aboutsummaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
authorVishal Verma <vishal.l.verma@intel.com>2013-03-04 20:40:58 -0500
committerMatthew Wilcox <matthew.r.wilcox@intel.com>2013-03-28 14:50:49 -0400
commit5d0f6131a79adfa1fb51309c5f81a2a4ef879dd4 (patch)
tree746ea0e412541fc7c0cd5212cdd903f46e02c4c3 /drivers
parentf8ebf8409abfdaeeb8c847381629a2a8b8e3d816 (diff)
NVMe: Add nvme-scsi.c
Translates SCSI commands in SG_IO ioctl to NVMe commands. Uses the scsi-nvme translation spec from nvmexpress.org as reference. Signed-off-by: Vishal Verma <vishal.l.verma@intel.com> Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Diffstat (limited to 'drivers')
-rw-r--r--drivers/block/Makefile2
-rw-r--r--drivers/block/nvme-core.c37
-rw-r--r--drivers/block/nvme-scsi.c2941
3 files changed, 2962 insertions, 18 deletions
diff --git a/drivers/block/Makefile b/drivers/block/Makefile
index 2a41c86d3ad9..ca07399a8d99 100644
--- a/drivers/block/Makefile
+++ b/drivers/block/Makefile
@@ -42,5 +42,5 @@ obj-$(CONFIG_BLK_DEV_PCIESSD_MTIP32XX) += mtip32xx/
42 42
43obj-$(CONFIG_BLK_DEV_RSXX) += rsxx/ 43obj-$(CONFIG_BLK_DEV_RSXX) += rsxx/
44 44
45nvme-y := nvme-core.o 45nvme-y := nvme-core.o nvme-scsi.o
46swim_mod-y := swim.o swim_asm.o 46swim_mod-y := swim.o swim_asm.o
diff --git a/drivers/block/nvme-core.c b/drivers/block/nvme-core.c
index d0cfb85d5582..a89f7dbefba0 100644
--- a/drivers/block/nvme-core.c
+++ b/drivers/block/nvme-core.c
@@ -39,7 +39,7 @@
39#include <linux/sched.h> 39#include <linux/sched.h>
40#include <linux/slab.h> 40#include <linux/slab.h>
41#include <linux/types.h> 41#include <linux/types.h>
42 42#include <scsi/sg.h>
43#include <asm-generic/io-64-nonatomic-lo-hi.h> 43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44 44
45#define NVME_Q_DEPTH 1024 45#define NVME_Q_DEPTH 1024
@@ -224,12 +224,12 @@ static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
224 return ctx; 224 return ctx;
225} 225}
226 226
227static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) 227struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
228{ 228{
229 return dev->queues[get_cpu() + 1]; 229 return dev->queues[get_cpu() + 1];
230} 230}
231 231
232static void put_nvmeq(struct nvme_queue *nvmeq) 232void put_nvmeq(struct nvme_queue *nvmeq)
233{ 233{
234 put_cpu(); 234 put_cpu();
235} 235}
@@ -290,7 +290,7 @@ nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
290 return iod; 290 return iod;
291} 291}
292 292
293static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod) 293void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
294{ 294{
295 const int last_prp = PAGE_SIZE / 8 - 1; 295 const int last_prp = PAGE_SIZE / 8 - 1;
296 int i; 296 int i;
@@ -339,9 +339,8 @@ static void bio_completion(struct nvme_dev *dev, void *ctx,
339} 339}
340 340
341/* length is in bytes. gfp flags indicates whether we may sleep. */ 341/* length is in bytes. gfp flags indicates whether we may sleep. */
342static int nvme_setup_prps(struct nvme_dev *dev, 342int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
343 struct nvme_common_command *cmd, struct nvme_iod *iod, 343 struct nvme_iod *iod, int total_len, gfp_t gfp)
344 int total_len, gfp_t gfp)
345{ 344{
346 struct dma_pool *pool; 345 struct dma_pool *pool;
347 int length = total_len; 346 int length = total_len;
@@ -512,7 +511,7 @@ static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
512 return 0; 511 return 0;
513} 512}
514 513
515static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns) 514int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
516{ 515{
517 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH, 516 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
518 special_completion, NVME_IO_TIMEOUT); 517 special_completion, NVME_IO_TIMEOUT);
@@ -715,8 +714,8 @@ static void sync_completion(struct nvme_dev *dev, void *ctx,
715 * Returns 0 on success. If the result is negative, it's a Linux error code; 714 * Returns 0 on success. If the result is negative, it's a Linux error code;
