aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
authorAvi Kivity <avi@qumranet.com>2007-05-31 08:08:29 -0400
committerAvi Kivity <avi@qumranet.com>2007-07-16 05:05:43 -0400
commit97a0a01ea9229e4f3f0f06e0584227e9687159a5 (patch)
tree94ca92cafa05c7156757557466fa7887dd47a14f /drivers
parent63b1ad24d2695db3ec1cc8b10760e130e1a1f04b (diff)
KVM: MMU: Fold fix_write_pf() into set_pte_common()
This prevents some work from being performed twice, and, more importantly, reduces the number of places where we modify shadow ptes. Signed-off-by: Avi Kivity <avi@qumranet.com>
Diffstat (limited to 'drivers')
-rw-r--r--drivers/kvm/mmu.c11
-rw-r--r--drivers/kvm/paging_tmpl.h168
2 files changed, 68 insertions, 111 deletions
diff --git a/drivers/kvm/mmu.c b/drivers/kvm/mmu.c
index 2079d69f186a..3cdbf687df25 100644
--- a/drivers/kvm/mmu.c
+++ b/drivers/kvm/mmu.c
@@ -731,6 +731,17 @@ static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
731 return r; 731 return r;
732} 732}
733 733
734static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
735{
736 struct kvm_mmu_page *page;
737
738 while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
739 pgprintk("%s: zap %lx %x\n",
740 __FUNCTION__, gfn, page->role.word);
741 kvm_mmu_zap_page(vcpu, page);
742 }
743}
744
734static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa) 745static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
735{ 746{
736 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT)); 747 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
diff --git a/drivers/kvm/paging_tmpl.h b/drivers/kvm/paging_tmpl.h
index 869582befaf1..c06720385551 100644
--- a/drivers/kvm/paging_tmpl.h
+++ b/drivers/kvm/paging_tmpl.h
@@ -197,11 +197,26 @@ static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
197 gpa_t gaddr, 197 gpa_t gaddr,
198 pt_element_t *gpte, 198 pt_element_t *gpte,
199 u64 access_bits, 199 u64 access_bits,
200 int user_fault,
200 int write_fault, 201 int write_fault,
202 int *ptwrite,
203 struct guest_walker *walker,
201 gfn_t gfn) 204 gfn_t gfn)
202{ 205{
203 hpa_t paddr; 206 hpa_t paddr;
204 int dirty = *gpte & PT_DIRTY_MASK; 207 int dirty = *gpte & PT_DIRTY_MASK;
208 int was_rmapped = is_rmap_pte(*shadow_pte);
209
210 pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
211 " user_fault %d gfn %lx\n",
212 __FUNCTION__, *shadow_pte, (u64)*gpte, access_bits,
213 write_fault, user_fault, gfn);
214
215 if (write_fault && !dirty) {
216 *gpte |= PT_DIRTY_MASK;
217 dirty = 1;
218 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
219 }
205 220
206 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET; 221 *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
207 if (!dirty) 222 if (!dirty)
@@ -209,7 +224,9 @@ static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
209 224
210 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK); 225 paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
211 226
212 *shadow_pte |= access_bits; 227 *shadow_pte |= PT_PRESENT_MASK;
228 if (access_bits & PT_USER_MASK)
229 *shadow_pte |= PT_USER_MASK;
213 230
214 if (is_error_hpa(paddr)) { 231 if (is_error_hpa(paddr)) {
215 *shadow_pte |= gaddr; 232 *shadow_pte |= gaddr;
@@ -231,37 +248,50 @@ static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
231 access_bits &= ~PT_WRITABLE_MASK; 248 access_bits &= ~PT_WRITABLE_MASK;
232 } 249 }
233 250
234 if (access_bits & PT_WRITABLE_MASK) { 251 if ((access_bits & PT_WRITABLE_MASK)
252 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
235 struct kvm_mmu_page *shadow; 253 struct kvm_mmu_page *shadow;
236 254
255 *shadow_pte |= PT_WRITABLE_MASK;
256 if (user_fault) {
257 mmu_unshadow(vcpu, gfn);
258 goto unshadowed;
259 }
260
237 shadow = kvm_mmu_lookup_page(vcpu, gfn); 261 shadow = kvm_mmu_lookup_page(vcpu, gfn);
