aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@g5.osdl.org>2006-07-09 18:50:06 -0400
committerLinus Torvalds <torvalds@g5.osdl.org>2006-07-09 18:50:06 -0400
commitc87fed1546bd00b42ee75f26c6b45393e4bf7559 (patch)
tree2ef383dcd1cb569e1b0da9c26c7e868f114bfd7b /drivers
parent84e74f6b770efe7c9beb604118695aa311b969f5 (diff)
parent70f05366b71c51c35c25c0b76b4318fbc26c975a (diff)
Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6
* 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6: (23 commits) [PATCH] 8139too deadlock fix [netdrvr] 3c59x: snip changelog from source code e1000: increase version to 7.1.9-k2 e1000: add ich8lan device ID's e1000: allow user to disable ich8 lock loss workaround e1000: integrate ich8 support into driver e1000: add ich8lan core functions e1000: disable ERT e1000: check return value of _get_speed_and_duplex e1000: M88 PHY workaround e1000: fix adapter led blinking inconsistency e1000: disable CRC stripping workaround e1000: force register write flushes to circumvent broken platforms e1000: rework module param code with uninitialized values e1000: recycle skb e1000: change printk into DPRINTK e1000: add smart power down code e1000: small performance tweak by removing double code e1000: fix CONFIG_PM blocks e1000: Make PHY powerup/down a function ...
Diffstat (limited to 'drivers')
-rw-r--r--drivers/net/3c59x.c166
-rw-r--r--drivers/net/8139too.c5
-rw-r--r--drivers/net/e1000/e1000.h10
-rw-r--r--drivers/net/e1000/e1000_ethtool.c141
-rw-r--r--drivers/net/e1000/e1000_hw.c1772
-rw-r--r--drivers/net/e1000/e1000_hw.h398
-rw-r--r--drivers/net/e1000/e1000_main.c378
-rw-r--r--drivers/net/e1000/e1000_osdep.h13
-rw-r--r--drivers/net/e1000/e1000_param.c199
9 files changed, 2523 insertions, 559 deletions
diff --git a/drivers/net/3c59x.c b/drivers/net/3c59x.c
index 2819de79442c..80e8ca013e44 100644
--- a/drivers/net/3c59x.c
+++ b/drivers/net/3c59x.c
@@ -17,172 +17,6 @@
17 410 Severn Ave., Suite 210 17 410 Severn Ave., Suite 210
18 Annapolis MD 21403 18 Annapolis MD 21403
19 19
20 Linux Kernel Additions:
21
22 0.99H+lk0.9 - David S. Miller - softnet, PCI DMA updates
23 0.99H+lk1.0 - Jeff Garzik <jgarzik@pobox.com>
24 Remove compatibility defines for kernel versions < 2.2.x.
25 Update for new 2.3.x module interface
26 LK1.1.2 (March 19, 2000)
27 * New PCI interface (jgarzik)
28
29 LK1.1.3 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
30 - Merged with 3c575_cb.c
31 - Don't set RxComplete in boomerang interrupt enable reg
32 - spinlock in vortex_timer to protect mdio functions
33 - disable local interrupts around call to vortex_interrupt in
34 vortex_tx_timeout() (So vortex_interrupt can use spin_lock())
35 - Select window 3 in vortex_timer()'s write to Wn3_MAC_Ctrl
36 - In vortex_start_xmit(), move the lock to _after_ we've altered
37 vp->cur_tx and vp->tx_full. This defeats the race between
38 vortex_start_xmit() and vortex_interrupt which was identified
39 by Bogdan Costescu.
40 - Merged back support for six new cards from various sources
41 - Set vortex_have_pci if pci_module_init returns zero (fixes cardbus
42 insertion oops)
43 - Tell it that 3c905C has NWAY for 100bT autoneg
44 - Fix handling of SetStatusEnd in 'Too much work..' code, as
45 per 2.3.99's 3c575_cb (Dave Hinds).
46 - Split ISR into two for vortex & boomerang
47 - Fix MOD_INC/DEC races
48 - Handle resource allocation failures.
49 - Fix 3CCFE575CT LED polarity
50 - Make tx_interrupt_mitigation the default
51
52 LK1.1.4 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
53 - Add extra TxReset to vortex_up() to fix 575_cb hotplug initialisation probs.
54 - Put vortex_info_tbl into __devinitdata
55 - In the vortex_error StatsFull HACK, disable stats in vp->intr_enable as well
56 as in the hardware.
57 - Increased the loop counter in issue_and_wait from 2,000 to 4,000.
58
59 LK1.1.5 28 April 2000, andrewm
60 - Added powerpc defines (John Daniel <jdaniel@etresoft.com> said these work...)
61 - Some extra diagnostics
62 - In vortex_error(), reset the Tx on maxCollisions. Otherwise most
63 chips usually get a Tx timeout.
64 - Added extra_reset module parm
65 - Replaced some inline timer manip with mod_timer
66 (Franois romieu <Francois.Romieu@nic.fr>)
67 - In vortex_up(), don't make Wn3_config initialisation dependent upon has_nway
68 (this came across from 3c575_cb).
69
70 LK1.1.6 06 Jun 2000, andrewm
71 - Backed out the PPC defines.
72 - Use del_timer_sync(), mod_timer().
73 - Fix wrapped ulong comparison in boomerang_rx()
74 - Add IS_TORNADO, use it to suppress 3c905C checksum error msg
75 (Donald Becker, I Lee Hetherington <ilh@sls.lcs.mit.edu>)
76 - Replace union wn3_config with BFINS/BFEXT manipulation for
77 sparc64 (Pete Zaitcev, Peter Jones)
78 - In vortex_error, do_tx_reset and vortex_tx_timeout(Vortex):
79 do a netif_wake_queue() to better recover from errors. (Anders Pedersen,
80 Donald Becker)
81 - Print a warning on out-of-memory (rate limited to 1 per 10 secs)
82 - Added two more Cardbus 575 NICs: 5b57 and 6564 (Paul Wagland)
83
84 LK1.1.7 2 Jul 2000 andrewm
85 - Better handling of shared IRQs
86 - Reset the transmitter on a Tx reclaim error
87 - Fixed crash under OOM during vortex_open() (Mark Hemment)
88 - Fix Rx cessation problem during OOM (help from Mark Hemment)
89 - The spinlocks around the mdio access were blocking interrupts for 300uS.
90 Fix all this to use spin_lock_bh() within mdio_read/write
91 - Only write to TxFreeThreshold if it's a boomerang - other NICs don't
92 have one.
93 - Added 802.3x MAC-layer flow control support
94
95 LK1.1.8 13 Aug 2000 andrewm
96 - Ignore request_region() return value - already reserved if Cardbus.
97 - Merged some additional Cardbus flags from Don's 0.99Qk
98 - Some fixes for 3c556 (Fred Maciel)
99 - Fix for EISA initialisation (Jan Rekorajski)
100 - Renamed MII_XCVR_PWR and EEPROM_230 to align with 3c575_cb and D. Becker's drivers
101 - Fixed MII_XCVR_PWR for 3CCFE575CT
102 - Added INVERT_LED_PWR, used it.
103 - Backed out the extra_reset stuff
104
105 LK1.1.9 12 Sep 2000 andrewm
106 - Backed out the tx_reset_resume flags. It was a no-op.
107 - In vortex_error, don't reset the Tx on txReclaim errors
108 - In vortex_error, don't reset the Tx on maxCollisions errors.
109 Hence backed out all the DownListPtr logic here.
110 - In vortex_error, give Tornado cards a partial TxReset on
111 maxCollisions (David Hinds). Defined MAX_COLLISION_RESET for this.
112 - Redid some driver flags and device names based on pcmcia_cs-3.1.20.
113 - Fixed a bug where, if vp->tx_full is set when the interface
114 is downed, it remains set when the interface is upped. Bad
115 things happen.
116
117 LK1.1.10 17 Sep 2000 andrewm
118 - Added EEPROM_8BIT for 3c555 (Fred Maciel)
119 - Added experimental support for the 3c556B Laptop Hurricane (Louis Gerbarg)
120 - Add HAS_NWAY to "3c900 Cyclone 10Mbps TPO"
121
122 LK1.1.11 13 Nov 2000 andrewm
123 - Dump MOD_INC/DEC_USE_COUNT, use SET_MODULE_OWNER
124
125 LK1.1.12 1 Jan 2001 andrewm (2.4.0-pre1)
126 - Call pci_enable_device before we request our IRQ (Tobias Ringstrom)
127 - Add 3c590 PCI latency timer hack to vortex_probe1 (from 0.99Ra)
128 - Added extended issue_and_wait for the 3c905CX.
129 - Look for an MII on PHY index 24 first (3c905CX oddity).
130 - Add HAS_NWAY to 3cSOHO100-TX (Brett Frankenberger)
131 - Don't free skbs we don't own on oom path in vortex_open().
132
133 LK1.1.13 27 Jan 2001
134 - Added explicit `medialock' flag so we can truly
135 lock the media type down with `options'.
136 - "check ioremap return and some tidbits" (Arnaldo Carvalho de Melo <acme@conectiva.com.br>)
137 - Added and used EEPROM_NORESET for 3c556B PM resumes.
138 - Fixed leakage of vp->rx_ring.
139 - Break out separate HAS_HWCKSM device capability flag.
140 - Kill vp->tx_full (ANK)
141 - Merge zerocopy fragment handling (ANK?)
142
143 LK1.1.14 15 Feb 2001
144 - Enable WOL. Can be turned on with `enable_wol' module option.
145 - EISA and PCI initialisation fixes (jgarzik, Manfred Spraul)
146 - If a device's internalconfig register reports it has NWAY,
147 use it, even if autoselect is enabled.
148
149 LK1.1.15 6 June 2001 akpm
150 - Prevent double counting of received bytes (Lars Christensen)
151 - Add ethtool support (jgarzik)
152 - Add module parm descriptions (Andrzej M. Krzysztofowicz)
153 - Implemented alloc_etherdev() API
154 - Special-case the 'Tx error 82' message.
155
156 LK1.1.16 18 July 2001 akpm
157 - Make NETIF_F_SG dependent upon nr_free_highpages(), not on CONFIG_HIGHMEM
158 - Lessen verbosity of bootup messages
159 - Fix WOL - use new PM API functions.
160 - Use netif_running() instead of vp->open in suspend/resume.
161 - Don't reset the interface logic on open/close/rmmod. It upsets
162 autonegotiation, and hence DHCP (from 0.99T).
163 - Back out EEPROM_NORESET flag because of the above (we do it for all
164 NICs).
165 - Correct 3c982 identification string
166 - Rename wait_for_completion() to issue_and_wait() to avoid completion.h
167 clash.
168
169 LK1.1.17 18Dec01 akpm
170 - PCI ID 9805 is a Python-T, not a dual-port Cyclone. Apparently.
171 And it has NWAY.
172 - Mask our advertised modes (vp->advertising) with our capabilities
173 (MII reg5) when deciding which duplex mode to use.
174 - Add `global_options' as default for options[]. Ditto global_enable_wol,
175 global_full_duplex.
176
177 LK1.1.18 01Jul02 akpm
178 - Fix for undocumented transceiver power-up bit on some 3c566B's
179 (Donald Becker, Rahul Karnik)
180
181 - See http://www.zip.com.au/~akpm/linux/#3c59x-2.3 for more details.
182 - Also see Documentation/networking/vortex.txt
183
184 LK1.1.19 10Nov02 Marc Zyngier <maz@wild-wind.fr.eu.org>
185 - EISA sysfs integration.
186*/ 20*/
187 21
188/* 22/*
diff --git a/drivers/net/8139too.c b/drivers/net/8139too.c
index cd9718512d1c..e4f4eaff7679 100644
--- a/drivers/net/8139too.c
+++ b/drivers/net/8139too.c
@@ -1709,6 +1709,7 @@ static int rtl8139_start_xmit (struct sk_buff *skb, struct net_device *dev)
1709 void __iomem *ioaddr = tp->mmio_addr; 1709 void __iomem *ioaddr = tp->mmio_addr;
1710 unsigned int entry; 1710 unsigned int entry;
1711 unsigned int len = skb->len; 1711 unsigned int len = skb->len;
1712 unsigned long flags;
1712 1713
1713 /* Calculate the next Tx descriptor entry. */ 1714 /* Calculate the next Tx descriptor entry. */
1714 entry = tp->cur_tx % NUM_TX_DESC; 1715 entry = tp->cur_tx % NUM_TX_DESC;
@@ -1725,7 +1726,7 @@ static int rtl8139_start_xmit (struct sk_buff *skb, struct net_device *dev)
1725 return 0; 1726 return 0;
1726 } 1727 }
1727 1728
1728 spin_lock_irq(&tp->lock); 1729 spin_lock_irqsave(&tp->lock, flags);
1729 RTL_W32_F (TxStatus0 + (entry * sizeof (u32)), 1730 RTL_W32_F (TxStatus0 + (entry * sizeof (u32)),
1730 tp->tx_flag | max(len, (unsigned int)ETH_ZLEN)); 1731 tp->tx_flag | max(len, (unsigned int)ETH_ZLEN));
1731 1732
@@ -1736,7 +1737,7 @@ static int rtl8139_start_xmit (struct sk_buff *skb, struct net_device *dev)
1736 1737
1737 if ((tp->cur_tx - NUM_TX_DESC) == tp->dirty_tx) 1738 if ((tp->cur_tx - NUM_TX_DESC) == tp->dirty_tx)
1738 netif_stop_queue (dev); 1739 netif_stop_queue (dev);
1739 spin_unlock_irq(&tp->lock); 1740 spin_unlock_irqrestore(&tp->lock, flags);
1740 1741
1741 if (netif_msg_tx_queued(tp)) 1742 if (netif_msg_tx_queued(tp))
1742 printk (KERN_DEBUG "%s: Queued Tx packet size %u to slot %d.\n", 1743 printk (KERN_DEBUG "%s: Queued Tx packet size %u to slot %d.\n",
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h
index 3042d33e2d4d..f411bbb44f86 100644
--- a/drivers/net/e1000/e1000.h
+++ b/drivers/net/e1000/e1000.h
@@ -68,7 +68,6 @@
68#ifdef NETIF_F_TSO 68#ifdef NETIF_F_TSO
69#include <net/checksum.h> 69#include <net/checksum.h>
70#endif 70#endif
71#include <linux/workqueue.h>
72#include <linux/mii.h> 71#include <linux/mii.h>
73#include <linux/ethtool.h> 72#include <linux/ethtool.h>
74#include <linux/if_vlan.h> 73#include <linux/if_vlan.h>
@@ -143,6 +142,7 @@ struct e1000_adapter;
143 142
144#define AUTO_ALL_MODES 0 143#define AUTO_ALL_MODES 0
145#define E1000_EEPROM_82544_APM 0x0004 144#define E1000_EEPROM_82544_APM 0x0004
145#define E1000_EEPROM_ICH8_APME 0x0004
146#define E1000_EEPROM_APME 0x0400 146#define E1000_EEPROM_APME 0x0400
147 147
148#ifndef E1000_MASTER_SLAVE 148#ifndef E1000_MASTER_SLAVE
@@ -254,7 +254,6 @@ struct e1000_adapter {
254 spinlock_t tx_queue_lock; 254 spinlock_t tx_queue_lock;
255#endif 255#endif
256 atomic_t irq_sem; 256 atomic_t irq_sem;
257 struct work_struct watchdog_task;
258 struct work_struct reset_task; 257 struct work_struct reset_task;
259 uint8_t fc_autoneg; 258 uint8_t fc_autoneg;
260 259
@@ -339,8 +338,14 @@ struct e1000_adapter {
339#ifdef NETIF_F_TSO 338#ifdef NETIF_F_TSO
340 boolean_t tso_force; 339 boolean_t tso_force;
341#endif 340#endif
341 boolean_t smart_power_down; /* phy smart power down */
342 unsigned long flags;
342}; 343};
343 344
345enum e1000_state_t {
346 __E1000_DRIVER_TESTING,
347 __E1000_RESETTING,
348};
344 349
345/* e1000_main.c */ 350/* e1000_main.c */
346extern char e1000_driver_name[]; 351extern char e1000_driver_name[];
@@ -348,6 +353,7 @@ extern char e1000_driver_version[];
348int e1000_up(struct e1000_adapter *adapter); 353int e1000_up(struct e1000_adapter *adapter);
349void e1000_down(struct e1000_adapter *adapter); 354void e1000_down(struct e1000_adapter *adapter);
350void e1000_reset(struct e1000_adapter *adapter); 355void e1000_reset(struct e1000_adapter *adapter);
356void e1000_reinit_locked(struct e1000_adapter *adapter);
351int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 357int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
352void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 358void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
353int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 359int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c
index d19664891768..88a82ba88f57 100644
--- a/drivers/net/e1000/e1000_ethtool.c
+++ b/drivers/net/e1000/e1000_ethtool.c
@@ -109,7 +109,8 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
109 SUPPORTED_1000baseT_Full| 109 SUPPORTED_1000baseT_Full|
110 SUPPORTED_Autoneg | 110 SUPPORTED_Autoneg |
111 SUPPORTED_TP); 111 SUPPORTED_TP);
112 112 if (hw->phy_type == e1000_phy_ife)
113 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
113 ecmd->advertising = ADVERTISED_TP; 114 ecmd->advertising = ADVERTISED_TP;
114 115
115 if (hw->autoneg == 1) { 116 if (hw->autoneg == 1) {
@@ -203,11 +204,9 @@ e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
203 204
204 /* reset the link */ 205 /* reset the link */
205 206
206 if (netif_running(adapter->netdev)) { 207 if (netif_running(adapter->netdev))
207 e1000_down(adapter); 208 e1000_reinit_locked(adapter);
208 e1000_reset(adapter); 209 else
209 e1000_up(adapter);
210 } else
211 e1000_reset(adapter); 210 e1000_reset(adapter);
212 211
213 return 0; 212 return 0;
@@ -254,10 +253,9 @@ e1000_set_pauseparam(struct net_device *netdev,
254 hw->original_fc = hw->fc; 253 hw->original_fc = hw->fc;
255 254
256 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 255 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
257 if (netif_running(adapter->netdev)) { 256 if (netif_running(adapter->netdev))
258 e1000_down(adapter); 257 e1000_reinit_locked(adapter);
259 e1000_up(adapter); 258 else
260 } else
261 e1000_reset(adapter); 259 e1000_reset(adapter);
262 } else 260 } else
263 return ((hw->media_type == e1000_media_type_fiber) ? 261 return ((hw->media_type == e1000_media_type_fiber) ?
@@ -279,10 +277,9 @@ e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
279 struct e1000_adapter *adapter = netdev_priv(netdev); 277 struct e1000_adapter *adapter = netdev_priv(netdev);
280 adapter->rx_csum = data; 278 adapter->rx_csum = data;
281 279
282 if (netif_running(netdev)) { 280 if (netif_running(netdev))
283 e1000_down(adapter); 281 e1000_reinit_locked(adapter);
284 e1000_up(adapter); 282 else
285 } else
286 e1000_reset(adapter); 283 e1000_reset(adapter);
287 return 0; 284 return 0;
288} 285}
@@ -577,6 +574,7 @@ e1000_get_drvinfo(struct net_device *netdev,
577 case e1000_82572: 574 case e1000_82572:
578 case e1000_82573: 575 case e1000_82573:
579 case e1000_80003es2lan: 576 case e1000_80003es2lan:
577 case e1000_ich8lan:
580 sprintf(firmware_version, "%d.%d-%d", 578 sprintf(firmware_version, "%d.%d-%d",
581 (eeprom_data & 0xF000) >> 12, 579 (eeprom_data & 0xF000) >> 12,
582 (eeprom_data & 0x0FF0) >> 4, 580 (eeprom_data & 0x0FF0) >> 4,
@@ -631,6 +629,9 @@ e1000_set_ringparam(struct net_device *netdev,
631 tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; 629 tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
632 rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; 630 rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
633 631
632 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
633 msleep(1);
634
634 if (netif_running(adapter->netdev)) 635 if (netif_running(adapter->netdev))
635 e1000_down(adapter); 636 e1000_down(adapter);
636 637
@@ -691,9 +692,11 @@ e1000_set_ringparam(struct net_device *netdev,
691 adapter->rx_ring = rx_new; 692 adapter->rx_ring = rx_new;
692 adapter->tx_ring = tx_new; 693 adapter->tx_ring = tx_new;
693 if ((err = e1000_up(adapter))) 694 if ((err = e1000_up(adapter)))
694 return err; 695 goto err_setup;
695 } 696 }
696 697
698 clear_bit(__E1000_RESETTING, &adapter->flags);
699
697 return 0; 700 return 0;
698err_setup_tx: 701err_setup_tx:
699 e1000_free_all_rx_resources(adapter); 702 e1000_free_all_rx_resources(adapter);
@@ -701,6 +704,8 @@ err_setup_rx:
701 adapter->rx_ring = rx_old; 704 adapter->rx_ring = rx_old;
702 adapter->tx_ring = tx_old; 705 adapter->tx_ring = tx_old;
703 e1000_up(adapter); 706 e1000_up(adapter);
707err_setup:
708 clear_bit(__E1000_RESETTING, &adapter->flags);
704 return err; 709 return err;
705} 710}
706 711
@@ -754,6 +759,7 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
754 toggle = 0x7FFFF3FF; 759 toggle = 0x7FFFF3FF;
755 break; 760 break;
756 case e1000_82573: 761 case e1000_82573:
762 case e1000_ich8lan:
757 toggle = 0x7FFFF033; 763 toggle = 0x7FFFF033;
758 break; 764 break;
759 default: 765 default:
@@ -773,11 +779,12 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
773 } 779 }
774 /* restore previous status */ 780 /* restore previous status */
775 E1000_WRITE_REG(&adapter->hw, STATUS, before); 781 E1000_WRITE_REG(&adapter->hw, STATUS, before);
776 782 if (adapter->hw.mac_type != e1000_ich8lan) {
777 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 783 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
778 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); 784 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
779 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); 785 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); 786 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
787 }
781 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); 788 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
782 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 789 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
783 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); 790 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
@@ -790,20 +797,22 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
790 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); 797 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
791 798
792 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); 799 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
793 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); 800 before = (adapter->hw.mac_type == e1000_ich8lan ?
801 0x06C3B33E : 0x06DFB3FE);
802 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
794 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); 803 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
795 804
796 if (adapter->hw.mac_type >= e1000_82543) { 805 if (adapter->hw.mac_type >= e1000_82543) {
797 806
798 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); 807 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
799 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 808 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
800 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); 809 if (adapter->hw.mac_type != e1000_ich8lan)
810 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
801 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 811 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
802 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); 812 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
803 813 value = (adapter->hw.mac_type == e1000_ich8lan ?
804 for (i = 0; i < E1000_RAR_ENTRIES; i++) { 814 E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
805 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, 815 for (i = 0; i < value; i++) {
806 0xFFFFFFFF);
807 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, 816 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
808 0xFFFFFFFF); 817 0xFFFFFFFF);
809 } 818 }
@@ -817,7 +826,9 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
817 826
818 } 827 }
819 828
820 for (i = 0; i < E1000_MC_TBL_SIZE; i++) 829 value = (adapter->hw.mac_type == e1000_ich8lan ?
830 E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
831 for (i = 0; i < value; i++)
821 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); 832 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
822 833
823 *data = 0; 834 *data = 0;
@@ -889,6 +900,8 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
889 /* Test each interrupt */ 900 /* Test each interrupt */
890 for (; i < 10; i++) { 901 for (; i < 10; i++) {
891 902
903 if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
904 continue;
892 /* Interrupt to test */ 905 /* Interrupt to test */
893 mask = 1 << i; 906 mask = 1 << i;
894 907
@@ -1246,18 +1259,33 @@ e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1246 } else if (adapter->hw.phy_type == e1000_phy_gg82563) { 1259 } else if (adapter->hw.phy_type == e1000_phy_gg82563) {
1247 e1000_write_phy_reg(&adapter->hw, 1260 e1000_write_phy_reg(&adapter->hw,
1248 GG82563_PHY_KMRN_MODE_CTRL, 1261 GG82563_PHY_KMRN_MODE_CTRL,
1249 0x1CE); 1262 0x1CC);
1250 } 1263 }
1251 /* force 1000, set loopback */
1252 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1253 1264
1254 /* Now set up the MAC to the same speed/duplex as the PHY. */
1255 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); 1265 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1256 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1266
1257 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1267 if (adapter->hw.phy_type == e1000_phy_ife) {
1258 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1268 /* force 100, set loopback */
1259 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1269 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1260 E1000_CTRL_FD); /* Force Duplex to FULL */ 1270
1271 /* Now set up the MAC to the same speed/duplex as the PHY. */
1272 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1273 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1274 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1275 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1276 E1000_CTRL_FD); /* Force Duplex to FULL */
1277 } else {
1278 /* force 1000, set loopback */
1279 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1280
1281 /* Now set up the MAC to the same speed/duplex as the PHY. */
1282 ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1283 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1284 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1285 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1286 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1287 E1000_CTRL_FD); /* Force Duplex to FULL */
1288 }
1261 1289
1262 if (adapter->hw.media_type == e1000_media_type_copper && 1290 if (adapter->hw.media_type == e1000_media_type_copper &&
1263 adapter->hw.phy_type == e1000_phy_m88) { 1291 adapter->hw.phy_type == e1000_phy_m88) {
@@ -1317,6 +1345,7 @@ e1000_set_phy_loopback(struct e1000_adapter *adapter)
1317 case e1000_82572: 1345 case e1000_82572:
1318 case e1000_82573: 1346 case e1000_82573:
1319 case e1000_80003es2lan: 1347 case e1000_80003es2lan:
1348 case e1000_ich8lan:
1320 return e1000_integrated_phy_loopback(adapter); 1349 return e1000_integrated_phy_loopback(adapter);
1321 break; 1350 break;
1322 1351
@@ -1568,6 +1597,7 @@ e1000_diag_test(struct net_device *netdev,
1568 struct e1000_adapter *adapter = netdev_priv(netdev); 1597 struct e1000_adapter *adapter = netdev_priv(netdev);
1569 boolean_t if_running = netif_running(netdev); 1598 boolean_t if_running = netif_running(netdev);
1570 1599
1600 set_bit(__E1000_DRIVER_TESTING, &adapter->flags);
1571 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1601 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1572 /* Offline tests */ 1602 /* Offline tests */
1573 1603
@@ -1582,7 +1612,8 @@ e1000_diag_test(struct net_device *netdev,
1582 eth_test->flags |= ETH_TEST_FL_FAILED; 1612 eth_test->flags |= ETH_TEST_FL_FAILED;
1583 1613
1584 if (if_running) 1614 if (if_running)
1585 e1000_down(adapter); 1615 /* indicate we're in test mode */
1616 dev_close(netdev);
1586 else 1617 else
1587 e1000_reset(adapter); 1618 e1000_reset(adapter);
1588 1619
@@ -1607,8 +1638,9 @@ e1000_diag_test(struct net_device *netdev,
1607 adapter->hw.autoneg = autoneg; 1638 adapter->hw.autoneg = autoneg;
1608 1639
1609 e1000_reset(adapter); 1640 e1000_reset(adapter);
1641 clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
1610 if (if_running) 1642 if (if_running)
1611 e1000_up(adapter); 1643 dev_open(netdev);
1612 } else { 1644 } else {
1613 /* Online tests */ 1645 /* Online tests */
1614 if (e1000_link_test(adapter, &data[4])) 1646 if (e1000_link_test(adapter, &data[4]))
@@ -1619,6 +1651,8 @@ e1000_diag_test(struct net_device *netdev,
1619 data[1] = 0; 1651 data[1] = 0;
1620 data[2] = 0; 1652 data[2] = 0;
1621 data[3] = 0; 1653 data[3] = 0;
1654
1655 clear_bit(__E1000_DRIVER_TESTING, &adapter->flags);
1622 } 1656 }
1623 msleep_interruptible(4 * 1000); 1657 msleep_interruptible(4 * 1000);
1624} 1658}
@@ -1778,21 +1812,18 @@ e1000_phys_id(struct net_device *netdev, uint32_t data)
1778 mod_timer(&adapter->blink_timer, jiffies); 1812 mod_timer(&adapter->blink_timer, jiffies);
1779 msleep_interruptible(data * 1000); 1813 msleep_interruptible(data * 1000);
1780 del_timer_sync(&adapter->blink_timer); 1814 del_timer_sync(&adapter->blink_timer);
1781 } else if (adapter->hw.mac_type < e1000_82573) { 1815 } else if (adapter->hw.phy_type == e1000_phy_ife) {
1782 E1000_WRITE_REG(&adapter->hw, LEDCTL, 1816 if (!adapter->blink_timer.function) {
1783 (E1000_LEDCTL_LED2_BLINK_RATE | 1817 init_timer(&adapter->blink_timer);
1784 E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK | 1818 adapter->blink_timer.function = e1000_led_blink_callback;
1785 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | 1819 adapter->blink_timer.data = (unsigned long) adapter;
1786 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) | 1820 }
1787 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT))); 1821 mod_timer(&adapter->blink_timer, jiffies);
1788 msleep_interruptible(data * 1000); 1822 msleep_interruptible(data * 1000);
1823 del_timer_sync(&adapter->blink_timer);
1824 e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1789 } else { 1825 } else {
1790 E1000_WRITE_REG(&adapter->hw, LEDCTL, 1826 e1000_blink_led_start(&adapter->hw);
1791 (E1000_LEDCTL_LED2_BLINK_RATE |
1792 E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1793 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1794 (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1795 (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1796 msleep_interruptible(data * 1000); 1827 msleep_interruptible(data * 1000);
1797 } 1828 }
1798 1829
@@ -1807,10 +1838,8 @@ static int
1807e1000_nway_reset(struct net_device *netdev) 1838e1000_nway_reset(struct net_device *netdev)
1808{ 1839{
1809 struct e1000_adapter *adapter = netdev_priv(netdev); 1840 struct e1000_adapter *adapter = netdev_priv(netdev);
1810 if (netif_running(netdev)) { 1841 if (netif_running(netdev))
1811 e1000_down(adapter); 1842 e1000_reinit_locked(adapter);
1812 e1000_up(adapter);
1813 }
1814 return 0; 1843 return 0;
1815} 1844}
1816 1845
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c
index 3959039b16ec..583518ae49ce 100644
--- a/drivers/net/e1000/e1000_hw.c
+++ b/drivers/net/e1000/e1000_hw.c
@@ -101,7 +101,8 @@ static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
101 101
102#define E1000_WRITE_REG_IO(a, reg, val) \ 102#define E1000_WRITE_REG_IO(a, reg, val) \
103 e1000_write_reg_io((a), E1000_##reg, val) 103 e1000_write_reg_io((a), E1000_##reg, val)
104static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw); 104static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
105 uint16_t duplex);
105static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw); 106static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
106 107
107/* IGP cable length table */ 108/* IGP cable length table */
@@ -156,6 +157,14 @@ e1000_set_phy_type(struct e1000_hw *hw)
156 hw->phy_type = e1000_phy_igp; 157 hw->phy_type = e1000_phy_igp;
157 break; 158 break;
158 } 159 }
160 case IGP03E1000_E_PHY_ID:
161 hw->phy_type = e1000_phy_igp_3;
162 break;
163 case IFE_E_PHY_ID:
164 case IFE_PLUS_E_PHY_ID:
165 case IFE_C_E_PHY_ID:
166 hw->phy_type = e1000_phy_ife;
167 break;
159 case GG82563_E_PHY_ID: 168 case GG82563_E_PHY_ID:
160 if (hw->mac_type == e1000_80003es2lan) { 169 if (hw->mac_type == e1000_80003es2lan) {
161 hw->phy_type = e1000_phy_gg82563; 170 hw->phy_type = e1000_phy_gg82563;
@@ -332,6 +341,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
332 break; 341 break;
333 case E1000_DEV_ID_82541EI: 342 case E1000_DEV_ID_82541EI:
334 case E1000_DEV_ID_82541EI_MOBILE: 343 case E1000_DEV_ID_82541EI_MOBILE:
344 case E1000_DEV_ID_82541ER_LOM:
335 hw->mac_type = e1000_82541; 345 hw->mac_type = e1000_82541;
336 break; 346 break;
337 case E1000_DEV_ID_82541ER: 347 case E1000_DEV_ID_82541ER:
@@ -341,6 +351,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
341 hw->mac_type = e1000_82541_rev_2; 351 hw->mac_type = e1000_82541_rev_2;
342 break; 352 break;
343 case E1000_DEV_ID_82547EI: 353 case E1000_DEV_ID_82547EI:
354 case E1000_DEV_ID_82547EI_MOBILE:
344 hw->mac_type = e1000_82547; 355 hw->mac_type = e1000_82547;
345 break; 356 break;
346 case E1000_DEV_ID_82547GI: 357 case E1000_DEV_ID_82547GI:
@@ -354,6 +365,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
354 case E1000_DEV_ID_82572EI_COPPER: 365 case E1000_DEV_ID_82572EI_COPPER:
355 case E1000_DEV_ID_82572EI_FIBER: 366 case E1000_DEV_ID_82572EI_FIBER:
356 case E1000_DEV_ID_82572EI_SERDES: 367 case E1000_DEV_ID_82572EI_SERDES:
368 case E1000_DEV_ID_82572EI:
357 hw->mac_type = e1000_82572; 369 hw->mac_type = e1000_82572;
358 break; 370 break;
359 case E1000_DEV_ID_82573E: 371 case E1000_DEV_ID_82573E:
@@ -361,16 +373,29 @@ e1000_set_mac_type(struct e1000_hw *hw)
361 case E1000_DEV_ID_82573L: 373 case E1000_DEV_ID_82573L:
362 hw->mac_type = e1000_82573; 374 hw->mac_type = e1000_82573;
363 break; 375 break;
376 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
377 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
364 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: 378 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
365 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: 379 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
366 hw->mac_type = e1000_80003es2lan; 380 hw->mac_type = e1000_80003es2lan;
367 break; 381 break;
382 case E1000_DEV_ID_ICH8_IGP_M_AMT:
383 case E1000_DEV_ID_ICH8_IGP_AMT:
384 case E1000_DEV_ID_ICH8_IGP_C:
385 case E1000_DEV_ID_ICH8_IFE:
386 case E1000_DEV_ID_ICH8_IGP_M:
387 hw->mac_type = e1000_ich8lan;
388 break;
368 default: 389 default:
369 /* Should never have loaded on this device */ 390 /* Should never have loaded on this device */
370 return -E1000_ERR_MAC_TYPE; 391 return -E1000_ERR_MAC_TYPE;
371 } 392 }
372 393
373 switch(hw->mac_type) { 394 switch(hw->mac_type) {
395 case e1000_ich8lan:
396 hw->swfwhw_semaphore_present = TRUE;
397 hw->asf_firmware_present = TRUE;
398 break;
374 case e1000_80003es2lan: 399 case e1000_80003es2lan:
375 hw->swfw_sync_present = TRUE; 400 hw->swfw_sync_present = TRUE;
376 /* fall through */ 401 /* fall through */
@@ -423,6 +448,7 @@ e1000_set_media_type(struct e1000_hw *hw)
423 case e1000_82542_rev2_1: 448 case e1000_82542_rev2_1:
424 hw->media_type = e1000_media_type_fiber; 449 hw->media_type = e1000_media_type_fiber;
425 break; 450 break;
451 case e1000_ich8lan:
426 case e1000_82573: 452 case e1000_82573:
427 /* The STATUS_TBIMODE bit is reserved or reused for the this 453 /* The STATUS_TBIMODE bit is reserved or reused for the this
428 * device. 454 * device.
