ||
2233 | * Description: | ||
2234 | * Unmap a bio previously mapped by blk_rq_map_user(). | ||
2235 | */ | ||
2236 | int blk_rq_unmap_user(struct bio *bio, unsigned int ulen) | ||
2237 | { | ||
2238 | int ret = 0; | ||
2239 | |||
2240 | if (bio) { | ||
2241 | if (bio_flagged(bio, BIO_USER_MAPPED)) | ||
2242 | bio_unmap_user(bio); | ||
2243 | else | ||
2244 | ret = bio_uncopy_user(bio); | ||
2245 | } | ||
2246 | |||
2247 | return 0; | ||
2248 | } | ||
2249 | |||
2250 | EXPORT_SYMBOL(blk_rq_unmap_user); | ||
2251 | |||
2252 | /** | ||
2253 | * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage | ||
2254 | * @q: request queue where request should be inserted | ||
2255 | * @rq: request to fill | ||
2256 | * @kbuf: the kernel buffer | ||
2257 | * @len: length of user data | ||
2258 | * @gfp_mask: memory allocation flags | ||
2259 | */ | ||
2260 | int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf, | ||
2261 | unsigned int len, gfp_t gfp_mask) | ||
2262 | { | ||
2263 | struct bio *bio; | ||
2264 | |||
2265 | if (len > (q->max_sectors << 9)) | ||
2266 | return -EINVAL; | ||
2267 | if (!len || !kbuf) | ||
2268 | return -EINVAL; | ||
2269 | |||
2270 | bio = bio_map_kern(q, kbuf, len, gfp_mask); | ||
2271 | if (IS_ERR(bio)) | ||
2272 | return PTR_ERR(bio); | ||
2273 | |||
2274 | if (rq_data_dir(rq) == WRITE) | ||
2275 | bio->bi_rw |= (1 << BIO_RW); | ||
2276 | |||
2277 | rq->bio = rq->biotail = bio; | ||
2278 | blk_rq_bio_prep(q, rq, bio); | ||
2279 | |||
2280 | rq->buffer = rq->data = NULL; | ||
2281 | rq->data_len = len; | ||
2282 | return 0; | ||
2283 | } | ||
2284 | |||
2285 | EXPORT_SYMBOL(blk_rq_map_kern); | ||
2286 | |||
2287 | /** | ||
2288 | * blk_execute_rq_nowait - insert a request into queue for execution | ||
2289 | * @q: queue to insert the request in | ||
2290 | * @bd_disk: matching gendisk | ||
2291 | * @rq: request to insert | ||
2292 | * @at_head: insert request at head or tail of queue | ||
2293 | * @done: I/O completion handler | ||
2294 | * | ||
2295 | * Description: | ||
2296 | * Insert a fully prepared request at the back of the io scheduler queue | ||
2297 | * for execution. Don't wait for completion. | ||
2298 | */ | ||
2299 | void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk, | ||
2300 | struct request *rq, int at_head, | ||
2301 | void (*done)(struct request *)) | ||
2302 | { | ||
2303 | int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; | ||
2304 | |||
2305 | rq->rq_disk = bd_disk; | ||
2306 | rq->flags |= REQ_NOMERGE; | ||
2307 | rq->end_io = done; | ||
2308 | elv_add_request(q, rq, where, 1); | ||
2309 | generic_unplug_device(q); | ||
2310 | } | ||
2311 | |||
2312 | /** | ||
2313 | * blk_execute_rq - insert a request into queue for execution | ||
2314 | * @q: queue to insert the request in | ||
2315 | * @bd_disk: matching gendisk | ||
2316 | * @rq: request to insert | ||
2317 | * @at_head: insert request at head or tail of queue | ||
2318 | * | ||
2319 | * Description: | ||
2320 | * Insert a fully prepared request at the back of the io scheduler queue | ||
2321 | * for execution and wait for completion. | ||
2322 | */ | ||
2323 | int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk, | ||
2324 | struct request *rq, int at_head) | ||
2325 | { | ||
2326 | DECLARE_COMPLETION(wait); | ||
2327 | char sense[SCSI_SENSE_BUFFERSIZE]; | ||
2328 | int err = 0; | ||
2329 | |||
2330 | /* | ||
2331 | * we need an extra reference to the request, so we can look at | ||
2332 | * it after io completion | ||
2333 | */ | ||
2334 | rq->ref_count++; | ||
2335 | |||
2336 | if (!rq->sense) { | ||
2337 | memset(sense, 0, sizeof(sense)); | ||
2338 | rq->sense = sense; | ||
2339 | rq->sense_len = 0; | ||
2340 | } | ||
2341 | |||
2342 | rq->waiting = &wait; | ||
2343 | blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq); | ||
2344 | wait_for_completion(&wait); | ||
2345 | rq->waiting = NULL; | ||
2346 | |||
2347 | if (rq->errors) | ||
2348 | err = -EIO; | ||
2349 | |||
2350 | return err; | ||
2351 | } | ||
2352 | |||
2353 | EXPORT_SYMBOL(blk_execute_rq); | ||
2354 | |||
2355 | /** | ||
2356 | * blkdev_issue_flush - queue a flush | ||
2357 | * @bdev: blockdev to issue flush for | ||
2358 | * @error_sector: error sector | ||
2359 | * | ||
2360 | * Description: | ||
2361 | * Issue a flush for the block device in question. Caller can supply | ||
2362 | * room for storing the error offset in case of a flush error, if they | ||
2363 | * wish to. Caller must run wait_for_completion() on its own. | ||
2364 | */ | ||
2365 | int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector) | ||
2366 | { | ||
2367 | request_queue_t *q; | ||
2368 | |||
2369 | if (bdev->bd_disk == NULL) | ||
2370 | return -ENXIO; | ||
2371 | |||
2372 | q = bdev_get_queue(bdev); | ||
2373 | if (!q) | ||
2374 | return -ENXIO; | ||
2375 | if (!q->issue_flush_fn) | ||
2376 | return -EOPNOTSUPP; | ||
2377 | |||
2378 | return q->issue_flush_fn(q, bdev->bd_disk, error_sector); | ||
2379 | } | ||
2380 | |||
2381 | EXPORT_SYMBOL(blkdev_issue_flush); | ||
2382 | |||
2383 | static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io) | ||
2384 | { | ||
2385 | int rw = rq_data_dir(rq); | ||
2386 | |||
2387 | if (!blk_fs_request(rq) || !rq->rq_disk) | ||
2388 | return; | ||
2389 | |||
2390 | if (!new_io) { | ||
2391 | __disk_stat_inc(rq->rq_disk, merges[rw]); | ||
2392 | } else { | ||
2393 | disk_round_stats(rq->rq_disk); | ||
2394 | rq->rq_disk->in_flight++; | ||
2395 | } | ||
2396 | } | ||
2397 | |||
2398 | /* | ||
2399 | * add-request adds a request to the linked list. | ||
2400 | * queue lock is held and interrupts disabled, as we muck with the | ||
2401 | * request queue list. | ||
2402 | */ | ||
2403 | static inline void add_request(request_queue_t * q, struct request * req) | ||
2404 | { | ||
2405 | drive_stat_acct(req, req->nr_sectors, 1); | ||
2406 | |||
2407 | if (q->activity_fn) | ||
2408 | q->activity_fn(q->activity_data, rq_data_dir(req)); | ||
2409 | |||
2410 | /* | ||
2411 | * elevator indicated where it wants this request to be | ||
2412 | * inserted at elevator_merge time | ||
2413 | */ | ||
2414 | __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); | ||
2415 | } | ||
2416 | |||
2417 | /* | ||
2418 | * disk_round_stats() - Round off the performance stats on a struct | ||
2419 | * disk_stats. | ||
2420 | * | ||
2421 | * The average IO queue length and utilisation statistics are maintained | ||
2422 | * by observing the current state of the queue length and the amount of | ||
2423 | * time it has been in this state for. | ||
2424 | * | ||
2425 | * Normally, that accounting is done on IO completion, but that can result | ||
2426 | * in more than a second's worth of IO being accounted for within any one | ||
2427 | * second, leading to >100% utilisation. To deal with that, we call this | ||
2428 | * function to do a round-off before returning the results when reading | ||
2429 | * /proc/diskstats. This accounts immediately for all queue usage up to | ||
2430 | * the current jiffies and restarts the counters again. | ||
2431 | */ | ||
2432 | void disk_round_stats(struct gendisk *disk) | ||
2433 | { | ||
2434 | unsigned long now = jiffies; | ||
2435 | |||
2436 | if (now == disk->stamp) | ||
2437 | return; | ||
2438 | |||
2439 | if (disk->in_flight) { | ||
2440 | __disk_stat_add(disk, time_in_queue, | ||
2441 | disk->in_flight * (now - disk->stamp)); | ||
2442 | __disk_stat_add(disk, io_ticks, (now - disk->stamp)); | ||
2443 | } | ||
2444 | disk->stamp = now; | ||
2445 | } | ||
2446 | |||
2447 | /* | ||
2448 | * queue lock must be held | ||
2449 | */ | ||
2450 | static void __blk_put_request(request_queue_t *q, struct request *req) | ||
2451 | { | ||
2452 | struct request_list *rl = req->rl; | ||
2453 | |||
2454 | if (unlikely(!q)) | ||
2455 | return; | ||
2456 | if (unlikely(--req->ref_count)) | ||
2457 | return; | ||
2458 | |||
2459 | elv_completed_request(q, req); | ||
2460 | |||
2461 | req->rq_status = RQ_INACTIVE; | ||
2462 | req->rl = NULL; | ||
2463 | |||
2464 | /* | ||
2465 | * Request may not have originated from ll_rw_blk. if not, | ||
2466 | * it didn't come out of our reserved rq pools | ||
2467 | */ | ||
2468 | if (rl) { | ||
2469 | int rw = rq_data_dir(req); | ||
2470 | int priv = req->flags & REQ_ELVPRIV; | ||
2471 | |||
2472 | BUG_ON(!list_empty(&req->queuelist)); | ||
2473 | |||
2474 | blk_free_request(q, req); | ||
2475 | freed_request(q, rw, priv); | ||
2476 | } | ||
2477 | } | ||
2478 | |||
2479 | void blk_put_request(struct request *req) | ||
2480 | { | ||
2481 | unsigned long flags; | ||
2482 | request_queue_t *q = req->q; | ||
2483 | |||
2484 | /* | ||
2485 | * Gee, IDE calls in w/ NULL q. Fix IDE and remove the | ||