238 if (shadow) { 262 if (shadow) {
239 pgprintk("%s: found shadow page for %lx, marking ro\n", 263 pgprintk("%s: found shadow page for %lx, marking ro\n",
240 __FUNCTION__, gfn); 264 __FUNCTION__, gfn);
241 access_bits &= ~PT_WRITABLE_MASK; 265 access_bits &= ~PT_WRITABLE_MASK;
242 if (is_writeble_pte(*shadow_pte)) { 266 if (is_writeble_pte(*shadow_pte)) {
243 *shadow_pte &= ~PT_WRITABLE_MASK; 267 *shadow_pte &= ~PT_WRITABLE_MASK;
244 kvm_arch_ops->tlb_flush(vcpu); 268 kvm_arch_ops->tlb_flush(vcpu);
245 } 269 }
270 if (write_fault)
271 *ptwrite = 1;
246 } 272 }
247 } 273 }
248 274
275unshadowed:
276
249 if (access_bits & PT_WRITABLE_MASK) 277 if (access_bits & PT_WRITABLE_MASK)
250 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT); 278 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
251 279
252 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr); 280 page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
253 rmap_add(vcpu, shadow_pte); 281 if (!was_rmapped)
282 rmap_add(vcpu, shadow_pte);
254} 283}
255 284
256static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte, 285static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte,
257 u64 *shadow_pte, u64 access_bits, 286 u64 *shadow_pte, u64 access_bits,
258 int write_fault, gfn_t gfn) 287 int user_fault, int write_fault, int *ptwrite,
288 struct guest_walker *walker, gfn_t gfn)
259{ 289{
260 ASSERT(*shadow_pte == 0);
261 access_bits &= *gpte; 290 access_bits &= *gpte;
262 *shadow_pte = (*gpte & PT_PTE_COPY_MASK); 291 *shadow_pte |= (*gpte & PT_PTE_COPY_MASK);
263 FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK, 292 FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK,
264 gpte, access_bits, write_fault, gfn); 293 gpte, access_bits, user_fault, write_fault,
294 ptwrite, walker, gfn);
265} 295}
266 296
267static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page, 297static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
@@ -276,31 +306,34 @@ static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
276 return; 306 return;
277 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte); 307 pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
278 FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0, 308 FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
309 0, NULL, NULL,
279 (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT); 310 (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
280} 311}
281 312
282static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde, 313static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde,
283 u64 *shadow_pte, u64 access_bits, int write_fault, 314 u64 *shadow_pte, u64 access_bits,
284 gfn_t gfn) 315 int user_fault, int write_fault, int *ptwrite,
316 struct guest_walker *walker, gfn_t gfn)
285{ 317{
286 gpa_t gaddr; 318 gpa_t gaddr;
287 319
288 ASSERT(*shadow_pte == 0);
289 access_bits &= *gpde; 320 access_bits &= *gpde;
290 gaddr = (gpa_t)gfn << PAGE_SHIFT; 321 gaddr = (gpa_t)gfn << PAGE_SHIFT;
291 if (PTTYPE == 32 && is_cpuid_PSE36()) 322 if (PTTYPE == 32 && is_cpuid_PSE36())
292 gaddr |= (*gpde & PT32_DIR_PSE36_MASK) << 323 gaddr |= (*gpde & PT32_DIR_PSE36_MASK) <<
293 (32 - PT32_DIR_PSE36_SHIFT); 324 (32 - PT32_DIR_PSE36_SHIFT);
294 *shadow_pte = *gpde & PT_PTE_COPY_MASK; 325 *shadow_pte |= *gpde & PT_PTE_COPY_MASK;
295 FNAME(set_pte_common)(vcpu, shadow_pte, gaddr, 326 FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
296 gpde, access_bits, write_fault, gfn); 327 gpde, access_bits, user_fault, write_fault,
328 ptwrite, walker, gfn);
297} 329}
298 330
299/* 331/*
300 * Fetch a shadow pte for a specific level in the paging hierarchy. 332 * Fetch a shadow pte for a specific level in the paging hierarchy.