@@ -527,6 +553,14 @@ e1000_reset_hw(struct e1000_hw *hw)
527 } while(timeout); 553 } while(timeout);
528 } 554 }
529 555
556 /* Workaround for ICH8 bit corruption issue in FIFO memory */
557 if (hw->mac_type == e1000_ich8lan) {
558 /* Set Tx and Rx buffer allocation to 8k apiece. */
559 E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
560 /* Set Packet Buffer Size to 16k. */
561 E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
562 }
563
530 /* Issue a global reset to the MAC. This will reset the chip's 564 /* Issue a global reset to the MAC. This will reset the chip's
531 * transmit, receive, DMA, and link units. It will not effect 565 * transmit, receive, DMA, and link units. It will not effect
532 * the current PCI configuration. The global reset bit is self- 566 * the current PCI configuration. The global reset bit is self-
@@ -550,6 +584,20 @@ e1000_reset_hw(struct e1000_hw *hw)
550 /* Reset is performed on a shadow of the control register */ 584 /* Reset is performed on a shadow of the control register */
551 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); 585 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
552 break; 586 break;
587 case e1000_ich8lan:
588 if (!hw->phy_reset_disable &&
589 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
590 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
591 * at the same time to make sure the interface between
592 * MAC and the external PHY is reset.
593 */
594 ctrl |= E1000_CTRL_PHY_RST;
595 }
596
597 e1000_get_software_flag(hw);
598 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
599 msec_delay(5);
600 break;
553 default: 601 default:
554 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); 602 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
555 break; 603 break;
@@ -591,6 +639,7 @@ e1000_reset_hw(struct e1000_hw *hw)
591 /* fall through */ 639 /* fall through */
592 case e1000_82571: 640 case e1000_82571:
593 case e1000_82572: 641 case e1000_82572:
642 case e1000_ich8lan:
594 case e1000_80003es2lan: 643 case e1000_80003es2lan:
595 ret_val = e1000_get_auto_rd_done(hw); 644 ret_val = e1000_get_auto_rd_done(hw);
596 if(ret_val) 645 if(ret_val)
@@ -633,6 +682,12 @@ e1000_reset_hw(struct e1000_hw *hw)
633 e1000_pci_set_mwi(hw); 682 e1000_pci_set_mwi(hw);
634 } 683 }
635 684
685 if (hw->mac_type == e1000_ich8lan) {
686 uint32_t kab = E1000_READ_REG(hw, KABGTXD);
687 kab |= E1000_KABGTXD_BGSQLBIAS;
688 E1000_WRITE_REG(hw, KABGTXD, kab);
689 }
690
636 return E1000_SUCCESS; 691 return E1000_SUCCESS;
637} 692}
638 693
@@ -675,9 +730,12 @@ e1000_init_hw(struct e1000_hw *hw)
675 730
676 /* Disabling VLAN filtering. */ 731 /* Disabling VLAN filtering. */
677 DEBUGOUT("Initializing the IEEE VLAN\n"); 732 DEBUGOUT("Initializing the IEEE VLAN\n");
678 if (hw->mac_type < e1000_82545_rev_3) 733 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
679 E1000_WRITE_REG(hw, VET, 0); 734 if (hw->mac_type != e1000_ich8lan) {
680 e1000_clear_vfta(hw); 735 if (hw->mac_type < e1000_82545_rev_3)
736 E1000_WRITE_REG(hw, VET, 0);
737 e1000_clear_vfta(hw);
738 }
681 739
682 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ 740 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
683 if(hw->mac_type == e1000_82542_rev2_0) { 741 if(hw->mac_type == e1000_82542_rev2_0) {
@@ -705,8 +763,14 @@ e1000_init_hw(struct e1000_hw *hw)
705 /* Zero out the Multicast HASH table */ 763 /* Zero out the Multicast HASH table */
706 DEBUGOUT("Zeroing the MTA\n"); 764 DEBUGOUT("Zeroing the MTA\n");
707 mta_size = E1000_MC_TBL_SIZE; 765 mta_size = E1000_MC_TBL_SIZE;
708 for(i = 0; i < mta_size; i++) 766 if (hw->mac_type == e1000_ich8lan)
767 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
768 for(i = 0; i < mta_size; i++) {
709 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); 769 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
770 /* use write flush to prevent Memory Write Block (MWB) from
771 * occuring when accessing our register space */
772 E1000_WRITE_FLUSH(hw);
773 }
710 774
711 /* Set the PCI priority bit correctly in the CTRL register. This 775 /* Set the PCI priority bit correctly in the CTRL register. This
712 * determines if the adapter gives priority to receives, or if it 776 * determines if the adapter gives priority to receives, or if it
@@ -744,6 +808,10 @@ e1000_init_hw(struct e1000_hw *hw)
744 break; 808 break;
745 } 809 }
746 810
811 /* More time needed for PHY to initialize */
812 if (hw->mac_type == e1000_ich8lan)
813 msec_delay(15);
814
747 /* Call a subroutine to configure the link and setup flow control. */ 815 /* Call a subroutine to configure the link and setup flow control. */
748 ret_val = e1000_setup_link(hw); 816 ret_val = e1000_setup_link(hw);
749 817
@@ -757,6 +825,7 @@ e1000_init_hw(struct e1000_hw *hw)
757 case e1000_82571: 825 case e1000_82571:
758 case e1000_82572: 826 case e1000_82572:
759 case e1000_82573: 827 case e1000_82573:
828 case e1000_ich8lan:
760 case e1000_80003es2lan: 829 case e1000_80003es2lan:
761 ctrl |= E1000_TXDCTL_COUNT_DESC; 830 ctrl |= E1000_TXDCTL_COUNT_DESC;
762 break; 831 break;
@@ -795,6 +864,7 @@ e1000_init_hw(struct e1000_hw *hw)
795 /* Fall through */ 864 /* Fall through */
796 case e1000_82571: 865 case e1000_82571:
797 case e1000_82572: 866 case e1000_82572:
867 case e1000_ich8lan:
798 ctrl = E1000_READ_REG(hw, TXDCTL1); 868 ctrl = E1000_READ_REG(hw, TXDCTL1);
799 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; 869 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
800 if(hw->mac_type >= e1000_82571) 870 if(hw->mac_type >= e1000_82571)
@@ -818,6 +888,11 @@ e1000_init_hw(struct e1000_hw *hw)
818 */ 888 */
819 e1000_clear_hw_cntrs(hw); 889 e1000_clear_hw_cntrs(hw);
820 890
891 /* ICH8 No-snoop bits are opposite polarity.
892 * Set to snoop by default after reset. */
893 if (hw->mac_type == e1000_ich8lan)
894 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
895
821 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || 896 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
822 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { 897 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
823 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); 898 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
@@ -905,6 +980,7 @@ e1000_setup_link(struct e1000_hw *hw)
905 */ 980 */
906 if (hw->fc == e1000_fc_default) { 981 if (hw->fc == e1000_fc_default) {
907 switch (hw->mac_type) { 982 switch (hw->mac_type) {
983 case e1000_ich8lan:
908 case e1000_82573: 984 case e1000_82573:
909 hw->fc = e1000_fc_full; 985 hw->fc = e1000_fc_full;
910 break; 986 break;
@@ -971,9 +1047,12 @@ e1000_setup_link(struct e1000_hw *hw)
971 */ 1047 */
972 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); 1048 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
973 1049
974 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); 1050 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
975 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); 1051 if (hw->mac_type != e1000_ich8lan) {
976 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); 1052 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1053 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1054 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1055 }
977 1056
978 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); 1057 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
979 1058
@@ -1237,12 +1316,13 @@ e1000_copper_link_igp_setup(struct e1000_hw *hw)
1237 1316
1238 /* Wait 10ms for MAC to configure PHY from eeprom settings */ 1317 /* Wait 10ms for MAC to configure PHY from eeprom settings */
1239 msec_delay(15); 1318 msec_delay(15);
1240 1319 if (hw->mac_type != e1000_ich8lan) {
1241 /* Configure activity LED after PHY reset */ 1320 /* Configure activity LED after PHY reset */
1242 led_ctrl = E1000_READ_REG(hw, LEDCTL); 1321 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1243 led_ctrl &= IGP_ACTIVITY_LED_MASK; 1322 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1244 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); 1323 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1245 E1000_WRITE_REG(hw, LEDCTL, led_ctrl); 1324 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1325 }
1246 1326
1247 /* disable lplu d3 during driver init */ 1327 /* disable lplu d3 during driver init */
1248 ret_val = e1000_set_d3_lplu_state(hw, FALSE); 1328 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
@@ -1478,8 +1558,7 @@ e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1478 if (ret_val) 1558 if (ret_val)
1479 return ret_val; 1559 return ret_val;
1480 1560
1481 /* Enable Pass False Carrier on the PHY */ 1561 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1482 phy_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1483 1562
1484 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, 1563 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1485 phy_data); 1564 phy_data);
@@ -1561,28 +1640,40 @@ e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1561 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; 1640 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1562 if(hw->disable_polarity_correction == 1) 1641 if(hw->disable_polarity_correction == 1)
1563 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; 1642 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1564 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); 1643 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1565 if(ret_val) 1644 if (ret_val)
1566 return ret_val;
1567
1568 /* Force TX_CLK in the Extended PHY Specific Control Register
1569 * to 25MHz clock.
1570 */
1571 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1572 if(ret_val)
1573 return ret_val; 1645 return ret_val;
1574 1646
1575 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1576
1577 if (hw->phy_revision < M88E1011_I_REV_4) { 1647 if (hw->phy_revision < M88E1011_I_REV_4) {
1578 /* Configure Master and Slave downshift values */ 1648 /* Force TX_CLK in the Extended PHY Specific Control Register
1579 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | 1649 * to 25MHz clock.
1650 */
1651 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1652 if (ret_val)
1653 return ret_val;
1654
1655 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1656
1657 if ((hw->phy_revision == E1000_REVISION_2) &&
1658 (hw->phy_id == M88E1111_I_PHY_ID)) {
1659 /* Vidalia Phy, set the downshift counter to 5x */
1660 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1661 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1662 ret_val = e1000_write_phy_reg(hw,
1663 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1664 if (ret_val)
1665 return ret_val;
1666 } else {
1667 /* Configure Master and Slave downshift values */
1668 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1580 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); 1669 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1581 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | 1670 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1582 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); 1671 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1583 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); 1672 ret_val = e1000_write_phy_reg(hw,
1584 if(ret_val) 1673 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1585 return ret_val; 1674 if (ret_val)
1675 return ret_val;
1676 }
1586 } 1677 }
1587 1678
1588 /* SW Reset the PHY so all changes take effect */ 1679 /* SW Reset the PHY so all changes take effect */
@@ -1620,6 +1711,10 @@ e1000_copper_link_autoneg(struct e1000_hw *hw)
1620 if(hw->autoneg_advertised == 0) 1711 if(hw->autoneg_advertised == 0)
1621 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; 1712 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1622 1713
1714 /* IFE phy only supports 10/100 */
1715 if (hw->phy_type == e1000_phy_ife)
1716 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1717
1623 DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); 1718 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1624 ret_val = e1000_phy_setup_autoneg(hw); 1719 ret_val = e1000_phy_setup_autoneg(hw);
1625 if(ret_val) { 1720 if(ret_val) {
@@ -1717,6 +1812,26 @@ e1000_setup_copper_link(struct e1000_hw *hw)
1717 1812
1718 DEBUGFUNC("e1000_setup_copper_link"); 1813 DEBUGFUNC("e1000_setup_copper_link");
1719 1814
1815 switch (hw->mac_type) {
1816 case e1000_80003es2lan:
1817 case e1000_ich8lan:
1818 /* Set the mac to wait the maximum time between each
1819 * iteration and increase the max iterations when
1820 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1821 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1822 if (ret_val)
1823 return ret_val;
1824 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1825 if (ret_val)
1826 return ret_val;
1827 reg_data |= 0x3F;
1828 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1829 if (ret_val)
1830 return ret_val;
1831 default:
1832 break;
1833 }
1834
1720 /* Check if it is a valid PHY and set PHY mode if necessary. */ 1835 /* Check if it is a valid PHY and set PHY mode if necessary. */
1721 ret_val = e1000_copper_link_preconfig(hw); 1836 ret_val = e1000_copper_link_preconfig(hw);
1722 if(ret_val) 1837 if(ret_val)
@@ -1724,10 +1839,8 @@ e1000_setup_copper_link(struct e1000_hw *hw)
1724 1839
1725 switch (hw->mac_type) { 1840 switch (hw->mac_type) {
1726 case e1000_80003es2lan: 1841 case e1000_80003es2lan:
1727 ret_val = e1000_read_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, 1842 /* Kumeran registers are written-only */
1728 &reg_data); 1843 reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
1729 if (ret_val)
1730 return ret_val;
1731 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; 1844 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1732 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, 1845 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1733 reg_data); 1846 reg_data);
@@ -1739,6 +1852,7 @@ e1000_setup_copper_link(struct e1000_hw *hw)
1739 } 1852 }
1740 1853
1741 if (hw->phy_type == e1000_phy_igp || 1854 if (hw->phy_type == e1000_phy_igp ||
1855 hw->phy_type == e1000_phy_igp_3 ||
1742 hw->phy_type == e1000_phy_igp_2) { 1856 hw->phy_type == e1000_phy_igp_2) {
1743 ret_val = e1000_copper_link_igp_setup(hw); 1857 ret_val = e1000_copper_link_igp_setup(hw);
1744 if(ret_val) 1858 if(ret_val)
@@ -1803,7 +1917,7 @@ e1000_setup_copper_link(struct e1000_hw *hw)
1803* hw - Struct containing variables accessed by shared code 1917* hw - Struct containing variables accessed by shared code
1804******************************************************************************/ 1918******************************************************************************/
1805static int32_t 1919static int32_t
1806e1000_configure_kmrn_for_10_100(struct e1000_hw *hw) 1920e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
1807{ 1921{
1808 int32_t ret_val = E1000_SUCCESS; 1922 int32_t ret_val = E1000_SUCCESS;
1809 uint32_t tipg; 1923 uint32_t tipg;
@@ -1823,6 +1937,18 @@ e1000_configure_kmrn_for_10_100(struct e1000_hw *hw)
1823 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; 1937 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
1824 E1000_WRITE_REG(hw, TIPG, tipg); 1938 E1000_WRITE_REG(hw, TIPG, tipg);
1825 1939
1940 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1941
1942 if (ret_val)
1943 return ret_val;
1944
1945 if (duplex == HALF_DUPLEX)
1946 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1947 else
1948 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1949
1950 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1951
1826 return ret_val; 1952 return ret_val;
1827} 1953}
1828 1954
@@ -1847,6 +1973,14 @@ e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
1847 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; 1973 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
1848 E1000_WRITE_REG(hw, TIPG, tipg); 1974 E1000_WRITE_REG(hw, TIPG, tipg);
1849 1975
1976 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1977
1978 if (ret_val)
1979 return ret_val;
1980
1981 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1982 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1983
1850 return ret_val; 1984 return ret_val;
1851} 1985}
1852 1986
@@ -1869,10 +2003,13 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
1869 if(ret_val) 2003 if(ret_val)
1870 return ret_val; 2004 return ret_val;
1871 2005
1872 /* Read the MII 1000Base-T Control Register (Address 9). */ 2006 if (hw->phy_type != e1000_phy_ife) {
1873 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); 2007 /* Read the MII 1000Base-T Control Register (Address 9). */
1874 if(ret_val) 2008 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1875 return ret_val; 2009 if (ret_val)
2010 return ret_val;
2011 } else
2012 mii_1000t_ctrl_reg=0;
1876 2013
1877 /* Need to parse both autoneg_advertised and fc and set up 2014 /* Need to parse both autoneg_advertised and fc and set up
1878 * the appropriate PHY registers. First we will parse for 2015 * the appropriate PHY registers. First we will parse for
@@ -1923,6 +2060,9 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
1923 if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { 2060 if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1924 DEBUGOUT("Advertise 1000mb Full duplex\n"); 2061 DEBUGOUT("Advertise 1000mb Full duplex\n");
1925 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; 2062 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
2063 if (hw->phy_type == e1000_phy_ife) {
2064 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2065 }
1926 } 2066 }
1927 2067
1928 /* Check for a software override of the flow control settings, and 2068 /* Check for a software override of the flow control settings, and
@@ -1984,9 +2124,11 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
1984 2124
1985 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); 2125 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1986 2126
1987 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); 2127 if (hw->phy_type != e1000_phy_ife) {
1988 if(ret_val) 2128 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1989 return ret_val; 2129 if (ret_val)
2130 return ret_val;
2131 }
1990 2132
1991 return E1000_SUCCESS; 2133 return E1000_SUCCESS;
1992} 2134}
@@ -2089,6 +2231,18 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2089 2231
2090 /* Need to reset the PHY or these changes will be ignored */ 2232 /* Need to reset the PHY or these changes will be ignored */
2091 mii_ctrl_reg |= MII_CR_RESET; 2233 mii_ctrl_reg |= MII_CR_RESET;
2234 /* Disable MDI-X support for 10/100 */
2235 } else if (hw->phy_type == e1000_phy_ife) {
2236 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2237 if (ret_val)
2238 return ret_val;
2239
2240 phy_data &= ~IFE_PMC_AUTO_MDIX;
2241 phy_data &= ~IFE_PMC_FORCE_MDIX;
2242
2243 ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2244 if (ret_val)
2245 return ret_val;
2092 } else { 2246 } else {
2093 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI 2247 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
2094 * forced whenever speed or duplex are forced. 2248 * forced whenever speed or duplex are forced.
@@ -2721,8 +2875,12 @@ e1000_check_for_link(struct e1000_hw *hw)
2721 */ 2875 */
2722 if(hw->tbi_compatibility_en) { 2876 if(hw->tbi_compatibility_en) {
2723 uint16_t speed, duplex; 2877 uint16_t speed, duplex;
2724 e1000_get_speed_and_duplex(hw, &speed, &duplex); 2878 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2725 if(speed != SPEED_1000) { 2879 if (ret_val) {
2880 DEBUGOUT("Error getting link speed and duplex\n");
2881 return ret_val;
2882 }
2883 if (speed != SPEED_1000) {
2726 /* If link speed is not set to gigabit speed, we do not need 2884 /* If link speed is not set to gigabit speed, we do not need
2727 * to enable TBI compatibility. 2885 * to enable TBI compatibility.
2728 */ 2886 */
@@ -2889,7 +3047,13 @@ e1000_get_speed_and_duplex(struct e1000_hw *hw,
2889 if (*speed == SPEED_1000) 3047 if (*speed == SPEED_1000)
2890 ret_val = e1000_configure_kmrn_for_1000(hw); 3048 ret_val = e1000_configure_kmrn_for_1000(hw);
2891 else 3049 else
2892 ret_val = e1000_configure_kmrn_for_10_100(hw); 3050 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3051 if (ret_val)
3052 return ret_val;
3053 }
3054
3055 if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3056 ret_val = e1000_kumeran_lock_loss_workaround(hw);
2893 if (ret_val) 3057 if (ret_val)
2894 return ret_val; 3058 return ret_val;
2895 } 3059 }
@@ -3079,6 +3243,9 @@ e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
3079 3243
3080 DEBUGFUNC("e1000_swfw_sync_acquire"); 3244 DEBUGFUNC("e1000_swfw_sync_acquire");
3081 3245
3246 if (hw->swfwhw_semaphore_present)
3247 return e1000_get_software_flag(hw);
3248
3082 if (!hw->swfw_sync_present) 3249 if (!hw->swfw_sync_present)
3083 return e1000_get_hw_eeprom_semaphore(hw); 3250 return e1000_get_hw_eeprom_semaphore(hw);
3084 3251
@@ -3118,6 +3285,11 @@ e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
3118 3285
3119 DEBUGFUNC("e1000_swfw_sync_release"); 3286 DEBUGFUNC("e1000_swfw_sync_release");
3120 3287
3288 if (hw->swfwhw_semaphore_present) {
3289 e1000_release_software_flag(hw);
3290 return;
3291 }
3292
3121 if (!hw->swfw_sync_present) { 3293 if (!hw->swfw_sync_present) {
3122 e1000_put_hw_eeprom_semaphore(hw); 3294 e1000_put_hw_eeprom_semaphore(hw);
3123 return; 3295 return;
@@ -3160,7 +3332,8 @@ e1000_read_phy_reg(struct e1000_hw *hw,
3160 if (e1000_swfw_sync_acquire(hw, swfw)) 3332 if (e1000_swfw_sync_acquire(hw, swfw))
3161 return -E1000_ERR_SWFW_SYNC; 3333 return -E1000_ERR_SWFW_SYNC;
3162 3334
3163 if((hw->phy_type == e1000_phy_igp || 3335 if ((hw->phy_type == e1000_phy_igp ||
3336 hw->phy_type == e1000_phy_igp_3 ||
3164 hw->phy_type == e1000_phy_igp_2) && 3337 hw->phy_type == e1000_phy_igp_2) &&
3165 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { 3338 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3166 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, 3339 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
@@ -3299,7 +3472,8 @@ e1000_write_phy_reg(struct e1000_hw *hw,
3299 if (e1000_swfw_sync_acquire(hw, swfw)) 3472 if (e1000_swfw_sync_acquire(hw, swfw))
3300 return -E1000_ERR_SWFW_SYNC; 3473 return -E1000_ERR_SWFW_SYNC;
3301 3474
3302 if((hw->phy_type == e1000_phy_igp || 3475 if ((hw->phy_type == e1000_phy_igp ||
3476 hw->phy_type == e1000_phy_igp_3 ||
3303 hw->phy_type == e1000_phy_igp_2) && 3477 hw->phy_type == e1000_phy_igp_2) &&
3304 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { 3478 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3305 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, 3479 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
@@ -3514,7 +3688,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
3514 E1000_WRITE_FLUSH(hw); 3688 E1000_WRITE_FLUSH(hw);
3515 3689
3516 if (hw->mac_type >= e1000_82571) 3690 if (hw->mac_type >= e1000_82571)
3517 msec_delay(10); 3691 msec_delay_irq(10);
3518 e1000_swfw_sync_release(hw, swfw); 3692 e1000_swfw_sync_release(hw, swfw);
3519 } else { 3693 } else {
3520 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR 3694 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
@@ -3544,6 +3718,12 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
3544 ret_val = e1000_get_phy_cfg_done(hw); 3718 ret_val = e1000_get_phy_cfg_done(hw);
3545 e1000_release_software_semaphore(hw); 3719 e1000_release_software_semaphore(hw);
3546 3720
3721 if ((hw->mac_type == e1000_ich8lan) &&
3722 (hw->phy_type == e1000_phy_igp_3)) {
3723 ret_val = e1000_init_lcd_from_nvm(hw);
3724 if (ret_val)
3725 return ret_val;
3726 }
3547 return ret_val; 3727 return ret_val;
3548} 3728}
3549 3729
@@ -3572,9 +3752,11 @@ e1000_phy_reset(struct e1000_hw *hw)
3572 case e1000_82541_rev_2: 3752 case e1000_82541_rev_2:
3573 case e1000_82571: 3753 case e1000_82571:
3574 case e1000_82572: 3754 case e1000_82572:
3755 case e1000_ich8lan:
3575 ret_val = e1000_phy_hw_reset(hw); 3756 ret_val = e1000_phy_hw_reset(hw);
3576 if(ret_val) 3757 if(ret_val)
3577 return ret_val; 3758 return ret_val;
3759
3578 break; 3760 break;
3579 default: 3761 default:
3580 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); 3762 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
@@ -3597,11 +3779,120 @@ e1000_phy_reset(struct e1000_hw *hw)
3597} 3779}
3598 3780
3599/****************************************************************************** 3781/******************************************************************************
3782* Work-around for 82566 power-down: on D3 entry-
3783* 1) disable gigabit link
3784* 2) write VR power-down enable
3785* 3) read it back
3786* if successful continue, else issue LCD reset and repeat
3787*
3788* hw - struct containing variables accessed by shared code
3789******************************************************************************/
3790void
3791e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3792{
3793 int32_t reg;
3794 uint16_t phy_data;
3795 int32_t retry = 0;
3796
3797 DEBUGFUNC("e1000_phy_powerdown_workaround");
3798
3799 if (hw->phy_type != e1000_phy_igp_3)
3800 return;
3801
3802 do {
3803 /* Disable link */
3804 reg = E1000_READ_REG(hw, PHY_CTRL);
3805 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3806 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3807
3808 /* Write VR power-down enable */
3809 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3810 e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
3811 IGP3_VR_CTRL_MODE_SHUT);
3812
3813 /* Read it back and test */
3814 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3815 if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
3816 break;
3817
3818 /* Issue PHY reset and repeat at most one more time */
3819 reg = E1000_READ_REG(hw, CTRL);
3820 E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
3821 retry++;
3822 } while (retry);
3823
3824 return;
3825
3826}
3827
3828/******************************************************************************
3829* Work-around for 82566 Kumeran PCS lock loss:
3830* On link status change (i.e. PCI reset, speed change) and link is up and
3831* speed is gigabit-
3832* 0) if workaround is optionally disabled do nothing
3833* 1) wait 1ms for Kumeran link to come up
3834* 2) check Kumeran Diagnostic register PCS lock loss bit
3835* 3) if not set the link is locked (all is good), otherwise...
3836* 4) reset the PHY
3837* 5) repeat up to 10 times
3838* Note: this is only called for IGP3 copper when speed is 1gb.
3839*
3840* hw - struct containing variables accessed by shared code
3841******************************************************************************/
3842int32_t
3843e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3844{
3845 int32_t ret_val;
3846 int32_t reg;
3847 int32_t cnt;
3848 uint16_t phy_data;
3849
3850 if (hw->kmrn_lock_loss_workaround_disabled)
3851 return E1000_SUCCESS;
3852
3853 /* Make sure link is up before proceeding. If not just return.