716 * if the result is positive, it's an NVM Express status code 715 * if the result is positive, it's an NVM Express status code
717 */ 716 */
718static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, 717int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
719 struct nvme_command *cmd, u32 *result, unsigned timeout) 718 u32 *result, unsigned timeout)
720{ 719{
721 int cmdid; 720 int cmdid;
722 struct sync_cmd_info cmdinfo; 721 struct sync_cmd_info cmdinfo;
@@ -745,7 +744,7 @@ static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
745 return cmdinfo.status; 744 return cmdinfo.status;
746} 745}
747 746
748static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, 747int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
749 u32 *result) 748 u32 *result)
750{ 749{
751 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT); 750 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
@@ -818,7 +817,7 @@ static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
818 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); 817 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
819} 818}
820 819
821static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns, 820int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
822 dma_addr_t dma_addr) 821 dma_addr_t dma_addr)
823{ 822{
824 struct nvme_command c; 823 struct nvme_command c;
@@ -832,7 +831,7 @@ static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
832 return nvme_submit_admin_cmd(dev, &c, NULL); 831 return nvme_submit_admin_cmd(dev, &c, NULL);
833} 832}
834 833
835static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid, 834int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
836 dma_addr_t dma_addr, u32 *result) 835 dma_addr_t dma_addr, u32 *result)
837{ 836{
838 struct nvme_command c; 837 struct nvme_command c;
@@ -846,8 +845,8 @@ static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
846 return nvme_submit_admin_cmd(dev, &c, result); 845 return nvme_submit_admin_cmd(dev, &c, result);
847} 846}
848 847
849static int nvme_set_features(struct nvme_dev *dev, unsigned fid, 848int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
850 unsigned dword11, dma_addr_t dma_addr, u32 *result) 849 dma_addr_t dma_addr, u32 *result)
851{ 850{
852 struct nvme_command c; 851 struct nvme_command c;
853 852
@@ -1065,7 +1064,7 @@ static int nvme_configure_admin_queue(struct nvme_dev *dev)
1065 return result; 1064 return result;
1066} 1065}
1067 1066
1068static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write, 1067struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1069 unsigned long addr, unsigned length) 1068 unsigned long addr, unsigned length)
1070{ 1069{
1071 int i, err, count, nents, offset; 1070 int i, err, count, nents, offset;
@@ -1121,7 +1120,7 @@ static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1121 return ERR_PTR(err); 1120 return ERR_PTR(err);
1122} 1121}
1123 1122
1124static void nvme_unmap_user_pages(struct nvme_dev *dev, int write, 1123void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1125 struct nvme_iod *iod) 1124 struct nvme_iod *iod)
1126{ 1125{
1127 int i; 1126 int i;
@@ -1257,6 +1256,10 @@ static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1257 return nvme_user_admin_cmd(ns->dev, (void __user *)arg); 1256 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1258 case NVME_IOCTL_SUBMIT_IO: 1257 case NVME_IOCTL_SUBMIT_IO:
1259 return nvme_submit_io(ns, (void __user *)arg); 1258 return nvme_submit_io(ns, (void __user *)arg);
1259 case SG_GET_VERSION_NUM:
1260 return nvme_sg_get_version_num((void __user *)arg);
1261 case SG_IO:
1262 return nvme_sg_io(ns, (void __user *)arg);
1260 default: 1263 default:
1261 return -ENOTTY; 1264 return -ENOTTY;
1262 } 1265 }
diff --git a/drivers/block/nvme-scsi.c b/drivers/block/nvme-scsi.c
new file mode 100644
index 000000000000..483af3585c92
--- /dev/null
+++ b/drivers/block/nvme-scsi.c
@@ -0,0 +1,2941 @@
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19/*
20 * Refer to the SCSI-NVMe Translation spec for details on how
21 * each command is translated.