2486 | * following if (q) test. | ||
2487 | */ | ||
2488 | if (q) { | ||
2489 | spin_lock_irqsave(q->queue_lock, flags); | ||
2490 | __blk_put_request(q, req); | ||
2491 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
2492 | } | ||
2493 | } | ||
2494 | |||
2495 | EXPORT_SYMBOL(blk_put_request); | ||
2496 | |||
2497 | /** | ||
2498 | * blk_end_sync_rq - executes a completion event on a request | ||
2499 | * @rq: request to complete | ||
2500 | */ | ||
2501 | void blk_end_sync_rq(struct request *rq) | ||
2502 | { | ||
2503 | struct completion *waiting = rq->waiting; | ||
2504 | |||
2505 | rq->waiting = NULL; | ||
2506 | __blk_put_request(rq->q, rq); | ||
2507 | |||
2508 | /* | ||
2509 | * complete last, if this is a stack request the process (and thus | ||
2510 | * the rq pointer) could be invalid right after this complete() | ||
2511 | */ | ||
2512 | complete(waiting); | ||
2513 | } | ||
2514 | EXPORT_SYMBOL(blk_end_sync_rq); | ||
2515 | |||
2516 | /** | ||
2517 | * blk_congestion_wait - wait for a queue to become uncongested | ||
2518 | * @rw: READ or WRITE | ||
2519 | * @timeout: timeout in jiffies | ||
2520 | * | ||
2521 | * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion. | ||
2522 | * If no queues are congested then just wait for the next request to be | ||
2523 | * returned. | ||
2524 | */ | ||
2525 | long blk_congestion_wait(int rw, long timeout) | ||
2526 | { | ||
2527 | long ret; | ||
2528 | DEFINE_WAIT(wait); | ||
2529 | wait_queue_head_t *wqh = &congestion_wqh[rw]; | ||
2530 | |||
2531 | prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); | ||
2532 | ret = io_schedule_timeout(timeout); | ||
2533 | finish_wait(wqh, &wait); | ||
2534 | return ret; | ||
2535 | } | ||
2536 | |||
2537 | EXPORT_SYMBOL(blk_congestion_wait); | ||
2538 | |||
2539 | /* | ||
2540 | * Has to be called with the request spinlock acquired | ||
2541 | */ | ||
2542 | static int attempt_merge(request_queue_t *q, struct request *req, | ||
2543 | struct request *next) | ||
2544 | { | ||
2545 | if (!rq_mergeable(req) || !rq_mergeable(next)) | ||
2546 | return 0; | ||
2547 | |||
2548 | /* | ||
2549 | * not contigious | ||
2550 | */ | ||
2551 | if (req->sector + req->nr_sectors != next->sector) | ||
2552 | return 0; | ||
2553 | |||
2554 | if (rq_data_dir(req) != rq_data_dir(next) | ||
2555 | || req->rq_disk != next->rq_disk | ||
2556 | || next->waiting || next->special) | ||
2557 | return 0; | ||
2558 | |||
2559 | /* | ||
2560 | * If we are allowed to merge, then append bio list | ||
2561 | * from next to rq and release next. merge_requests_fn | ||
2562 | * will have updated segment counts, update sector | ||
2563 | * counts here. | ||
2564 | */ | ||
2565 | if (!q->merge_requests_fn(q, req, next)) | ||
2566 | return 0; | ||
2567 | |||
2568 | /* | ||
2569 | * At this point we have either done a back merge | ||
2570 | * or front merge. We need the smaller start_time of | ||
2571 | * the merged requests to be the current request | ||
2572 | * for accounting purposes. | ||
2573 | */ | ||
2574 | if (time_after(req->start_time, next->start_time)) | ||
2575 | req->start_time = next->start_time; | ||
2576 | |||
2577 | req->biotail->bi_next = next->bio; | ||
2578 | req->biotail = next->biotail; | ||
2579 | |||
2580 | req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors; | ||
2581 | |||
2582 | elv_merge_requests(q, req, next); | ||
2583 | |||
2584 | if (req->rq_disk) { | ||
2585 | disk_round_stats(req->rq_disk); | ||
2586 | req->rq_disk->in_flight--; | ||
2587 | } | ||
2588 | |||
2589 | req->ioprio = ioprio_best(req->ioprio, next->ioprio); | ||
2590 | |||
2591 | __blk_put_request(q, next); | ||
2592 | return 1; | ||
2593 | } | ||
2594 | |||
2595 | static inline int attempt_back_merge(request_queue_t *q, struct request *rq) | ||
2596 | { | ||
2597 | struct request *next = elv_latter_request(q, rq); | ||
2598 | |||
2599 | if (next) | ||
2600 | return attempt_merge(q, rq, next); | ||
2601 | |||
2602 | return 0; | ||
2603 | } | ||
2604 | |||
2605 | static inline int attempt_front_merge(request_queue_t *q, struct request *rq) | ||
2606 | { | ||
2607 | struct request *prev = elv_former_request(q, rq); | ||
2608 | |||
2609 | if (prev) | ||
2610 | return attempt_merge(q, prev, rq); | ||
2611 | |||
2612 | return 0; | ||
2613 | } | ||
2614 | |||
2615 | /** | ||
2616 | * blk_attempt_remerge - attempt to remerge active head with next request | ||
2617 | * @q: The &request_queue_t belonging to the device | ||
2618 | * @rq: The head request (usually) | ||
2619 | * | ||
2620 | * Description: | ||
2621 | * For head-active devices, the queue can easily be unplugged so quickly | ||
2622 | * that proper merging is not done on the front request. This may hurt | ||
2623 | * performance greatly for some devices. The block layer cannot safely | ||
2624 | * do merging on that first request for these queues, but the driver can | ||
2625 | * call this function and make it happen any way. Only the driver knows | ||
2626 | * when it is safe to do so. | ||
2627 | **/ | ||
2628 | void blk_attempt_remerge(request_queue_t *q, struct request *rq) | ||
2629 | { | ||
2630 | unsigned long flags; | ||
2631 | |||
2632 | spin_lock_irqsave(q->queue_lock, flags); | ||
2633 | attempt_back_merge(q, rq); | ||
2634 | spin_unlock_irqrestore(q->queue_lock, flags); | ||
2635 | } | ||
2636 | |||
2637 | EXPORT_SYMBOL(blk_attempt_remerge); | ||
2638 | |||
2639 | static int __make_request(request_queue_t *q, struct bio *bio) | ||
2640 | { | ||
2641 | struct request *req; | ||
2642 | int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync; | ||
2643 | unsigned short prio; | ||
2644 | sector_t sector; | ||
2645 | |||
2646 | sector = bio->bi_sector; | ||
2647 | nr_sectors = bio_sectors(bio); | ||
2648 | cur_nr_sectors = bio_cur_sectors(bio); | ||
2649 | prio = bio_prio(bio); | ||
2650 | |||
2651 | rw = bio_data_dir(bio); | ||
2652 | sync = bio_sync(bio); | ||
2653 | |||
2654 | /* | ||
2655 | * low level driver can indicate that it wants pages above a | ||
2656 | * certain limit bounced to low memory (ie for highmem, or even | ||
2657 | * ISA dma in theory) | ||
2658 | */ | ||
2659 | blk_queue_bounce(q, &bio); | ||
2660 | |||
2661 | spin_lock_prefetch(q->queue_lock); | ||
2662 | |||
2663 | barrier = bio_barrier(bio); | ||
2664 | if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) { | ||
2665 | err = -EOPNOTSUPP; | ||
2666 | goto end_io; | ||
2667 | } | ||
2668 | |||
2669 | spin_lock_irq(q->queue_lock); | ||
2670 | |||
2671 | if (unlikely(barrier) || elv_queue_empty(q)) | ||
2672 | goto get_rq; | ||
2673 | |||
2674 | el_ret = elv_merge(q, &req, bio); | ||
2675 | switch (el_ret) { | ||
2676 | case ELEVATOR_BACK_MERGE: | ||
2677 | BUG_ON(!rq_mergeable(req)); | ||
2678 | |||
2679 | if (!q->back_merge_fn(q, req, bio)) | ||
2680 | break; | ||
2681 | |||
2682 | req->biotail->bi_next = bio; | ||
2683 | req->biotail = bio; | ||
2684 | req->nr_sectors = req->hard_nr_sectors += nr_sectors; | ||
2685 | req->ioprio = ioprio_best(req->ioprio, prio); | ||
2686 | drive_stat_acct(req, nr_sectors, 0); | ||
2687 | if (!attempt_back_merge(q, req)) | ||
2688 | elv_merged_request(q, req); | ||
2689 | goto out; | ||
2690 | |||
2691 | case ELEVATOR_FRONT_MERGE: | ||
2692 | BUG_ON(!rq_mergeable(req)); | ||
2693 | |||
2694 | if (!q->front_merge_fn(q, req, bio)) | ||
2695 | break; | ||
2696 | |||
2697 | bio->bi_next = req->bio; | ||
2698 | req->bio = bio; | ||
2699 | |||
2700 | /* | ||
2701 | * may not be valid. if the low level driver said | ||
2702 | * it didn't need a bounce buffer then it better | ||
2703 | * not touch req->buffer either... | ||
2704 | */ | ||
2705 | req->buffer = bio_data(bio); | ||
2706 | req->current_nr_sectors = cur_nr_sectors; | ||
2707 | req->hard_cur_sectors = cur_nr_sectors; | ||
2708 | req->sector = req->hard_sector = sector; | ||
2709 | req->nr_sectors = req->hard_nr_sectors += nr_sectors; | ||
2710 | req->ioprio = ioprio_best(req->ioprio, prio); | ||
2711 | drive_stat_acct(req, nr_sectors, 0); | ||
2712 | if (!attempt_front_merge(q, req)) | ||
2713 | elv_merged_request(q, req); | ||
2714 | goto out; | ||
2715 | |||
2716 | /* ELV_NO_MERGE: elevator says don't/can't merge. */ | ||
2717 | default: | ||
2718 | ; | ||
2719 | } | ||
2720 | |||
2721 | get_rq: | ||
2722 | /* | ||
2723 | * Grab a free request. This is might sleep but can not fail. | ||
2724 | * Returns with the queue unlocked. | ||
2725 | */ | ||
2726 | req = get_request_wait(q, rw, bio); | ||
2727 | |||
2728 | /* | ||
2729 | * After dropping the lock and possibly sleeping here, our request | ||
2730 | * may now be mergeable after it had proven unmergeable (above). | ||
2731 | * We don't worry about that case for efficiency. It won't happen | ||