3854 * Attempting this while link is negotiating fouls up link
3855 * stability */
3856 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3857 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3858
3859 if (phy_data & MII_SR_LINK_STATUS) {
3860 for (cnt = 0; cnt < 10; cnt++) {
3861 /* read once to clear */
3862 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3863 if (ret_val)
3864 return ret_val;
3865 /* and again to get new status */
3866 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
3867 if (ret_val)
3868 return ret_val;
3869
3870 /* check for PCS lock */
3871 if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3872 return E1000_SUCCESS;
3873
3874 /* Issue PHY reset */
3875 e1000_phy_hw_reset(hw);
3876 msec_delay_irq(5);
3877 }
3878 /* Disable GigE link negotiation */
3879 reg = E1000_READ_REG(hw, PHY_CTRL);
3880 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3881 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3882
3883 /* unable to acquire PCS lock */
3884 return E1000_ERR_PHY;
3885 }
3886
3887 return E1000_SUCCESS;
3888}
3889
3890/******************************************************************************
3600* Probes the expected PHY address for known PHY IDs 3891* Probes the expected PHY address for known PHY IDs
3601* 3892*
3602* hw - Struct containing variables accessed by shared code 3893* hw - Struct containing variables accessed by shared code
3603******************************************************************************/ 3894******************************************************************************/
3604static int32_t 3895int32_t
3605e1000_detect_gig_phy(struct e1000_hw *hw) 3896e1000_detect_gig_phy(struct e1000_hw *hw)
3606{ 3897{
3607 int32_t phy_init_status, ret_val; 3898 int32_t phy_init_status, ret_val;
@@ -3613,8 +3904,8 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
3613 /* The 82571 firmware may still be configuring the PHY. In this 3904 /* The 82571 firmware may still be configuring the PHY. In this
3614 * case, we cannot access the PHY until the configuration is done. So 3905 * case, we cannot access the PHY until the configuration is done. So
3615 * we explicitly set the PHY values. */ 3906 * we explicitly set the PHY values. */
3616 if(hw->mac_type == e1000_82571 || 3907 if (hw->mac_type == e1000_82571 ||
3617 hw->mac_type == e1000_82572) { 3908 hw->mac_type == e1000_82572) {
3618 hw->phy_id = IGP01E1000_I_PHY_ID; 3909 hw->phy_id = IGP01E1000_I_PHY_ID;
3619 hw->phy_type = e1000_phy_igp_2; 3910 hw->phy_type = e1000_phy_igp_2;
3620 return E1000_SUCCESS; 3911 return E1000_SUCCESS;
@@ -3631,7 +3922,7 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
3631 3922
3632 /* Read the PHY ID Registers to identify which PHY is onboard. */ 3923 /* Read the PHY ID Registers to identify which PHY is onboard. */
3633 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); 3924 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3634 if(ret_val) 3925 if (ret_val)
3635 return ret_val; 3926 return ret_val;
3636 3927
3637 hw->phy_id = (uint32_t) (phy_id_high << 16); 3928 hw->phy_id = (uint32_t) (phy_id_high << 16);
@@ -3669,6 +3960,12 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
3669 case e1000_80003es2lan: 3960 case e1000_80003es2lan:
3670 if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE; 3961 if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
3671 break; 3962 break;
3963 case e1000_ich8lan:
3964 if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
3965 if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
3966 if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
3967 if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
3968 break;
3672 default: 3969 default:
3673 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); 3970 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
3674 return -E1000_ERR_CONFIG; 3971 return -E1000_ERR_CONFIG;
@@ -3784,6 +4081,53 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
3784} 4081}
3785 4082
3786/****************************************************************************** 4083/******************************************************************************
4084* Get PHY information from various PHY registers for ife PHY only.
4085*
4086* hw - Struct containing variables accessed by shared code
4087* phy_info - PHY information structure
4088******************************************************************************/
4089int32_t
4090e1000_phy_ife_get_info(struct e1000_hw *hw,
4091 struct e1000_phy_info *phy_info)
4092{
4093 int32_t ret_val;
4094 uint16_t phy_data, polarity;
4095
4096 DEBUGFUNC("e1000_phy_ife_get_info");
4097
4098 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4099 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4100
4101 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4102 if (ret_val)
4103 return ret_val;
4104 phy_info->polarity_correction =
4105 (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4106 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
4107
4108 if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4109 ret_val = e1000_check_polarity(hw, &polarity);
4110 if (ret_val)
4111 return ret_val;
4112 } else {
4113 /* Polarity is forced. */
4114 polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
4115 IFE_PSC_FORCE_POLARITY_SHIFT;
4116 }
4117 phy_info->cable_polarity = polarity;
4118
4119 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4120 if (ret_val)
4121 return ret_val;
4122
4123 phy_info->mdix_mode =
4124 (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4125 IFE_PMC_MDIX_MODE_SHIFT;
4126
4127 return E1000_SUCCESS;
4128}
4129
4130/******************************************************************************
3787* Get PHY information from various PHY registers fot m88 PHY only. 4131* Get PHY information from various PHY registers fot m88 PHY only.
3788* 4132*
3789* hw - Struct containing variables accessed by shared code 4133* hw - Struct containing variables accessed by shared code
@@ -3898,9 +4242,12 @@ e1000_phy_get_info(struct e1000_hw *hw,
3898 return -E1000_ERR_CONFIG; 4242 return -E1000_ERR_CONFIG;
3899 } 4243 }
3900 4244
3901 if(hw->phy_type == e1000_phy_igp || 4245 if (hw->phy_type == e1000_phy_igp ||
4246 hw->phy_type == e1000_phy_igp_3 ||
3902 hw->phy_type == e1000_phy_igp_2) 4247 hw->phy_type == e1000_phy_igp_2)
3903 return e1000_phy_igp_get_info(hw, phy_info); 4248 return e1000_phy_igp_get_info(hw, phy_info);
4249 else if (hw->phy_type == e1000_phy_ife)
4250 return e1000_phy_ife_get_info(hw, phy_info);
3904 else 4251 else
3905 return e1000_phy_m88_get_info(hw, phy_info); 4252 return e1000_phy_m88_get_info(hw, phy_info);
3906} 4253}
@@ -4049,6 +4396,35 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
4049 eeprom->use_eerd = TRUE; 4396 eeprom->use_eerd = TRUE;
4050 eeprom->use_eewr = FALSE; 4397 eeprom->use_eewr = FALSE;
4051 break; 4398 break;
4399 case e1000_ich8lan:
4400 {
4401 int32_t i = 0;
4402 uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
4403
4404 eeprom->type = e1000_eeprom_ich8;
4405 eeprom->use_eerd = FALSE;
4406 eeprom->use_eewr = FALSE;
4407 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4408
4409 /* Zero the shadow RAM structure. But don't load it from NVM
4410 * so as to save time for driver init */
4411 if (hw->eeprom_shadow_ram != NULL) {
4412 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4413 hw->eeprom_shadow_ram[i].modified = FALSE;
4414 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4415 }
4416 }
4417
4418 hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
4419 ICH8_FLASH_SECTOR_SIZE;
4420
4421 hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
4422 hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
4423 hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
4424 hw->flash_bank_size /= 2 * sizeof(uint16_t);
4425
4426 break;
4427 }
4052 default: 4428 default:
4053 break; 4429 break;
4054 } 4430 }
@@ -4469,7 +4845,10 @@ e1000_read_eeprom(struct e1000_hw *hw,
4469 return ret_val; 4845 return ret_val;
4470 } 4846 }
4471 4847
4472 if(eeprom->type == e1000_eeprom_spi) { 4848 if (eeprom->type == e1000_eeprom_ich8)
4849 return e1000_read_eeprom_ich8(hw, offset, words, data);
4850
4851 if (eeprom->type == e1000_eeprom_spi) {
4473 uint16_t word_in; 4852 uint16_t word_in;
4474 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; 4853 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
4475 4854
@@ -4636,7 +5015,10 @@ e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
4636 5015
4637 DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); 5016 DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
4638 5017
4639 if(hw->mac_type == e1000_82573) { 5018 if (hw->mac_type == e1000_ich8lan)
5019 return FALSE;
5020
5021 if (hw->mac_type == e1000_82573) {
4640 eecd = E1000_READ_REG(hw, EECD); 5022 eecd = E1000_READ_REG(hw, EECD);
4641 5023
4642 /* Isolate bits 15 & 16 */ 5024 /* Isolate bits 15 & 16 */
@@ -4686,8 +5068,22 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
4686 } 5068 }
4687 } 5069 }
4688 5070
4689 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 5071 if (hw->mac_type == e1000_ich8lan) {
4690 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { 5072 /* Drivers must allocate the shadow ram structure for the
5073 * EEPROM checksum to be updated. Otherwise, this bit as well
5074 * as the checksum must both be set correctly for this
5075 * validation to pass.
5076 */
5077 e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5078 if ((eeprom_data & 0x40) == 0) {
5079 eeprom_data |= 0x40;
5080 e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5081 e1000_update_eeprom_checksum(hw);
5082 }
5083 }
5084
5085 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5086 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4691 DEBUGOUT("EEPROM Read Error\n"); 5087 DEBUGOUT("EEPROM Read Error\n");
4692 return -E1000_ERR_EEPROM; 5088 return -E1000_ERR_EEPROM;
4693 } 5089 }
@@ -4713,6 +5109,7 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw)
4713int32_t 5109int32_t
4714e1000_update_eeprom_checksum(struct e1000_hw *hw) 5110e1000_update_eeprom_checksum(struct e1000_hw *hw)
4715{ 5111{
5112 uint32_t ctrl_ext;
4716 uint16_t checksum = 0; 5113 uint16_t checksum = 0;
4717 uint16_t i, eeprom_data; 5114 uint16_t i, eeprom_data;
4718 5115
@@ -4731,6 +5128,14 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw)
4731 return -E1000_ERR_EEPROM; 5128 return -E1000_ERR_EEPROM;
4732 } else if (hw->eeprom.type == e1000_eeprom_flash) { 5129 } else if (hw->eeprom.type == e1000_eeprom_flash) {
4733 e1000_commit_shadow_ram(hw); 5130 e1000_commit_shadow_ram(hw);
5131 } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5132 e1000_commit_shadow_ram(hw);
5133 /* Reload the EEPROM, or else modifications will not appear
5134 * until after next adapter reset. */
5135 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5136 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5137 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
5138 msec_delay(10);
4734 } 5139 }
4735 return E1000_SUCCESS; 5140 return E1000_SUCCESS;
4736} 5141}
@@ -4770,6 +5175,9 @@ e1000_write_eeprom(struct e1000_hw *hw,
4770 if(eeprom->use_eewr == TRUE) 5175 if(eeprom->use_eewr == TRUE)
4771 return e1000_write_eeprom_eewr(hw, offset, words, data); 5176 return e1000_write_eeprom_eewr(hw, offset, words, data);
4772 5177
5178 if (eeprom->type == e1000_eeprom_ich8)
5179 return e1000_write_eeprom_ich8(hw, offset, words, data);
5180
4773 /* Prepare the EEPROM for writing */ 5181 /* Prepare the EEPROM for writing */
4774 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) 5182 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4775 return -E1000_ERR_EEPROM; 5183 return -E1000_ERR_EEPROM;
@@ -4957,11 +5365,17 @@ e1000_commit_shadow_ram(struct e1000_hw *hw)
4957 uint32_t flop = 0; 5365 uint32_t flop = 0;
4958 uint32_t i = 0; 5366 uint32_t i = 0;
4959 int32_t error = E1000_SUCCESS; 5367 int32_t error = E1000_SUCCESS;
4960 5368 uint32_t old_bank_offset = 0;
4961 /* The flop register will be used to determine if flash type is STM */ 5369 uint32_t new_bank_offset = 0;
4962 flop = E1000_READ_REG(hw, FLOP); 5370 uint32_t sector_retries = 0;
5371 uint8_t low_byte = 0;
5372 uint8_t high_byte = 0;
5373 uint8_t temp_byte = 0;
5374 boolean_t sector_write_failed = FALSE;
4963 5375
4964 if (hw->mac_type == e1000_82573) { 5376 if (hw->mac_type == e1000_82573) {
5377 /* The flop register will be used to determine if flash type is STM */
5378 flop = E1000_READ_REG(hw, FLOP);
4965 for (i=0; i < attempts; i++) { 5379 for (i=0; i < attempts; i++) {
4966 eecd = E1000_READ_REG(hw, EECD); 5380 eecd = E1000_READ_REG(hw, EECD);
4967 if ((eecd & E1000_EECD_FLUPD) == 0) { 5381 if ((eecd & E1000_EECD_FLUPD) == 0) {
@@ -4995,6 +5409,106 @@ e1000_commit_shadow_ram(struct e1000_hw *hw)
4995 } 5409 }
4996 } 5410 }
4997 5411
5412 if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5413 /* We're writing to the opposite bank so if we're on bank 1,
5414 * write to bank 0 etc. We also need to erase the segment that
5415 * is going to be written */
5416 if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
5417 new_bank_offset = hw->flash_bank_size * 2;
5418 old_bank_offset = 0;
5419 e1000_erase_ich8_4k_segment(hw, 1);
5420 } else {
5421 old_bank_offset = hw->flash_bank_size * 2;
5422 new_bank_offset = 0;
5423 e1000_erase_ich8_4k_segment(hw, 0);
5424 }
5425
5426 do {
5427 sector_write_failed = FALSE;
5428 /* Loop for every byte in the shadow RAM,
5429 * which is in units of words. */
5430 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5431 /* Determine whether to write the value stored
5432 * in the other NVM bank or a modified value stored
5433 * in the shadow RAM */
5434 if (hw->eeprom_shadow_ram[i].modified == TRUE) {
5435 low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
5436 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5437 &temp_byte);
5438 udelay(100);
5439 error = e1000_verify_write_ich8_byte(hw,
5440 (i << 1) + new_bank_offset,
5441 low_byte);
5442 if (error != E1000_SUCCESS)
5443 sector_write_failed = TRUE;
5444 high_byte =
5445 (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
5446 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5447 &temp_byte);
5448 udelay(100);
5449 } else {
5450 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5451 &low_byte);
5452 udelay(100);
5453 error = e1000_verify_write_ich8_byte(hw,
5454 (i << 1) + new_bank_offset, low_byte);
5455 if (error != E1000_SUCCESS)
5456 sector_write_failed = TRUE;
5457 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5458 &high_byte);
5459 }
5460
5461 /* If the word is 0x13, then make sure the signature bits
5462 * (15:14) are 11b until the commit has completed.
5463 * This will allow us to write 10b which indicates the
5464 * signature is valid. We want to do this after the write
5465 * has completed so that we don't mark the segment valid
5466 * while the write is still in progress */
5467 if (i == E1000_ICH8_NVM_SIG_WORD)
5468 high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
5469
5470 error = e1000_verify_write_ich8_byte(hw,
5471 (i << 1) + new_bank_offset + 1, high_byte);
5472 if (error != E1000_SUCCESS)
5473 sector_write_failed = TRUE;
5474
5475 if (sector_write_failed == FALSE) {
5476 /* Clear the now not used entry in the cache */
5477 hw->eeprom_shadow_ram[i].modified = FALSE;
5478 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
5479 }
5480 }
5481
5482 /* Don't bother writing the segment valid bits if sector
5483 * programming failed. */
5484 if (sector_write_failed == FALSE) {
5485 /* Finally validate the new segment by setting bit 15:14
5486 * to 10b in word 0x13 , this can be done without an
5487 * erase as well since these bits are 11 to start with
5488 * and we need to change bit 14 to 0b */
5489 e1000_read_ich8_byte(hw,
5490 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5491 &high_byte);
5492 high_byte &= 0xBF;
5493 error = e1000_verify_write_ich8_byte(hw,
5494 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5495 high_byte);
5496 if (error != E1000_SUCCESS)
5497 sector_write_failed = TRUE;
5498
5499 /* And invalidate the previously valid segment by setting
5500 * its signature word (0x13) high_byte to 0b. This can be
5501 * done without an erase because flash erase sets all bits
5502 * to 1's. We can write 1's to 0's without an erase */
5503 error = e1000_verify_write_ich8_byte(hw,
5504 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
5505 0);
5506 if (error != E1000_SUCCESS)
5507 sector_write_failed = TRUE;
5508 }
5509 } while (++sector_retries < 10 && sector_write_failed == TRUE);
5510 }
5511
4998 return error; 5512 return error;
4999} 5513}
5000 5514
@@ -5102,15 +5616,19 @@ e1000_init_rx_addrs(struct e1000_hw *hw)
5102 * the other port. */ 5616 * the other port. */
5103 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE)) 5617 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5104 rar_num -= 1; 5618 rar_num -= 1;
5619 if (hw->mac_type == e1000_ich8lan)
5620 rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5621
5105 /* Zero out the other 15 receive addresses. */ 5622 /* Zero out the other 15 receive addresses. */
5106 DEBUGOUT("Clearing RAR[1-15]\n"); 5623 DEBUGOUT("Clearing RAR[1-15]\n");
5107 for(i = 1; i < rar_num; i++) { 5624 for(i = 1; i < rar_num; i++) {
5108 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); 5625 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5626 E1000_WRITE_FLUSH(hw);
5109 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); 5627 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5628 E1000_WRITE_FLUSH(hw);
5110 } 5629 }
5111} 5630}
5112 5631
5113#if 0
5114/****************************************************************************** 5632/******************************************************************************
5115 * Updates the MAC's list of multicast addresses. 5633 * Updates the MAC's list of multicast addresses.
5116 * 5634 *
@@ -5145,6 +5663,8 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
5145 /* Clear RAR[1-15] */ 5663 /* Clear RAR[1-15] */
5146 DEBUGOUT(" Clearing RAR[1-15]\n"); 5664 DEBUGOUT(" Clearing RAR[1-15]\n");
5147 num_rar_entry = E1000_RAR_ENTRIES; 5665 num_rar_entry = E1000_RAR_ENTRIES;
5666 if (hw->mac_type == e1000_ich8lan)
5667 num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
5148 /* Reserve a spot for the Locally Administered Address to work around 5668 /* Reserve a spot for the Locally Administered Address to work around
5149 * an 82571 issue in which a reset on one port will reload the MAC on 5669 * an 82571 issue in which a reset on one port will reload the MAC on
5150 * the other port. */ 5670 * the other port. */
@@ -5153,14 +5673,19 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
5153 5673
5154 for(i = rar_used_count; i < num_rar_entry; i++) { 5674 for(i = rar_used_count; i < num_rar_entry; i++) {
5155 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); 5675 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
5676 E1000_WRITE_FLUSH(hw);
5156 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); 5677 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
5678 E1000_WRITE_FLUSH(hw);
5157 } 5679 }
5158 5680
5159 /* Clear the MTA */ 5681 /* Clear the MTA */
5160 DEBUGOUT(" Clearing MTA\n"); 5682 DEBUGOUT(" Clearing MTA\n");
5161 num_mta_entry = E1000_NUM_MTA_REGISTERS; 5683 num_mta_entry = E1000_NUM_MTA_REGISTERS;
5684 if (hw->mac_type == e1000_ich8lan)
5685 num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
5162 for(i = 0; i < num_mta_entry; i++) { 5686 for(i = 0; i < num_mta_entry; i++) {
5163 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); 5687 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
5688 E1000_WRITE_FLUSH(hw);
5164 } 5689 }
5165 5690
5166 /* Add the new addresses */ 5691 /* Add the new addresses */
@@ -5194,7 +5719,6 @@ e1000_mc_addr_list_update(struct e1000_hw *hw,
5194 } 5719 }
5195 DEBUGOUT("MC Update Complete\n"); 5720 DEBUGOUT("MC Update Complete\n");
5196} 5721}
5197#endif /* 0 */
5198 5722
5199/****************************************************************************** 5723/******************************************************************************
5200 * Hashes an address to determine its location in the multicast table 5724 * Hashes an address to determine its location in the multicast table
@@ -5217,24 +5741,46 @@ e1000_hash_mc_addr(struct e1000_hw *hw,
5217 * LSB MSB 5741 * LSB MSB
5218 */ 5742 */
5219 case 0: 5743 case 0:
5220 /* [47:36] i.e. 0x563 for above example address */ 5744 if (hw->mac_type == e1000_ich8lan) {
5221 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); 5745 /* [47:38] i.e. 0x158 for above example address */
5746 hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
5747 } else {
5748 /* [47:36] i.e. 0x563 for above example address */
5749 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5750 }
5222 break; 5751 break;
5223 case 1: 5752 case 1:
5224 /* [46:35] i.e. 0xAC6 for above example address */ 5753 if (hw->mac_type == e1000_ich8lan) {
5225 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); 5754 /* [46:37] i.e. 0x2B1 for above example address */
5755 hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
5756 } else {
5757 /* [46:35] i.e. 0xAC6 for above example address */
5758 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
5759 }
5226 break; 5760 break;
5227 case 2: 5761 case 2:
5228 /* [45:34] i.e. 0x5D8 for above example address */ 5762 if (hw->mac_type == e1000_ich8lan) {
5229 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); 5763 /*[45:36] i.e. 0x163 for above example address */
5764 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5765 } else {
5766 /* [45:34] i.e. 0x5D8 for above example address */
5767 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5768 }
5230 break; 5769 break;
5231 case 3: 5770 case 3:
5232 /* [43:32] i.e. 0x634 for above example address */ 5771 if (hw->mac_type == e1000_ich8lan) {
5233 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); 5772 /* [43:34] i.e. 0x18D for above example address */
5773 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5774 } else {
5775 /* [43:32] i.e. 0x634 for above example address */
5776 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
5777 }
5234 break; 5778 break;
5235 } 5779 }
5236 5780
5237 hash_value &= 0xFFF; 5781 hash_value &= 0xFFF;
5782 if (hw->mac_type == e1000_ich8lan)
5783 hash_value &= 0x3FF;
5238 5784
5239 return hash_value; 5785 return hash_value;
5240} 5786}
@@ -5262,6 +5808,8 @@ e1000_mta_set(struct e1000_hw *hw,
5262 * register are determined by the lower 5 bits of the value. 5808 * register are determined by the lower 5 bits of the value.
5263 */ 5809 */
5264 hash_reg = (hash_value >> 5) & 0x7F; 5810 hash_reg = (hash_value >> 5) & 0x7F;
5811 if (hw->mac_type == e1000_ich8lan)
5812 hash_reg &= 0x1F;
5265 hash_bit = hash_value & 0x1F; 5813 hash_bit = hash_value & 0x1F;
5266 5814
5267 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); 5815 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
@@ -5275,9 +5823,12 @@ e1000_mta_set(struct e1000_hw *hw,
5275 if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { 5823 if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
5276 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); 5824 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5277 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); 5825 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5826 E1000_WRITE_FLUSH(hw);
5278 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); 5827 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
5828 E1000_WRITE_FLUSH(hw);
5279 } else { 5829 } else {
5280 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); 5830 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
5831 E1000_WRITE_FLUSH(hw);
5281 } 5832 }
5282} 5833}
5283 5834
@@ -5334,7 +5885,9 @@ e1000_rar_set(struct e1000_hw *hw,
5334 } 5885 }
5335 5886
5336 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); 5887 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
5888 E1000_WRITE_FLUSH(hw);
5337 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); 5889 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
5890 E1000_WRITE_FLUSH(hw);
5338} 5891}
5339 5892
5340/****************************************************************************** 5893/******************************************************************************
@@ -5351,12 +5904,18 @@ e1000_write_vfta(struct e1000_hw *hw,
5351{ 5904{
5352 uint32_t temp; 5905 uint32_t temp;
5353 5906
5354 if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { 5907 if (hw->mac_type == e1000_ich8lan)
5908 return;
5909
5910 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
5355 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); 5911 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5356 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); 5912 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5913 E1000_WRITE_FLUSH(hw);
5357 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); 5914 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
5915 E1000_WRITE_FLUSH(hw);
5358 } else { 5916 } else {
5359 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); 5917 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
5918 E1000_WRITE_FLUSH(hw);
5360 } 5919 }
5361} 5920}
5362 5921
@@ -5373,6 +5932,9 @@ e1000_clear_vfta(struct e1000_hw *hw)
5373 uint32_t vfta_offset = 0; 5932 uint32_t vfta_offset = 0;
5374 uint32_t vfta_bit_in_reg = 0; 5933 uint32_t vfta_bit_in_reg = 0;
5375 5934
5935 if (hw->mac_type == e1000_ich8lan)
5936 return;
5937
5376 if (hw->mac_type == e1000_82573) { 5938 if (hw->mac_type == e1000_82573) {
5377 if (hw->mng_cookie.vlan_id != 0) { 5939 if (hw->mng_cookie.vlan_id != 0) {
5378 /* The VFTA is a 4096b bit-field, each identifying a single VLAN 5940 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
@@ -5392,6 +5954,7 @@ e1000_clear_vfta(struct e1000_hw *hw)
5392 * manageability unit */ 5954 * manageability unit */
5393 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; 5955 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
5394 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); 5956 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
5957 E1000_WRITE_FLUSH(hw);
5395 } 5958 }
5396} 5959}
5397 5960
@@ -5421,9 +5984,18 @@ e1000_id_led_init(struct e1000_hw * hw)
5421 DEBUGOUT("EEPROM Read Error\n"); 5984 DEBUGOUT("EEPROM Read Error\n");
5422 return -E1000_ERR_EEPROM; 5985 return -E1000_ERR_EEPROM;
5423 } 5986 }
5424 if((eeprom_data== ID_LED_RESERVED_0000) || 5987
5425 (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; 5988 if ((hw->mac_type == e1000_82573) &&
5426 for(i = 0; i < 4; i++) { 5989 (eeprom_data == ID_LED_RESERVED_82573))
5990 eeprom_data = ID_LED_DEFAULT_82573;
5991 else if ((eeprom_data == ID_LED_RESERVED_0000) ||
5992 (eeprom_data == ID_LED_RESERVED_FFFF)) {
5993 if (hw->mac_type == e1000_ich8lan)
5994 eeprom_data = ID_LED_DEFAULT_ICH8LAN;
5995 else
5996 eeprom_data = ID_LED_DEFAULT;
5997 }
5998 for (i = 0; i < 4; i++) {
5427 temp = (eeprom_data >> (i << 2)) & led_mask; 5999 temp = (eeprom_data >> (i << 2)) & led_mask;
5428 switch(temp) { 6000 switch(temp) {
5429 case ID_LED_ON1_DEF2: 6001 case ID_LED_ON1_DEF2:
@@ -5519,6 +6091,44 @@ e1000_setup_led(struct e1000_hw *hw)
5519} 6091}
5520 6092
5521/****************************************************************************** 6093/******************************************************************************
6094 * Used on 82571 and later Si that has LED blink bits.
6095 * Callers must use their own timer and should have already called
6096 * e1000_id_led_init()
6097 * Call e1000_cleanup led() to stop blinking
6098 *
6099 * hw - Struct containing variables accessed by shared code
6100 *****************************************************************************/
6101int32_t
6102e1000_blink_led_start(struct e1000_hw *hw)
6103{
6104 int16_t i;
6105 uint32_t ledctl_blink = 0;
6106
6107 DEBUGFUNC("e1000_id_led_blink_on");
6108
6109 if (hw->mac_type < e1000_82571) {
6110 /* Nothing to do */
6111 return E1000_SUCCESS;
6112 }
6113 if (hw->media_type == e1000_media_type_fiber) {
6114 /* always blink LED0 for PCI-E fiber */
6115 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6116 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6117 } else {
6118 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6119 ledctl_blink = hw->ledctl_mode2;
6120 for (i=0; i < 4; i++)
6121 if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6122 E1000_LEDCTL_MODE_LED_ON)
6123 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6124 }
6125
6126 E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
6127
6128 return E1000_SUCCESS;
6129}
6130
6131/******************************************************************************
5522 * Restores the saved state of the SW controlable LED. 6132 * Restores the saved state of the SW controlable LED.