22 */
23
24#include <linux/nvme.h>
25#include <linux/bio.h>
26#include <linux/bitops.h>
27#include <linux/blkdev.h>
28#include <linux/delay.h>
29#include <linux/errno.h>
30#include <linux/fs.h>
31#include <linux/genhd.h>
32#include <linux/idr.h>
33#include <linux/init.h>
34#include <linux/interrupt.h>
35#include <linux/io.h>
36#include <linux/kdev_t.h>
37#include <linux/kthread.h>
38#include <linux/kernel.h>
39#include <linux/mm.h>
40#include <linux/module.h>
41#include <linux/moduleparam.h>
42#include <linux/pci.h>
43#include <linux/poison.h>
44#include <linux/sched.h>
45#include <linux/slab.h>
46#include <linux/types.h>
47#include <linux/version.h>
48#include <scsi/sg.h>
49#include <scsi/scsi.h>
50
51
52static int sg_version_num = 30534; /* 2 digits for each component */
53
54#define SNTI_TRANSLATION_SUCCESS 0
55#define SNTI_INTERNAL_ERROR 1
56
57/* VPD Page Codes */
58#define VPD_SUPPORTED_PAGES 0x00
59#define VPD_SERIAL_NUMBER 0x80
60#define VPD_DEVICE_IDENTIFIERS 0x83
61#define VPD_EXTENDED_INQUIRY 0x86
62#define VPD_BLOCK_DEV_CHARACTERISTICS 0xB1
63
64/* CDB offsets */
65#define REPORT_LUNS_CDB_ALLOC_LENGTH_OFFSET 6
66#define REPORT_LUNS_SR_OFFSET 2
67#define READ_CAP_16_CDB_ALLOC_LENGTH_OFFSET 10
68#define REQUEST_SENSE_CDB_ALLOC_LENGTH_OFFSET 4
69#define REQUEST_SENSE_DESC_OFFSET 1
70#define REQUEST_SENSE_DESC_MASK 0x01
71#define DESCRIPTOR_FORMAT_SENSE_DATA_TYPE 1
72#define INQUIRY_EVPD_BYTE_OFFSET 1
73#define INQUIRY_PAGE_CODE_BYTE_OFFSET 2
74#define INQUIRY_EVPD_BIT_MASK 1
75#define INQUIRY_CDB_ALLOCATION_LENGTH_OFFSET 3
76#define START_STOP_UNIT_CDB_IMMED_OFFSET 1
77#define START_STOP_UNIT_CDB_IMMED_MASK 0x1
78#define START_STOP_UNIT_CDB_POWER_COND_MOD_OFFSET 3
79#define START_STOP_UNIT_CDB_POWER_COND_MOD_MASK 0xF
80#define START_STOP_UNIT_CDB_POWER_COND_OFFSET 4
81#define START_STOP_UNIT_CDB_POWER_COND_MASK 0xF0
82#define START_STOP_UNIT_CDB_NO_FLUSH_OFFSET 4
83#define START_STOP_UNIT_CDB_NO_FLUSH_MASK 0x4
84#define START_STOP_UNIT_CDB_START_OFFSET 4
85#define START_STOP_UNIT_CDB_START_MASK 0x1
86#define WRITE_BUFFER_CDB_MODE_OFFSET 1
87#define WRITE_BUFFER_CDB_MODE_MASK 0x1F
88#define WRITE_BUFFER_CDB_BUFFER_ID_OFFSET 2
89#define WRITE_BUFFER_CDB_BUFFER_OFFSET_OFFSET 3
90#define WRITE_BUFFER_CDB_PARM_LIST_LENGTH_OFFSET 6
91#define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_OFFSET 1
92#define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_MASK 0xC0
93#define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_SHIFT 6
94#define FORMAT_UNIT_CDB_LONG_LIST_OFFSET 1
95#define FORMAT_UNIT_CDB_LONG_LIST_MASK 0x20
96#define FORMAT_UNIT_CDB_FORMAT_DATA_OFFSET 1
97#define FORMAT_UNIT_CDB_FORMAT_DATA_MASK 0x10
98#define FORMAT_UNIT_SHORT_PARM_LIST_LEN 4
99#define FORMAT_UNIT_LONG_PARM_LIST_LEN 8
100#define FORMAT_UNIT_PROT_INT_OFFSET 3
101#define FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET 0
102#define FORMAT_UNIT_PROT_FIELD_USAGE_MASK 0x07
103
104/* Misc. defines */
105#define NIBBLE_SHIFT 4
106#define FIXED_SENSE_DATA 0x70
107#define DESC_FORMAT_SENSE_DATA 0x72
108#define FIXED_SENSE_DATA_ADD_LENGTH 10
109#define LUN_ENTRY_SIZE 8