2732 | * often, and the elevators are able to handle it. | ||
2733 | */ | ||
2734 | |||
2735 | req->flags |= REQ_CMD; | ||
2736 | |||
2737 | /* | ||
2738 | * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) | ||
2739 | */ | ||
2740 | if (bio_rw_ahead(bio) || bio_failfast(bio)) | ||
2741 | req->flags |= REQ_FAILFAST; | ||
2742 | |||
2743 | /* | ||
2744 | * REQ_BARRIER implies no merging, but lets make it explicit | ||
2745 | */ | ||
2746 | if (unlikely(barrier)) | ||
2747 | req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE); | ||
2748 | |||
2749 | req->errors = 0; | ||
2750 | req->hard_sector = req->sector = sector; | ||
2751 | req->hard_nr_sectors = req->nr_sectors = nr_sectors; | ||
2752 | req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors; | ||
2753 | req->nr_phys_segments = bio_phys_segments(q, bio); | ||
2754 | req->nr_hw_segments = bio_hw_segments(q, bio); | ||
2755 | req->buffer = bio_data(bio); /* see ->buffer comment above */ | ||
2756 | req->waiting = NULL; | ||
2757 | req->bio = req->biotail = bio; | ||
2758 | req->ioprio = prio; | ||
2759 | req->rq_disk = bio->bi_bdev->bd_disk; | ||
2760 | req->start_time = jiffies; | ||
2761 | |||
2762 | spin_lock_irq(q->queue_lock); | ||
2763 | if (elv_queue_empty(q)) | ||
2764 | blk_plug_device(q); | ||
2765 | add_request(q, req); | ||
2766 | out: | ||
2767 | if (sync) | ||
2768 | __generic_unplug_device(q); | ||
2769 | |||
2770 | spin_unlock_irq(q->queue_lock); | ||
2771 | return 0; | ||
2772 | |||
2773 | end_io: | ||
2774 | bio_endio(bio, nr_sectors << 9, err); | ||
2775 | return 0; | ||
2776 | } | ||
2777 | |||
2778 | /* | ||
2779 | * If bio->bi_dev is a partition, remap the location | ||
2780 | */ | ||
2781 | static inline void blk_partition_remap(struct bio *bio) | ||
2782 | { | ||
2783 | struct block_device *bdev = bio->bi_bdev; | ||
2784 | |||
2785 | if (bdev != bdev->bd_contains) { | ||
2786 | struct hd_struct *p = bdev->bd_part; | ||
2787 | const int rw = bio_data_dir(bio); | ||
2788 | |||
2789 | p->sectors[rw] += bio_sectors(bio); | ||
2790 | p->ios[rw]++; | ||
2791 | |||
2792 | bio->bi_sector += p->start_sect; | ||
2793 | bio->bi_bdev = bdev->bd_contains; | ||
2794 | } | ||
2795 | } | ||
2796 | |||
2797 | static void handle_bad_sector(struct bio *bio) | ||
2798 | { | ||
2799 | char b[BDEVNAME_SIZE]; | ||
2800 | |||
2801 | printk(KERN_INFO "attempt to access beyond end of device\n"); | ||
2802 | printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", | ||
2803 | bdevname(bio->bi_bdev, b), | ||
2804 | bio->bi_rw, | ||
2805 | (unsigned long long)bio->bi_sector + bio_sectors(bio), | ||
2806 | (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); | ||
2807 | |||
2808 | set_bit(BIO_EOF, &bio->bi_flags); | ||
2809 | } | ||
2810 | |||
2811 | /** | ||
2812 | * generic_make_request: hand a buffer to its device driver for I/O | ||
2813 | * @bio: The bio describing the location in memory and on the device. | ||
2814 | * | ||
2815 | * generic_make_request() is used to make I/O requests of block | ||
2816 | * devices. It is passed a &struct bio, which describes the I/O that needs | ||
2817 | * to be done. | ||
2818 | * | ||
2819 | * generic_make_request() does not return any status. The | ||
2820 | * success/failure status of the request, along with notification of | ||
2821 | * completion, is delivered asynchronously through the bio->bi_end_io | ||
2822 | * function described (one day) else where. | ||
2823 | * | ||
2824 | * The caller of generic_make_request must make sure that bi_io_vec | ||
2825 | * are set to describe the memory buffer, and that bi_dev and bi_sector are | ||
2826 | * set to describe the device address, and the | ||
2827 | * bi_end_io and optionally bi_private are set to describe how | ||
2828 | * completion notification should be signaled. | ||
2829 | * | ||
2830 | * generic_make_request and the drivers it calls may use bi_next if this | ||
2831 | * bio happens to be merged with someone else, and may change bi_dev and | ||
2832 | * bi_sector for remaps as it sees fit. So the values of these fields | ||
2833 | * should NOT be depended on after the call to generic_make_request. | ||
2834 | */ | ||
2835 | void generic_make_request(struct bio *bio) | ||
2836 | { | ||
2837 | request_queue_t *q; | ||
2838 | sector_t maxsector; | ||
2839 | int ret, nr_sectors = bio_sectors(bio); | ||
2840 | |||
2841 | might_sleep(); | ||
2842 | /* Test device or partition size, when known. */ | ||
2843 | maxsector = bio->bi_bdev->bd_inode->i_size >> 9; | ||
2844 | if (maxsector) { | ||
2845 | sector_t sector = bio->bi_sector; | ||
2846 | |||
2847 | if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { | ||
2848 | /* | ||
2849 | * This may well happen - the kernel calls bread() | ||
2850 | * without checking the size of the device, e.g., when | ||
2851 | * mounting a device. | ||
2852 | */ | ||
2853 | handle_bad_sector(bio); | ||
2854 | goto end_io; | ||
2855 | } | ||
2856 | } | ||
2857 | |||
2858 | /* | ||
2859 | * Resolve the mapping until finished. (drivers are | ||
2860 | * still free to implement/resolve their own stacking | ||
2861 | * by explicitly returning 0) | ||
2862 | * | ||
2863 | * NOTE: we don't repeat the blk_size check for each new device. | ||
2864 | * Stacking drivers are expected to know what they are doing. | ||
2865 | */ | ||
2866 | do { | ||
2867 | char b[BDEVNAME_SIZE]; | ||
2868 | |||
2869 | q = bdev_get_queue(bio->bi_bdev); | ||
2870 | if (!q) { | ||
2871 | printk(KERN_ERR | ||
2872 | "generic_make_request: Trying to access " | ||
2873 | "nonexistent block-device %s (%Lu)\n", | ||
2874 | bdevname(bio->bi_bdev, b), | ||
2875 | (long long) bio->bi_sector); | ||
2876 | end_io: | ||
2877 | bio_endio(bio, bio->bi_size, -EIO); | ||
2878 | break; | ||
2879 | } | ||
2880 | |||
2881 | if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) { | ||
2882 | printk("bio too big device %s (%u > %u)\n", | ||
2883 | bdevname(bio->bi_bdev, b), | ||
2884 | bio_sectors(bio), | ||
2885 | q->max_hw_sectors); | ||
2886 | goto end_io; | ||
2887 | } | ||
2888 | |||
2889 | if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) | ||
2890 | goto end_io; | ||
2891 | |||
2892 | /* | ||
2893 | * If this device has partitions, remap block n | ||
2894 | * of partition p to block n+start(p) of the disk. | ||
2895 | */ | ||
2896 | blk_partition_remap(bio); | ||
2897 | |||
2898 | ret = q->make_request_fn(q, bio); | ||
2899 | } while (ret); | ||
2900 | } | ||
2901 | |||
2902 | EXPORT_SYMBOL(generic_make_request); | ||
2903 | |||
2904 | /** | ||
2905 | * submit_bio: submit a bio to the block device layer for I/O | ||
2906 | * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) | ||
2907 | * @bio: The &struct bio which describes the I/O | ||
2908 | * | ||
2909 | * submit_bio() is very similar in purpose to generic_make_request(), and | ||
2910 | * uses that function to do most of the work. Both are fairly rough | ||
2911 | * interfaces, @bio must be presetup and ready for I/O. | ||
2912 | * | ||
2913 | */ | ||
2914 | void submit_bio(int rw, struct bio *bio) | ||
2915 | { | ||
2916 | int count = bio_sectors(bio); | ||
2917 | |||
2918 | BIO_BUG_ON(!bio->bi_size); | ||
2919 | BIO_BUG_ON(!bio->bi_io_vec); | ||
2920 | bio->bi_rw |= rw; | ||
2921 | if (rw & WRITE) | ||
2922 | mod_page_state(pgpgout, count); | ||
2923 | else | ||
2924 | mod_page_state(pgpgin, count); | ||
2925 | |||
2926 | if (unlikely(block_dump)) { | ||
2927 | char b[BDEVNAME_SIZE]; | ||
2928 | printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", | ||
2929 | current->comm, current->pid, | ||
2930 | (rw & WRITE) ? "WRITE" : "READ", | ||
2931 | (unsigned long long)bio->bi_sector, | ||
2932 | bdevname(bio->bi_bdev,b)); | ||
2933 | } | ||
2934 | |||
2935 | generic_make_request(bio); | ||
2936 | } | ||
2937 | |||
2938 | EXPORT_SYMBOL(submit_bio); | ||
2939 | |||
2940 | static void blk_recalc_rq_segments(struct request *rq) | ||
2941 | { | ||
2942 | struct bio *bio, *prevbio = NULL; | ||
2943 | int nr_phys_segs, nr_hw_segs; | ||
2944 | unsigned int phys_size, hw_size; | ||
2945 | request_queue_t *q = rq->q; | ||
2946 | |||
2947 | if (!rq->bio) | ||
2948 | return; | ||
2949 | |||
2950 | phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0; | ||
2951 | rq_for_each_bio(bio, rq) { | ||
2952 | /* Force bio hw/phys segs to be recalculated. */ | ||
2953 | bio->bi_flags &= ~(1 << BIO_SEG_VALID); | ||
2954 | |||
2955 | nr_phys_segs += bio_phys_segments(q, bio); | ||
2956 | nr_hw_segs += bio_hw_segments(q, bio); | ||
2957 | if (prevbio) { | ||
2958 | int pseg = phys_size + prevbio->bi_size + bio->bi_size; | ||
2959 | int hseg = hw_size + prevbio->bi_size + bio->bi_size; | ||