5523 * 6133 *
5524 * hw - Struct containing variables accessed by shared code 6134 * hw - Struct containing variables accessed by shared code
@@ -5548,6 +6158,10 @@ e1000_cleanup_led(struct e1000_hw *hw)
5548 return ret_val; 6158 return ret_val;
5549 /* Fall Through */ 6159 /* Fall Through */
5550 default: 6160 default:
6161 if (hw->phy_type == e1000_phy_ife) {
6162 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6163 break;
6164 }
5551 /* Restore LEDCTL settings */ 6165 /* Restore LEDCTL settings */
5552 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); 6166 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
5553 break; 6167 break;
@@ -5592,7 +6206,10 @@ e1000_led_on(struct e1000_hw *hw)
5592 /* Clear SW Defineable Pin 0 to turn on the LED */ 6206 /* Clear SW Defineable Pin 0 to turn on the LED */
5593 ctrl &= ~E1000_CTRL_SWDPIN0; 6207 ctrl &= ~E1000_CTRL_SWDPIN0;
5594 ctrl |= E1000_CTRL_SWDPIO0; 6208 ctrl |= E1000_CTRL_SWDPIO0;
5595 } else if(hw->media_type == e1000_media_type_copper) { 6209 } else if (hw->phy_type == e1000_phy_ife) {
6210 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6211 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6212 } else if (hw->media_type == e1000_media_type_copper) {
5596 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); 6213 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
5597 return E1000_SUCCESS; 6214 return E1000_SUCCESS;
5598 } 6215 }
@@ -5640,7 +6257,10 @@ e1000_led_off(struct e1000_hw *hw)
5640 /* Set SW Defineable Pin 0 to turn off the LED */ 6257 /* Set SW Defineable Pin 0 to turn off the LED */
5641 ctrl |= E1000_CTRL_SWDPIN0; 6258 ctrl |= E1000_CTRL_SWDPIN0;
5642 ctrl |= E1000_CTRL_SWDPIO0; 6259 ctrl |= E1000_CTRL_SWDPIO0;
5643 } else if(hw->media_type == e1000_media_type_copper) { 6260 } else if (hw->phy_type == e1000_phy_ife) {
6261 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6262 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6263 } else if (hw->media_type == e1000_media_type_copper) {
5644 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); 6264 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
5645 return E1000_SUCCESS; 6265 return E1000_SUCCESS;
5646 } 6266 }
@@ -5678,12 +6298,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
5678 temp = E1000_READ_REG(hw, XOFFRXC); 6298 temp = E1000_READ_REG(hw, XOFFRXC);
5679 temp = E1000_READ_REG(hw, XOFFTXC); 6299 temp = E1000_READ_REG(hw, XOFFTXC);
5680 temp = E1000_READ_REG(hw, FCRUC); 6300 temp = E1000_READ_REG(hw, FCRUC);
6301
6302 if (hw->mac_type != e1000_ich8lan) {
5681 temp = E1000_READ_REG(hw, PRC64); 6303 temp = E1000_READ_REG(hw, PRC64);
5682 temp = E1000_READ_REG(hw, PRC127); 6304 temp = E1000_READ_REG(hw, PRC127);
5683 temp = E1000_READ_REG(hw, PRC255); 6305 temp = E1000_READ_REG(hw, PRC255);
5684 temp = E1000_READ_REG(hw, PRC511); 6306 temp = E1000_READ_REG(hw, PRC511);
5685 temp = E1000_READ_REG(hw, PRC1023); 6307 temp = E1000_READ_REG(hw, PRC1023);
5686 temp = E1000_READ_REG(hw, PRC1522); 6308 temp = E1000_READ_REG(hw, PRC1522);
6309 }
6310
5687 temp = E1000_READ_REG(hw, GPRC); 6311 temp = E1000_READ_REG(hw, GPRC);
5688 temp = E1000_READ_REG(hw, BPRC); 6312 temp = E1000_READ_REG(hw, BPRC);
5689 temp = E1000_READ_REG(hw, MPRC); 6313 temp = E1000_READ_REG(hw, MPRC);
@@ -5703,12 +6327,16 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
5703 temp = E1000_READ_REG(hw, TOTH); 6327 temp = E1000_READ_REG(hw, TOTH);
5704 temp = E1000_READ_REG(hw, TPR); 6328 temp = E1000_READ_REG(hw, TPR);
5705 temp = E1000_READ_REG(hw, TPT); 6329 temp = E1000_READ_REG(hw, TPT);
6330
6331 if (hw->mac_type != e1000_ich8lan) {
5706 temp = E1000_READ_REG(hw, PTC64); 6332 temp = E1000_READ_REG(hw, PTC64);
5707 temp = E1000_READ_REG(hw, PTC127); 6333 temp = E1000_READ_REG(hw, PTC127);
5708 temp = E1000_READ_REG(hw, PTC255); 6334 temp = E1000_READ_REG(hw, PTC255);
5709 temp = E1000_READ_REG(hw, PTC511); 6335 temp = E1000_READ_REG(hw, PTC511);
5710 temp = E1000_READ_REG(hw, PTC1023); 6336 temp = E1000_READ_REG(hw, PTC1023);
5711 temp = E1000_READ_REG(hw, PTC1522); 6337 temp = E1000_READ_REG(hw, PTC1522);
6338 }
6339
5712 temp = E1000_READ_REG(hw, MPTC); 6340 temp = E1000_READ_REG(hw, MPTC);
5713 temp = E1000_READ_REG(hw, BPTC); 6341 temp = E1000_READ_REG(hw, BPTC);
5714 6342
@@ -5731,6 +6359,9 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw)
5731 6359
5732 temp = E1000_READ_REG(hw, IAC); 6360 temp = E1000_READ_REG(hw, IAC);
5733 temp = E1000_READ_REG(hw, ICRXOC); 6361 temp = E1000_READ_REG(hw, ICRXOC);
6362
6363 if (hw->mac_type == e1000_ich8lan) return;
6364
5734 temp = E1000_READ_REG(hw, ICRXPTC); 6365 temp = E1000_READ_REG(hw, ICRXPTC);
5735 temp = E1000_READ_REG(hw, ICRXATC); 6366 temp = E1000_READ_REG(hw, ICRXATC);
5736 temp = E1000_READ_REG(hw, ICTXPTC); 6367 temp = E1000_READ_REG(hw, ICTXPTC);
@@ -5911,6 +6542,7 @@ e1000_get_bus_info(struct e1000_hw *hw)
5911 hw->bus_width = e1000_bus_width_pciex_1; 6542 hw->bus_width = e1000_bus_width_pciex_1;
5912 break; 6543 break;
5913 case e1000_82571: 6544 case e1000_82571:
6545 case e1000_ich8lan:
5914 case e1000_80003es2lan: 6546 case e1000_80003es2lan:
5915 hw->bus_type = e1000_bus_type_pci_express; 6547 hw->bus_type = e1000_bus_type_pci_express;
5916 hw->bus_speed = e1000_bus_speed_2500; 6548 hw->bus_speed = e1000_bus_speed_2500;
@@ -5948,8 +6580,6 @@ e1000_get_bus_info(struct e1000_hw *hw)
5948 break; 6580 break;
5949 } 6581 }
5950} 6582}
5951
5952#if 0
5953/****************************************************************************** 6583/******************************************************************************
5954 * Reads a value from one of the devices registers using port I/O (as opposed 6584 * Reads a value from one of the devices registers using port I/O (as opposed
5955 * memory mapped I/O). Only 82544 and newer devices support port I/O. 6585 * memory mapped I/O). Only 82544 and newer devices support port I/O.
@@ -5967,7 +6597,6 @@ e1000_read_reg_io(struct e1000_hw *hw,
5967 e1000_io_write(hw, io_addr, offset); 6597 e1000_io_write(hw, io_addr, offset);
5968 return e1000_io_read(hw, io_data); 6598 return e1000_io_read(hw, io_data);
5969} 6599}
5970#endif /* 0 */
5971 6600
5972/****************************************************************************** 6601/******************************************************************************
5973 * Writes a value to one of the devices registers using port I/O (as opposed to 6602 * Writes a value to one of the devices registers using port I/O (as opposed to
@@ -6012,8 +6641,6 @@ e1000_get_cable_length(struct e1000_hw *hw,
6012{ 6641{
6013 int32_t ret_val; 6642 int32_t ret_val;
6014 uint16_t agc_value = 0; 6643 uint16_t agc_value = 0;
6015 uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
6016 uint16_t max_agc = 0;
6017 uint16_t i, phy_data; 6644 uint16_t i, phy_data;
6018 uint16_t cable_length; 6645 uint16_t cable_length;
6019 6646
@@ -6086,6 +6713,8 @@ e1000_get_cable_length(struct e1000_hw *hw,
6086 break; 6713 break;
6087 } 6714 }
6088 } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ 6715 } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
6716 uint16_t cur_agc_value;
6717 uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
6089 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = 6718 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6090 {IGP01E1000_PHY_AGC_A, 6719 {IGP01E1000_PHY_AGC_A,
6091 IGP01E1000_PHY_AGC_B, 6720 IGP01E1000_PHY_AGC_B,
@@ -6098,23 +6727,23 @@ e1000_get_cable_length(struct e1000_hw *hw,
6098 if(ret_val) 6727 if(ret_val)
6099 return ret_val; 6728 return ret_val;
6100 6729
6101 cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; 6730 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
6102 6731
6103 /* Array bound check. */ 6732 /* Value bound check. */
6104 if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || 6733 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6105 (cur_agc == 0)) 6734 (cur_agc_value == 0))
6106 return -E1000_ERR_PHY; 6735 return -E1000_ERR_PHY;
6107 6736
6108 agc_value += cur_agc; 6737 agc_value += cur_agc_value;
6109 6738
6110 /* Update minimal AGC value. */ 6739 /* Update minimal AGC value. */
6111 if(min_agc > cur_agc) 6740 if (min_agc_value > cur_agc_value)
6112 min_agc = cur_agc; 6741 min_agc_value = cur_agc_value;
6113 } 6742 }
6114 6743
6115 /* Remove the minimal AGC result for length < 50m */ 6744 /* Remove the minimal AGC result for length < 50m */
6116 if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { 6745 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6117 agc_value -= min_agc; 6746 agc_value -= min_agc_value;
6118 6747
6119 /* Get the average length of the remaining 3 channels */ 6748 /* Get the average length of the remaining 3 channels */
6120 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); 6749 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
@@ -6130,7 +6759,10 @@ e1000_get_cable_length(struct e1000_hw *hw,
6130 IGP01E1000_AGC_RANGE) : 0; 6759 IGP01E1000_AGC_RANGE) : 0;
6131 *max_length = e1000_igp_cable_length_table[agc_value] + 6760 *max_length = e1000_igp_cable_length_table[agc_value] +
6132 IGP01E1000_AGC_RANGE; 6761 IGP01E1000_AGC_RANGE;
6133 } else if (hw->phy_type == e1000_phy_igp_2) { 6762 } else if (hw->phy_type == e1000_phy_igp_2 ||
6763 hw->phy_type == e1000_phy_igp_3) {
6764 uint16_t cur_agc_index, max_agc_index = 0;
6765 uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
6134 uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = 6766 uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6135 {IGP02E1000_PHY_AGC_A, 6767 {IGP02E1000_PHY_AGC_A,
6136 IGP02E1000_PHY_AGC_B, 6768 IGP02E1000_PHY_AGC_B,
@@ -6145,19 +6777,27 @@ e1000_get_cable_length(struct e1000_hw *hw,
6145 /* Getting bits 15:9, which represent the combination of course and 6777 /* Getting bits 15:9, which represent the combination of course and
6146 * fine gain values. The result is a number that can be put into 6778 * fine gain values. The result is a number that can be put into
6147 * the lookup table to obtain the approximate cable length. */ 6779 * the lookup table to obtain the approximate cable length. */
6148 cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & 6780 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6149 IGP02E1000_AGC_LENGTH_MASK; 6781 IGP02E1000_AGC_LENGTH_MASK;
6150 6782
6151 /* Remove min & max AGC values from calculation. */ 6783 /* Array index bound check. */
6152 if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc]) 6784 if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6153 min_agc = cur_agc; 6785 (cur_agc_index == 0))
6154 if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc]) 6786 return -E1000_ERR_PHY;
6155 max_agc = cur_agc;
6156 6787
6157 agc_value += e1000_igp_2_cable_length_table[cur_agc]; 6788 /* Remove min & max AGC values from calculation. */
6789 if (e1000_igp_2_cable_length_table[min_agc_index] >
6790 e1000_igp_2_cable_length_table[cur_agc_index])
6791 min_agc_index = cur_agc_index;
6792 if (e1000_igp_2_cable_length_table[max_agc_index] <
6793 e1000_igp_2_cable_length_table[cur_agc_index])
6794 max_agc_index = cur_agc_index;
6795
6796 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
6158 } 6797 }
6159 6798
6160 agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]); 6799 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6800 e1000_igp_2_cable_length_table[max_agc_index]);
6161 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); 6801 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6162 6802
6163 /* Calculate cable length with the error range of +/- 10 meters. */ 6803 /* Calculate cable length with the error range of +/- 10 meters. */
@@ -6203,7 +6843,8 @@ e1000_check_polarity(struct e1000_hw *hw,
6203 return ret_val; 6843 return ret_val;
6204 *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> 6844 *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
6205 M88E1000_PSSR_REV_POLARITY_SHIFT; 6845 M88E1000_PSSR_REV_POLARITY_SHIFT;
6206 } else if(hw->phy_type == e1000_phy_igp || 6846 } else if (hw->phy_type == e1000_phy_igp ||
6847 hw->phy_type == e1000_phy_igp_3 ||
6207 hw->phy_type == e1000_phy_igp_2) { 6848 hw->phy_type == e1000_phy_igp_2) {
6208 /* Read the Status register to check the speed */ 6849 /* Read the Status register to check the speed */
6209 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, 6850 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
@@ -6229,6 +6870,13 @@ e1000_check_polarity(struct e1000_hw *hw,
6229 * 100 Mbps this bit is always 0) */ 6870 * 100 Mbps this bit is always 0) */
6230 *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; 6871 *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
6231 } 6872 }
6873 } else if (hw->phy_type == e1000_phy_ife) {
6874 ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6875 &phy_data);
6876 if (ret_val)
6877 return ret_val;
6878 *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
6879 IFE_PESC_POLARITY_REVERSED_SHIFT;
6232 } 6880 }
6233 return E1000_SUCCESS; 6881 return E1000_SUCCESS;
6234} 6882}
@@ -6256,7 +6904,8 @@ e1000_check_downshift(struct e1000_hw *hw)
6256 6904
6257 DEBUGFUNC("e1000_check_downshift"); 6905 DEBUGFUNC("e1000_check_downshift");
6258 6906
6259 if(hw->phy_type == e1000_phy_igp || 6907 if (hw->phy_type == e1000_phy_igp ||
6908 hw->phy_type == e1000_phy_igp_3 ||
6260 hw->phy_type == e1000_phy_igp_2) { 6909 hw->phy_type == e1000_phy_igp_2) {
6261 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, 6910 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6262 &phy_data); 6911 &phy_data);
@@ -6273,6 +6922,9 @@ e1000_check_downshift(struct e1000_hw *hw)
6273 6922
6274 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> 6923 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6275 M88E1000_PSSR_DOWNSHIFT_SHIFT; 6924 M88E1000_PSSR_DOWNSHIFT_SHIFT;
6925 } else if (hw->phy_type == e1000_phy_ife) {
6926 /* e1000_phy_ife supports 10/100 speed only */
6927 hw->speed_downgraded = FALSE;
6276 } 6928 }
6277 6929
6278 return E1000_SUCCESS; 6930 return E1000_SUCCESS;
@@ -6317,7 +6969,9 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw,
6317 6969
6318 if(speed == SPEED_1000) { 6970 if(speed == SPEED_1000) {
6319 6971
6320 e1000_get_cable_length(hw, &min_length, &max_length); 6972 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
6973 if (ret_val)
6974 return ret_val;
6321 6975
6322 if((hw->dsp_config_state == e1000_dsp_config_enabled) && 6976 if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
6323 min_length >= e1000_igp_cable_length_50) { 6977 min_length >= e1000_igp_cable_length_50) {
@@ -6525,20 +7179,27 @@ static int32_t
6525e1000_set_d3_lplu_state(struct e1000_hw *hw, 7179e1000_set_d3_lplu_state(struct e1000_hw *hw,
6526 boolean_t active) 7180 boolean_t active)
6527{ 7181{
7182 uint32_t phy_ctrl = 0;
6528 int32_t ret_val; 7183 int32_t ret_val;
6529 uint16_t phy_data; 7184 uint16_t phy_data;
6530 DEBUGFUNC("e1000_set_d3_lplu_state"); 7185 DEBUGFUNC("e1000_set_d3_lplu_state");
6531 7186
6532 if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) 7187 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7188 && hw->phy_type != e1000_phy_igp_3)
6533 return E1000_SUCCESS; 7189 return E1000_SUCCESS;
6534 7190
6535 /* During driver activity LPLU should not be used or it will attain link 7191 /* During driver activity LPLU should not be used or it will attain link
6536 * from the lowest speeds starting from 10Mbps. The capability is used for 7192 * from the lowest speeds starting from 10Mbps. The capability is used for
6537 * Dx transitions and states */ 7193 * Dx transitions and states */
6538 if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { 7194 if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
6539 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); 7195 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
6540 if(ret_val) 7196 if (ret_val)
6541 return ret_val; 7197 return ret_val;
7198 } else if (hw->mac_type == e1000_ich8lan) {
7199 /* MAC writes into PHY register based on the state transition
7200 * and start auto-negotiation. SW driver can overwrite the settings
7201 * in CSR PHY power control E1000_PHY_CTRL register. */
7202 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
6542 } else { 7203 } else {
6543 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 7204 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
6544 if(ret_val) 7205 if(ret_val)
@@ -6553,11 +7214,16 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
6553 if(ret_val) 7214 if(ret_val)
6554 return ret_val; 7215 return ret_val;
6555 } else { 7216 } else {
7217 if (hw->mac_type == e1000_ich8lan) {
7218 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7219 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7220 } else {
6556 phy_data &= ~IGP02E1000_PM_D3_LPLU; 7221 phy_data &= ~IGP02E1000_PM_D3_LPLU;
6557 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, 7222 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
6558 phy_data); 7223 phy_data);
6559 if (ret_val) 7224 if (ret_val)
6560 return ret_val; 7225 return ret_val;
7226 }
6561 } 7227 }
6562 7228
6563 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during 7229 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
@@ -6593,17 +7259,22 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
6593 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { 7259 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
6594 7260
6595 if(hw->mac_type == e1000_82541_rev_2 || 7261 if(hw->mac_type == e1000_82541_rev_2 ||
6596 hw->mac_type == e1000_82547_rev_2) { 7262 hw->mac_type == e1000_82547_rev_2) {
6597 phy_data |= IGP01E1000_GMII_FLEX_SPD; 7263 phy_data |= IGP01E1000_GMII_FLEX_SPD;
6598 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); 7264 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
6599 if(ret_val) 7265 if(ret_val)
6600 return ret_val; 7266 return ret_val;
6601 } else { 7267 } else {
7268 if (hw->mac_type == e1000_ich8lan) {
7269 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7270 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7271 } else {
6602 phy_data |= IGP02E1000_PM_D3_LPLU; 7272 phy_data |= IGP02E1000_PM_D3_LPLU;
6603 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, 7273 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
6604 phy_data); 7274 phy_data);
6605 if (ret_val) 7275 if (ret_val)
6606 return ret_val; 7276 return ret_val;
7277 }
6607 } 7278 }
6608 7279
6609 /* When LPLU is enabled we should disable SmartSpeed */ 7280 /* When LPLU is enabled we should disable SmartSpeed */
@@ -6638,6 +7309,7 @@ static int32_t
6638e1000_set_d0_lplu_state(struct e1000_hw *hw, 7309e1000_set_d0_lplu_state(struct e1000_hw *hw,
6639 boolean_t active) 7310 boolean_t active)
6640{ 7311{
7312 uint32_t phy_ctrl = 0;
6641 int32_t ret_val; 7313 int32_t ret_val;
6642 uint16_t phy_data; 7314 uint16_t phy_data;
6643 DEBUGFUNC("e1000_set_d0_lplu_state"); 7315 DEBUGFUNC("e1000_set_d0_lplu_state");
@@ -6645,15 +7317,24 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
6645 if(hw->mac_type <= e1000_82547_rev_2) 7317 if(hw->mac_type <= e1000_82547_rev_2)
6646 return E1000_SUCCESS; 7318 return E1000_SUCCESS;
6647 7319
7320 if (hw->mac_type == e1000_ich8lan) {
7321 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7322 } else {
6648 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 7323 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
6649 if(ret_val) 7324 if(ret_val)
6650 return ret_val; 7325 return ret_val;
7326 }
6651 7327
6652 if (!active) { 7328 if (!active) {
7329 if (hw->mac_type == e1000_ich8lan) {
7330 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7331 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7332 } else {
6653 phy_data &= ~IGP02E1000_PM_D0_LPLU; 7333 phy_data &= ~IGP02E1000_PM_D0_LPLU;
6654 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 7334 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
6655 if (ret_val) 7335 if (ret_val)
6656 return ret_val; 7336 return ret_val;
7337 }
6657 7338
6658 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during 7339 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
6659 * Dx states where the power conservation is most important. During 7340 * Dx states where the power conservation is most important. During
@@ -6686,10 +7367,15 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
6686 7367
6687 } else { 7368 } else {
6688 7369
7370 if (hw->mac_type == e1000_ich8lan) {
7371 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7372 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7373 } else {
6689 phy_data |= IGP02E1000_PM_D0_LPLU; 7374 phy_data |= IGP02E1000_PM_D0_LPLU;
6690 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 7375 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
6691 if (ret_val) 7376 if (ret_val)
6692 return ret_val; 7377 return ret_val;
7378 }
6693 7379
6694 /* When LPLU is enabled we should disable SmartSpeed */ 7380 /* When LPLU is enabled we should disable SmartSpeed */
6695 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); 7381 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
@@ -6928,8 +7614,10 @@ e1000_mng_write_cmd_header(struct e1000_hw * hw,
6928 7614
6929 length >>= 2; 7615 length >>= 2;
6930 /* The device driver writes the relevant command block into the ram area. */ 7616 /* The device driver writes the relevant command block into the ram area. */
6931 for (i = 0; i < length; i++) 7617 for (i = 0; i < length; i++) {
6932 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); 7618 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
7619 E1000_WRITE_FLUSH(hw);
7620 }
6933 7621
6934 return E1000_SUCCESS; 7622 return E1000_SUCCESS;
6935} 7623}
@@ -6961,15 +7649,18 @@ e1000_mng_write_commit(
6961 * returns - TRUE when the mode is IAMT or FALSE. 7649 * returns - TRUE when the mode is IAMT or FALSE.
6962 ****************************************************************************/ 7650 ****************************************************************************/
6963boolean_t 7651boolean_t
6964e1000_check_mng_mode( 7652e1000_check_mng_mode(struct e1000_hw *hw)
6965 struct e1000_hw *hw)
6966{ 7653{
6967 uint32_t fwsm; 7654 uint32_t fwsm;
6968 7655
6969 fwsm = E1000_READ_REG(hw, FWSM); 7656 fwsm = E1000_READ_REG(hw, FWSM);
6970 7657
6971 if((fwsm & E1000_FWSM_MODE_MASK) == 7658 if (hw->mac_type == e1000_ich8lan) {
6972 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) 7659 if ((fwsm & E1000_FWSM_MODE_MASK) ==
7660 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7661 return TRUE;
7662 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7663 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
6973 return TRUE; 7664 return TRUE;
6974 7665
6975 return FALSE; 7666 return FALSE;
@@ -7209,7 +7900,6 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7209 E1000_WRITE_REG(hw, CTRL, ctrl); 7900 E1000_WRITE_REG(hw, CTRL, ctrl);
7210} 7901}
7211 7902
7212#if 0
7213/*************************************************************************** 7903/***************************************************************************
7214 * 7904 *
7215 * Enables PCI-Express master access. 7905 * Enables PCI-Express master access.
@@ -7233,7 +7923,6 @@ e1000_enable_pciex_master(struct e1000_hw *hw)
7233 ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE; 7923 ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
7234 E1000_WRITE_REG(hw, CTRL, ctrl); 7924 E1000_WRITE_REG(hw, CTRL, ctrl);
7235} 7925}
7236#endif /* 0 */
7237 7926
7238/******************************************************************************* 7927/*******************************************************************************
7239 * 7928 *
@@ -7299,8 +7988,10 @@ e1000_get_auto_rd_done(struct e1000_hw *hw)
7299 case e1000_82572: 7988 case e1000_82572:
7300 case e1000_82573: 7989 case e1000_82573:
7301 case e1000_80003es2lan: 7990 case e1000_80003es2lan:
7302 while(timeout) { 7991 case e1000_ich8lan:
7303 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; 7992 while (timeout) {
7993 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
7994 break;
7304 else msec_delay(1); 7995 else msec_delay(1);
7305 timeout--; 7996 timeout--;
7306 } 7997 }
@@ -7340,7 +8031,7 @@ e1000_get_phy_cfg_done(struct e1000_hw *hw)
7340 8031
7341 switch (hw->mac_type) { 8032 switch (hw->mac_type) {
7342 default: 8033 default:
7343 msec_delay(10); 8034 msec_delay_irq(10);
7344 break; 8035 break;
7345 case e1000_80003es2lan: 8036 case e1000_80003es2lan:
7346 /* Separate *_CFG_DONE_* bit for each port */ 8037 /* Separate *_CFG_DONE_* bit for each port */
@@ -7523,6 +8214,13 @@ int32_t
7523e1000_check_phy_reset_block(struct e1000_hw *hw) 8214e1000_check_phy_reset_block(struct e1000_hw *hw)
7524{ 8215{
7525 uint32_t manc = 0; 8216 uint32_t manc = 0;
8217 uint32_t fwsm = 0;
8218
8219 if (hw->mac_type == e1000_ich8lan) {
8220 fwsm = E1000_READ_REG(hw, FWSM);
8221 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8222 : E1000_BLK_PHY_RESET;
8223 }
7526 8224
7527 if (hw->mac_type > e1000_82547_rev_2) 8225 if (hw->mac_type > e1000_82547_rev_2)
7528 manc = E1000_READ_REG(hw, MANC); 8226 manc = E1000_READ_REG(hw, MANC);
@@ -7549,6 +8247,8 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw)
7549 if((fwsm & E1000_FWSM_MODE_MASK) != 0) 8247 if((fwsm & E1000_FWSM_MODE_MASK) != 0)
7550 return TRUE; 8248 return TRUE;
7551 break; 8249 break;
8250 case e1000_ich8lan:
8251 return TRUE;
7552 default: 8252 default:
7553 break; 8253 break;
7554 } 8254 }
@@ -7556,4 +8256,846 @@ e1000_arc_subsystem_valid(struct e1000_hw *hw)
7556} 8256}
7557 8257
7558 8258
8259/******************************************************************************
8260 * Configure PCI-Ex no-snoop
8261 *
8262 * hw - Struct containing variables accessed by shared code.
8263 * no_snoop - Bitmap of no-snoop events.
8264 *
8265 * returns: E1000_SUCCESS
8266 *
8267 *****************************************************************************/
8268int32_t
8269e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
8270{
8271 uint32_t gcr_reg = 0;
8272
8273 DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8274
8275 if (hw->bus_type == e1000_bus_type_unknown)
8276 e1000_get_bus_info(hw);
8277
8278 if (hw->bus_type != e1000_bus_type_pci_express)
8279 return E1000_SUCCESS;
8280
8281 if (no_snoop) {
8282 gcr_reg = E1000_READ_REG(hw, GCR);
8283 gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8284 gcr_reg |= no_snoop;
8285 E1000_WRITE_REG(hw, GCR, gcr_reg);
8286 }
8287 if (hw->mac_type == e1000_ich8lan) {
8288 uint32_t ctrl_ext;
8289
8290 E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
8291
8292 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
8293 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8294 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
8295 }
8296
8297 return E1000_SUCCESS;
8298}
8299
8300/***************************************************************************
8301 *
8302 * Get software semaphore FLAG bit (SWFLAG).
8303 * SWFLAG is used to synchronize the access to all shared resource between
8304 * SW, FW and HW.
8305 *
8306 * hw: Struct containing variables accessed by shared code
8307 *
8308 ***************************************************************************/
8309int32_t
8310e1000_get_software_flag(struct e1000_hw *hw)
8311{
8312 int32_t timeout = PHY_CFG_TIMEOUT;
8313 uint32_t extcnf_ctrl;
8314
8315 DEBUGFUNC("e1000_get_software_flag");
8316
8317 if (hw->mac_type == e1000_ich8lan) {
8318 while (timeout) {
8319 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8320 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8321 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8322
8323 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8324 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8325 break;
8326 msec_delay_irq(1);
8327 timeout--;
8328 }
8329
8330 if (!timeout) {
8331 DEBUGOUT("FW or HW locks the resource too long.\n");
8332 return -E1000_ERR_CONFIG;
8333 }
8334 }
8335
8336 return E1000_SUCCESS;
8337}
8338
8339/***************************************************************************
8340 *
8341 * Release software semaphore FLAG bit (SWFLAG).
8342 * SWFLAG is used to synchronize the access to all shared resource between
8343 * SW, FW and HW.
8344 *
8345 * hw: Struct containing variables accessed by shared code
8346 *
8347 ***************************************************************************/
8348void
8349e1000_release_software_flag(struct e1000_hw *hw)
8350{
8351 uint32_t extcnf_ctrl;
8352
8353 DEBUGFUNC("e1000_release_software_flag");
8354
8355 if (hw->mac_type == e1000_ich8lan) {
8356 extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
8357 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8358 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8359 }
8360
8361 return;
8362}
8363
8364/***************************************************************************
8365 *
8366 * Disable dynamic power down mode in ife PHY.
8367 * It can be used to workaround band-gap problem.
8368 *
8369 * hw: Struct containing variables accessed by shared code
8370 *
8371 ***************************************************************************/
8372int32_t
8373e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
8374{
8375 uint16_t phy_data;
8376 int32_t ret_val = E1000_SUCCESS;
8377
8378 DEBUGFUNC("e1000_ife_disable_dynamic_power_down");
8379
8380 if (hw->phy_type == e1000_phy_ife) {
8381 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
8382 if (ret_val)
8383 return ret_val;
8384
8385 phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
8386 ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
8387 }
8388
8389 return ret_val;
8390}
8391
8392/***************************************************************************
8393 *
8394 * Enable dynamic power down mode in ife PHY.
8395 * It can be used to workaround band-gap problem.
8396 *
8397 * hw: Struct containing variables accessed by shared code
8398 *
8399 ***************************************************************************/
8400int32_t
8401e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
8402{
8403 uint16_t phy_data;
8404 int32_t ret_val = E1000_SUCCESS;
8405
8406 DEBUGFUNC("e1000_ife_enable_dynamic_power_down");
8407
8408 if (hw->phy_type == e1000_phy_ife) {
8409 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
8410 if (ret_val)
8411 return ret_val;
8412
8413 phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
8414 ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
8415 }
8416
8417 return ret_val;
8418}
8419
8420/******************************************************************************
8421 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8422 * register.
8423 *
8424 * hw - Struct containing variables accessed by shared code
8425 * offset - offset of word in the EEPROM to read
8426 * data - word read from the EEPROM
8427 * words - number of words to read
8428 *****************************************************************************/
8429int32_t
8430e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8431 uint16_t *data)
8432{
8433 int32_t error = E1000_SUCCESS;
8434 uint32_t flash_bank = 0;
8435 uint32_t act_offset = 0;
8436 uint32_t bank_offset = 0;
8437 uint16_t word = 0;
8438 uint16_t i = 0;
8439
8440 /* We need to know which is the valid flash bank. In the event
8441 * that we didn't allocate eeprom_shadow_ram, we may not be
8442 * managing flash_bank. So it cannot be trusted and needs
8443 * to be updated with each read.
8444 */
8445 /* Value of bit 22 corresponds to the flash bank we're on. */
8446 flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8447
8448 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8449 bank_offset = flash_bank * (hw->flash_bank_size * 2);
8450
8451 error = e1000_get_software_flag(hw);
8452 if (error != E1000_SUCCESS)
8453 return error;
8454
8455 for (i = 0; i < words; i++) {
8456 if (hw->eeprom_shadow_ram != NULL &&
8457 hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
8458 data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8459 } else {
8460 /* The NVM part needs a byte offset, hence * 2 */
8461 act_offset = bank_offset + ((offset + i) * 2);
8462 error = e1000_read_ich8_word(hw, act_offset, &word);
8463 if (error != E1000_SUCCESS)
8464 break;
8465 data[i] = word;
8466 }
8467 }
8468
8469 e1000_release_software_flag(hw);
8470
8471 return error;
8472}
8473
8474/******************************************************************************
8475 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8476 * register. Actually, writes are written to the shadow ram cache in the hw
8477 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
8478 * the NVM, which occurs when the NVM checksum is updated.