301 */ 333 */
302static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, 334static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
303 struct guest_walker *walker, int write_fault) 335 struct guest_walker *walker,
336 int user_fault, int write_fault, int *ptwrite)
304{ 337{
305 hpa_t shadow_addr; 338 hpa_t shadow_addr;
306 int level; 339 int level;
@@ -330,7 +363,7 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
330 shadow_ent = ((u64 *)__va(shadow_addr)) + index; 363 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
331 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) { 364 if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
332 if (level == PT_PAGE_TABLE_LEVEL) 365 if (level == PT_PAGE_TABLE_LEVEL)
333 return shadow_ent; 366 break;
334 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK; 367 shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
335 prev_shadow_ent = shadow_ent; 368 prev_shadow_ent = shadow_ent;
336 continue; 369 continue;
@@ -365,95 +398,18 @@ static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
365 if (prev_shadow_ent) 398 if (prev_shadow_ent)
366 *prev_shadow_ent |= PT_SHADOW_PS_MARK; 399 *prev_shadow_ent |= PT_SHADOW_PS_MARK;
367 FNAME(set_pde)(vcpu, guest_ent, shadow_ent, 400 FNAME(set_pde)(vcpu, guest_ent, shadow_ent,
368 walker->inherited_ar, write_fault, walker->gfn); 401 walker->inherited_ar, user_fault, write_fault,
402 ptwrite, walker, walker->gfn);
369 } else { 403 } else {
370 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL); 404 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
371 FNAME(set_pte)(vcpu, guest_ent, shadow_ent, 405 FNAME(set_pte)(vcpu, guest_ent, shadow_ent,
372 walker->inherited_ar, 406 walker->inherited_ar, user_fault, write_fault,
373 write_fault, walker->gfn); 407 ptwrite, walker, walker->gfn);
374 } 408 }
375 return shadow_ent; 409 return shadow_ent;
376} 410}
377 411
378/* 412/*
379 * The guest faulted for write. We need to
380 *
381 * - check write permissions
382 * - update the guest pte dirty bit
383 * - update our own dirty page tracking structures
384 */
385static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
386 u64 *shadow_ent,
387 struct guest_walker *walker,
388 gva_t addr,
389 int user,
390 int *write_pt)
391{
392 pt_element_t *guest_ent;
393 int writable_shadow;
394 gfn_t gfn;
395 struct kvm_mmu_page *page;
396
397 if (is_writeble_pte(*shadow_ent))
398 return !user || (*shadow_ent & PT_USER_MASK);
399
400 writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
401 if (user) {
402 /*
403 * User mode access. Fail if it's a kernel page or a read-only
404 * page.
405 */
406 if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
407 return 0;
408 ASSERT(*shadow_ent & PT_USER_MASK);
409 } else
410 /*
411 * Kernel mode access. Fail if it's a read-only page and
412 * supervisor write protection is enabled.
413 */
414 if (!writable_shadow) {
415 if (is_write_protection(vcpu))
416 return 0;
417 *shadow_ent &= ~PT_USER_MASK;
418 }
419
420 guest_ent = walker->ptep;
421
422 if (!is_present_pte(*guest_ent)) {
423 *shadow_ent = 0;
424 return 0;
425 }
426
427 gfn = walker->gfn;
428
429 if (user) {
430 /*
431 * Usermode page faults won't be for page table updates.
432 */
433 while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
434 pgprintk("%s: zap %lx %x\n",
435 __FUNCTION__, gfn, page->role.word);
436 kvm_mmu_zap_page(vcpu, page);
437 }
438 } else if (kvm_mmu_lookup_page(vcpu, gfn)) {
439 pgprintk("%s: found shadow page for %lx, marking ro\n",
440 __FUNCTION__, gfn);
441 mark_page_dirty(vcpu->kvm, gfn);
442 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
443 *guest_ent |= PT_DIRTY_MASK;
444 *write_pt = 1;
445 return 0;
446 }
447 mark_page_dirty(vcpu->kvm, gfn);
448 *shadow_ent |= PT_WRITABLE_MASK;
449 FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
450 *guest_ent |= PT_DIRTY_MASK;
451 rmap_add(vcpu, shadow_ent);
452
453 return 1;
454}
455
456/*
457 * Page fault handler. There are several causes for a page fault: 413 * Page fault handler. There are several causes for a page fault:
458 * - there is no shadow pte for the guest pte 414 * - there is no shadow pte for the guest pte
459 * - write access through a shadow pte marked read only so that we can set 415 * - write access through a shadow pte marked read only so that we can set
@@ -475,7 +431,6 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
475 int fetch_fault = error_code & PFERR_FETCH_MASK; 431 int fetch_fault = error_code & PFERR_FETCH_MASK;
476 struct guest_walker walker; 432 struct guest_walker walker;
477 u64 *shadow_pte; 433 u64 *shadow_pte;
478 int fixed;
479 int write_pt = 0; 434 int write_pt = 0;
480 int r; 435 int r;
481 436
@@ -503,19 +458,10 @@ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
503 return 0; 458 return 0;
504 } 459 }
505 460
506 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, write_fault); 461 shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
507 pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__, 462 &write_pt);
508 shadow_pte, *shadow_pte); 463 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
509 464 shadow_pte, *shadow_pte, write_pt);
510 /*
511 * Update the shadow pte.
512 */
513 if (write_fault)
514 fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
515 user_fault, &write_pt);
516
517 pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__,
518 shadow_pte, *shadow_pte);
519 465
520 FNAME(release_walker)(&walker); 466 FNAME(release_walker)(&walker);
521 467