2960 | |||
2961 | if (blk_phys_contig_segment(q, prevbio, bio) && | ||
2962 | pseg <= q->max_segment_size) { | ||
2963 | nr_phys_segs--; | ||
2964 | phys_size += prevbio->bi_size + bio->bi_size; | ||
2965 | } else | ||
2966 | phys_size = 0; | ||
2967 | |||
2968 | if (blk_hw_contig_segment(q, prevbio, bio) && | ||
2969 | hseg <= q->max_segment_size) { | ||
2970 | nr_hw_segs--; | ||
2971 | hw_size += prevbio->bi_size + bio->bi_size; | ||
2972 | } else | ||
2973 | hw_size = 0; | ||
2974 | } | ||
2975 | prevbio = bio; | ||
2976 | } | ||
2977 | |||
2978 | rq->nr_phys_segments = nr_phys_segs; | ||
2979 | rq->nr_hw_segments = nr_hw_segs; | ||
2980 | } | ||
2981 | |||
2982 | static void blk_recalc_rq_sectors(struct request *rq, int nsect) | ||
2983 | { | ||
2984 | if (blk_fs_request(rq)) { | ||
2985 | rq->hard_sector += nsect; | ||
2986 | rq->hard_nr_sectors -= nsect; | ||
2987 | |||
2988 | /* | ||
2989 | * Move the I/O submission pointers ahead if required. | ||
2990 | */ | ||
2991 | if ((rq->nr_sectors >= rq->hard_nr_sectors) && | ||
2992 | (rq->sector <= rq->hard_sector)) { | ||
2993 | rq->sector = rq->hard_sector; | ||
2994 | rq->nr_sectors = rq->hard_nr_sectors; | ||
2995 | rq->hard_cur_sectors = bio_cur_sectors(rq->bio); | ||
2996 | rq->current_nr_sectors = rq->hard_cur_sectors; | ||
2997 | rq->buffer = bio_data(rq->bio); | ||
2998 | } | ||
2999 | |||
3000 | /* | ||
3001 | * if total number of sectors is less than the first segment | ||
3002 | * size, something has gone terribly wrong | ||
3003 | */ | ||
3004 | if (rq->nr_sectors < rq->current_nr_sectors) { | ||
3005 | printk("blk: request botched\n"); | ||
3006 | rq->nr_sectors = rq->current_nr_sectors; | ||
3007 | } | ||
3008 | } | ||
3009 | } | ||
3010 | |||
3011 | static int __end_that_request_first(struct request *req, int uptodate, | ||
3012 | int nr_bytes) | ||
3013 | { | ||
3014 | int total_bytes, bio_nbytes, error, next_idx = 0; | ||
3015 | struct bio *bio; | ||
3016 | |||
3017 | /* | ||
3018 | * extend uptodate bool to allow < 0 value to be direct io error | ||
3019 | */ | ||
3020 | error = 0; | ||
3021 | if (end_io_error(uptodate)) | ||
3022 | error = !uptodate ? -EIO : uptodate; | ||
3023 | |||
3024 | /* | ||
3025 | * for a REQ_BLOCK_PC request, we want to carry any eventual | ||
3026 | * sense key with us all the way through | ||
3027 | */ | ||
3028 | if (!blk_pc_request(req)) | ||
3029 | req->errors = 0; | ||
3030 | |||
3031 | if (!uptodate) { | ||
3032 | if (blk_fs_request(req) && !(req->flags & REQ_QUIET)) | ||
3033 | printk("end_request: I/O error, dev %s, sector %llu\n", | ||
3034 | req->rq_disk ? req->rq_disk->disk_name : "?", | ||
3035 | (unsigned long long)req->sector); | ||
3036 | } | ||
3037 | |||
3038 | if (blk_fs_request(req) && req->rq_disk) { | ||
3039 | const int rw = rq_data_dir(req); | ||
3040 | |||
3041 | __disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9); | ||
3042 | } | ||
3043 | |||
3044 | total_bytes = bio_nbytes = 0; | ||
3045 | while ((bio = req->bio) != NULL) { | ||
3046 | int nbytes; | ||
3047 | |||
3048 | if (nr_bytes >= bio->bi_size) { | ||
3049 | req->bio = bio->bi_next; | ||
3050 | nbytes = bio->bi_size; | ||
3051 | bio_endio(bio, nbytes, error); | ||
3052 | next_idx = 0; | ||
3053 | bio_nbytes = 0; | ||
3054 | } else { | ||
3055 | int idx = bio->bi_idx + next_idx; | ||
3056 | |||
3057 | if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { | ||
3058 | blk_dump_rq_flags(req, "__end_that"); | ||
3059 | printk("%s: bio idx %d >= vcnt %d\n", | ||
3060 | __FUNCTION__, | ||
3061 | bio->bi_idx, bio->bi_vcnt); | ||
3062 | break; | ||
3063 | } | ||
3064 | |||
3065 | nbytes = bio_iovec_idx(bio, idx)->bv_len; | ||
3066 | BIO_BUG_ON(nbytes > bio->bi_size); | ||
3067 | |||
3068 | /* | ||
3069 | * not a complete bvec done | ||
3070 | */ | ||
3071 | if (unlikely(nbytes > nr_bytes)) { | ||
3072 | bio_nbytes += nr_bytes; | ||
3073 | total_bytes += nr_bytes; | ||
3074 | break; | ||
3075 | } | ||
3076 | |||
3077 | /* | ||
3078 | * advance to the next vector | ||
3079 | */ | ||
3080 | next_idx++; | ||
3081 | bio_nbytes += nbytes; | ||
3082 | } | ||
3083 | |||
3084 | total_bytes += nbytes; | ||
3085 | nr_bytes -= nbytes; | ||
3086 | |||
3087 | if ((bio = req->bio)) { | ||
3088 | /* | ||
3089 | * end more in this run, or just return 'not-done' | ||
3090 | */ | ||
3091 | if (unlikely(nr_bytes <= 0)) | ||
3092 | break; | ||
3093 | } | ||
3094 | } | ||
3095 | |||
3096 | /* | ||
3097 | * completely done | ||
3098 | */ | ||
3099 | if (!req->bio) | ||
3100 | return 0; | ||
3101 | |||
3102 | /* | ||
3103 | * if the request wasn't completed, update state | ||
3104 | */ | ||
3105 | if (bio_nbytes) { | ||
3106 | bio_endio(bio, bio_nbytes, error); | ||
3107 | bio->bi_idx += next_idx; | ||
3108 | bio_iovec(bio)->bv_offset += nr_bytes; | ||
3109 | bio_iovec(bio)->bv_len -= nr_bytes; | ||
3110 | } | ||
3111 | |||
3112 | blk_recalc_rq_sectors(req, total_bytes >> 9); | ||
3113 | blk_recalc_rq_segments(req); | ||
3114 | return 1; | ||
3115 | } | ||
3116 | |||
3117 | /** | ||
3118 | * end_that_request_first - end I/O on a request | ||
3119 | * @req: the request being processed | ||
3120 | * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error | ||
3121 | * @nr_sectors: number of sectors to end I/O on | ||
3122 | * | ||
3123 | * Description: | ||
3124 | * Ends I/O on a number of sectors attached to @req, and sets it up | ||
3125 | * for the next range of segments (if any) in the cluster. | ||
3126 | * | ||
3127 | * Return: | ||
3128 | * 0 - we are done with this request, call end_that_request_last() | ||
3129 | * 1 - still buffers pending for this request | ||
3130 | **/ | ||
3131 | int end_that_request_first(struct request *req, int uptodate, int nr_sectors) | ||
3132 | { | ||
3133 | return __end_that_request_first(req, uptodate, nr_sectors << 9); | ||
3134 | } | ||
3135 | |||
3136 | EXPORT_SYMBOL(end_that_request_first); | ||
3137 | |||
3138 | /** | ||
3139 | * end_that_request_chunk - end I/O on a request | ||
3140 | * @req: the request being processed | ||
3141 | * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error | ||
3142 | * @nr_bytes: number of bytes to complete | ||
3143 | * | ||
3144 | * Description: | ||
3145 | * Ends I/O on a number of bytes attached to @req, and sets it up | ||
3146 | * for the next range of segments (if any). Like end_that_request_first(), | ||
3147 | * but deals with bytes instead of sectors. | ||
3148 | * | ||
3149 | * Return: | ||
3150 | * 0 - we are done with this request, call end_that_request_last() | ||
3151 | * 1 - still buffers pending for this request | ||
3152 | **/ | ||
3153 | int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes) | ||
3154 | { | ||
3155 | return __end_that_request_first(req, uptodate, nr_bytes); | ||
3156 | } | ||
3157 | |||
3158 | EXPORT_SYMBOL(end_that_request_chunk); | ||
3159 | |||
3160 | /* | ||
3161 | * queue lock must be held | ||
3162 | */ | ||
3163 | void end_that_request_last(struct request *req) | ||
3164 | { | ||
3165 | struct gendisk *disk = req->rq_disk; | ||
3166 | |||
3167 | if (unlikely(laptop_mode) && blk_fs_request(req)) | ||
3168 | laptop_io_completion(); | ||
3169 | |||
3170 | if (disk && blk_fs_request(req)) { | ||
3171 | unsigned long duration = jiffies - req->start_time; | ||
3172 | const int rw = rq_data_dir(req); | ||
3173 | |||
3174 | __disk_stat_inc(disk, ios[rw]); | ||
3175 | __disk_stat_add(disk, ticks[rw], duration); | ||
3176 | disk_round_stats(disk); | ||
3177 | disk->in_flight--; | ||
3178 | } | ||
3179 | if (req->end_io) | ||
3180 | req->end_io(req); | ||
3181 | else | ||
3182 | __blk_put_request(req->q, req); | ||
3183 | } | ||
3184 | |||
3185 | EXPORT_SYMBOL(end_that_request_last); | ||
3186 | |||
3187 | void end_request(struct request *req, int uptodate) | ||
3188 | { | ||
3189 | if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) { | ||
3190 | add_disk_randomness(req->rq_disk); | ||
3191 | blkdev_dequeue_request(req); | ||
3192 | end_that_request_last(req); | ||
3193 | } | ||
3194 | } | ||
3195 | |||
3196 | EXPORT_SYMBOL(end_request); | ||
3197 | |||
3198 | void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio) | ||
3199 | { | ||
3200 | /* first three bits are identical in rq->flags and bio->bi_rw */ | ||
3201 | rq->flags |= (bio->bi_rw & 7); | ||
3202 | |||
3203 | rq->nr_phys_segments = bio_phys_segments(q, bio); | ||
3204 | rq->nr_hw_segments = bio_hw_segments(q, bio); | ||
3205 | rq->current_nr_sectors = bio_cur_sectors(bio); | ||
3206 | rq->hard_cur_sectors = rq->current_nr_sectors; | ||
3207 | rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); | ||
3208 | rq->buffer = bio_data(bio); | ||
3209 | |||
3210 | rq->bio = rq->biotail = bio; | ||