8479 *
8480 * hw - Struct containing variables accessed by shared code
8481 * offset - offset of word in the EEPROM to write
8482 * words - number of words to write
8483 * data - words to write to the EEPROM
8484 *****************************************************************************/
8485int32_t
8486e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8487 uint16_t *data)
8488{
8489 uint32_t i = 0;
8490 int32_t error = E1000_SUCCESS;
8491
8492 error = e1000_get_software_flag(hw);
8493 if (error != E1000_SUCCESS)
8494 return error;
8495
8496 /* A driver can write to the NVM only if it has eeprom_shadow_ram
8497 * allocated. Subsequent reads to the modified words are read from
8498 * this cached structure as well. Writes will only go into this
8499 * cached structure unless it's followed by a call to
8500 * e1000_update_eeprom_checksum() where it will commit the changes
8501 * and clear the "modified" field.
8502 */
8503 if (hw->eeprom_shadow_ram != NULL) {
8504 for (i = 0; i < words; i++) {
8505 if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8506 hw->eeprom_shadow_ram[offset+i].modified = TRUE;
8507 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8508 } else {
8509 error = -E1000_ERR_EEPROM;
8510 break;
8511 }
8512 }
8513 } else {
8514 /* Drivers have the option to not allocate eeprom_shadow_ram as long
8515 * as they don't perform any NVM writes. An attempt in doing so
8516 * will result in this error.
8517 */
8518 error = -E1000_ERR_EEPROM;
8519 }
8520
8521 e1000_release_software_flag(hw);
8522
8523 return error;
8524}
8525
8526/******************************************************************************
8527 * This function does initial flash setup so that a new read/write/erase cycle
8528 * can be started.
8529 *
8530 * hw - The pointer to the hw structure
8531 ****************************************************************************/
8532int32_t
8533e1000_ich8_cycle_init(struct e1000_hw *hw)
8534{
8535 union ich8_hws_flash_status hsfsts;
8536 int32_t error = E1000_ERR_EEPROM;
8537 int32_t i = 0;
8538
8539 DEBUGFUNC("e1000_ich8_cycle_init");
8540
8541 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8542
8543 /* May be check the Flash Des Valid bit in Hw status */
8544 if (hsfsts.hsf_status.fldesvalid == 0) {
8545 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
8546 return error;
8547 }
8548
8549 /* Clear FCERR in Hw status by writing 1 */
8550 /* Clear DAEL in Hw status by writing a 1 */
8551 hsfsts.hsf_status.flcerr = 1;
8552 hsfsts.hsf_status.dael = 1;
8553
8554 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8555
8556 /* Either we should have a hardware SPI cycle in progress bit to check
8557 * against, in order to start a new cycle or FDONE bit should be changed
8558 * in the hardware so that it is 1 after harware reset, which can then be
8559 * used as an indication whether a cycle is in progress or has been
8560 * completed .. we should also have some software semaphore mechanism to
8561 * guard FDONE or the cycle in progress bit so that two threads access to
8562 * those bits can be sequentiallized or a way so that 2 threads dont
8563 * start the cycle at the same time */
8564
8565 if (hsfsts.hsf_status.flcinprog == 0) {
8566 /* There is no cycle running at present, so we can start a cycle */
8567 /* Begin by setting Flash Cycle Done. */
8568 hsfsts.hsf_status.flcdone = 1;
8569 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8570 error = E1000_SUCCESS;
8571 } else {
8572 /* otherwise poll for sometime so the current cycle has a chance
8573 * to end before giving up. */
8574 for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
8575 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8576 if (hsfsts.hsf_status.flcinprog == 0) {
8577 error = E1000_SUCCESS;
8578 break;
8579 }
8580 udelay(1);
8581 }
8582 if (error == E1000_SUCCESS) {
8583 /* Successful in waiting for previous cycle to timeout,
8584 * now set the Flash Cycle Done. */
8585 hsfsts.hsf_status.flcdone = 1;
8586 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8587 } else {
8588 DEBUGOUT("Flash controller busy, cannot get access");
8589 }
8590 }
8591 return error;
8592}
8593
8594/******************************************************************************
8595 * This function starts a flash cycle and waits for its completion
8596 *
8597 * hw - The pointer to the hw structure
8598 ****************************************************************************/
8599int32_t
8600e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
8601{
8602 union ich8_hws_flash_ctrl hsflctl;
8603 union ich8_hws_flash_status hsfsts;
8604 int32_t error = E1000_ERR_EEPROM;
8605 uint32_t i = 0;
8606
8607 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8608 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8609 hsflctl.hsf_ctrl.flcgo = 1;
8610 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8611
8612 /* wait till FDONE bit is set to 1 */
8613 do {
8614 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8615 if (hsfsts.hsf_status.flcdone == 1)
8616 break;
8617 udelay(1);
8618 i++;
8619 } while (i < timeout);
8620 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8621 error = E1000_SUCCESS;
8622 }
8623 return error;
8624}
8625
8626/******************************************************************************
8627 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8628 *
8629 * hw - The pointer to the hw structure
8630 * index - The index of the byte or word to read.
8631 * size - Size of data to read, 1=byte 2=word
8632 * data - Pointer to the word to store the value read.
8633 *****************************************************************************/
8634int32_t
8635e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
8636 uint32_t size, uint16_t* data)
8637{
8638 union ich8_hws_flash_status hsfsts;
8639 union ich8_hws_flash_ctrl hsflctl;
8640 uint32_t flash_linear_address;
8641 uint32_t flash_data = 0;
8642 int32_t error = -E1000_ERR_EEPROM;
8643 int32_t count = 0;
8644
8645 DEBUGFUNC("e1000_read_ich8_data");
8646
8647 if (size < 1 || size > 2 || data == 0x0 ||
8648 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8649 return error;
8650
8651 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8652 hw->flash_base_addr;
8653
8654 do {
8655 udelay(1);
8656 /* Steps */
8657 error = e1000_ich8_cycle_init(hw);
8658 if (error != E1000_SUCCESS)
8659 break;
8660
8661 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8662 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8663 hsflctl.hsf_ctrl.fldbcount = size - 1;
8664 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
8665 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8666
8667 /* Write the last 24 bits of index into Flash Linear address field in
8668 * Flash Address */
8669 /* TODO: TBD maybe check the index against the size of flash */
8670
8671 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8672
8673 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8674
8675 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8676 * sequence a few more times, else read in (shift in) the Flash Data0,
8677 * the order is least significant byte first msb to lsb */
8678 if (error == E1000_SUCCESS) {
8679 flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
8680 if (size == 1) {
8681 *data = (uint8_t)(flash_data & 0x000000FF);
8682 } else if (size == 2) {
8683 *data = (uint16_t)(flash_data & 0x0000FFFF);
8684 }
8685 break;
8686 } else {
8687 /* If we've gotten here, then things are probably completely hosed,
8688 * but if the error condition is detected, it won't hurt to give
8689 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8690 */
8691 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8692 if (hsfsts.hsf_status.flcerr == 1) {
8693 /* Repeat for some time before giving up. */
8694 continue;
8695 } else if (hsfsts.hsf_status.flcdone == 0) {
8696 DEBUGOUT("Timeout error - flash cycle did not complete.");
8697 break;
8698 }
8699 }
8700 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8701
8702 return error;
8703}
8704
8705/******************************************************************************
8706 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8707 *
8708 * hw - The pointer to the hw structure
8709 * index - The index of the byte/word to read.
8710 * size - Size of data to read, 1=byte 2=word
8711 * data - The byte(s) to write to the NVM.
8712 *****************************************************************************/
8713int32_t
8714e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
8715 uint16_t data)
8716{
8717 union ich8_hws_flash_status hsfsts;
8718 union ich8_hws_flash_ctrl hsflctl;
8719 uint32_t flash_linear_address;
8720 uint32_t flash_data = 0;
8721 int32_t error = -E1000_ERR_EEPROM;
8722 int32_t count = 0;
8723
8724 DEBUGFUNC("e1000_write_ich8_data");
8725
8726 if (size < 1 || size > 2 || data > size * 0xff ||
8727 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8728 return error;
8729
8730 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8731 hw->flash_base_addr;
8732
8733 do {
8734 udelay(1);
8735 /* Steps */
8736 error = e1000_ich8_cycle_init(hw);
8737 if (error != E1000_SUCCESS)
8738 break;
8739
8740 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8741 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8742 hsflctl.hsf_ctrl.fldbcount = size -1;
8743 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
8744 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8745
8746 /* Write the last 24 bits of index into Flash Linear address field in
8747 * Flash Address */
8748 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8749
8750 if (size == 1)
8751 flash_data = (uint32_t)data & 0x00FF;
8752 else
8753 flash_data = (uint32_t)data;
8754
8755 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
8756
8757 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8758 * sequence a few more times else done */
8759 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8760 if (error == E1000_SUCCESS) {
8761 break;
8762 } else {
8763 /* If we're here, then things are most likely completely hosed,
8764 * but if the error condition is detected, it won't hurt to give
8765 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8766 */
8767 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8768 if (hsfsts.hsf_status.flcerr == 1) {
8769 /* Repeat for some time before giving up. */
8770 continue;
8771 } else if (hsfsts.hsf_status.flcdone == 0) {
8772 DEBUGOUT("Timeout error - flash cycle did not complete.");
8773 break;
8774 }
8775 }
8776 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8777
8778 return error;
8779}
8780
8781/******************************************************************************
8782 * Reads a single byte from the NVM using the ICH8 flash access registers.
8783 *
8784 * hw - pointer to e1000_hw structure
8785 * index - The index of the byte to read.
8786 * data - Pointer to a byte to store the value read.
8787 *****************************************************************************/
8788int32_t
8789e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
8790{
8791 int32_t status = E1000_SUCCESS;
8792 uint16_t word = 0;
8793
8794 status = e1000_read_ich8_data(hw, index, 1, &word);
8795 if (status == E1000_SUCCESS) {
8796 *data = (uint8_t)word;
8797 }
8798
8799 return status;
8800}
8801
8802/******************************************************************************
8803 * Writes a single byte to the NVM using the ICH8 flash access registers.
8804 * Performs verification by reading back the value and then going through
8805 * a retry algorithm before giving up.
8806 *
8807 * hw - pointer to e1000_hw structure
8808 * index - The index of the byte to write.
8809 * byte - The byte to write to the NVM.
8810 *****************************************************************************/
8811int32_t
8812e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
8813{
8814 int32_t error = E1000_SUCCESS;
8815 int32_t program_retries;
8816 uint8_t temp_byte;
8817
8818 e1000_write_ich8_byte(hw, index, byte);
8819 udelay(100);
8820
8821 for (program_retries = 0; program_retries < 100; program_retries++) {
8822 e1000_read_ich8_byte(hw, index, &temp_byte);
8823 if (temp_byte == byte)
8824 break;
8825 udelay(10);
8826 e1000_write_ich8_byte(hw, index, byte);
8827 udelay(100);
8828 }
8829 if (program_retries == 100)
8830 error = E1000_ERR_EEPROM;
8831
8832 return error;
8833}
8834
8835/******************************************************************************
8836 * Writes a single byte to the NVM using the ICH8 flash access registers.
8837 *
8838 * hw - pointer to e1000_hw structure
8839 * index - The index of the byte to read.
8840 * data - The byte to write to the NVM.
8841 *****************************************************************************/
8842int32_t
8843e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
8844{
8845 int32_t status = E1000_SUCCESS;
8846 uint16_t word = (uint16_t)data;
8847
8848 status = e1000_write_ich8_data(hw, index, 1, word);
8849
8850 return status;
8851}
8852
8853/******************************************************************************
8854 * Reads a word from the NVM using the ICH8 flash access registers.
8855 *
8856 * hw - pointer to e1000_hw structure
8857 * index - The starting byte index of the word to read.
8858 * data - Pointer to a word to store the value read.
8859 *****************************************************************************/
8860int32_t
8861e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
8862{
8863 int32_t status = E1000_SUCCESS;
8864 status = e1000_read_ich8_data(hw, index, 2, data);
8865 return status;
8866}
8867
8868/******************************************************************************
8869 * Writes a word to the NVM using the ICH8 flash access registers.
8870 *
8871 * hw - pointer to e1000_hw structure
8872 * index - The starting byte index of the word to read.
8873 * data - The word to write to the NVM.
8874 *****************************************************************************/
8875int32_t
8876e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
8877{
8878 int32_t status = E1000_SUCCESS;
8879 status = e1000_write_ich8_data(hw, index, 2, data);
8880 return status;
8881}
8882
8883/******************************************************************************
8884 * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
8885 * segment N is 4096 * N + flash_reg_addr.
8886 *
8887 * hw - pointer to e1000_hw structure
8888 * segment - 0 for first segment, 1 for second segment, etc.
8889 *****************************************************************************/
8890int32_t
8891e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
8892{
8893 union ich8_hws_flash_status hsfsts;
8894 union ich8_hws_flash_ctrl hsflctl;
8895 uint32_t flash_linear_address;
8896 int32_t count = 0;
8897 int32_t error = E1000_ERR_EEPROM;
8898 int32_t iteration, seg_size;
8899 int32_t sector_size;
8900 int32_t j = 0;
8901 int32_t error_flag = 0;
8902
8903 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8904
8905 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8906 /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8907 * consecutive sectors. The start index for the nth Hw sector can be
8908 * calculated as = segment * 4096 + n * 256
8909 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8910 * The start index for the nth Hw sector can be calculated
8911 * as = segment * 4096
8912 * 10: Error condition
8913 * 11: The Hw sector size is much bigger than the size asked to
8914 * erase...error condition */
8915 if (hsfsts.hsf_status.berasesz == 0x0) {
8916 /* Hw sector size 256 */
8917 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
8918 iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
8919 } else if (hsfsts.hsf_status.berasesz == 0x1) {
8920 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
8921 iteration = 1;
8922 } else if (hsfsts.hsf_status.berasesz == 0x3) {
8923 sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
8924 iteration = 1;
8925 } else {
8926 return error;
8927 }
8928
8929 for (j = 0; j < iteration ; j++) {
8930 do {
8931 count++;
8932 /* Steps */
8933 error = e1000_ich8_cycle_init(hw);
8934 if (error != E1000_SUCCESS) {
8935 error_flag = 1;
8936 break;
8937 }
8938
8939 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8940 * Control */
8941 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8942 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
8943 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8944
8945 /* Write the last 24 bits of an index within the block into Flash
8946 * Linear address field in Flash Address. This probably needs to
8947 * be calculated here based off the on-chip segment size and the
8948 * software segment size assumed (4K) */
8949 /* TBD */
8950 flash_linear_address = segment * sector_size + j * seg_size;
8951 flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
8952 flash_linear_address += hw->flash_base_addr;
8953
8954 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8955
8956 error = e1000_ich8_flash_cycle(hw, 1000000);
8957 /* Check if FCERR is set to 1. If 1, clear it and try the whole
8958 * sequence a few more times else Done */
8959 if (error == E1000_SUCCESS) {
8960 break;
8961 } else {
8962 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8963 if (hsfsts.hsf_status.flcerr == 1) {
8964 /* repeat for some time before giving up */
8965 continue;
8966 } else if (hsfsts.hsf_status.flcdone == 0) {
8967 error_flag = 1;
8968 break;
8969 }
8970 }
8971 } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
8972 if (error_flag == 1)
8973 break;
8974 }
8975 if (error_flag != 1)
8976 error = E1000_SUCCESS;
8977 return error;
8978}
8979
8980/******************************************************************************
8981 *
8982 * Reverse duplex setting without breaking the link.
8983 *
8984 * hw: Struct containing variables accessed by shared code
8985 *
8986 *****************************************************************************/
8987int32_t
8988e1000_duplex_reversal(struct e1000_hw *hw)
8989{
8990 int32_t ret_val;
8991 uint16_t phy_data;
8992
8993 if (hw->phy_type != e1000_phy_igp_3)
8994 return E1000_SUCCESS;
8995
8996 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
8997 if (ret_val)
8998 return ret_val;
8999
9000 phy_data ^= MII_CR_FULL_DUPLEX;
9001
9002 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
9003 if (ret_val)
9004 return ret_val;
9005
9006 ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
9007 if (ret_val)
9008 return ret_val;
9009
9010 phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
9011 ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
9012
9013 return ret_val;
9014}
9015
9016int32_t
9017e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
9018 uint32_t cnf_base_addr, uint32_t cnf_size)
9019{
9020 uint32_t ret_val = E1000_SUCCESS;
9021 uint16_t word_addr, reg_data, reg_addr;
9022 uint16_t i;
9023
9024 /* cnf_base_addr is in DWORD */
9025 word_addr = (uint16_t)(cnf_base_addr << 1);
9026
9027 /* cnf_size is returned in size of dwords */
9028 for (i = 0; i < cnf_size; i++) {
9029 ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
9030 if (ret_val)
9031 return ret_val;
9032
9033 ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
9034 if (ret_val)
9035 return ret_val;
9036
9037 ret_val = e1000_get_software_flag(hw);
9038 if (ret_val != E1000_SUCCESS)
9039 return ret_val;
9040
9041 ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
9042
9043 e1000_release_software_flag(hw);
9044 }
9045
9046 return ret_val;
9047}
9048
9049
9050int32_t
9051e1000_init_lcd_from_nvm(struct e1000_hw *hw)
9052{
9053 uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
9054
9055 if (hw->phy_type != e1000_phy_igp_3)
9056 return E1000_SUCCESS;
9057
9058 /* Check if SW needs configure the PHY */
9059 reg_data = E1000_READ_REG(hw, FEXTNVM);
9060 if (!(reg_data & FEXTNVM_SW_CONFIG))
9061 return E1000_SUCCESS;
9062
9063 /* Wait for basic configuration completes before proceeding*/
9064 loop = 0;
9065 do {
9066 reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
9067 udelay(100);
9068 loop++;
9069 } while ((!reg_data) && (loop < 50));
9070
9071 /* Clear the Init Done bit for the next init event */
9072 reg_data = E1000_READ_REG(hw, STATUS);
9073 reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
9074 E1000_WRITE_REG(hw, STATUS, reg_data);
9075
9076 /* Make sure HW does not configure LCD from PHY extended configuration
9077 before SW configuration */
9078 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9079 if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
9080 reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
9081 cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
9082 cnf_size >>= 16;
9083 if (cnf_size) {
9084 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9085 cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
9086 /* cnf_base_addr is in DWORD */
9087 cnf_base_addr >>= 16;
9088
9089 /* Configure LCD from extended configuration region. */
9090 ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
9091 cnf_size);
9092 if (ret_val)
9093 return ret_val;
9094 }
9095 }
9096
9097 return E1000_SUCCESS;
9098}
9099
9100
7559 9101
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h
index 467c9ed944f8..f9341e3276b3 100644
--- a/drivers/net/e1000/e1000_hw.h
+++ b/drivers/net/e1000/e1000_hw.h
@@ -62,6 +62,7 @@ typedef enum {
62 e1000_82572, 62 e1000_82572,
63 e1000_82573, 63 e1000_82573,
64 e1000_80003es2lan, 64 e1000_80003es2lan,
65 e1000_ich8lan,
65 e1000_num_macs 66 e1000_num_macs
66} e1000_mac_type; 67} e1000_mac_type;
67 68
@@ -70,6 +71,7 @@ typedef enum {
70 e1000_eeprom_spi, 71 e1000_eeprom_spi,
71 e1000_eeprom_microwire, 72 e1000_eeprom_microwire,
72 e1000_eeprom_flash, 73 e1000_eeprom_flash,
74 e1000_eeprom_ich8,
73 e1000_eeprom_none, /* No NVM support */ 75 e1000_eeprom_none, /* No NVM support */
74 e1000_num_eeprom_types 76 e1000_num_eeprom_types
75} e1000_eeprom_type; 77} e1000_eeprom_type;
@@ -98,6 +100,11 @@ typedef enum {
98 e1000_fc_default = 0xFF 100 e1000_fc_default = 0xFF
99} e1000_fc_type; 101} e1000_fc_type;
100 102
103struct e1000_shadow_ram {
104 uint16_t eeprom_word;
105 boolean_t modified;
106};
107
101/* PCI bus types */ 108/* PCI bus types */
102typedef enum { 109typedef enum {
103 e1000_bus_type_unknown = 0, 110 e1000_bus_type_unknown = 0,
@@ -218,6 +225,8 @@ typedef enum {
218 e1000_phy_igp, 225 e1000_phy_igp,
219 e1000_phy_igp_2, 226 e1000_phy_igp_2,
220 e1000_phy_gg82563, 227 e1000_phy_gg82563,
228 e1000_phy_igp_3,
229 e1000_phy_ife,
221 e1000_phy_undefined = 0xFF 230 e1000_phy_undefined = 0xFF
222} e1000_phy_type; 231} e1000_phy_type;
223 232
@@ -313,6 +322,10 @@ int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy
313int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); 322int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
314int32_t e1000_phy_hw_reset(struct e1000_hw *hw); 323int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
315int32_t e1000_phy_reset(struct e1000_hw *hw); 324int32_t e1000_phy_reset(struct e1000_hw *hw);
325void e1000_phy_powerdown_workaround(struct e1000_hw *hw);
326int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
327int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
328int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
316int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); 329int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
317int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); 330int32_t e1000_validate_mdi_setting(struct e1000_hw *hw);
318int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data); 331int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
@@ -331,6 +344,7 @@ uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw);
331#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ 344#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */
332#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ 345#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */
333#define E1000_MNG_IAMT_MODE 0x3 346#define E1000_MNG_IAMT_MODE 0x3
347#define E1000_MNG_ICH_IAMT_MODE 0x2
334#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ 348#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */
335 349
336#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ 350#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */
@@ -388,6 +402,8 @@ int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num);
388int32_t e1000_read_mac_addr(struct e1000_hw * hw); 402int32_t e1000_read_mac_addr(struct e1000_hw * hw);
389int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); 403int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
390void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); 404void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
405void e1000_release_software_flag(struct e1000_hw *hw);
406int32_t e1000_get_software_flag(struct e1000_hw *hw);
391 407
392/* Filters (multicast, vlan, receive) */ 408/* Filters (multicast, vlan, receive) */
393void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count); 409void e1000_mc_addr_list_update(struct e1000_hw *hw, uint8_t * mc_addr_list, uint32_t mc_addr_count, uint32_t pad, uint32_t rar_used_count);
@@ -401,6 +417,7 @@ int32_t e1000_setup_led(struct e1000_hw *hw);
401int32_t e1000_cleanup_led(struct e1000_hw *hw); 417int32_t e1000_cleanup_led(struct e1000_hw *hw);
402int32_t e1000_led_on(struct e1000_hw *hw); 418int32_t e1000_led_on(struct e1000_hw *hw);
403int32_t e1000_led_off(struct e1000_hw *hw); 419int32_t e1000_led_off(struct e1000_hw *hw);
420int32_t e1000_blink_led_start(struct e1000_hw *hw);
404 421
405/* Adaptive IFS Functions */ 422/* Adaptive IFS Functions */
406 423
@@ -422,6 +439,29 @@ int32_t e1000_disable_pciex_master(struct e1000_hw *hw);
422int32_t e1000_get_software_semaphore(struct e1000_hw *hw); 439int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
423void e1000_release_software_semaphore(struct e1000_hw *hw); 440void e1000_release_software_semaphore(struct e1000_hw *hw);
424int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); 441int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
442int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
443
444int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index,
445 uint8_t *data);
446int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
447 uint8_t byte);
448int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
449 uint8_t byte);
450int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index,
451 uint16_t *data);
452int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
453 uint32_t size, uint16_t *data);
454int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
455 uint16_t words, uint16_t *data);
456int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
457 uint16_t words, uint16_t *data);
458int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment);
459
460
461#define E1000_READ_REG_IO(a, reg) \
462 e1000_read_reg_io((a), E1000_##reg)
463#define E1000_WRITE_REG_IO(a, reg, val) \
464 e1000_write_reg_io((a), E1000_##reg, val)
425 465
426/* PCI Device IDs */ 466/* PCI Device IDs */
427#define E1000_DEV_ID_82542 0x1000 467#define E1000_DEV_ID_82542 0x1000
@@ -446,6 +486,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
446#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D 486#define E1000_DEV_ID_82546EB_QUAD_COPPER 0x101D
447#define E1000_DEV_ID_82541EI 0x1013 487#define E1000_DEV_ID_82541EI 0x1013
448#define E1000_DEV_ID_82541EI_MOBILE 0x1018 488#define E1000_DEV_ID_82541EI_MOBILE 0x1018
489#define E1000_DEV_ID_82541ER_LOM 0x1014
449#define E1000_DEV_ID_82541ER 0x1078 490#define E1000_DEV_ID_82541ER 0x1078
450#define E1000_DEV_ID_82547GI 0x1075 491#define E1000_DEV_ID_82547GI 0x1075
451#define E1000_DEV_ID_82541GI 0x1076 492#define E1000_DEV_ID_82541GI 0x1076
@@ -457,18 +498,28 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
457#define E1000_DEV_ID_82546GB_PCIE 0x108A 498#define E1000_DEV_ID_82546GB_PCIE 0x108A
458#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 499#define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099
459#define E1000_DEV_ID_82547EI 0x1019 500#define E1000_DEV_ID_82547EI 0x1019
501#define E1000_DEV_ID_82547EI_MOBILE 0x101A
460#define E1000_DEV_ID_82571EB_COPPER 0x105E 502#define E1000_DEV_ID_82571EB_COPPER 0x105E
461#define E1000_DEV_ID_82571EB_FIBER 0x105F 503#define E1000_DEV_ID_82571EB_FIBER 0x105F
462#define E1000_DEV_ID_82571EB_SERDES 0x1060 504#define E1000_DEV_ID_82571EB_SERDES 0x1060
463#define E1000_DEV_ID_82572EI_COPPER 0x107D 505#define E1000_DEV_ID_82572EI_COPPER 0x107D
464#define E1000_DEV_ID_82572EI_FIBER 0x107E 506#define E1000_DEV_ID_82572EI_FIBER 0x107E
465#define E1000_DEV_ID_82572EI_SERDES 0x107F 507#define E1000_DEV_ID_82572EI_SERDES 0x107F
508#define E1000_DEV_ID_82572EI 0x10B9
466#define E1000_DEV_ID_82573E 0x108B 509#define E1000_DEV_ID_82573E 0x108B
467#define E1000_DEV_ID_82573E_IAMT 0x108C 510#define E1000_DEV_ID_82573E_IAMT 0x108C
468#define E1000_DEV_ID_82573L 0x109A 511#define E1000_DEV_ID_82573L 0x109A
469#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5 512#define E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 0x10B5
470#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096 513#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
471#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098 514#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
515#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
516#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
517
518#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
519#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
520#define E1000_DEV_ID_ICH8_IGP_C 0x104B
521#define E1000_DEV_ID_ICH8_IFE 0x104C
522#define E1000_DEV_ID_ICH8_IGP_M 0x104D
472 523
473 524
474#define NODE_ADDRESS_SIZE 6 525#define NODE_ADDRESS_SIZE 6
@@ -539,6 +590,14 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
539 E1000_IMS_RXSEQ | \ 590 E1000_IMS_RXSEQ | \
540 E1000_IMS_LSC) 591 E1000_IMS_LSC)
541 592
593/* Additional interrupts need to be handled for e1000_ich8lan:
594 DSW = The FW changed the status of the DISSW bit in FWSM
595 PHYINT = The LAN connected device generates an interrupt
596 EPRST = Manageability reset event */
597#define IMS_ICH8LAN_ENABLE_MASK (\
598 E1000_IMS_DSW | \
599 E1000_IMS_PHYINT | \
600 E1000_IMS_EPRST)
542 601
543/* Number of high/low register pairs in the RAR. The RAR (Receive Address 602/* Number of high/low register pairs in the RAR. The RAR (Receive Address
544 * Registers) holds the directed and multicast addresses that we monitor. We 603 * Registers) holds the directed and multicast addresses that we monitor. We
@@ -546,6 +605,7 @@ int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
546 * E1000_RAR_ENTRIES - 1 multicast addresses. 605 * E1000_RAR_ENTRIES - 1 multicast addresses.
547 */ 606 */
548#define E1000_RAR_ENTRIES 15 607#define E1000_RAR_ENTRIES 15
608#define E1000_RAR_ENTRIES_ICH8LAN 7
549 609
550#define MIN_NUMBER_OF_DESCRIPTORS 8 610#define MIN_NUMBER_OF_DESCRIPTORS 8
551#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 611#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8
@@ -767,6 +827,9 @@ struct e1000_data_desc {
767#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ 827#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */
768#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ 828#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
769 829
830#define E1000_NUM_UNICAST_ICH8LAN 7
831#define E1000_MC_TBL_SIZE_ICH8LAN 32
832
770 833
771/* Receive Address Register */ 834/* Receive Address Register */
772struct e1000_rar { 835struct e1000_rar {
@@ -776,6 +839,7 @@ struct e1000_rar {
776 839
777/* Number of entries in the Multicast Table Array (MTA). */ 840/* Number of entries in the Multicast Table Array (MTA). */
778#define E1000_NUM_MTA_REGISTERS 128 841#define E1000_NUM_MTA_REGISTERS 128
842#define E1000_NUM_MTA_REGISTERS_ICH8LAN 32
779 843
780/* IPv4 Address Table Entry */ 844/* IPv4 Address Table Entry */
781struct e1000_ipv4_at_entry { 845struct e1000_ipv4_at_entry {
@@ -786,6 +850,7 @@ struct e1000_ipv4_at_entry {
786/* Four wakeup IP addresses are supported */ 850/* Four wakeup IP addresses are supported */
787#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 851#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4
788#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 852#define E1000_IP4AT_SIZE E1000_WAKEUP_IP_ADDRESS_COUNT_MAX
853#define E1000_IP4AT_SIZE_ICH8LAN 3
789#define E1000_IP6AT_SIZE 1 854#define E1000_IP6AT_SIZE 1
790 855
791/* IPv6 Address Table Entry */ 856/* IPv6 Address Table Entry */
@@ -844,6 +909,7 @@ struct e1000_ffvt_entry {
844#define E1000_FLA 0x0001C /* Flash Access - RW */ 909#define E1000_FLA 0x0001C /* Flash Access - RW */
845#define E1000_MDIC 0x00020 /* MDI Control - RW */ 910#define E1000_MDIC 0x00020 /* MDI Control - RW */
846#define E1000_SCTL 0x00024 /* SerDes Control - RW */ 911#define E1000_SCTL 0x00024 /* SerDes Control - RW */
912#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */
847#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ 913#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */
848#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ 914#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */
849#define E1000_FCT 0x00030 /* Flow Control Type - RW */ 915#define E1000_FCT 0x00030 /* Flow Control Type - RW */
@@ -872,6 +938,8 @@ struct e1000_ffvt_entry {
872#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ 938#define E1000_LEDCTL 0x00E00 /* LED Control - RW */
873#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ 939#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */
874#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ 940#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */
941#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */
942#define FEXTNVM_SW_CONFIG 0x0001
875#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ 943#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */
876#define E1000_PBS 0x01008 /* Packet Buffer Size */ 944#define E1000_PBS 0x01008 /* Packet Buffer Size */
877#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ 945#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */
@@ -899,11 +967,13 @@ struct e1000_ffvt_entry {
899#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ 967#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */
900#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ 968#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */
901#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ 969#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */
902#define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ 970#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */
971#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */
903#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ 972#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */
904#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ 973#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */
905#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ 974#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */
906#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ 975#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */
976#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */
907#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ 977#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */
908#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ 978#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */
909#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ 979#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */
@@ -1050,6 +1120,7 @@ struct e1000_ffvt_entry {
1050#define E1000_82542_FLA E1000_FLA 1120#define E1000_82542_FLA E1000_FLA
1051#define E1000_82542_MDIC E1000_MDIC 1121#define E1000_82542_MDIC E1000_MDIC
1052#define E1000_82542_SCTL E1000_SCTL 1122#define E1000_82542_SCTL E1000_SCTL
1123#define E1000_82542_FEXTNVM E1000_FEXTNVM
1053#define E1000_82542_FCAL E1000_FCAL 1124#define E1000_82542_FCAL E1000_FCAL
1054#define E1000_82542_FCAH E1000_FCAH 1125#define E1000_82542_FCAH E1000_FCAH
1055#define E1000_82542_FCT E1000_FCT 1126#define E1000_82542_FCT E1000_FCT
@@ -1073,6 +1144,19 @@ struct e1000_ffvt_entry {
1073#define E1000_82542_RDLEN0 E1000_82542_RDLEN 1144#define E1000_82542_RDLEN0 E1000_82542_RDLEN
1074#define E1000_82542_RDH0 E1000_82542_RDH 1145#define E1000_82542_RDH0 E1000_82542_RDH
1075#define E1000_82542_RDT0 E1000_82542_RDT 1146#define E1000_82542_RDT0 E1000_82542_RDT
1147#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication
1148 * RX Control - RW */
1149#define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8))
1150#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */
1151#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */
1152#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */
1153#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */
1154#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */
1155#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */
1156#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */
1157#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */
1158#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */
1159#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */
1076#define E1000_82542_RDTR1 0x00130 1160#define E1000_82542_RDTR1 0x00130
1077#define E1000_82542_RDBAL1 0x00138 1161#define E1000_82542_RDBAL1 0x00138
1078#define E1000_82542_RDBAH1 0x0013C 1162#define E1000_82542_RDBAH1 0x0013C
@@ -1110,11 +1194,14 @@ struct e1000_ffvt_entry {
1110#define E1000_82542_FLOP E1000_FLOP 1194#define E1000_82542_FLOP E1000_FLOP
1111#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL 1195#define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL
1112#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE 1196#define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE
1197#define E1000_82542_PHY_CTRL E1000_PHY_CTRL
1113#define E1000_82542_ERT E1000_ERT 1198#define E1000_82542_ERT E1000_ERT
1114#define E1000_82542_RXDCTL E1000_RXDCTL 1199#define E1000_82542_RXDCTL E1000_RXDCTL
1200#define E1000_82542_RXDCTL1 E1000_RXDCTL1
1115#define E1000_82542_RADV E1000_RADV 1201#define E1000_82542_RADV E1000_RADV
1116#define E1000_82542_RSRPD E1000_RSRPD 1202#define E1000_82542_RSRPD E1000_RSRPD
1117#define E1000_82542_TXDMAC E1000_TXDMAC 1203#define E1000_82542_TXDMAC E1000_TXDMAC
1204#define E1000_82542_KABGTXD E1000_KABGTXD
1118#define E1000_82542_TDFHS E1000_TDFHS 1205#define E1000_82542_TDFHS E1000_TDFHS
1119#define E1000_82542_TDFTS E1000_TDFTS 1206#define E1000_82542_TDFTS E1000_TDFTS
1120#define E1000_82542_TDFPC E1000_TDFPC 1207#define E1000_82542_TDFPC E1000_TDFPC
@@ -1310,13 +1397,16 @@ struct e1000_hw_stats {
1310 1397
1311/* Structure containing variables used by the shared code (e1000_hw.c) */ 1398/* Structure containing variables used by the shared code (e1000_hw.c) */
1312struct e1000_hw { 1399struct e1000_hw {
1313 uint8_t __iomem *hw_addr; 1400 uint8_t *hw_addr;
1314 uint8_t *flash_address; 1401 uint8_t *flash_address;
1315 e1000_mac_type mac_type; 1402 e1000_mac_type mac_type;
1316 e1000_phy_type phy_type; 1403 e1000_phy_type phy_type;
1317 uint32_t phy_init_script; 1404 uint32_t phy_init_script;
1318 e1000_media_type media_type; 1405 e1000_media_type media_type;
1319 void *back; 1406 void *back;
1407 struct e1000_shadow_ram *eeprom_shadow_ram;
1408 uint32_t flash_bank_size;
1409 uint32_t flash_base_addr;
1320 e1000_fc_type fc; 1410 e1000_fc_type fc;
1321 e1000_bus_speed bus_speed; 1411 e1000_bus_speed bus_speed;
1322 e1000_bus_width bus_width; 1412 e1000_bus_width bus_width;
@@ -1328,6 +1418,7 @@ struct e1000_hw {
1328 uint32_t asf_firmware_present; 1418 uint32_t asf_firmware_present;
1329 uint32_t eeprom_semaphore_present; 1419 uint32_t eeprom_semaphore_present;
1330 uint32_t swfw_sync_present; 1420 uint32_t swfw_sync_present;
1421 uint32_t swfwhw_semaphore_present;
1331 unsigned long io_base; 1422 unsigned long io_base;
1332 uint32_t phy_id; 1423 uint32_t phy_id;
1333 uint32_t phy_revision; 1424 uint32_t phy_revision;
@@ -1387,6 +1478,7 @@ struct e1000_hw {
1387 boolean_t in_ifs_mode; 1478 boolean_t in_ifs_mode;
1388 boolean_t mng_reg_access_disabled; 1479 boolean_t mng_reg_access_disabled;
1389 boolean_t leave_av_bit_off; 1480 boolean_t leave_av_bit_off;
1481 boolean_t kmrn_lock_loss_workaround_disabled;
1390}; 1482};
1391 1483
1392 1484
@@ -1435,6 +1527,7 @@ struct e1000_hw {
1435#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ 1527#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */
1436#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ 1528#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
1437#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ 1529#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
1530#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */
1438 1531
1439/* Device Status */ 1532/* Device Status */
1440#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ 1533#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
@@ -1449,6 +1542,8 @@ struct e1000_hw {
1449#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ 1542#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
1450#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ 1543#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
1451#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ 1544#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
1545#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion
1546 by EEPROM/Flash */
1452#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ 1547#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */
1453#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ 1548#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */
1454#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ 1549#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
@@ -1506,6 +1601,10 @@ struct e1000_hw {
1506#define E1000_STM_OPCODE 0xDB00 1601#define E1000_STM_OPCODE 0xDB00
1507#define E1000_HICR_FW_RESET 0xC0 1602#define E1000_HICR_FW_RESET 0xC0
1508 1603
1604#define E1000_SHADOW_RAM_WORDS 2048
1605#define E1000_ICH8_NVM_SIG_WORD 0x13
1606#define E1000_ICH8_NVM_SIG_MASK 0xC0
1607
1509/* EEPROM Read */ 1608/* EEPROM Read */
1510#define E1000_EERD_START 0x00000001 /* Start Read */ 1609#define E1000_EERD_START 0x00000001 /* Start Read */
1511#define E1000_EERD_DONE 0x00000010 /* Read Done */ 1610#define E1000_EERD_DONE 0x00000010 /* Read Done */
@@ -1551,7 +1650,6 @@ struct e1000_hw {
1551#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 1650#define E1000_CTRL_EXT_WR_WMARK_320 0x01000000
1552#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 1651#define E1000_CTRL_EXT_WR_WMARK_384 0x02000000
1553#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 1652#define E1000_CTRL_EXT_WR_WMARK_448 0x03000000
1554#define E1000_CTRL_EXT_CANC 0x04000000 /* Interrupt delay cancellation */
1555#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ 1653#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
1556#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ 1654#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
1557#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ 1655#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
@@ -1591,12 +1689,31 @@ struct e1000_hw {
1591#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800 1689#define E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS 0x00000800
1592 1690
1593/* In-Band Control */ 1691/* In-Band Control */
1692#define E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT 0x00000500
1594#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010 1693#define E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING 0x00000010
1595 1694
1596/* Half-Duplex Control */ 1695/* Half-Duplex Control */
1597#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004 1696#define E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT 0x00000004
1598#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000 1697#define E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT 0x00000000
1599 1698
1699#define E1000_KUMCTRLSTA_OFFSET_K0S_CTRL 0x0000001E
1700
1701#define E1000_KUMCTRLSTA_DIAG_FELPBK 0x2000
1702#define E1000_KUMCTRLSTA_DIAG_NELPBK 0x1000
1703
1704#define E1000_KUMCTRLSTA_K0S_100_EN 0x2000
1705#define E1000_KUMCTRLSTA_K0S_GBE_EN 0x1000
1706#define E1000_KUMCTRLSTA_K0S_ENTRY_LATENCY_MASK 0x0003
1707
1708#define E1000_KABGTXD_BGSQLBIAS 0x00050000
1709
1710#define E1000_PHY_CTRL_SPD_EN 0x00000001
1711#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
1712#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
1713#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
1714#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
1715#define E1000_PHY_CTRL_B2B_EN 0x00000080
1716
1600/* LED Control */ 1717/* LED Control */
1601#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F 1718#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
1602#define E1000_LEDCTL_LED0_MODE_SHIFT 0 1719#define E1000_LEDCTL_LED0_MODE_SHIFT 0
@@ -1666,6 +1783,9 @@ struct e1000_hw {
1666#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ 1783#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */
1667#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ 1784#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */
1668#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ 1785#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */
1786#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */
1787#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */
1788#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */
1669 1789
1670/* Interrupt Cause Set */ 1790/* Interrupt Cause Set */
1671#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ 1791#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
@@ -1692,6 +1812,9 @@ struct e1000_hw {
1692#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ 1812#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
1693#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ 1813#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
1694#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ 1814#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
1815#define E1000_ICS_DSW E1000_ICR_DSW
1816#define E1000_ICS_PHYINT E1000_ICR_PHYINT
1817#define E1000_ICS_EPRST E1000_ICR_EPRST
1695 1818
1696/* Interrupt Mask Set */ 1819/* Interrupt Mask Set */
1697#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ 1820#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
@@ -1718,6 +1841,9 @@ struct e1000_hw {
1718#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ 1841#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
1719#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ 1842#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
1720#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ 1843#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
1844#define E1000_IMS_DSW E1000_ICR_DSW
1845#define E1000_IMS_PHYINT E1000_ICR_PHYINT
1846#define E1000_IMS_EPRST E1000_ICR_EPRST
1721 1847
1722/* Interrupt Mask Clear */ 1848/* Interrupt Mask Clear */
1723#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ 1849#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */
@@ -1744,6 +1870,9 @@ struct e1000_hw {
1744#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ 1870#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */
1745#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ 1871#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */
1746#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ 1872#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */
1873#define E1000_IMC_DSW E1000_ICR_DSW
1874#define E1000_IMC_PHYINT E1000_ICR_PHYINT
1875#define E1000_IMC_EPRST E1000_ICR_EPRST
1747 1876
1748/* Receive Control */ 1877/* Receive Control */
1749#define E1000_RCTL_RST 0x00000001 /* Software reset */ 1878#define E1000_RCTL_RST 0x00000001 /* Software reset */
@@ -1918,9 +2047,10 @@ struct e1000_hw {
1918#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000 2047#define E1000_MRQC_RSS_FIELD_MASK 0xFFFF0000
1919#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000 2048#define E1000_MRQC_RSS_FIELD_IPV4_TCP 0x00010000
1920#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000 2049#define E1000_MRQC_RSS_FIELD_IPV4 0x00020000
1921#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00040000 2050#define E1000_MRQC_RSS_FIELD_IPV6_TCP_EX 0x00040000
1922#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000 2051#define E1000_MRQC_RSS_FIELD_IPV6_EX 0x00080000
1923#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000 2052#define E1000_MRQC_RSS_FIELD_IPV6 0x00100000
2053#define E1000_MRQC_RSS_FIELD_IPV6_TCP 0x00200000
1924 2054
1925/* Definitions for power management and wakeup registers */ 2055/* Definitions for power management and wakeup registers */
1926/* Wake Up Control */ 2056/* Wake Up Control */
@@ -2010,6 +2140,15 @@ struct e1000_hw {
2010#define E1000_FWSM_MODE_SHIFT 1 2140#define E1000_FWSM_MODE_SHIFT 1
2011#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ 2141#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */
2012 2142
2143#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */
2144#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */
2145#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */
2146#define E1000_FWSM_SKUEL_SHIFT 29
2147#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */
2148#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */
2149#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */
2150#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */
2151
2013/* FFLT Debug Register */ 2152/* FFLT Debug Register */
2014#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ 2153#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */
2015 2154
@@ -2082,6 +2221,8 @@ struct e1000_host_command_info {
2082 E1000_GCR_TXDSCW_NO_SNOOP | \ 2221 E1000_GCR_TXDSCW_NO_SNOOP | \
2083 E1000_GCR_TXDSCR_NO_SNOOP) 2222 E1000_GCR_TXDSCR_NO_SNOOP)
2084 2223
2224#define PCI_EX_82566_SNOOP_ALL PCI_EX_NO_SNOOP_ALL
2225
2085#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 2226#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
2086/* Function Active and Power State to MNG */ 2227/* Function Active and Power State to MNG */
2087#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 2228#define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003
@@ -2140,8 +2281,10 @@ struct e1000_host_command_info {
2140#define EEPROM_PHY_CLASS_WORD 0x0007 2281#define EEPROM_PHY_CLASS_WORD 0x0007
2141#define EEPROM_INIT_CONTROL1_REG 0x000A 2282#define EEPROM_INIT_CONTROL1_REG 0x000A
2142#define EEPROM_INIT_CONTROL2_REG 0x000F 2283#define EEPROM_INIT_CONTROL2_REG 0x000F
2284#define EEPROM_SWDEF_PINS_CTRL_PORT_1 0x0010
2143#define EEPROM_INIT_CONTROL3_PORT_B 0x0014 2285#define EEPROM_INIT_CONTROL3_PORT_B 0x0014
2144#define EEPROM_INIT_3GIO_3 0x001A 2286#define EEPROM_INIT_3GIO_3 0x001A
2287#define EEPROM_SWDEF_PINS_CTRL_PORT_0 0x0020
2145#define EEPROM_INIT_CONTROL3_PORT_A 0x0024 2288#define EEPROM_INIT_CONTROL3_PORT_A 0x0024
2146#define EEPROM_CFG 0x0012 2289#define EEPROM_CFG 0x0012
2147#define EEPROM_FLASH_VERSION 0x0032 2290#define EEPROM_FLASH_VERSION 0x0032
@@ -2153,10 +2296,16 @@ struct e1000_host_command_info {
2153/* Word definitions for ID LED Settings */ 2296/* Word definitions for ID LED Settings */
2154#define ID_LED_RESERVED_0000 0x0000 2297#define ID_LED_RESERVED_0000 0x0000
2155#define ID_LED_RESERVED_FFFF 0xFFFF 2298#define ID_LED_RESERVED_FFFF 0xFFFF
2299#define ID_LED_RESERVED_82573 0xF746
2300#define ID_LED_DEFAULT_82573 0x1811
2156#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \ 2301#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
2157 (ID_LED_OFF1_OFF2 << 8) | \ 2302 (ID_LED_OFF1_OFF2 << 8) | \
2158 (ID_LED_DEF1_DEF2 << 4) | \ 2303 (ID_LED_DEF1_DEF2 << 4) | \
2159 (ID_LED_DEF1_DEF2)) 2304 (ID_LED_DEF1_DEF2))
2305#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
2306 (ID_LED_DEF1_OFF2 << 8) | \
2307 (ID_LED_DEF1_ON2 << 4) | \
2308 (ID_LED_DEF1_DEF2))
2160#define ID_LED_DEF1_DEF2 0x1 2309#define ID_LED_DEF1_DEF2 0x1
2161#define ID_LED_DEF1_ON2 0x2 2310#define ID_LED_DEF1_ON2 0x2
2162#define ID_LED_DEF1_OFF2 0x3 2311#define ID_LED_DEF1_OFF2 0x3
@@ -2191,6 +2340,11 @@ struct e1000_host_command_info {
2191#define EEPROM_WORD0F_ASM_DIR 0x2000 2340#define EEPROM_WORD0F_ASM_DIR 0x2000
2192#define EEPROM_WORD0F_ANE 0x0800 2341#define EEPROM_WORD0F_ANE 0x0800
2193#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 2342#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0
2343#define EEPROM_WORD0F_LPLU 0x0001
2344
2345/* Mask bits for fields in Word 0x10/0x20 of the EEPROM */
2346#define EEPROM_WORD1020_GIGA_DISABLE 0x0010
2347#define EEPROM_WORD1020_GIGA_DISABLE_NON_D0A 0x0008
2194 2348
2195/* Mask bits for fields in Word 0x1a of the EEPROM */ 2349/* Mask bits for fields in Word 0x1a of the EEPROM */
2196#define EEPROM_WORD1A_ASPM_MASK 0x000C 2350#define EEPROM_WORD1A_ASPM_MASK 0x000C
@@ -2265,23 +2419,29 @@ struct e1000_host_command_info {
2265#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 2419#define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010
2266#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 2420#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
2267#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 2421#define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040
2268#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000 2422#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x0FFF0000
2269 2423
2270#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF 2424#define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF
2271#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 2425#define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00
2272#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 2426#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000
2427#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
2428#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
2273 2429
2274/* PBA constants */ 2430/* PBA constants */
2431#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */
2275#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ 2432#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */
2276#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ 2433#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */
2277#define E1000_PBA_22K 0x0016 2434#define E1000_PBA_22K 0x0016
2278#define E1000_PBA_24K 0x0018 2435#define E1000_PBA_24K 0x0018
2279#define E1000_PBA_30K 0x001E 2436#define E1000_PBA_30K 0x001E
2280#define E1000_PBA_32K 0x0020 2437#define E1000_PBA_32K 0x0020
2438#define E1000_PBA_34K 0x0022
2281#define E1000_PBA_38K 0x0026 2439#define E1000_PBA_38K 0x0026
2282#define E1000_PBA_40K 0x0028 2440#define E1000_PBA_40K 0x0028
2283#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ 2441#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */
2284 2442
2443#define E1000_PBS_16K E1000_PBA_16K
2444
2285/* Flow Control Constants */ 2445/* Flow Control Constants */
2286#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001 2446#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
2287#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 2447#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
@@ -2336,7 +2496,7 @@ struct e1000_host_command_info {
2336/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ 2496/* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */
2337#define AUTO_READ_DONE_TIMEOUT 10 2497#define AUTO_READ_DONE_TIMEOUT 10
2338/* Number of milliseconds we wait for PHY configuration done after MAC reset */ 2498/* Number of milliseconds we wait for PHY configuration done after MAC reset */
2339#define PHY_CFG_TIMEOUT 40 2499#define PHY_CFG_TIMEOUT 100
2340 2500
2341#define E1000_TX_BUFFER_SIZE ((uint32_t)1514) 2501#define E1000_TX_BUFFER_SIZE ((uint32_t)1514)
2342 2502
@@ -2764,6 +2924,17 @@ struct e1000_host_command_info {
2764#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ 2924#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
2765#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ 2925#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */
2766 2926
2927/* M88EC018 Rev 2 specific DownShift settings */
2928#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
2929#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_1X 0x0000
2930#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_2X 0x0200
2931#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_3X 0x0400
2932#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_4X 0x0600
2933#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
2934#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_6X 0x0A00
2935#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_7X 0x0C00
2936#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_8X 0x0E00
2937
2767/* IGP01E1000 Specific Port Config Register - R/W */ 2938/* IGP01E1000 Specific Port Config Register - R/W */
2768#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010 2939#define IGP01E1000_PSCFR_AUTO_MDIX_PAR_DETECT 0x0010
2769#define IGP01E1000_PSCFR_PRE_EN 0x0020 2940#define IGP01E1000_PSCFR_PRE_EN 0x0020
@@ -2990,6 +3161,221 @@ struct e1000_host_command_info {
2990#define L1LXT971A_PHY_ID 0x001378E0 3161#define L1LXT971A_PHY_ID 0x001378E0
2991#define GG82563_E_PHY_ID 0x01410CA0 3162#define GG82563_E_PHY_ID 0x01410CA0
2992 3163
3164
3165/* Bits...
3166 * 15-5: page
3167 * 4-0: register offset
3168 */
3169#define PHY_PAGE_SHIFT 5
3170#define PHY_REG(page, reg) \
3171 (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
3172
3173#define IGP3_PHY_PORT_CTRL \
3174 PHY_REG(769, 17) /* Port General Configuration */
3175#define IGP3_PHY_RATE_ADAPT_CTRL \
3176 PHY_REG(769, 25) /* Rate Adapter Control Register */
3177
3178#define IGP3_KMRN_FIFO_CTRL_STATS \
3179 PHY_REG(770, 16) /* KMRN FIFO's control/status register */
3180#define IGP3_KMRN_POWER_MNG_CTRL \
3181 PHY_REG(770, 17) /* KMRN Power Management Control Register */
3182#define IGP3_KMRN_INBAND_CTRL \
3183 PHY_REG(770, 18) /* KMRN Inband Control Register */
3184#define IGP3_KMRN_DIAG \
3185 PHY_REG(770, 19) /* KMRN Diagnostic register */
3186#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */
3187#define IGP3_KMRN_ACK_TIMEOUT \
3188 PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */
3189
3190#define IGP3_VR_CTRL \
3191 PHY_REG(776, 18) /* Voltage regulator control register */
3192#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */
3193
3194#define IGP3_CAPABILITY \
3195 PHY_REG(776, 19) /* IGP3 Capability Register */
3196
3197/* Capabilities for SKU Control */
3198#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */
3199#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */
3200#define IGP3_CAP_ASF 0x0004 /* Support ASF */
3201#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */
3202#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */
3203#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */
3204#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */
3205#define IGP3_CAP_RSS 0x0080 /* Support RSS */
3206#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */
3207#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */
3208
3209#define IGP3_PPC_JORDAN_EN 0x0001
3210#define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002
3211
3212#define IGP3_KMRN_PMC_EE_IDLE_LINK_DIS 0x0001
3213#define IGP3_KMRN_PMC_K0S_ENTRY_LATENCY_MASK 0x001E
3214#define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020
3215#define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040
3216
3217#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */
3218#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */
3219
3220#define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18)
3221#define IGP3_KMRN_EC_DIS_INBAND 0x0080
3222
3223#define IGP03E1000_E_PHY_ID 0x02A80390
3224#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */
3225#define IFE_PLUS_E_PHY_ID 0x02A80320
3226#define IFE_C_E_PHY_ID 0x02A80310
3227
3228#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */
3229#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */
3230#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */
3231#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */
3232#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */
3233#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */
3234#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */
3235#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */
3236#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */
3237#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */
3238#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */
3239#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */
3240#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */
3241
3242#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */
3243#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */
3244#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */
3245#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */
3246#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */
3247#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */
3248#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */
3249#define IFE_PESC_POLARITY_REVERSED_SHIFT 8
3250
3251#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */
3252#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */
3253#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */
3254#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */
3255#define IFE_PSC_FORCE_POLARITY_SHIFT 5
3256#define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4
3257
3258#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */
3259#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */
3260#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
3261#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorthm is completed */