3211 | } | ||
3212 | |||
3213 | EXPORT_SYMBOL(blk_rq_bio_prep); | ||
3214 | |||
3215 | int kblockd_schedule_work(struct work_struct *work) | ||
3216 | { | ||
3217 | return queue_work(kblockd_workqueue, work); | ||
3218 | } | ||
3219 | |||
3220 | EXPORT_SYMBOL(kblockd_schedule_work); | ||
3221 | |||
3222 | void kblockd_flush(void) | ||
3223 | { | ||
3224 | flush_workqueue(kblockd_workqueue); | ||
3225 | } | ||
3226 | EXPORT_SYMBOL(kblockd_flush); | ||
3227 | |||
3228 | int __init blk_dev_init(void) | ||
3229 | { | ||
3230 | kblockd_workqueue = create_workqueue("kblockd"); | ||
3231 | if (!kblockd_workqueue) | ||
3232 | panic("Failed to create kblockd\n"); | ||
3233 | |||
3234 | request_cachep = kmem_cache_create("blkdev_requests", | ||
3235 | sizeof(struct request), 0, SLAB_PANIC, NULL, NULL); | ||
3236 | |||
3237 | requestq_cachep = kmem_cache_create("blkdev_queue", | ||
3238 | sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL); | ||
3239 | |||
3240 | iocontext_cachep = kmem_cache_create("blkdev_ioc", | ||
3241 | sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL); | ||
3242 | |||
3243 | blk_max_low_pfn = max_low_pfn; | ||
3244 | blk_max_pfn = max_pfn; | ||
3245 | |||
3246 | return 0; | ||
3247 | } | ||
3248 | |||
3249 | /* | ||
3250 | * IO Context helper functions | ||
3251 | */ | ||
3252 | void put_io_context(struct io_context *ioc) | ||
3253 | { | ||
3254 | if (ioc == NULL) | ||
3255 | return; | ||
3256 | |||
3257 | BUG_ON(atomic_read(&ioc->refcount) == 0); | ||
3258 | |||
3259 | if (atomic_dec_and_test(&ioc->refcount)) { | ||
3260 | if (ioc->aic && ioc->aic->dtor) | ||
3261 | ioc->aic->dtor(ioc->aic); | ||
3262 | if (ioc->cic && ioc->cic->dtor) | ||
3263 | ioc->cic->dtor(ioc->cic); | ||
3264 | |||
3265 | kmem_cache_free(iocontext_cachep, ioc); | ||
3266 | } | ||
3267 | } | ||
3268 | EXPORT_SYMBOL(put_io_context); | ||
3269 | |||
3270 | /* Called by the exitting task */ | ||
3271 | void exit_io_context(void) | ||
3272 | { | ||
3273 | unsigned long flags; | ||
3274 | struct io_context *ioc; | ||
3275 | |||
3276 | local_irq_save(flags); | ||
3277 | task_lock(current); | ||
3278 | ioc = current->io_context; | ||
3279 | current->io_context = NULL; | ||
3280 | ioc->task = NULL; | ||
3281 | task_unlock(current); | ||
3282 | local_irq_restore(flags); | ||
3283 | |||
3284 | if (ioc->aic && ioc->aic->exit) | ||
3285 | ioc->aic->exit(ioc->aic); | ||
3286 | if (ioc->cic && ioc->cic->exit) | ||
3287 | ioc->cic->exit(ioc->cic); | ||
3288 | |||
3289 | put_io_context(ioc); | ||
3290 | } | ||
3291 | |||
3292 | /* | ||
3293 | * If the current task has no IO context then create one and initialise it. | ||
3294 | * Otherwise, return its existing IO context. | ||
3295 | * | ||
3296 | * This returned IO context doesn't have a specifically elevated refcount, | ||
3297 | * but since the current task itself holds a reference, the context can be | ||
3298 | * used in general code, so long as it stays within `current` context. | ||
3299 | */ | ||
3300 | struct io_context *current_io_context(gfp_t gfp_flags) | ||
3301 | { | ||
3302 | struct task_struct *tsk = current; | ||
3303 | struct io_context *ret; | ||
3304 | |||
3305 | ret = tsk->io_context; | ||
3306 | if (likely(ret)) | ||
3307 | return ret; | ||
3308 | |||
3309 | ret = kmem_cache_alloc(iocontext_cachep, gfp_flags); | ||
3310 | if (ret) { | ||
3311 | atomic_set(&ret->refcount, 1); | ||
3312 | ret->task = current; | ||
3313 | ret->set_ioprio = NULL; | ||
3314 | ret->last_waited = jiffies; /* doesn't matter... */ | ||
3315 | ret->nr_batch_requests = 0; /* because this is 0 */ | ||
3316 | ret->aic = NULL; | ||
3317 | ret->cic = NULL; | ||
3318 | tsk->io_context = ret; | ||
3319 | } | ||
3320 | |||
3321 | return ret; | ||
3322 | } | ||
3323 | EXPORT_SYMBOL(current_io_context); | ||
3324 | |||
3325 | /* | ||
3326 | * If the current task has no IO context then create one and initialise it. | ||
3327 | * If it does have a context, take a ref on it. | ||
3328 | * | ||
3329 | * This is always called in the context of the task which submitted the I/O. | ||
3330 | */ | ||
3331 | struct io_context *get_io_context(gfp_t gfp_flags) | ||
3332 | { | ||
3333 | struct io_context *ret; | ||
3334 | ret = current_io_context(gfp_flags); | ||
3335 | if (likely(ret)) | ||
3336 | atomic_inc(&ret->refcount); | ||
3337 | return ret; | ||
3338 | } | ||
3339 | EXPORT_SYMBOL(get_io_context); | ||
3340 | |||
3341 | void copy_io_context(struct io_context **pdst, struct io_context **psrc) | ||
3342 | { | ||
3343 | struct io_context *src = *psrc; | ||
3344 | struct io_context *dst = *pdst; | ||
3345 | |||
3346 | if (src) { | ||
3347 | BUG_ON(atomic_read(&src->refcount) == 0); | ||
3348 | atomic_inc(&src->refcount); | ||
3349 | put_io_context(dst); | ||
3350 | *pdst = src; | ||
3351 | } | ||
3352 | } | ||
3353 | EXPORT_SYMBOL(copy_io_context); | ||
3354 | |||
3355 | void swap_io_context(struct io_context **ioc1, struct io_context **ioc2) | ||
3356 | { | ||
3357 | struct io_context *temp; | ||
3358 | temp = *ioc1; | ||
3359 | *ioc1 = *ioc2; | ||
3360 | *ioc2 = temp; | ||
3361 | } | ||
3362 | EXPORT_SYMBOL(swap_io_context); | ||
3363 | |||
3364 | /* | ||
3365 | * sysfs parts below | ||
3366 | */ | ||
3367 | struct queue_sysfs_entry { | ||
3368 | struct attribute attr; | ||
3369 | ssize_t (*show)(struct request_queue *, char *); | ||
3370 | ssize_t (*store)(struct request_queue *, const char *, size_t); | ||
3371 | }; | ||
3372 | |||
3373 | static ssize_t | ||
3374 | queue_var_show(unsigned int var, char *page) | ||
3375 | { | ||
3376 | return sprintf(page, "%d\n", var); | ||
3377 | } | ||
3378 | |||
3379 | static ssize_t | ||
3380 | queue_var_store(unsigned long *var, const char *page, size_t count) | ||
3381 | { | ||
3382 | char *p = (char *) page; | ||
3383 | |||
3384 | *var = simple_strtoul(p, &p, 10); | ||
3385 | return count; | ||
3386 | } | ||
3387 | |||
3388 | static ssize_t queue_requests_show(struct request_queue *q, char *page) | ||
3389 | { | ||
3390 | return queue_var_show(q->nr_requests, (page)); | ||
3391 | } | ||
3392 | |||
3393 | static ssize_t | ||
3394 | queue_requests_store(struct request_queue *q, const char *page, size_t count) | ||
3395 | { | ||
3396 | struct request_list *rl = &q->rq; | ||
3397 | |||
3398 | int ret = queue_var_store(&q->nr_requests, page, count); | ||
3399 | if (q->nr_requests < BLKDEV_MIN_RQ) | ||
3400 | q->nr_requests = BLKDEV_MIN_RQ; | ||
3401 | blk_queue_congestion_threshold(q); | ||
3402 | |||
3403 | if (rl->count[READ] >= queue_congestion_on_threshold(q)) | ||
3404 | set_queue_congested(q, READ); | ||
3405 | else if (rl->count[READ] < queue_congestion_off_threshold(q)) | ||
3406 | clear_queue_congested(q, READ); | ||
3407 | |||
3408 | if (rl->count[WRITE] >= queue_congestion_on_threshold(q)) | ||
3409 | set_queue_congested(q, WRITE); | ||
3410 | else if (rl->count[WRITE] < queue_congestion_off_threshold(q)) | ||
3411 | clear_queue_congested(q, WRITE); | ||
3412 | |||
3413 | if (rl->count[READ] >= q->nr_requests) { | ||
3414 | blk_set_queue_full(q, READ); | ||
3415 | } else if (rl->count[READ]+1 <= q->nr_requests) { | ||
3416 | blk_clear_queue_full(q, READ); | ||
3417 | wake_up(&rl->wait[READ]); | ||
3418 | } | ||
3419 | |||
3420 | if (rl->count[WRITE] >= q->nr_requests) { | ||
3421 | blk_set_queue_full(q, WRITE); | ||
3422 | } else if (rl->count[WRITE]+1 <= q->nr_requests) { | ||
3423 | blk_clear_queue_full(q, WRITE); | ||
3424 | wake_up(&rl->wait[WRITE]); | ||
3425 | } | ||
3426 | return ret; | ||
3427 | } | ||
3428 | |||
3429 | static ssize_t queue_ra_show(struct request_queue *q, char *page) | ||
3430 | { | ||
3431 | int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10); | ||
3432 | |||
3433 | return queue_var_show(ra_kb, (page)); | ||
3434 | } | ||
3435 | |||
3436 | static ssize_t | ||
3437 | queue_ra_store(struct request_queue *q, const char *page, size_t count) | ||
3438 | { | ||
3439 | unsigned long ra_kb; | ||
3440 | ssize_t ret = queue_var_store(&ra_kb, page, count); | ||
3441 | |||
3442 | spin_lock_irq(q->queue_lock); | ||
3443 | if (ra_kb > (q->max_sectors >> 1)) | ||
3444 | ra_kb = (q->max_sectors >> 1); | ||
3445 | |||
3446 | q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10); | ||
3447 | spin_unlock_irq(q->queue_lock); | ||
3448 | |||
3449 | return ret; | ||
3450 | } | ||
3451 | |||
3452 | static ssize_t queue_max_sectors_show(struct request_queue *q, char *page) | ||
3453 | { | ||
3454 | int max_sectors_kb = q->max_sectors >> 1; | ||
3455 | |||
3456 | return queue_var_show(max_sectors_kb, (page)); | ||
3457 | } | ||
3458 | |||
3459 | static ssize_t | ||
3460 | queue_max_sectors_store(struct request_queue *q, const char *page, size_t count) | ||