3262#define IFE_PMC_MDIX_MODE_SHIFT 6
3263#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */
3264
3265#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */
3266#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */
3267#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */
3268#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */
3269#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */
3270#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */
3271#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */
3272#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */
3273#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */
3274#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
3275#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
3276
3277#define ICH8_FLASH_COMMAND_TIMEOUT 500 /* 500 ms , should be adjusted */
3278#define ICH8_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles , should be adjusted */
3279#define ICH8_FLASH_SEG_SIZE_256 256
3280#define ICH8_FLASH_SEG_SIZE_4K 4096
3281#define ICH8_FLASH_SEG_SIZE_64K 65536
3282
3283#define ICH8_CYCLE_READ 0x0
3284#define ICH8_CYCLE_RESERVED 0x1
3285#define ICH8_CYCLE_WRITE 0x2
3286#define ICH8_CYCLE_ERASE 0x3
3287
3288#define ICH8_FLASH_GFPREG 0x0000
3289#define ICH8_FLASH_HSFSTS 0x0004
3290#define ICH8_FLASH_HSFCTL 0x0006
3291#define ICH8_FLASH_FADDR 0x0008
3292#define ICH8_FLASH_FDATA0 0x0010
3293#define ICH8_FLASH_FRACC 0x0050
3294#define ICH8_FLASH_FREG0 0x0054
3295#define ICH8_FLASH_FREG1 0x0058
3296#define ICH8_FLASH_FREG2 0x005C
3297#define ICH8_FLASH_FREG3 0x0060
3298#define ICH8_FLASH_FPR0 0x0074
3299#define ICH8_FLASH_FPR1 0x0078
3300#define ICH8_FLASH_SSFSTS 0x0090
3301#define ICH8_FLASH_SSFCTL 0x0092
3302#define ICH8_FLASH_PREOP 0x0094
3303#define ICH8_FLASH_OPTYPE 0x0096
3304#define ICH8_FLASH_OPMENU 0x0098
3305
3306#define ICH8_FLASH_REG_MAPSIZE 0x00A0
3307#define ICH8_FLASH_SECTOR_SIZE 4096
3308#define ICH8_GFPREG_BASE_MASK 0x1FFF
3309#define ICH8_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
3310
3311/* ICH8 GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
3312/* Offset 04h HSFSTS */
3313union ich8_hws_flash_status {
3314 struct ich8_hsfsts {
3315#ifdef E1000_BIG_ENDIAN
3316 uint16_t reserved2 :6;
3317 uint16_t fldesvalid :1;
3318 uint16_t flockdn :1;
3319 uint16_t flcdone :1;
3320 uint16_t flcerr :1;
3321 uint16_t dael :1;
3322 uint16_t berasesz :2;
3323 uint16_t flcinprog :1;
3324 uint16_t reserved1 :2;
3325#else
3326 uint16_t flcdone :1; /* bit 0 Flash Cycle Done */
3327 uint16_t flcerr :1; /* bit 1 Flash Cycle Error */
3328 uint16_t dael :1; /* bit 2 Direct Access error Log */
3329 uint16_t berasesz :2; /* bit 4:3 Block/Sector Erase Size */
3330 uint16_t flcinprog :1; /* bit 5 flash SPI cycle in Progress */
3331 uint16_t reserved1 :2; /* bit 13:6 Reserved */
3332 uint16_t reserved2 :6; /* bit 13:6 Reserved */
3333 uint16_t fldesvalid :1; /* bit 14 Flash Descriptor Valid */
3334 uint16_t flockdn :1; /* bit 15 Flash Configuration Lock-Down */
3335#endif
3336 } hsf_status;
3337 uint16_t regval;
3338};
3339
3340/* ICH8 GbE Flash Hardware Sequencing Flash control Register bit breakdown */
3341/* Offset 06h FLCTL */
3342union ich8_hws_flash_ctrl {
3343 struct ich8_hsflctl {
3344#ifdef E1000_BIG_ENDIAN
3345 uint16_t fldbcount :2;
3346 uint16_t flockdn :6;
3347 uint16_t flcgo :1;
3348 uint16_t flcycle :2;
3349 uint16_t reserved :5;
3350#else
3351 uint16_t flcgo :1; /* 0 Flash Cycle Go */
3352 uint16_t flcycle :2; /* 2:1 Flash Cycle */
3353 uint16_t reserved :5; /* 7:3 Reserved */
3354 uint16_t fldbcount :2; /* 9:8 Flash Data Byte Count */
3355 uint16_t flockdn :6; /* 15:10 Reserved */
3356#endif
3357 } hsf_ctrl;
3358 uint16_t regval;
3359};
3360
3361/* ICH8 Flash Region Access Permissions */
3362union ich8_hws_flash_regacc {
3363 struct ich8_flracc {
3364#ifdef E1000_BIG_ENDIAN
3365 uint32_t gmwag :8;
3366 uint32_t gmrag :8;
3367 uint32_t grwa :8;
3368 uint32_t grra :8;
3369#else
3370 uint32_t grra :8; /* 0:7 GbE region Read Access */
3371 uint32_t grwa :8; /* 8:15 GbE region Write Access */
3372 uint32_t gmrag :8; /* 23:16 GbE Master Read Access Grant */
3373 uint32_t gmwag :8; /* 31:24 GbE Master Write Access Grant */
3374#endif
3375 } hsf_flregacc;
3376 uint16_t regval;
3377};
3378
2993/* Miscellaneous PHY bit definitions. */ 3379/* Miscellaneous PHY bit definitions. */
2994#define PHY_PREAMBLE 0xFFFFFFFF 3380#define PHY_PREAMBLE 0xFFFFFFFF
2995#define PHY_SOF 0x01 3381#define PHY_SOF 0x01
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c
index f77624f5f17b..f06b281c8f6e 100644
--- a/drivers/net/e1000/e1000_main.c
+++ b/drivers/net/e1000/e1000_main.c
@@ -36,7 +36,7 @@ static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
36#else 36#else
37#define DRIVERNAPI "-NAPI" 37#define DRIVERNAPI "-NAPI"
38#endif 38#endif
39#define DRV_VERSION "7.0.38-k4"DRIVERNAPI 39#define DRV_VERSION "7.1.9-k2"DRIVERNAPI
40char e1000_driver_version[] = DRV_VERSION; 40char e1000_driver_version[] = DRV_VERSION;
41static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 41static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 42
@@ -73,6 +73,11 @@ static struct pci_device_id e1000_pci_tbl[] = {
73 INTEL_E1000_ETHERNET_DEVICE(0x1026), 73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027), 74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028), 75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
76 INTEL_E1000_ETHERNET_DEVICE(0x105E), 81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
77 INTEL_E1000_ETHERNET_DEVICE(0x105F), 82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
78 INTEL_E1000_ETHERNET_DEVICE(0x1060), 83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
@@ -96,6 +101,8 @@ static struct pci_device_id e1000_pci_tbl[] = {
96 INTEL_E1000_ETHERNET_DEVICE(0x109A), 101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
97 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
98 INTEL_E1000_ETHERNET_DEVICE(0x10B9), 103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
99 /* required last entry */ 106 /* required last entry */
100 {0,} 107 {0,}
101}; 108};
@@ -133,7 +140,6 @@ static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
133static void e1000_set_multi(struct net_device *netdev); 140static void e1000_set_multi(struct net_device *netdev);
134static void e1000_update_phy_info(unsigned long data); 141static void e1000_update_phy_info(unsigned long data);
135static void e1000_watchdog(unsigned long data); 142static void e1000_watchdog(unsigned long data);
136static void e1000_watchdog_task(struct e1000_adapter *adapter);
137static void e1000_82547_tx_fifo_stall(unsigned long data); 143static void e1000_82547_tx_fifo_stall(unsigned long data);
138static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev); 144static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
139static struct net_device_stats * e1000_get_stats(struct net_device *netdev); 145static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
@@ -178,8 +184,8 @@ static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
178static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid); 184static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
179static void e1000_restore_vlan(struct e1000_adapter *adapter); 185static void e1000_restore_vlan(struct e1000_adapter *adapter);
180 186
181#ifdef CONFIG_PM
182static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 187static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
188#ifdef CONFIG_PM
183static int e1000_resume(struct pci_dev *pdev); 189static int e1000_resume(struct pci_dev *pdev);
184#endif 190#endif
185static void e1000_shutdown(struct pci_dev *pdev); 191static void e1000_shutdown(struct pci_dev *pdev);
@@ -206,8 +212,8 @@ static struct pci_driver e1000_driver = {
206 .probe = e1000_probe, 212 .probe = e1000_probe,
207 .remove = __devexit_p(e1000_remove), 213 .remove = __devexit_p(e1000_remove),
208 /* Power Managment Hooks */ 214 /* Power Managment Hooks */
209#ifdef CONFIG_PM
210 .suspend = e1000_suspend, 215 .suspend = e1000_suspend,
216#ifdef CONFIG_PM
211 .resume = e1000_resume, 217 .resume = e1000_resume,
212#endif 218#endif
213 .shutdown = e1000_shutdown, 219 .shutdown = e1000_shutdown,
@@ -261,6 +267,44 @@ e1000_exit_module(void)
261 267
262module_exit(e1000_exit_module); 268module_exit(e1000_exit_module);
263 269
270static int e1000_request_irq(struct e1000_adapter *adapter)
271{
272 struct net_device *netdev = adapter->netdev;
273 int flags, err = 0;
274
275 flags = IRQF_SHARED;
276#ifdef CONFIG_PCI_MSI
277 if (adapter->hw.mac_type > e1000_82547_rev_2) {
278 adapter->have_msi = TRUE;
279 if ((err = pci_enable_msi(adapter->pdev))) {
280 DPRINTK(PROBE, ERR,
281 "Unable to allocate MSI interrupt Error: %d\n", err);
282 adapter->have_msi = FALSE;
283 }
284 }
285 if (adapter->have_msi)
286 flags &= ~SA_SHIRQ;
287#endif
288 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
289 netdev->name, netdev)))
290 DPRINTK(PROBE, ERR,
291 "Unable to allocate interrupt Error: %d\n", err);
292
293 return err;
294}
295
296static void e1000_free_irq(struct e1000_adapter *adapter)
297{
298 struct net_device *netdev = adapter->netdev;
299
300 free_irq(adapter->pdev->irq, netdev);
301
302#ifdef CONFIG_PCI_MSI
303 if (adapter->have_msi)
304 pci_disable_msi(adapter->pdev);
305#endif
306}
307
264/** 308/**
265 * e1000_irq_disable - Mask off interrupt generation on the NIC 309 * e1000_irq_disable - Mask off interrupt generation on the NIC
266 * @adapter: board private structure 310 * @adapter: board private structure
@@ -329,6 +373,7 @@ e1000_release_hw_control(struct e1000_adapter *adapter)
329{ 373{
330 uint32_t ctrl_ext; 374 uint32_t ctrl_ext;
331 uint32_t swsm; 375 uint32_t swsm;
376 uint32_t extcnf;
332 377
333 /* Let firmware taken over control of h/w */ 378 /* Let firmware taken over control of h/w */
334 switch (adapter->hw.mac_type) { 379 switch (adapter->hw.mac_type) {
@@ -343,6 +388,11 @@ e1000_release_hw_control(struct e1000_adapter *adapter)
343 swsm = E1000_READ_REG(&adapter->hw, SWSM); 388 swsm = E1000_READ_REG(&adapter->hw, SWSM);
344 E1000_WRITE_REG(&adapter->hw, SWSM, 389 E1000_WRITE_REG(&adapter->hw, SWSM,
345 swsm & ~E1000_SWSM_DRV_LOAD); 390 swsm & ~E1000_SWSM_DRV_LOAD);
391 case e1000_ich8lan:
392 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
393 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
394 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
395 break;
346 default: 396 default:
347 break; 397 break;
348 } 398 }
@@ -364,6 +414,7 @@ e1000_get_hw_control(struct e1000_adapter *adapter)
364{ 414{
365 uint32_t ctrl_ext; 415 uint32_t ctrl_ext;
366 uint32_t swsm; 416 uint32_t swsm;
417 uint32_t extcnf;
367 /* Let firmware know the driver has taken over */ 418 /* Let firmware know the driver has taken over */
368 switch (adapter->hw.mac_type) { 419 switch (adapter->hw.mac_type) {
369 case e1000_82571: 420 case e1000_82571:
@@ -378,6 +429,11 @@ e1000_get_hw_control(struct e1000_adapter *adapter)
378 E1000_WRITE_REG(&adapter->hw, SWSM, 429 E1000_WRITE_REG(&adapter->hw, SWSM,
379 swsm | E1000_SWSM_DRV_LOAD); 430 swsm | E1000_SWSM_DRV_LOAD);
380 break; 431 break;
432 case e1000_ich8lan:
433 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
434 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
435 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
436 break;
381 default: 437 default:
382 break; 438 break;
383 } 439 }
@@ -387,18 +443,10 @@ int
387e1000_up(struct e1000_adapter *adapter) 443e1000_up(struct e1000_adapter *adapter)
388{ 444{
389 struct net_device *netdev = adapter->netdev; 445 struct net_device *netdev = adapter->netdev;
390 int i, err; 446 int i;
391 447
392 /* hardware has been reset, we need to reload some things */ 448 /* hardware has been reset, we need to reload some things */
393 449
394 /* Reset the PHY if it was previously powered down */
395 if (adapter->hw.media_type == e1000_media_type_copper) {
396 uint16_t mii_reg;
397 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
398 if (mii_reg & MII_CR_POWER_DOWN)
399 e1000_phy_hw_reset(&adapter->hw);
400 }
401
402 e1000_set_multi(netdev); 450 e1000_set_multi(netdev);
403 451
404 e1000_restore_vlan(adapter); 452 e1000_restore_vlan(adapter);
@@ -415,24 +463,6 @@ e1000_up(struct e1000_adapter *adapter)
415 E1000_DESC_UNUSED(ring)); 463 E1000_DESC_UNUSED(ring));
416 } 464 }
417 465
418#ifdef CONFIG_PCI_MSI
419 if (adapter->hw.mac_type > e1000_82547_rev_2) {
420 adapter->have_msi = TRUE;
421 if ((err = pci_enable_msi(adapter->pdev))) {
422 DPRINTK(PROBE, ERR,
423 "Unable to allocate MSI interrupt Error: %d\n", err);
424 adapter->have_msi = FALSE;
425 }
426 }
427#endif
428 if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
429 IRQF_SHARED | IRQF_SAMPLE_RANDOM,
430 netdev->name, netdev))) {
431 DPRINTK(PROBE, ERR,
432 "Unable to allocate interrupt Error: %d\n", err);
433 return err;
434 }
435
436 adapter->tx_queue_len = netdev->tx_queue_len; 466 adapter->tx_queue_len = netdev->tx_queue_len;
437 467
438 mod_timer(&adapter->watchdog_timer, jiffies); 468 mod_timer(&adapter->watchdog_timer, jiffies);
@@ -445,21 +475,60 @@ e1000_up(struct e1000_adapter *adapter)
445 return 0; 475 return 0;
446} 476}
447 477
478/**
479 * e1000_power_up_phy - restore link in case the phy was powered down
480 * @adapter: address of board private structure
481 *
482 * The phy may be powered down to save power and turn off link when the
483 * driver is unloaded and wake on lan is not enabled (among others)
484 * *** this routine MUST be followed by a call to e1000_reset ***
485 *
486 **/
487
488static void e1000_power_up_phy(struct e1000_adapter *adapter)
489{
490 uint16_t mii_reg = 0;
491
492 /* Just clear the power down bit to wake the phy back up */
493 if (adapter->hw.media_type == e1000_media_type_copper) {
494 /* according to the manual, the phy will retain its
495 * settings across a power-down/up cycle */
496 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
497 mii_reg &= ~MII_CR_POWER_DOWN;
498 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
499 }
500}
501
502static void e1000_power_down_phy(struct e1000_adapter *adapter)
503{
504 boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
505 e1000_check_mng_mode(&adapter->hw);
506 /* Power down the PHY so no link is implied when interface is down
507 * The PHY cannot be powered down if any of the following is TRUE
508 * (a) WoL is enabled
509 * (b) AMT is active
510 * (c) SoL/IDER session is active */
511 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
512 adapter->hw.mac_type != e1000_ich8lan &&
513 adapter->hw.media_type == e1000_media_type_copper &&
514 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
515 !mng_mode_enabled &&
516 !e1000_check_phy_reset_block(&adapter->hw)) {
517 uint16_t mii_reg = 0;
518 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
519 mii_reg |= MII_CR_POWER_DOWN;
520 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
521 mdelay(1);
522 }
523}
524
448void 525void
449e1000_down(struct e1000_adapter *adapter) 526e1000_down(struct e1000_adapter *adapter)
450{ 527{
451 struct net_device *netdev = adapter->netdev; 528 struct net_device *netdev = adapter->netdev;
452 boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
453 e1000_check_mng_mode(&adapter->hw);
454 529
455 e1000_irq_disable(adapter); 530 e1000_irq_disable(adapter);
456 531
457 free_irq(adapter->pdev->irq, netdev);
458#ifdef CONFIG_PCI_MSI
459 if (adapter->hw.mac_type > e1000_82547_rev_2 &&
460 adapter->have_msi == TRUE)
461 pci_disable_msi(adapter->pdev);
462#endif
463 del_timer_sync(&adapter->tx_fifo_stall_timer); 532 del_timer_sync(&adapter->tx_fifo_stall_timer);
464 del_timer_sync(&adapter->watchdog_timer); 533 del_timer_sync(&adapter->watchdog_timer);
465 del_timer_sync(&adapter->phy_info_timer); 534 del_timer_sync(&adapter->phy_info_timer);
@@ -476,23 +545,17 @@ e1000_down(struct e1000_adapter *adapter)
476 e1000_reset(adapter); 545 e1000_reset(adapter);
477 e1000_clean_all_tx_rings(adapter); 546 e1000_clean_all_tx_rings(adapter);
478 e1000_clean_all_rx_rings(adapter); 547 e1000_clean_all_rx_rings(adapter);
548}
479 549
480 /* Power down the PHY so no link is implied when interface is down * 550void
481 * The PHY cannot be powered down if any of the following is TRUE * 551e1000_reinit_locked(struct e1000_adapter *adapter)
482 * (a) WoL is enabled 552{
483 * (b) AMT is active 553 WARN_ON(in_interrupt());
484 * (c) SoL/IDER session is active */ 554 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
485 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 && 555 msleep(1);
486 adapter->hw.media_type == e1000_media_type_copper && 556 e1000_down(adapter);
487 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) && 557 e1000_up(adapter);
488 !mng_mode_enabled && 558 clear_bit(__E1000_RESETTING, &adapter->flags);
489 !e1000_check_phy_reset_block(&adapter->hw)) {
490 uint16_t mii_reg;
491 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
492 mii_reg |= MII_CR_POWER_DOWN;
493 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
494 mdelay(1);
495 }
496} 559}
497 560
498void 561void
@@ -518,6 +581,9 @@ e1000_reset(struct e1000_adapter *adapter)
518 case e1000_82573: 581 case e1000_82573:
519 pba = E1000_PBA_12K; 582 pba = E1000_PBA_12K;
520 break; 583 break;
584 case e1000_ich8lan:
585 pba = E1000_PBA_8K;
586 break;
521 default: 587 default:
522 pba = E1000_PBA_48K; 588 pba = E1000_PBA_48K;
523 break; 589 break;
@@ -542,6 +608,12 @@ e1000_reset(struct e1000_adapter *adapter)
542 /* Set the FC high water mark to 90% of the FIFO size. 608 /* Set the FC high water mark to 90% of the FIFO size.
543 * Required to clear last 3 LSB */ 609 * Required to clear last 3 LSB */
544 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8; 610 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
611 /* We can't use 90% on small FIFOs because the remainder
612 * would be less than 1 full frame. In this case, we size
613 * it to allow at least a full frame above the high water
614 * mark. */
615 if (pba < E1000_PBA_16K)
616 fc_high_water_mark = (pba * 1024) - 1600;
545 617
546 adapter->hw.fc_high_water = fc_high_water_mark; 618 adapter->hw.fc_high_water = fc_high_water_mark;
547 adapter->hw.fc_low_water = fc_high_water_mark - 8; 619 adapter->hw.fc_low_water = fc_high_water_mark - 8;
@@ -564,6 +636,23 @@ e1000_reset(struct e1000_adapter *adapter)
564 636
565 e1000_reset_adaptive(&adapter->hw); 637 e1000_reset_adaptive(&adapter->hw);
566 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 638 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
639
640 if (!adapter->smart_power_down &&
641 (adapter->hw.mac_type == e1000_82571 ||
642 adapter->hw.mac_type == e1000_82572)) {
643 uint16_t phy_data = 0;
644 /* speed up time to link by disabling smart power down, ignore
645 * the return value of this function because there is nothing
646 * different we would do if it failed */
647 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
648 &phy_data);
649 phy_data &= ~IGP02E1000_PM_SPD;
650 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
651 phy_data);
652 }
653
654 if (adapter->hw.mac_type < e1000_ich8lan)
655 /* FIXME: this code is duplicate and wrong for PCI Express */
567 if (adapter->en_mng_pt) { 656 if (adapter->en_mng_pt) {
568 manc = E1000_READ_REG(&adapter->hw, MANC); 657 manc = E1000_READ_REG(&adapter->hw, MANC);
569 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); 658 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
@@ -590,6 +679,7 @@ e1000_probe(struct pci_dev *pdev,
590 struct net_device *netdev; 679 struct net_device *netdev;
591 struct e1000_adapter *adapter; 680 struct e1000_adapter *adapter;
592 unsigned long mmio_start, mmio_len; 681 unsigned long mmio_start, mmio_len;
682 unsigned long flash_start, flash_len;
593 683
594 static int cards_found = 0; 684 static int cards_found = 0;
595 static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */ 685 static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
@@ -599,10 +689,12 @@ e1000_probe(struct pci_dev *pdev,
599 if ((err = pci_enable_device(pdev))) 689 if ((err = pci_enable_device(pdev)))
600 return err; 690 return err;
601 691
602 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) { 692 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
693 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
603 pci_using_dac = 1; 694 pci_using_dac = 1;
604 } else { 695 } else {
605 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { 696 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
697 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
606 E1000_ERR("No usable DMA configuration, aborting\n"); 698 E1000_ERR("No usable DMA configuration, aborting\n");
607 return err; 699 return err;
608 } 700 }
@@ -682,6 +774,19 @@ e1000_probe(struct pci_dev *pdev,
682 if ((err = e1000_sw_init(adapter))) 774 if ((err = e1000_sw_init(adapter)))
683 goto err_sw_init; 775 goto err_sw_init;
684 776
777 /* Flash BAR mapping must happen after e1000_sw_init
778 * because it depends on mac_type */
779 if ((adapter->hw.mac_type == e1000_ich8lan) &&
780 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
781 flash_start = pci_resource_start(pdev, 1);
782 flash_len = pci_resource_len(pdev, 1);
783 adapter->hw.flash_address = ioremap(flash_start, flash_len);
784 if (!adapter->hw.flash_address) {
785 err = -EIO;
786 goto err_flashmap;
787 }
788 }
789
685 if ((err = e1000_check_phy_reset_block(&adapter->hw))) 790 if ((err = e1000_check_phy_reset_block(&adapter->hw)))
686 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); 791 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
687 792
@@ -700,6 +805,8 @@ e1000_probe(struct pci_dev *pdev,
700 NETIF_F_HW_VLAN_TX | 805 NETIF_F_HW_VLAN_TX |
701 NETIF_F_HW_VLAN_RX | 806 NETIF_F_HW_VLAN_RX |
702 NETIF_F_HW_VLAN_FILTER; 807 NETIF_F_HW_VLAN_FILTER;
808 if (adapter->hw.mac_type == e1000_ich8lan)
809 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
703 } 810 }
704 811
705#ifdef NETIF_F_TSO 812#ifdef NETIF_F_TSO
@@ -715,11 +822,17 @@ e1000_probe(struct pci_dev *pdev,
715 if (pci_using_dac) 822 if (pci_using_dac)
716 netdev->features |= NETIF_F_HIGHDMA; 823 netdev->features |= NETIF_F_HIGHDMA;
717 824
718 /* hard_start_xmit is safe against parallel locking */
719 netdev->features |= NETIF_F_LLTX; 825 netdev->features |= NETIF_F_LLTX;
720 826
721 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); 827 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
722 828
829 /* initialize eeprom parameters */
830
831 if (e1000_init_eeprom_params(&adapter->hw)) {
832 E1000_ERR("EEPROM initialization failed\n");
833 return -EIO;
834 }
835
723 /* before reading the EEPROM, reset the controller to 836 /* before reading the EEPROM, reset the controller to
724 * put the device in a known good starting state */ 837 * put the device in a known good starting state */
725 838
@@ -758,9 +871,6 @@ e1000_probe(struct pci_dev *pdev,
758 adapter->watchdog_timer.function = &e1000_watchdog; 871 adapter->watchdog_timer.function = &e1000_watchdog;
759 adapter->watchdog_timer.data = (unsigned long) adapter; 872 adapter->watchdog_timer.data = (unsigned long) adapter;
760 873
761 INIT_WORK(&adapter->watchdog_task,
762 (void (*)(void *))e1000_watchdog_task, adapter);
763
764 init_timer(&adapter->phy_info_timer); 874 init_timer(&adapter->phy_info_timer);
765 adapter->phy_info_timer.function = &e1000_update_phy_info; 875 adapter->phy_info_timer.function = &e1000_update_phy_info;
766 adapter->phy_info_timer.data = (unsigned long) adapter; 876 adapter->phy_info_timer.data = (unsigned long) adapter;
@@ -790,6 +900,11 @@ e1000_probe(struct pci_dev *pdev,
790 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 900 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
791 eeprom_apme_mask = E1000_EEPROM_82544_APM; 901 eeprom_apme_mask = E1000_EEPROM_82544_APM;
792 break; 902 break;
903 case e1000_ich8lan:
904 e1000_read_eeprom(&adapter->hw,
905 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
906 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
907 break;
793 case e1000_82546: 908 case e1000_82546:
794 case e1000_82546_rev_3: 909 case e1000_82546_rev_3:
795 case e1000_82571: 910 case e1000_82571:
@@ -849,6 +964,9 @@ e1000_probe(struct pci_dev *pdev,
849 return 0; 964 return 0;
850 965
851err_register: 966err_register:
967 if (adapter->hw.flash_address)
968 iounmap(adapter->hw.flash_address);
969err_flashmap:
852err_sw_init: 970err_sw_init:
853err_eeprom: 971err_eeprom:
854 iounmap(adapter->hw.hw_addr); 972 iounmap(adapter->hw.hw_addr);
@@ -882,6 +1000,7 @@ e1000_remove(struct pci_dev *pdev)
882 flush_scheduled_work(); 1000 flush_scheduled_work();
883 1001
884 if (adapter->hw.mac_type >= e1000_82540 && 1002 if (adapter->hw.mac_type >= e1000_82540 &&
1003 adapter->hw.mac_type != e1000_ich8lan &&
885 adapter->hw.media_type == e1000_media_type_copper) { 1004 adapter->hw.media_type == e1000_media_type_copper) {
886 manc = E1000_READ_REG(&adapter->hw, MANC); 1005 manc = E1000_READ_REG(&adapter->hw, MANC);
887 if (manc & E1000_MANC_SMBUS_EN) { 1006 if (manc & E1000_MANC_SMBUS_EN) {
@@ -910,6 +1029,8 @@ e1000_remove(struct pci_dev *pdev)
910#endif 1029#endif
911 1030
912 iounmap(adapter->hw.hw_addr); 1031 iounmap(adapter->hw.hw_addr);
1032 if (adapter->hw.flash_address)
1033 iounmap(adapter->hw.flash_address);
913 pci_release_regions(pdev); 1034 pci_release_regions(pdev);
914 1035
915 free_netdev(netdev); 1036 free_netdev(netdev);
@@ -960,13 +1081,6 @@ e1000_sw_init(struct e1000_adapter *adapter)
960 return -EIO; 1081 return -EIO;
961 } 1082 }
962 1083
963 /* initialize eeprom parameters */
964
965 if (e1000_init_eeprom_params(hw)) {
966 E1000_ERR("EEPROM initialization failed\n");
967 return -EIO;
968 }
969
970 switch (hw->mac_type) { 1084 switch (hw->mac_type) {
971 default: 1085 default:
972 break; 1086 break;
@@ -1078,6 +1192,10 @@ e1000_open(struct net_device *netdev)
1078 struct e1000_adapter *adapter = netdev_priv(netdev); 1192 struct e1000_adapter *adapter = netdev_priv(netdev);
1079 int err; 1193 int err;
1080 1194
1195 /* disallow open during test */
1196 if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1197 return -EBUSY;
1198
1081 /* allocate transmit descriptors */ 1199 /* allocate transmit descriptors */
1082 1200
1083 if ((err = e1000_setup_all_tx_resources(adapter))) 1201 if ((err = e1000_setup_all_tx_resources(adapter)))
@@ -1088,6 +1206,12 @@ e1000_open(struct net_device *netdev)
1088 if ((err = e1000_setup_all_rx_resources(adapter))) 1206 if ((err = e1000_setup_all_rx_resources(adapter)))
1089 goto err_setup_rx; 1207 goto err_setup_rx;
1090 1208
1209 err = e1000_request_irq(adapter);
1210 if (err)
1211 goto err_up;
1212
1213 e1000_power_up_phy(adapter);
1214
1091 if ((err = e1000_up(adapter))) 1215 if ((err = e1000_up(adapter)))
1092 goto err_up; 1216 goto err_up;
1093 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1217 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
@@ -1131,7 +1255,10 @@ e1000_close(struct net_device *netdev)
1131{ 1255{
1132 struct e1000_adapter *adapter = netdev_priv(netdev); 1256 struct e1000_adapter *adapter = netdev_priv(netdev);
1133 1257
1258 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1134 e1000_down(adapter); 1259 e1000_down(adapter);
1260 e1000_power_down_phy(adapter);
1261 e1000_free_irq(adapter);
1135 1262
1136 e1000_free_all_tx_resources(adapter); 1263 e1000_free_all_tx_resources(adapter);
1137 e1000_free_all_rx_resources(adapter); 1264 e1000_free_all_rx_resources(adapter);
@@ -1189,8 +1316,7 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter,
1189 int size; 1316 int size;
1190 1317
1191 size = sizeof(struct e1000_buffer) * txdr->count; 1318 size = sizeof(struct e1000_buffer) * txdr->count;
1192 1319 txdr->buffer_info = vmalloc(size);
1193 txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1194 if (!txdr->buffer_info) { 1320 if (!txdr->buffer_info) {
1195 DPRINTK(PROBE, ERR, 1321 DPRINTK(PROBE, ERR,
1196 "Unable to allocate memory for the transmit descriptor ring\n"); 1322 "Unable to allocate memory for the transmit descriptor ring\n");
@@ -1302,11 +1428,11 @@ e1000_configure_tx(struct e1000_adapter *adapter)
1302 tdba = adapter->tx_ring[0].dma; 1428 tdba = adapter->tx_ring[0].dma;
1303 tdlen = adapter->tx_ring[0].count * 1429 tdlen = adapter->tx_ring[0].count *
1304 sizeof(struct e1000_tx_desc); 1430 sizeof(struct e1000_tx_desc);
1305 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1306 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1307 E1000_WRITE_REG(hw, TDLEN, tdlen); 1431 E1000_WRITE_REG(hw, TDLEN, tdlen);
1308 E1000_WRITE_REG(hw, TDH, 0); 1432 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1433 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1309 E1000_WRITE_REG(hw, TDT, 0); 1434 E1000_WRITE_REG(hw, TDT, 0);
1435 E1000_WRITE_REG(hw, TDH, 0);
1310 adapter->tx_ring[0].tdh = E1000_TDH; 1436 adapter->tx_ring[0].tdh = E1000_TDH;
1311 adapter->tx_ring[0].tdt = E1000_TDT; 1437 adapter->tx_ring[0].tdt = E1000_TDT;
1312 break; 1438 break;
@@ -1418,7 +1544,7 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter,
1418 int size, desc_len; 1544 int size, desc_len;
1419 1545
1420 size = sizeof(struct e1000_buffer) * rxdr->count; 1546 size = sizeof(struct e1000_buffer) * rxdr->count;
1421 rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus)); 1547 rxdr->buffer_info = vmalloc(size);
1422 if (!rxdr->buffer_info) { 1548 if (!rxdr->buffer_info) {
1423 DPRINTK(PROBE, ERR, 1549 DPRINTK(PROBE, ERR,
1424 "Unable to allocate memory for the receive descriptor ring\n"); 1550 "Unable to allocate memory for the receive descriptor ring\n");
@@ -1560,9 +1686,6 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
1560 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1686 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1561 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); 1687 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1562 1688
1563 if (adapter->hw.mac_type > e1000_82543)
1564 rctl |= E1000_RCTL_SECRC;
1565
1566 if (adapter->hw.tbi_compatibility_on == 1) 1689 if (adapter->hw.tbi_compatibility_on == 1)
1567 rctl |= E1000_RCTL_SBP; 1690 rctl |= E1000_RCTL_SBP;
1568 else 1691 else
@@ -1628,7 +1751,7 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
1628 rfctl |= E1000_RFCTL_IPV6_DIS; 1751 rfctl |= E1000_RFCTL_IPV6_DIS;
1629 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); 1752 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1630 1753
1631 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC; 1754 rctl |= E1000_RCTL_DTYP_PS;
1632 1755
1633 psrctl |= adapter->rx_ps_bsize0 >> 1756 psrctl |= adapter->rx_ps_bsize0 >>
1634 E1000_PSRCTL_BSIZE0_SHIFT; 1757 E1000_PSRCTL_BSIZE0_SHIFT;
@@ -1712,11 +1835,11 @@ e1000_configure_rx(struct e1000_adapter *adapter)
1712 case 1: 1835 case 1:
1713 default: 1836 default:
1714 rdba = adapter->rx_ring[0].dma; 1837 rdba = adapter->rx_ring[0].dma;
1715 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1716 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1717 E1000_WRITE_REG(hw, RDLEN, rdlen); 1838 E1000_WRITE_REG(hw, RDLEN, rdlen);