3461 | { | ||
3462 | unsigned long max_sectors_kb, | ||
3463 | max_hw_sectors_kb = q->max_hw_sectors >> 1, | ||
3464 | page_kb = 1 << (PAGE_CACHE_SHIFT - 10); | ||
3465 | ssize_t ret = queue_var_store(&max_sectors_kb, page, count); | ||
3466 | int ra_kb; | ||
3467 | |||
3468 | if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb) | ||
3469 | return -EINVAL; | ||
3470 | /* | ||
3471 | * Take the queue lock to update the readahead and max_sectors | ||
3472 | * values synchronously: | ||
3473 | */ | ||
3474 | spin_lock_irq(q->queue_lock); | ||
3475 | /* | ||
3476 | * Trim readahead window as well, if necessary: | ||
3477 | */ | ||
3478 | ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10); | ||
3479 | if (ra_kb > max_sectors_kb) | ||
3480 | q->backing_dev_info.ra_pages = | ||
3481 | max_sectors_kb >> (PAGE_CACHE_SHIFT - 10); | ||
3482 | |||
3483 | q->max_sectors = max_sectors_kb << 1; | ||
3484 | spin_unlock_irq(q->queue_lock); | ||
3485 | |||
3486 | return ret; | ||
3487 | } | ||
3488 | |||
3489 | static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page) | ||
3490 | { | ||
3491 | int max_hw_sectors_kb = q->max_hw_sectors >> 1; | ||
3492 | |||
3493 | return queue_var_show(max_hw_sectors_kb, (page)); | ||
3494 | } | ||
3495 | |||
3496 | |||
3497 | static struct queue_sysfs_entry queue_requests_entry = { | ||
3498 | .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR }, | ||
3499 | .show = queue_requests_show, | ||
3500 | .store = queue_requests_store, | ||
3501 | }; | ||
3502 | |||
3503 | static struct queue_sysfs_entry queue_ra_entry = { | ||
3504 | .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR }, | ||
3505 | .show = queue_ra_show, | ||
3506 | .store = queue_ra_store, | ||
3507 | }; | ||
3508 | |||
3509 | static struct queue_sysfs_entry queue_max_sectors_entry = { | ||
3510 | .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR }, | ||
3511 | .show = queue_max_sectors_show, | ||
3512 | .store = queue_max_sectors_store, | ||
3513 | }; | ||
3514 | |||
3515 | static struct queue_sysfs_entry queue_max_hw_sectors_entry = { | ||
3516 | .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO }, | ||
3517 | .show = queue_max_hw_sectors_show, | ||
3518 | }; | ||
3519 | |||
3520 | static struct queue_sysfs_entry queue_iosched_entry = { | ||
3521 | .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR }, | ||
3522 | .show = elv_iosched_show, | ||
3523 | .store = elv_iosched_store, | ||
3524 | }; | ||
3525 | |||
3526 | static struct attribute *default_attrs[] = { | ||
3527 | &queue_requests_entry.attr, | ||
3528 | &queue_ra_entry.attr, | ||
3529 | &queue_max_hw_sectors_entry.attr, | ||
3530 | &queue_max_sectors_entry.attr, | ||
3531 | &queue_iosched_entry.attr, | ||
3532 | NULL, | ||
3533 | }; | ||
3534 | |||
3535 | #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr) | ||
3536 | |||
3537 | static ssize_t | ||
3538 | queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page) | ||
3539 | { | ||
3540 | struct queue_sysfs_entry *entry = to_queue(attr); | ||
3541 | struct request_queue *q; | ||
3542 | |||
3543 | q = container_of(kobj, struct request_queue, kobj); | ||
3544 | if (!entry->show) | ||
3545 | return -EIO; | ||
3546 | |||
3547 | return entry->show(q, page); | ||
3548 | } | ||
3549 | |||
3550 | static ssize_t | ||
3551 | queue_attr_store(struct kobject *kobj, struct attribute *attr, | ||
3552 | const char *page, size_t length) | ||
3553 | { | ||
3554 | struct queue_sysfs_entry *entry = to_queue(attr); | ||
3555 | struct request_queue *q; | ||
3556 | |||
3557 | q = container_of(kobj, struct request_queue, kobj); | ||
3558 | if (!entry->store) | ||
3559 | return -EIO; | ||
3560 | |||
3561 | return entry->store(q, page, length); | ||
3562 | } | ||
3563 | |||
3564 | static struct sysfs_ops queue_sysfs_ops = { | ||
3565 | .show = queue_attr_show, | ||
3566 | .store = queue_attr_store, | ||
3567 | }; | ||
3568 | |||
3569 | static struct kobj_type queue_ktype = { | ||
3570 | .sysfs_ops = &queue_sysfs_ops, | ||
3571 | .default_attrs = default_attrs, | ||
3572 | }; | ||
3573 | |||
3574 | int blk_register_queue(struct gendisk *disk) | ||
3575 | { | ||
3576 | int ret; | ||
3577 | |||
3578 | request_queue_t *q = disk->queue; | ||
3579 | |||
3580 | if (!q || !q->request_fn) | ||
3581 | return -ENXIO; | ||
3582 | |||
3583 | q->kobj.parent = kobject_get(&disk->kobj); | ||
3584 | if (!q->kobj.parent) | ||
3585 | return -EBUSY; | ||
3586 | |||
3587 | snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue"); | ||
3588 | q->kobj.ktype = &queue_ktype; | ||
3589 | |||
3590 | ret = kobject_register(&q->kobj); | ||
3591 | if (ret < 0) | ||
3592 | return ret; | ||
3593 | |||
3594 | ret = elv_register_queue(q); | ||
3595 | if (ret) { | ||
3596 | kobject_unregister(&q->kobj); | ||
3597 | return ret; | ||
3598 | } | ||
3599 | |||
3600 | return 0; | ||
3601 | } | ||
3602 | |||
3603 | void blk_unregister_queue(struct gendisk *disk) | ||
3604 | { | ||
3605 | request_queue_t *q = disk->queue; | ||
3606 | |||
3607 | if (q && q->request_fn) { | ||
3608 | elv_unregister_queue(q); | ||
3609 | |||
3610 | kobject_unregister(&q->kobj); | ||
3611 | kobject_put(&disk->kobj); | ||
3612 | } | ||
3613 | } | ||
diff --git a/drivers/block/noop-iosched.c b/drivers/block/noop-iosched.c deleted file mode 100644 index e54f006e7e60..000000000000 --- a/drivers/block/noop-iosched.c +++ /dev/null | |||
@@ -1,46 +0,0 @@ | |||
1 | /* | ||
2 | * elevator noop | ||
3 | */ | ||
4 | #include <linux/blkdev.h> | ||
5 | #include <linux/elevator.h> | ||
6 | #include <linux/bio.h> | ||
7 | #include <linux/module.h> | ||
8 | #include <linux/init.h> | ||
9 | |||
10 | static void elevator_noop_add_request(request_queue_t *q, struct request *rq) | ||
11 | { | ||
12 | rq->flags |= REQ_NOMERGE; | ||
13 | elv_dispatch_add_tail(q, rq); | ||
14 | } | ||
15 | |||
16 | static int elevator_noop_dispatch(request_queue_t *q, int force) | ||
17 | { | ||
18 | return 0; | ||
19 | } | ||
20 | |||
21 | static struct elevator_type elevator_noop = { | ||
22 | .ops = { | ||
23 | .elevator_dispatch_fn = elevator_noop_dispatch, | ||
24 | .elevator_add_req_fn = elevator_noop_add_request, | ||
25 | }, | ||
26 | .elevator_name = "noop", | ||
27 | .elevator_owner = THIS_MODULE, | ||
28 | }; | ||
29 | |||
30 | static int __init noop_init(void) | ||
31 | { | ||
32 | return elv_register(&elevator_noop); | ||
33 | } | ||
34 | |||
35 | static void __exit noop_exit(void) | ||
36 | { | ||
37 | elv_unregister(&elevator_noop); | ||
38 | } | ||
39 | |||
40 | module_init(noop_init); | ||
41 | module_exit(noop_exit); | ||
42 | |||
43 | |||
44 | MODULE_AUTHOR("Jens Axboe"); | ||
45 | MODULE_LICENSE("GPL"); | ||
46 | MODULE_DESCRIPTION("No-op IO scheduler"); | ||
diff --git a/drivers/block/scsi_ioctl.c b/drivers/block/scsi_ioctl.c deleted file mode 100644 index 382dea7b224c..000000000000 --- a/drivers/block/scsi_ioctl.c +++ /dev/null | |||
@@ -1,589 +0,0 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2001 Jens Axboe <axboe@suse.de> | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License version 2 as | ||
6 | * published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, | ||
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public Licens | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- | ||
17 | * | ||
18 | */ | ||
19 | #include <linux/kernel.h> | ||
20 | #include <linux/errno.h> | ||
21 | #include <linux/string.h> | ||
22 | #include <linux/module.h> | ||
23 | #include <linux/blkdev.h> | ||
24 | #include <linux/completion.h> | ||
25 | #include <linux/cdrom.h> | ||
26 | #include <linux/slab.h> | ||
27 | #include <linux/times.h> | ||
28 | #include <asm/uaccess.h> | ||
29 | |||
30 | #include <scsi/scsi.h> | ||
31 | #include <scsi/scsi_ioctl.h> | ||
32 | #include <scsi/scsi_cmnd.h> | ||
33 | |||
34 | /* Command group 3 is reserved and should never be used. */ | ||
35 | const unsigned char scsi_command_size[8] = | ||
36 | { | ||
37 | 6, 10, 10, 12, | ||
38 | 16, 12, 10, 10 | ||
39 | }; | ||
40 | |||
41 | EXPORT_SYMBOL(scsi_command_size); | ||
42 | |||
43 | #define BLK_DEFAULT_TIMEOUT (60 * HZ) | ||
44 | |||
45 | #include <scsi/sg.h> | ||
46 | |||
47 | static int sg_get_version(int __user *p) | ||
48 | { | ||
49 | static int sg_version_num = 30527; | ||
50 | return put_user(sg_version_num, p); | ||
51 | } | ||
52 | |||
53 | static int scsi_get_idlun(request_queue_t *q, int __user *p) | ||
54 | { | ||
55 | return put_user(0, p); | ||
56 | } | ||
57 | |||
58 | static int scsi_get_bus(request_queue_t *q, int __user *p) | ||
59 | { | ||
60 | return put_user(0, p); | ||
61 | } | ||
62 | |||
63 | static int sg_get_timeout(request_queue_t *q) | ||
64 | { | ||
65 | return q->sg_timeout / (HZ / USER_HZ); | ||