1718 E1000_WRITE_REG(hw, RDH, 0); 1839 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1840 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1719 E1000_WRITE_REG(hw, RDT, 0); 1841 E1000_WRITE_REG(hw, RDT, 0);
1842 E1000_WRITE_REG(hw, RDH, 0);
1720 adapter->rx_ring[0].rdh = E1000_RDH; 1843 adapter->rx_ring[0].rdh = E1000_RDH;
1721 adapter->rx_ring[0].rdt = E1000_RDT; 1844 adapter->rx_ring[0].rdt = E1000_RDT;
1722 break; 1845 break;
@@ -1741,9 +1864,6 @@ e1000_configure_rx(struct e1000_adapter *adapter)
1741 E1000_WRITE_REG(hw, RXCSUM, rxcsum); 1864 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1742 } 1865 }
1743 1866
1744 if (hw->mac_type == e1000_82573)
1745 E1000_WRITE_REG(hw, ERT, 0x0100);
1746
1747 /* Enable Receives */ 1867 /* Enable Receives */
1748 E1000_WRITE_REG(hw, RCTL, rctl); 1868 E1000_WRITE_REG(hw, RCTL, rctl);
1749} 1869}
@@ -2083,6 +2203,12 @@ e1000_set_multi(struct net_device *netdev)
2083 uint32_t rctl; 2203 uint32_t rctl;
2084 uint32_t hash_value; 2204 uint32_t hash_value;
2085 int i, rar_entries = E1000_RAR_ENTRIES; 2205 int i, rar_entries = E1000_RAR_ENTRIES;
2206 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2207 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2208 E1000_NUM_MTA_REGISTERS;
2209
2210 if (adapter->hw.mac_type == e1000_ich8lan)
2211 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2086 2212
2087 /* reserve RAR[14] for LAA over-write work-around */ 2213 /* reserve RAR[14] for LAA over-write work-around */
2088 if (adapter->hw.mac_type == e1000_82571) 2214 if (adapter->hw.mac_type == e1000_82571)
@@ -2121,14 +2247,18 @@ e1000_set_multi(struct net_device *netdev)
2121 mc_ptr = mc_ptr->next; 2247 mc_ptr = mc_ptr->next;
2122 } else { 2248 } else {
2123 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2249 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2250 E1000_WRITE_FLUSH(hw);
2124 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2251 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2252 E1000_WRITE_FLUSH(hw);
2125 } 2253 }
2126 } 2254 }
2127 2255
2128 /* clear the old settings from the multicast hash table */ 2256 /* clear the old settings from the multicast hash table */
2129 2257
2130 for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++) 2258 for (i = 0; i < mta_reg_count; i++) {
2131 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); 2259 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2260 E1000_WRITE_FLUSH(hw);
2261 }
2132 2262
2133 /* load any remaining addresses into the hash table */ 2263 /* load any remaining addresses into the hash table */
2134 2264
@@ -2201,19 +2331,19 @@ static void
2201e1000_watchdog(unsigned long data) 2331e1000_watchdog(unsigned long data)
2202{ 2332{
2203 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 2333 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2204
2205 /* Do the rest outside of interrupt context */
2206 schedule_work(&adapter->watchdog_task);
2207}
2208
2209static void
2210e1000_watchdog_task(struct e1000_adapter *adapter)
2211{
2212 struct net_device *netdev = adapter->netdev; 2334 struct net_device *netdev = adapter->netdev;
2213 struct e1000_tx_ring *txdr = adapter->tx_ring; 2335 struct e1000_tx_ring *txdr = adapter->tx_ring;
2214 uint32_t link, tctl; 2336 uint32_t link, tctl;
2215 2337 int32_t ret_val;
2216 e1000_check_for_link(&adapter->hw); 2338
2339 ret_val = e1000_check_for_link(&adapter->hw);
2340 if ((ret_val == E1000_ERR_PHY) &&
2341 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2342 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2343 /* See e1000_kumeran_lock_loss_workaround() */
2344 DPRINTK(LINK, INFO,
2345 "Gigabit has been disabled, downgrading speed\n");
2346 }
2217 if (adapter->hw.mac_type == e1000_82573) { 2347 if (adapter->hw.mac_type == e1000_82573) {
2218 e1000_enable_tx_pkt_filtering(&adapter->hw); 2348 e1000_enable_tx_pkt_filtering(&adapter->hw);
2219 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) 2349 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
@@ -2779,9 +2909,10 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2779 case e1000_82571: 2909 case e1000_82571:
2780 case e1000_82572: 2910 case e1000_82572:
2781 case e1000_82573: 2911 case e1000_82573:
2912 case e1000_ich8lan:
2782 pull_size = min((unsigned int)4, skb->data_len); 2913 pull_size = min((unsigned int)4, skb->data_len);
2783 if (!__pskb_pull_tail(skb, pull_size)) { 2914 if (!__pskb_pull_tail(skb, pull_size)) {
2784 printk(KERN_ERR 2915 DPRINTK(DRV, ERR,
2785 "__pskb_pull_tail failed.\n"); 2916 "__pskb_pull_tail failed.\n");
2786 dev_kfree_skb_any(skb); 2917 dev_kfree_skb_any(skb);
2787 return NETDEV_TX_OK; 2918 return NETDEV_TX_OK;
@@ -2919,8 +3050,7 @@ e1000_reset_task(struct net_device *netdev)
2919{ 3050{
2920 struct e1000_adapter *adapter = netdev_priv(netdev); 3051 struct e1000_adapter *adapter = netdev_priv(netdev);
2921 3052
2922 e1000_down(adapter); 3053 e1000_reinit_locked(adapter);
2923 e1000_up(adapter);
2924} 3054}
2925 3055
2926/** 3056/**
@@ -2964,6 +3094,7 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu)
2964 /* Adapter-specific max frame size limits. */ 3094 /* Adapter-specific max frame size limits. */
2965 switch (adapter->hw.mac_type) { 3095 switch (adapter->hw.mac_type) {
2966 case e1000_undefined ... e1000_82542_rev2_1: 3096 case e1000_undefined ... e1000_82542_rev2_1:
3097 case e1000_ich8lan:
2967 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { 3098 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
2968 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n"); 3099 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
2969 return -EINVAL; 3100 return -EINVAL;
@@ -3026,10 +3157,8 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu)
3026 3157
3027 netdev->mtu = new_mtu; 3158 netdev->mtu = new_mtu;
3028 3159
3029 if (netif_running(netdev)) { 3160 if (netif_running(netdev))
3030 e1000_down(adapter); 3161 e1000_reinit_locked(adapter);
3031 e1000_up(adapter);
3032 }
3033 3162
3034 adapter->hw.max_frame_size = max_frame; 3163 adapter->hw.max_frame_size = max_frame;
3035 3164
@@ -3074,12 +3203,15 @@ e1000_update_stats(struct e1000_adapter *adapter)
3074 adapter->stats.bprc += E1000_READ_REG(hw, BPRC); 3203 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3075 adapter->stats.mprc += E1000_READ_REG(hw, MPRC); 3204 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3076 adapter->stats.roc += E1000_READ_REG(hw, ROC); 3205 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3206
3207 if (adapter->hw.mac_type != e1000_ich8lan) {
3077 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64); 3208 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3078 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127); 3209 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3079 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255); 3210 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3080 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511); 3211 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3081 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023); 3212 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3082 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522); 3213 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3214 }
3083 3215
3084 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS); 3216 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3085 adapter->stats.mpc += E1000_READ_REG(hw, MPC); 3217 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
@@ -3107,12 +3239,16 @@ e1000_update_stats(struct e1000_adapter *adapter)
3107 adapter->stats.totl += E1000_READ_REG(hw, TOTL); 3239 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3108 adapter->stats.toth += E1000_READ_REG(hw, TOTH); 3240 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3109 adapter->stats.tpr += E1000_READ_REG(hw, TPR); 3241 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3242
3243 if (adapter->hw.mac_type != e1000_ich8lan) {
3110 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64); 3244 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3111 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127); 3245 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3112 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255); 3246 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3113 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511); 3247 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3114 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023); 3248 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3115 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522); 3249 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3250 }
3251
3116 adapter->stats.mptc += E1000_READ_REG(hw, MPTC); 3252 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3117 adapter->stats.bptc += E1000_READ_REG(hw, BPTC); 3253 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3118 3254
@@ -3134,6 +3270,8 @@ e1000_update_stats(struct e1000_adapter *adapter)
3134 if (hw->mac_type > e1000_82547_rev_2) { 3270 if (hw->mac_type > e1000_82547_rev_2) {
3135 adapter->stats.iac += E1000_READ_REG(hw, IAC); 3271 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3136 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); 3272 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3273
3274 if (adapter->hw.mac_type != e1000_ich8lan) {
3137 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); 3275 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3138 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); 3276 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3139 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); 3277 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
@@ -3141,6 +3279,7 @@ e1000_update_stats(struct e1000_adapter *adapter)
3141 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); 3279 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3142 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); 3280 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3143 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); 3281 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3282 }
3144 } 3283 }
3145 3284
3146 /* Fill out the OS statistics structure */ 3285 /* Fill out the OS statistics structure */
@@ -3547,7 +3686,8 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter,
3547 /* All receives must fit into a single buffer */ 3686 /* All receives must fit into a single buffer */
3548 E1000_DBG("%s: Receive packet consumed multiple" 3687 E1000_DBG("%s: Receive packet consumed multiple"
3549 " buffers\n", netdev->name); 3688 " buffers\n", netdev->name);
3550 dev_kfree_skb_irq(skb); 3689 /* recycle */
3690 buffer_info-> skb = skb;
3551 goto next_desc; 3691 goto next_desc;
3552 } 3692 }
3553 3693
@@ -3675,7 +3815,6 @@ e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3675 buffer_info = &rx_ring->buffer_info[i]; 3815 buffer_info = &rx_ring->buffer_info[i];
3676 3816
3677 while (staterr & E1000_RXD_STAT_DD) { 3817 while (staterr & E1000_RXD_STAT_DD) {
3678 buffer_info = &rx_ring->buffer_info[i];
3679 ps_page = &rx_ring->ps_page[i]; 3818 ps_page = &rx_ring->ps_page[i];
3680 ps_page_dma = &rx_ring->ps_page_dma[i]; 3819 ps_page_dma = &rx_ring->ps_page_dma[i];
3681#ifdef CONFIG_E1000_NAPI 3820#ifdef CONFIG_E1000_NAPI
@@ -4180,10 +4319,9 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4180 return retval; 4319 return retval;
4181 } 4320 }
4182 } 4321 }
4183 if (netif_running(adapter->netdev)) { 4322 if (netif_running(adapter->netdev))
4184 e1000_down(adapter); 4323 e1000_reinit_locked(adapter);
4185 e1000_up(adapter); 4324 else
4186 } else
4187 e1000_reset(adapter); 4325 e1000_reset(adapter);
4188 break; 4326 break;
4189 case M88E1000_PHY_SPEC_CTRL: 4327 case M88E1000_PHY_SPEC_CTRL:
@@ -4200,10 +4338,9 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4200 case PHY_CTRL: 4338 case PHY_CTRL:
4201 if (mii_reg & MII_CR_POWER_DOWN) 4339 if (mii_reg & MII_CR_POWER_DOWN)
4202 break; 4340 break;
4203 if (netif_running(adapter->netdev)) { 4341 if (netif_running(adapter->netdev))
4204 e1000_down(adapter); 4342 e1000_reinit_locked(adapter);
4205 e1000_up(adapter); 4343 else
4206 } else
4207 e1000_reset(adapter); 4344 e1000_reset(adapter);
4208 break; 4345 break;
4209 } 4346 }
@@ -4277,18 +4414,21 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4277 ctrl |= E1000_CTRL_VME; 4414 ctrl |= E1000_CTRL_VME;
4278 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); 4415 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4279 4416
4417 if (adapter->hw.mac_type != e1000_ich8lan) {
4280 /* enable VLAN receive filtering */ 4418 /* enable VLAN receive filtering */
4281 rctl = E1000_READ_REG(&adapter->hw, RCTL); 4419 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4282 rctl |= E1000_RCTL_VFE; 4420 rctl |= E1000_RCTL_VFE;
4283 rctl &= ~E1000_RCTL_CFIEN; 4421 rctl &= ~E1000_RCTL_CFIEN;
4284 E1000_WRITE_REG(&adapter->hw, RCTL, rctl); 4422 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4285 e1000_update_mng_vlan(adapter); 4423 e1000_update_mng_vlan(adapter);
4424 }
4286 } else { 4425 } else {
4287 /* disable VLAN tag insert/strip */ 4426 /* disable VLAN tag insert/strip */
4288 ctrl = E1000_READ_REG(&adapter->hw, CTRL); 4427 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4289 ctrl &= ~E1000_CTRL_VME; 4428 ctrl &= ~E1000_CTRL_VME;
4290 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl); 4429 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4291 4430
4431 if (adapter->hw.mac_type != e1000_ich8lan) {
4292 /* disable VLAN filtering */ 4432 /* disable VLAN filtering */
4293 rctl = E1000_READ_REG(&adapter->hw, RCTL); 4433 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4294 rctl &= ~E1000_RCTL_VFE; 4434 rctl &= ~E1000_RCTL_VFE;
@@ -4297,6 +4437,7 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4297 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); 4437 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4298 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 4438 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4299 } 4439 }
4440 }
4300 } 4441 }
4301 4442
4302 e1000_irq_enable(adapter); 4443 e1000_irq_enable(adapter);
@@ -4458,12 +4599,16 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4458 struct e1000_adapter *adapter = netdev_priv(netdev); 4599 struct e1000_adapter *adapter = netdev_priv(netdev);
4459 uint32_t ctrl, ctrl_ext, rctl, manc, status; 4600 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4460 uint32_t wufc = adapter->wol; 4601 uint32_t wufc = adapter->wol;
4602#ifdef CONFIG_PM
4461 int retval = 0; 4603 int retval = 0;
4604#endif
4462 4605
4463 netif_device_detach(netdev); 4606 netif_device_detach(netdev);
4464 4607
4465 if (netif_running(netdev)) 4608 if (netif_running(netdev)) {
4609 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4466 e1000_down(adapter); 4610 e1000_down(adapter);
4611 }
4467 4612
4468#ifdef CONFIG_PM 4613#ifdef CONFIG_PM
4469 /* Implement our own version of pci_save_state(pdev) because pci- 4614 /* Implement our own version of pci_save_state(pdev) because pci-
@@ -4521,7 +4666,9 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4521 pci_enable_wake(pdev, PCI_D3cold, 0); 4666 pci_enable_wake(pdev, PCI_D3cold, 0);
4522 } 4667 }
4523 4668
4669 /* FIXME: this code is incorrect for PCI Express */
4524 if (adapter->hw.mac_type >= e1000_82540 && 4670 if (adapter->hw.mac_type >= e1000_82540 &&
4671 adapter->hw.mac_type != e1000_ich8lan &&
4525 adapter->hw.media_type == e1000_media_type_copper) { 4672 adapter->hw.media_type == e1000_media_type_copper) {
4526 manc = E1000_READ_REG(&adapter->hw, MANC); 4673 manc = E1000_READ_REG(&adapter->hw, MANC);
4527 if (manc & E1000_MANC_SMBUS_EN) { 4674 if (manc & E1000_MANC_SMBUS_EN) {
@@ -4532,6 +4679,9 @@ e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4532 } 4679 }
4533 } 4680 }
4534 4681
4682 if (adapter->hw.phy_type == e1000_phy_igp_3)
4683 e1000_phy_powerdown_workaround(&adapter->hw);
4684
4535 /* Release control of h/w to f/w. If f/w is AMT enabled, this 4685 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4536 * would have already happened in close and is redundant. */ 4686 * would have already happened in close and is redundant. */
4537 e1000_release_hw_control(adapter); 4687 e1000_release_hw_control(adapter);
@@ -4567,7 +4717,9 @@ e1000_resume(struct pci_dev *pdev)
4567 4717
4568 netif_device_attach(netdev); 4718 netif_device_attach(netdev);
4569 4719
4720 /* FIXME: this code is incorrect for PCI Express */
4570 if (adapter->hw.mac_type >= e1000_82540 && 4721 if (adapter->hw.mac_type >= e1000_82540 &&
4722 adapter->hw.mac_type != e1000_ich8lan &&
4571 adapter->hw.media_type == e1000_media_type_copper) { 4723 adapter->hw.media_type == e1000_media_type_copper) {
4572 manc = E1000_READ_REG(&adapter->hw, MANC); 4724 manc = E1000_READ_REG(&adapter->hw, MANC);
4573 manc &= ~(E1000_MANC_ARP_EN); 4725 manc &= ~(E1000_MANC_ARP_EN);
diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h
index 048d052be29d..2d3e8b06cab0 100644
--- a/drivers/net/e1000/e1000_osdep.h
+++ b/drivers/net/e1000/e1000_osdep.h
@@ -127,4 +127,17 @@ typedef enum {
127 127
128#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) 128#define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS)
129 129
130#define E1000_WRITE_ICH8_REG(a, reg, value) ( \
131 writel((value), ((a)->flash_address + reg)))
132
133#define E1000_READ_ICH8_REG(a, reg) ( \
134 readl((a)->flash_address + reg))
135
136#define E1000_WRITE_ICH8_REG16(a, reg, value) ( \
137 writew((value), ((a)->flash_address + reg)))
138
139#define E1000_READ_ICH8_REG16(a, reg) ( \
140 readw((a)->flash_address + reg))
141
142
130#endif /* _E1000_OSDEP_H_ */ 143#endif /* _E1000_OSDEP_H_ */
diff --git a/drivers/net/e1000/e1000_param.c b/drivers/net/e1000/e1000_param.c
index e55f8969a0fb..0ef413172c68 100644
--- a/drivers/net/e1000/e1000_param.c
+++ b/drivers/net/e1000/e1000_param.c
@@ -45,6 +45,16 @@
45 */ 45 */
46 46
47#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET } 47#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
48/* Module Parameters are always initialized to -1, so that the driver
49 * can tell the difference between no user specified value or the
50 * user asking for the default value.
51 * The true default values are loaded in when e1000_check_options is called.
52 *
53 * This is a GCC extension to ANSI C.
54 * See the item "Labeled Elements in Initializers" in the section
55 * "Extensions to the C Language Family" of the GCC documentation.
56 */
57
48#define E1000_PARAM(X, desc) \ 58#define E1000_PARAM(X, desc) \
49 static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \ 59 static int __devinitdata X[E1000_MAX_NIC+1] = E1000_PARAM_INIT; \
50 static int num_##X = 0; \ 60 static int num_##X = 0; \
@@ -183,6 +193,24 @@ E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
183 193
184E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate"); 194E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
185 195
196/* Enable Smart Power Down of the PHY
197 *
198 * Valid Range: 0, 1
199 *
200 * Default Value: 0 (disabled)
201 */
202
203E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
204
205/* Enable Kumeran Lock Loss workaround
206 *
207 * Valid Range: 0, 1
208 *
209 * Default Value: 1 (enabled)
210 */
211
212E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
213
186#define AUTONEG_ADV_DEFAULT 0x2F 214#define AUTONEG_ADV_DEFAULT 0x2F
187#define AUTONEG_ADV_MASK 0x2F 215#define AUTONEG_ADV_MASK 0x2F
188#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL 216#define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL
@@ -296,6 +324,7 @@ e1000_check_options(struct e1000_adapter *adapter)
296 DPRINTK(PROBE, NOTICE, 324 DPRINTK(PROBE, NOTICE,
297 "Warning: no configuration for board #%i\n", bd); 325 "Warning: no configuration for board #%i\n", bd);
298 DPRINTK(PROBE, NOTICE, "Using defaults for all values\n"); 326 DPRINTK(PROBE, NOTICE, "Using defaults for all values\n");
327 bd = E1000_MAX_NIC;
299 } 328 }
300 329
301 { /* Transmit Descriptor Count */ 330 { /* Transmit Descriptor Count */
@@ -313,14 +342,9 @@ e1000_check_options(struct e1000_adapter *adapter)
313 opt.arg.r.max = mac_type < e1000_82544 ? 342 opt.arg.r.max = mac_type < e1000_82544 ?
314 E1000_MAX_TXD : E1000_MAX_82544_TXD; 343 E1000_MAX_TXD : E1000_MAX_82544_TXD;
315 344
316 if (num_TxDescriptors > bd) { 345 tx_ring->count = TxDescriptors[bd];
317 tx_ring->count = TxDescriptors[bd]; 346 e1000_validate_option(&tx_ring->count, &opt, adapter);
318 e1000_validate_option(&tx_ring->count, &opt, adapter); 347 E1000_ROUNDUP(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
319 E1000_ROUNDUP(tx_ring->count,
320 REQ_TX_DESCRIPTOR_MULTIPLE);
321 } else {
322 tx_ring->count = opt.def;
323 }
324 for (i = 0; i < adapter->num_tx_queues; i++) 348 for (i = 0; i < adapter->num_tx_queues; i++)
325 tx_ring[i].count = tx_ring->count; 349 tx_ring[i].count = tx_ring->count;
326 } 350 }
@@ -339,14 +363,9 @@ e1000_check_options(struct e1000_adapter *adapter)
339 opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD : 363 opt.arg.r.max = mac_type < e1000_82544 ? E1000_MAX_RXD :
340 E1000_MAX_82544_RXD; 364 E1000_MAX_82544_RXD;
341 365
342 if (num_RxDescriptors > bd) { 366 rx_ring->count = RxDescriptors[bd];
343 rx_ring->count = RxDescriptors[bd]; 367 e1000_validate_option(&rx_ring->count, &opt, adapter);
344 e1000_validate_option(&rx_ring->count, &opt, adapter); 368 E1000_ROUNDUP(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
345 E1000_ROUNDUP(rx_ring->count,
346 REQ_RX_DESCRIPTOR_MULTIPLE);
347 } else {
348 rx_ring->count = opt.def;
349 }
350 for (i = 0; i < adapter->num_rx_queues; i++) 369 for (i = 0; i < adapter->num_rx_queues; i++)
351 rx_ring[i].count = rx_ring->count; 370 rx_ring[i].count = rx_ring->count;
352 } 371 }
@@ -358,13 +377,9 @@ e1000_check_options(struct e1000_adapter *adapter)
358 .def = OPTION_ENABLED 377 .def = OPTION_ENABLED
359 }; 378 };
360 379
361 if (num_XsumRX > bd) { 380 int rx_csum = XsumRX[bd];
362 int rx_csum = XsumRX[bd]; 381 e1000_validate_option(&rx_csum, &opt, adapter);
363 e1000_validate_option(&rx_csum, &opt, adapter); 382 adapter->rx_csum = rx_csum;
364 adapter->rx_csum = rx_csum;
365 } else {
366 adapter->rx_csum = opt.def;
367 }
368 } 383 }
369 { /* Flow Control */ 384 { /* Flow Control */
370 385
@@ -384,13 +399,9 @@ e1000_check_options(struct e1000_adapter *adapter)
384 .p = fc_list }} 399 .p = fc_list }}
385 }; 400 };
386 401
387 if (num_FlowControl > bd) { 402 int fc = FlowControl[bd];
388 int fc = FlowControl[bd]; 403 e1000_validate_option(&fc, &opt, adapter);
389 e1000_validate_option(&fc, &opt, adapter); 404 adapter->hw.fc = adapter->hw.original_fc = fc;
390 adapter->hw.fc = adapter->hw.original_fc = fc;
391 } else {
392 adapter->hw.fc = adapter->hw.original_fc = opt.def;
393 }
394 } 405 }
395 { /* Transmit Interrupt Delay */ 406 { /* Transmit Interrupt Delay */
396 struct e1000_option opt = { 407 struct e1000_option opt = {
@@ -402,13 +413,8 @@ e1000_check_options(struct e1000_adapter *adapter)
402 .max = MAX_TXDELAY }} 413 .max = MAX_TXDELAY }}
403 }; 414 };
404 415
405 if (num_TxIntDelay > bd) { 416 adapter->tx_int_delay = TxIntDelay[bd];
406 adapter->tx_int_delay = TxIntDelay[bd]; 417 e1000_validate_option(&adapter->tx_int_delay, &opt, adapter);
407 e1000_validate_option(&adapter->tx_int_delay, &opt,
408 adapter);
409 } else {
410 adapter->tx_int_delay = opt.def;
411 }
412 } 418 }
413 { /* Transmit Absolute Interrupt Delay */ 419 { /* Transmit Absolute Interrupt Delay */
414 struct e1000_option opt = { 420 struct e1000_option opt = {
@@ -420,13 +426,9 @@ e1000_check_options(struct e1000_adapter *adapter)
420 .max = MAX_TXABSDELAY }} 426 .max = MAX_TXABSDELAY }}
421 }; 427 };
422 428
423 if (num_TxAbsIntDelay > bd) { 429 adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
424 adapter->tx_abs_int_delay = TxAbsIntDelay[bd]; 430 e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
425 e1000_validate_option(&adapter->tx_abs_int_delay, &opt, 431 adapter);
426 adapter);
427 } else {
428 adapter->tx_abs_int_delay = opt.def;
429 }
430 } 432 }
431 { /* Receive Interrupt Delay */ 433 { /* Receive Interrupt Delay */
432 struct e1000_option opt = { 434 struct e1000_option opt = {
@@ -438,13 +440,8 @@ e1000_check_options(struct e1000_adapter *adapter)
438 .max = MAX_RXDELAY }} 440 .max = MAX_RXDELAY }}
439 }; 441 };
440 442
441 if (num_RxIntDelay > bd) { 443 adapter->rx_int_delay = RxIntDelay[bd];
442 adapter->rx_int_delay = RxIntDelay[bd]; 444 e1000_validate_option(&adapter->rx_int_delay, &opt, adapter);
443 e1000_validate_option(&adapter->rx_int_delay, &opt,
444 adapter);
445 } else {
446 adapter->rx_int_delay = opt.def;
447 }
448 } 445 }
449 { /* Receive Absolute Interrupt Delay */ 446 { /* Receive Absolute Interrupt Delay */
450 struct e1000_option opt = { 447 struct e1000_option opt = {
@@ -456,13 +453,9 @@ e1000_check_options(struct e1000_adapter *adapter)
456 .max = MAX_RXABSDELAY }} 453 .max = MAX_RXABSDELAY }}
457 }; 454 };
458 455
459 if (num_RxAbsIntDelay > bd) { 456 adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
460 adapter->rx_abs_int_delay = RxAbsIntDelay[bd]; 457 e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
461 e1000_validate_option(&adapter->rx_abs_int_delay, &opt, 458 adapter);
462 adapter);
463 } else {
464 adapter->rx_abs_int_delay = opt.def;
465 }
466 } 459 }
467 { /* Interrupt Throttling Rate */ 460 { /* Interrupt Throttling Rate */
468 struct e1000_option opt = { 461 struct e1000_option opt = {
@@ -474,26 +467,44 @@ e1000_check_options(struct e1000_adapter *adapter)
474 .max = MAX_ITR }} 467 .max = MAX_ITR }}
475 }; 468 };
476 469
477 if (num_InterruptThrottleRate > bd) { 470 adapter->itr = InterruptThrottleRate[bd];
478 adapter->itr = InterruptThrottleRate[bd]; 471 switch (adapter->itr) {
479 switch (adapter->itr) { 472 case 0:
480 case 0: 473 DPRINTK(PROBE, INFO, "%s turned off\n", opt.name);
481 DPRINTK(PROBE, INFO, "%s turned off\n", 474 break;
482 opt.name); 475 case 1:
483 break; 476 DPRINTK(PROBE, INFO, "%s set to dynamic mode\n",
484 case 1: 477 opt.name);
485 DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", 478 break;
486 opt.name); 479 default:
487 break; 480 e1000_validate_option(&adapter->itr, &opt, adapter);
488 default: 481 break;
489 e1000_validate_option(&adapter->itr, &opt,
490 adapter);
491 break;
492 }
493 } else {
494 adapter->itr = opt.def;
495 } 482 }
496 } 483 }
484 { /* Smart Power Down */
485 struct e1000_option opt = {
486 .type = enable_option,
487 .name = "PHY Smart Power Down",
488 .err = "defaulting to Disabled",
489 .def = OPTION_DISABLED
490 };
491
492 int spd = SmartPowerDownEnable[bd];
493 e1000_validate_option(&spd, &opt, adapter);
494 adapter->smart_power_down = spd;
495 }
496 { /* Kumeran Lock Loss Workaround */
497 struct e1000_option opt = {
498 .type = enable_option,
499 .name = "Kumeran Lock Loss Workaround",
500 .err = "defaulting to Enabled",
501 .def = OPTION_ENABLED
502 };
503
504 int kmrn_lock_loss = KumeranLockLoss[bd];
505 e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
506 adapter->hw.kmrn_lock_loss_workaround_disabled = !kmrn_lock_loss;
507 }
497 508
498 switch (adapter->hw.media_type) { 509 switch (adapter->hw.media_type) {
499 case e1000_media_type_fiber: 510 case e1000_media_type_fiber:
@@ -519,17 +530,18 @@ static void __devinit
519e1000_check_fiber_options(struct e1000_adapter *adapter) 530e1000_check_fiber_options(struct e1000_adapter *adapter)
520{ 531{
521 int bd = adapter->bd_number; 532 int bd = adapter->bd_number;
522 if (num_Speed > bd) { 533 bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd;
534 if ((Speed[bd] != OPTION_UNSET)) {
523 DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, " 535 DPRINTK(PROBE, INFO, "Speed not valid for fiber adapters, "
524 "parameter ignored\n"); 536 "parameter ignored\n");
525 } 537 }
526 538
527 if (num_Duplex > bd) { 539 if ((Duplex[bd] != OPTION_UNSET)) {
528 DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, " 540 DPRINTK(PROBE, INFO, "Duplex not valid for fiber adapters, "
529 "parameter ignored\n"); 541 "parameter ignored\n");
530 } 542 }
531 543
532 if ((num_AutoNeg > bd) && (AutoNeg[bd] != 0x20)) { 544 if ((AutoNeg[bd] != OPTION_UNSET) && (AutoNeg[bd] != 0x20)) {
533 DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is " 545 DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is "
534 "not valid for fiber adapters, " 546 "not valid for fiber adapters, "
535 "parameter ignored\n"); 547 "parameter ignored\n");
@@ -548,6 +560,7 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
548{ 560{
549 int speed, dplx, an; 561 int speed, dplx, an;
550 int bd = adapter->bd_number; 562 int bd = adapter->bd_number;
563 bd = bd > E1000_MAX_NIC ? E1000_MAX_NIC : bd;
551 564
552 { /* Speed */ 565 { /* Speed */
553 struct e1000_opt_list speed_list[] = {{ 0, "" }, 566 struct e1000_opt_list speed_list[] = {{ 0, "" },
@@ -564,12 +577,8 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
564 .p = speed_list }} 577 .p = speed_list }}
565 }; 578 };
566 579
567 if (num_Speed > bd) { 580 speed = Speed[bd];
568 speed = Speed[bd]; 581 e1000_validate_option(&speed, &opt, adapter);
569 e1000_validate_option(&speed, &opt, adapter);
570 } else {
571 speed = opt.def;
572 }
573 } 582 }
574 { /* Duplex */ 583 { /* Duplex */
575 struct e1000_opt_list dplx_list[] = {{ 0, "" }, 584 struct e1000_opt_list dplx_list[] = {{ 0, "" },
@@ -591,15 +600,11 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
591 "Speed/Duplex/AutoNeg parameter ignored.\n"); 600 "Speed/Duplex/AutoNeg parameter ignored.\n");
592 return; 601 return;
593 } 602 }
594 if (num_Duplex > bd) { 603 dplx = Duplex[bd];
595 dplx = Duplex[bd]; 604 e1000_validate_option(&dplx, &opt, adapter);
596 e1000_validate_option(&dplx, &opt, adapter);
597 } else {
598 dplx = opt.def;
599 }
600 } 605 }
601 606
602 if ((num_AutoNeg > bd) && (speed != 0 || dplx != 0)) { 607 if (AutoNeg[bd] != OPTION_UNSET && (speed != 0 || dplx != 0)) {
603 DPRINTK(PROBE, INFO, 608 DPRINTK(PROBE, INFO,
604 "AutoNeg specified along with Speed or Duplex, " 609 "AutoNeg specified along with Speed or Duplex, "
605 "parameter ignored\n"); 610 "parameter ignored\n");
@@ -648,19 +653,15 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
648 .p = an_list }} 653 .p = an_list }}
649 }; 654 };
650 655
651 if (num_AutoNeg > bd) { 656 an = AutoNeg[bd];
652 an = AutoNeg[bd]; 657 e1000_validate_option(&an, &opt, adapter);
653 e1000_validate_option(&an, &opt, adapter);
654 } else {
655 an = opt.def;
656 }
657 adapter->hw.autoneg_advertised = an; 658 adapter->hw.autoneg_advertised = an;
658 } 659 }
659 660
660 switch (speed + dplx) { 661 switch (speed + dplx) {
661 case 0: 662 case 0:
662 adapter->hw.autoneg = adapter->fc_autoneg = 1; 663 adapter->hw.autoneg = adapter->fc_autoneg = 1;
663 if ((num_Speed > bd) && (speed != 0 || dplx != 0)) 664 if (Speed[bd] != OPTION_UNSET || Duplex[bd] != OPTION_UNSET)
664 DPRINTK(PROBE, INFO, 665 DPRINTK(PROBE, INFO,
665 "Speed and duplex autonegotiation enabled\n"); 666 "Speed and duplex autonegotiation enabled\n");
666 break; 667 break;