66 | } | ||
67 | |||
68 | static int sg_set_timeout(request_queue_t *q, int __user *p) | ||
69 | { | ||
70 | int timeout, err = get_user(timeout, p); | ||
71 | |||
72 | if (!err) | ||
73 | q->sg_timeout = timeout * (HZ / USER_HZ); | ||
74 | |||
75 | return err; | ||
76 | } | ||
77 | |||
78 | static int sg_get_reserved_size(request_queue_t *q, int __user *p) | ||
79 | { | ||
80 | return put_user(q->sg_reserved_size, p); | ||
81 | } | ||
82 | |||
83 | static int sg_set_reserved_size(request_queue_t *q, int __user *p) | ||
84 | { | ||
85 | int size, err = get_user(size, p); | ||
86 | |||
87 | if (err) | ||
88 | return err; | ||
89 | |||
90 | if (size < 0) | ||
91 | return -EINVAL; | ||
92 | if (size > (q->max_sectors << 9)) | ||
93 | size = q->max_sectors << 9; | ||
94 | |||
95 | q->sg_reserved_size = size; | ||
96 | return 0; | ||
97 | } | ||
98 | |||
99 | /* | ||
100 | * will always return that we are ATAPI even for a real SCSI drive, I'm not | ||
101 | * so sure this is worth doing anything about (why would you care??) | ||
102 | */ | ||
103 | static int sg_emulated_host(request_queue_t *q, int __user *p) | ||
104 | { | ||
105 | return put_user(1, p); | ||
106 | } | ||
107 | |||
108 | #define CMD_READ_SAFE 0x01 | ||
109 | #define CMD_WRITE_SAFE 0x02 | ||
110 | #define CMD_WARNED 0x04 | ||
111 | #define safe_for_read(cmd) [cmd] = CMD_READ_SAFE | ||
112 | #define safe_for_write(cmd) [cmd] = CMD_WRITE_SAFE | ||
113 | |||
114 | static int verify_command(struct file *file, unsigned char *cmd) | ||
115 | { | ||
116 | static unsigned char cmd_type[256] = { | ||
117 | |||
118 | /* Basic read-only commands */ | ||
119 | safe_for_read(TEST_UNIT_READY), | ||
120 | safe_for_read(REQUEST_SENSE), | ||
121 | safe_for_read(READ_6), | ||
122 | safe_for_read(READ_10), | ||
123 | safe_for_read(READ_12), | ||
124 | safe_for_read(READ_16), | ||
125 | safe_for_read(READ_BUFFER), | ||
126 | safe_for_read(READ_DEFECT_DATA), | ||
127 | safe_for_read(READ_LONG), | ||
128 | safe_for_read(INQUIRY), | ||
129 | safe_for_read(MODE_SENSE), | ||
130 | safe_for_read(MODE_SENSE_10), | ||
131 | safe_for_read(LOG_SENSE), | ||
132 | safe_for_read(START_STOP), | ||
133 | safe_for_read(GPCMD_VERIFY_10), | ||
134 | safe_for_read(VERIFY_16), | ||
135 | |||
136 | /* Audio CD commands */ | ||
137 | safe_for_read(GPCMD_PLAY_CD), | ||
138 | safe_for_read(GPCMD_PLAY_AUDIO_10), | ||
139 | safe_for_read(GPCMD_PLAY_AUDIO_MSF), | ||
140 | safe_for_read(GPCMD_PLAY_AUDIO_TI), | ||
141 | safe_for_read(GPCMD_PAUSE_RESUME), | ||
142 | |||
143 | /* CD/DVD data reading */ | ||
144 | safe_for_read(GPCMD_READ_BUFFER_CAPACITY), | ||
145 | safe_for_read(GPCMD_READ_CD), | ||
146 | safe_for_read(GPCMD_READ_CD_MSF), | ||
147 | safe_for_read(GPCMD_READ_DISC_INFO), | ||
148 | safe_for_read(GPCMD_READ_CDVD_CAPACITY), | ||
149 | safe_for_read(GPCMD_READ_DVD_STRUCTURE), | ||
150 | safe_for_read(GPCMD_READ_HEADER), | ||
151 | safe_for_read(GPCMD_READ_TRACK_RZONE_INFO), | ||
152 | safe_for_read(GPCMD_READ_SUBCHANNEL), | ||
153 | safe_for_read(GPCMD_READ_TOC_PMA_ATIP), | ||
154 | safe_for_read(GPCMD_REPORT_KEY), | ||
155 | safe_for_read(GPCMD_SCAN), | ||
156 | safe_for_read(GPCMD_GET_CONFIGURATION), | ||
157 | safe_for_read(GPCMD_READ_FORMAT_CAPACITIES), | ||
158 | safe_for_read(GPCMD_GET_EVENT_STATUS_NOTIFICATION), | ||
159 | safe_for_read(GPCMD_GET_PERFORMANCE), | ||
160 | safe_for_read(GPCMD_SEEK), | ||
161 | safe_for_read(GPCMD_STOP_PLAY_SCAN), | ||
162 | |||
163 | /* Basic writing commands */ | ||
164 | safe_for_write(WRITE_6), | ||
165 | safe_for_write(WRITE_10), | ||
166 | safe_for_write(WRITE_VERIFY), | ||
167 | safe_for_write(WRITE_12), | ||
168 | safe_for_write(WRITE_VERIFY_12), | ||
169 | safe_for_write(WRITE_16), | ||
170 | safe_for_write(WRITE_LONG), | ||
171 | safe_for_write(WRITE_LONG_2), | ||
172 | safe_for_write(ERASE), | ||
173 | safe_for_write(GPCMD_MODE_SELECT_10), | ||
174 | safe_for_write(MODE_SELECT), | ||
175 | safe_for_write(LOG_SELECT), | ||
176 | safe_for_write(GPCMD_BLANK), | ||
177 | safe_for_write(GPCMD_CLOSE_TRACK), | ||
178 | safe_for_write(GPCMD_FLUSH_CACHE), | ||
179 | safe_for_write(GPCMD_FORMAT_UNIT), | ||
180 | safe_for_write(GPCMD_REPAIR_RZONE_TRACK), | ||
181 | safe_for_write(GPCMD_RESERVE_RZONE_TRACK), | ||
182 | safe_for_write(GPCMD_SEND_DVD_STRUCTURE), | ||
183 | safe_for_write(GPCMD_SEND_EVENT), | ||
184 | safe_for_write(GPCMD_SEND_KEY), | ||
185 | safe_for_write(GPCMD_SEND_OPC), | ||
186 | safe_for_write(GPCMD_SEND_CUE_SHEET), | ||
187 | safe_for_write(GPCMD_SET_SPEED), | ||
188 | safe_for_write(GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL), | ||
189 | safe_for_write(GPCMD_LOAD_UNLOAD), | ||
190 | safe_for_write(GPCMD_SET_STREAMING), | ||
191 | }; | ||
192 | unsigned char type = cmd_type[cmd[0]]; | ||
193 | |||
194 | /* Anybody who can open the device can do a read-safe command */ | ||
195 | if (type & CMD_READ_SAFE) | ||
196 | return 0; | ||
197 | |||
198 | /* Write-safe commands just require a writable open.. */ | ||
199 | if (type & CMD_WRITE_SAFE) { | ||
200 | if (file->f_mode & FMODE_WRITE) | ||
201 | return 0; | ||
202 | } | ||
203 | |||
204 | /* And root can do any command.. */ | ||
205 | if (capable(CAP_SYS_RAWIO)) | ||
206 | return 0; | ||
207 | |||
208 | if (!type) { | ||
209 | cmd_type[cmd[0]] = CMD_WARNED; | ||
210 | printk(KERN_WARNING "scsi: unknown opcode 0x%02x\n", cmd[0]); | ||
211 | } | ||
212 | |||
213 | /* Otherwise fail it with an "Operation not permitted" */ | ||
214 | return -EPERM; | ||
215 | } | ||
216 | |||
217 | static int sg_io(struct file *file, request_queue_t *q, | ||
218 | struct gendisk *bd_disk, struct sg_io_hdr *hdr) | ||
219 | { | ||
220 | unsigned long start_time; | ||
221 | int writing = 0, ret = 0; | ||
222 | struct request *rq; | ||
223 | struct bio *bio; | ||
224 | char sense[SCSI_SENSE_BUFFERSIZE]; | ||
225 | unsigned char cmd[BLK_MAX_CDB]; | ||
226 | |||
227 | if (hdr->interface_id != 'S') | ||
228 | return -EINVAL; | ||
229 | if (hdr->cmd_len > BLK_MAX_CDB) | ||
230 | return -EINVAL; | ||
231 | if (copy_from_user(cmd, hdr->cmdp, hdr->cmd_len)) | ||
232 | return -EFAULT; | ||
233 | if (verify_command(file, cmd)) | ||
234 | return -EPERM; | ||
235 | |||
236 | if (hdr->dxfer_len > (q->max_sectors << 9)) | ||
237 | return -EIO; | ||
238 | |||
239 | if (hdr->dxfer_len) | ||
240 | switch (hdr->dxfer_direction) { | ||
241 | default: | ||
242 | return -EINVAL; | ||
243 | case SG_DXFER_TO_FROM_DEV: | ||
244 | case SG_DXFER_TO_DEV: | ||
245 | writing = 1; | ||
246 | break; | ||
247 | case SG_DXFER_FROM_DEV: | ||
248 | break; | ||
249 | } | ||
250 | |||
251 | rq = blk_get_request(q, writing ? WRITE : READ, GFP_KERNEL); | ||
252 | if (!rq) | ||
253 | return -ENOMEM; | ||
254 | |||
255 | if (hdr->iovec_count) { | ||
256 | const int size = sizeof(struct sg_iovec) * hdr->iovec_count; | ||
257 | struct sg_iovec *iov; | ||
258 | |||
259 | iov = kmalloc(size, GFP_KERNEL); | ||
260 | if (!iov) { | ||
261 | ret = -ENOMEM; | ||
262 | goto out; | ||
263 | } | ||
264 | |||
265 | if (copy_from_user(iov, hdr->dxferp, size)) { | ||
266 | kfree(iov); | ||
267 | ret = -EFAULT; | ||
268 | goto out; | ||
269 | } | ||
270 | |||
271 | ret = blk_rq_map_user_iov(q, rq, iov, hdr->iovec_count); | ||
272 | kfree(iov); | ||
273 | } else if (hdr->dxfer_len) | ||
274 | ret = blk_rq_map_user(q, rq, hdr->dxferp, hdr->dxfer_len); | ||
275 | |||
276 | if (ret) | ||
277 | goto out; | ||
278 | |||
279 | /* | ||
280 | * fill in request structure | ||
281 | */ | ||
282 | rq->cmd_len = hdr->cmd_len; | ||
283 | memcpy(rq->cmd, cmd, hdr->cmd_len); | ||
284 | if (sizeof(rq->cmd) != hdr->cmd_len) | ||
285 | memset(rq->cmd + hdr->cmd_len, 0, sizeof(rq->cmd) - hdr->cmd_len); | ||
286 | |||
287 | memset(sense, 0, sizeof(sense)); | ||
288 | rq->sense = sense; | ||
289 | rq->sense_len = 0; | ||
290 | |||
291 | rq->flags |= REQ_BLOCK_PC; | ||
292 | bio = rq->bio; | ||
293 | |||
294 | /* | ||
295 | * bounce this after holding a reference to the original bio, it's | ||
296 | * needed for proper unmapping | ||
297 | */ | ||
298 | if (rq->bio) | ||
299 | blk_queue_bounce(q, &rq->bio); | ||
300 | |||
301 | rq->timeout = (hdr->timeout * HZ) / 1000; | ||
302 | if (!rq->timeout) | ||
303 | rq->timeout = q->sg_timeout; | ||
304 | if (!rq->timeout) | ||
305 | rq->timeout = BLK_DEFAULT_TIMEOUT; | ||
306 | |||
307 | start_time = jiffies; | ||
308 | |||
309 | /* ignore return value. All information is passed back to caller | ||
310 | * (if he doesn't check that is his problem). | ||
311 | * N.B. a non-zero SCSI status is _not_ necessarily an error. | ||
312 | */ | ||
313 | blk_execute_rq(q, bd_disk, rq, 0); | ||
314 | |||
315 | /* write to all output members */ | ||
316 | hdr->status = 0xff & rq->errors; | ||
317 | hdr->masked_status = status_byte(rq->errors); | ||
318 | hdr->msg_status = msg_byte(rq->errors); | ||
319 | hdr->host_status = host_byte(rq->errors); | ||
320 | hdr->driver_status = driver_byte(rq->errors); | ||
321 | hdr->info = 0; | ||
322 | if (hdr->masked_status || hdr->host_status || hdr->driver_status) | ||
323 | hdr->info |= SG_INFO_CHECK; | ||
324 | hdr->resid = rq->data_len; | ||
325 | hdr->duration = ((jiffies - start_time) * 1000) / HZ; | ||
326 | hdr->sb_len_wr = 0; | ||
327 | |||
328 | if (rq->sense_len && hdr->sbp) { | ||
329 | int len = min((unsigned int) hdr->mx_sb_len, rq->sense_len); | ||
330 | |||
331 | if (!copy_to_user(hdr->sbp, rq->sense, len)) | ||
332 | hdr->sb_len_wr = len; | ||
333 | } | ||
334 | |||
335 | if (blk_rq_unmap_user(bio, hdr->dxfer_len)) | ||
336 | ret = -EFAULT; | ||
337 | |||
338 | /* may not have succeeded, but output values written to control | ||
339 | * structure (struct sg_io_hdr). */ | ||
340 | out: | ||
341 | blk_put_request(rq); | ||
342 | return ret; | ||
343 | } | ||
344 | |||
345 | #define OMAX_SB_LEN 16 /* For backward compatibility */ | ||
346 | |||
347 | static int sg_scsi_ioctl(struct file *file, request_queue_t *q, | ||
348 | struct gendisk *bd_disk, Scsi_Ioctl_Command __user *sic) | ||
349 | { | ||
350 | struct request *rq; | ||
351 | int err; | ||
352 | unsigned int in_len, out_len, bytes, opcode, cmdlen; | ||
353 | char *buffer = NULL, sense[SCSI_SENSE_BUFFERSIZE]; | ||
354 | |||
355 | /* | ||
356 | * get in an out lengths, verify they don't exceed a page worth of data | ||
357 | */ | ||
358 | if (get_user(in_len, &sic->inlen)) | ||
359 | return -EFAULT; | ||
360 | if (get_user(out_len, &sic->outlen)) | ||
361 | return -EFAULT; | ||
362 | if (in_len > PAGE_SIZE || out_len > PAGE_SIZE) | ||
363 | return -EINVAL; | ||
364 | if (get_user(opcode, sic->data)) | ||
365 | return -EFAULT; | ||
366 | |||
367 | bytes = max(in_len, out_len); | ||
368 | if (bytes) { | ||
369 | buffer = kmalloc(bytes, q->bounce_gfp | GFP_USER| __GFP_NOWARN); | ||
370 | if (!buffer) | ||
371 | return -ENOMEM; | ||
372 | |||
373 | memset(buffer, 0, bytes); | ||
374 | } | ||
375 | |||
376 | rq = blk_get_request(q, in_len ? WRITE : READ, __GFP_WAIT); | ||
377 | |||
378 | cmdlen = COMMAND_SIZE(opcode); | ||
379 | |||
380 | /* | ||
381 | * get command and data to send to device, if any | ||
382 | */ | ||
383 | err = -EFAULT; | ||
384 | rq->cmd_len = cmdlen; | ||
385 | if (copy_from_user(rq->cmd, sic->data, cmdlen)) | ||
386 | goto error; | ||
387 | |||
388 | if (copy_from_user(buffer, sic->data + cmdlen, in_len)) | ||
389 | goto error; | ||
390 | |||
391 | err = verify_command(file, rq->cmd); | ||
392 | if (err) | ||
393 | goto error; | ||
394 | |||
395 | switch (opcode) { | ||
396 | case SEND_DIAGNOSTIC: | ||
397 | case FORMAT_UNIT: | ||
398 | rq->timeout = FORMAT_UNIT_TIMEOUT; | ||
399 | break; | ||
400 | case START_STOP: | ||
401 | rq->timeout = START_STOP_TIMEOUT; | ||
402 | break; | ||
403 | case MOVE_MEDIUM: | ||
404 | rq->timeout = MOVE_MEDIUM_TIMEOUT; | ||
405 | break; | ||
406 | case READ_ELEMENT_STATUS: | ||
407 | rq->timeout = READ_ELEMENT_STATUS_TIMEOUT; | ||
408 | break; | ||
409 | case READ_DEFECT_DATA: | ||
410 | rq->timeout = READ_DEFECT_DATA_TIMEOUT; | ||
411 | break; | ||
412 | default: | ||
413 | rq->timeout = BLK_DEFAULT_TIMEOUT; | ||
414 | break; | ||
415 | } | ||
416 | |||
417 | memset(sense, 0, sizeof(sense)); | ||
418 | rq->sense = sense; | ||
419 | rq->sense_len = 0; | ||
420 | |||
421 | rq->data = buffer; | ||
422 | rq->data_len = bytes; | ||
423 | rq->flags |= REQ_BLOCK_PC; | ||
424 | |||
425 | blk_execute_rq(q, bd_disk, rq, 0); | ||
426 | err = rq->errors & 0xff; /* only 8 bit SCSI status */ | ||
427 | if (err) { | ||
428 | if (rq->sense_len && rq->sense) { | ||
429 | bytes = (OMAX_SB_LEN > rq->sense_len) ? | ||
430 | rq->sense_len : OMAX_SB_LEN; | ||
431 | if (copy_to_user(sic->data, rq->sense, bytes)) | ||
432 | err = -EFAULT; | ||
433 | } | ||
434 | } else { | ||
435 | if (copy_to_user(sic->data, buffer, out_len)) | ||
436 | err = -EFAULT; | ||
437 | } | ||
438 | |||
439 | error: | ||
440 | kfree(buffer); | ||
441 | blk_put_request(rq); | ||
442 | return err; | ||
443 | } | ||
444 | |||
445 | int scsi_cmd_ioctl(struct file *file, struct gendisk *bd_disk, unsigned int cmd, void __user *arg) | ||
446 | { | ||
447 | request_queue_t *q; | ||
448 | struct request *rq; | ||
449 | int close = 0, err; | ||
450 | |||
451 | q = bd_disk->queue; | ||
452 | if (!q) | ||
453 | return -ENXIO; | ||
454 | |||
455 | if (blk_get_queue(q)) | ||
456 | return -ENXIO; | ||
457 | |||
458 | switch (cmd) { | ||
459 | /* | ||
460 | * new sgv3 interface | ||
461 | */ | ||
462 | case SG_GET_VERSION_NUM: | ||
463 | err = sg_get_version(arg); | ||
464 | break; | ||
465 | case SCSI_IOCTL_GET_IDLUN: | ||
466 | err = scsi_get_idlun(q, arg); | ||
467 | break; | ||
468 | case SCSI_IOCTL_GET_BUS_NUMBER: | ||
469 | err = scsi_get_bus(q, arg); | ||
470 | break; | ||
471 | case SG_SET_TIMEOUT: | ||
472 | err = sg_set_timeout(q, arg); | ||
473 | break; | ||
474 | case SG_GET_TIMEOUT: | ||
475 | err = sg_get_timeout(q); | ||
476 | break; | ||
477 | case SG_GET_RESERVED_SIZE: | ||
478 | err = sg_get_reserved_size(q, arg); | ||
479 | break; | ||
480 | case SG_SET_RESERVED_SIZE: | ||
481 | err = sg_set_reserved_size(q, arg); | ||
482 | break; | ||
483 | case SG_EMULATED_HOST: | ||
484 | err = sg_emulated_host(q, arg); | ||
485 | break; | ||
486 | case SG_IO: { | ||
487 | struct sg_io_hdr hdr; | ||
488 | |||
489 | err = -EFAULT; | ||
490 | if (copy_from_user(&hdr, arg, sizeof(hdr))) | ||
491 | break; | ||
492 | err = sg_io(file, q, bd_disk, &hdr); | ||
493 | if (err == -EFAULT) | ||
494 | break; | ||
495 | |||
496 | if (copy_to_user(arg, &hdr, sizeof(hdr))) | ||
497 | err = -EFAULT; | ||
498 | break; | ||
499 | } | ||
500 | case CDROM_SEND_PACKET: { | ||
501 | struct cdrom_generic_command cgc; | ||
502 | struct sg_io_hdr hdr; | ||
503 | |||
504 | err = -EFAULT; | ||
505 | if (copy_from_user(&cgc, arg, sizeof(cgc))) | ||
506 | break; | ||
507 | cgc.timeout = clock_t_to_jiffies(cgc.timeout); | ||
508 | memset(&hdr, 0, sizeof(hdr)); | ||
509 | hdr.interface_id = 'S'; | ||
510 | hdr.cmd_len = sizeof(cgc.cmd); | ||
511 | hdr.dxfer_len = cgc.buflen; | ||
512 | err = 0; | ||
513 | switch (cgc.data_direction) { | ||
514 | case CGC_DATA_UNKNOWN: | ||
515 | hdr.dxfer_direction = SG_DXFER_UNKNOWN; | ||
516 | break; | ||
517 | case CGC_DATA_WRITE: | ||
518 | hdr.dxfer_direction = SG_DXFER_TO_DEV; | ||
519 | break; | ||
520 | case CGC_DATA_READ: | ||
521 | hdr.dxfer_direction = SG_DXFER_FROM_DEV; | ||
522 | break; | ||
523 | case CGC_DATA_NONE: | ||
524 | hdr.dxfer_direction = SG_DXFER_NONE; | ||
525 | break; | ||
526 | default: | ||
527 | err = -EINVAL; | ||
528 | } | ||
529 | if (err) | ||
530 | break; | ||
531 | |||
532 | hdr.dxferp = cgc.buffer; | ||
533 | hdr.sbp = cgc.sense; | ||
534 | if (hdr.sbp) | ||
535 | hdr.mx_sb_len = sizeof(struct request_sense); | ||
536 | hdr.timeout = cgc.timeout; | ||
537 | hdr.cmdp = ((struct cdrom_generic_command __user*) arg)->cmd; | ||
538 | hdr.cmd_len = sizeof(cgc.cmd); | ||
539 | |||
540 | err = sg_io(file, q, bd_disk, &hdr); | ||
541 | if (err == -EFAULT) | ||
542 | break; | ||
543 | |||
544 | if (hdr.status) | ||
545 | err = -EIO; | ||
546 | |||
547 | cgc.stat = err; | ||
548 | cgc.buflen = hdr.resid; | ||
549 | if (copy_to_user(arg, &cgc, sizeof(cgc))) | ||
550 | err = -EFAULT; | ||
551 | |||
552 | break; | ||
553 | } | ||
554 | |||
555 | /* | ||
556 | * old junk scsi send command ioctl | ||
557 | */ | ||
558 | case SCSI_IOCTL_SEND_COMMAND: | ||
559 | printk(KERN_WARNING "program %s is using a deprecated SCSI ioctl, please convert it to SG_IO\n", current->comm); | ||
560 | err = -EINVAL; | ||
561 | if (!arg) | ||
562 | break; | ||
563 | |||
564 | err = sg_scsi_ioctl(file, q, bd_disk, arg); | ||
565 | break; | ||
566 | case CDROMCLOSETRAY: | ||
567 | close = 1; | ||
568 | case CDROMEJECT: | ||
569 | rq = blk_get_request(q, WRITE, __GFP_WAIT); | ||
570 | rq->flags |= REQ_BLOCK_PC; | ||
571 | rq->data = NULL; | ||
572 | rq->data_len = 0; | ||
573 | rq->timeout = BLK_DEFAULT_TIMEOUT; | ||
574 | memset(rq->cmd, 0, sizeof(rq->cmd)); | ||
575 | rq->cmd[0] = GPCMD_START_STOP_UNIT; | ||
576 | rq->cmd[4] = 0x02 + (close != 0); | ||
577 | rq->cmd_len = 6; | ||
578 | err = blk_execute_rq(q, bd_disk, rq, 0); | ||
579 | blk_put_request(rq); | ||
580 | break; | ||
581 | default: | ||
582 | err = -ENOTTY; | ||
583 | } | ||
584 | |||
585 | blk_put_queue(q); | ||
586 | return err; | ||
587 | } | ||
588 | |||
589 | EXPORT_SYMBOL(scsi_cmd_ioctl); | ||