110#define LUN_DATA_HEADER_SIZE 8
111#define ALL_LUNS_RETURNED 0x02
112#define ALL_WELL_KNOWN_LUNS_RETURNED 0x01
113#define RESTRICTED_LUNS_RETURNED 0x00
114#define NVME_POWER_STATE_START_VALID 0x00
115#define NVME_POWER_STATE_ACTIVE 0x01
116#define NVME_POWER_STATE_IDLE 0x02
117#define NVME_POWER_STATE_STANDBY 0x03
118#define NVME_POWER_STATE_LU_CONTROL 0x07
119#define POWER_STATE_0 0
120#define POWER_STATE_1 1
121#define POWER_STATE_2 2
122#define POWER_STATE_3 3
123#define DOWNLOAD_SAVE_ACTIVATE 0x05
124#define DOWNLOAD_SAVE_DEFER_ACTIVATE 0x0E
125#define ACTIVATE_DEFERRED_MICROCODE 0x0F
126#define FORMAT_UNIT_IMMED_MASK 0x2
127#define FORMAT_UNIT_IMMED_OFFSET 1
128#define KELVIN_TEMP_FACTOR 273
129#define FIXED_FMT_SENSE_DATA_SIZE 18
130#define DESC_FMT_SENSE_DATA_SIZE 8
131
132/* SCSI/NVMe defines and bit masks */
133#define INQ_STANDARD_INQUIRY_PAGE 0x00
134#define INQ_SUPPORTED_VPD_PAGES_PAGE 0x00
135#define INQ_UNIT_SERIAL_NUMBER_PAGE 0x80
136#define INQ_DEVICE_IDENTIFICATION_PAGE 0x83
137#define INQ_EXTENDED_INQUIRY_DATA_PAGE 0x86
138#define INQ_BDEV_CHARACTERISTICS_PAGE 0xB1
139#define INQ_SERIAL_NUMBER_LENGTH 0x14
140#define INQ_NUM_SUPPORTED_VPD_PAGES 5
141#define VERSION_SPC_4 0x06
142#define ACA_UNSUPPORTED 0
143#define STANDARD_INQUIRY_LENGTH 36
144#define ADDITIONAL_STD_INQ_LENGTH 31
145#define EXTENDED_INQUIRY_DATA_PAGE_LENGTH 0x3C
146#define RESERVED_FIELD 0
147
148/* SCSI READ/WRITE Defines */
149#define IO_CDB_WP_MASK 0xE0
150#define IO_CDB_WP_SHIFT 5
151#define IO_CDB_FUA_MASK 0x8
152#define IO_6_CDB_LBA_OFFSET 0
153#define IO_6_CDB_LBA_MASK 0x001FFFFF
154#define IO_6_CDB_TX_LEN_OFFSET 4
155#define IO_6_DEFAULT_TX_LEN 256
156#define IO_10_CDB_LBA_OFFSET 2
157#define IO_10_CDB_TX_LEN_OFFSET 7
158#define IO_10_CDB_WP_OFFSET 1
159#define IO_10_CDB_FUA_OFFSET 1
160#define IO_12_CDB_LBA_OFFSET 2
161#define IO_12_CDB_TX_LEN_OFFSET 6
162#define IO_12_CDB_WP_OFFSET 1
163#define IO_12_CDB_FUA_OFFSET 1
164#define IO_16_CDB_FUA_OFFSET 1
165#define IO_16_CDB_WP_OFFSET 1
166#define IO_16_CDB_LBA_OFFSET 2
167#define IO_16_CDB_TX_LEN_OFFSET 10
168
169/* Mode Sense/Select defines */
170#define MODE_PAGE_INFO_EXCEP 0x1C
171#define MODE_PAGE_CACHING 0x08
172#define MODE_PAGE_CONTROL 0x0A
173#define MODE_PAGE_POWER_CONDITION 0x1A
174#define MODE_PAGE_RETURN_ALL 0x3F
175#define MODE_PAGE_BLK_DES_LEN 0x08
176#define MODE_PAGE_LLBAA_BLK_DES_LEN 0x10
177#define MODE_PAGE_CACHING_LEN 0x14
178#define MODE_PAGE_CONTROL_LEN 0x0C
179#define MODE_PAGE_POW_CND_LEN 0x28
180#define MODE_PAGE_INF_EXC_LEN 0x0C
181#define MODE_PAGE_ALL_LEN 0x54
182#define MODE_SENSE6_MPH_SIZE 4
183#define MODE_SENSE6_ALLOC_LEN_OFFSET 4
184#define MODE_SENSE_PAGE_CONTROL_OFFSET 2
185#define MODE_SENSE_PAGE_CONTROL_MASK 0xC0
186#define MODE_SENSE_PAGE_CODE_OFFSET 2
187#define MODE_SENSE_PAGE_CODE_MASK 0x3F
188#define MODE_SENSE_LLBAA_OFFSET 1
189#define MODE_SENSE_LLBAA_MASK 0x10
190#define MODE_SENSE_LLBAA_SHIFT 4
191#define MODE_SENSE_DBD_OFFSET 1
192#define MODE_SENSE_DBD_MASK 8
193#define MODE_SENSE_DBD_SHIFT 3
194#define MODE_SENSE10_MPH_SIZE 8
195#define MODE_SENSE10_ALLOC_LEN_OFFSET 7
196#define MODE_SELECT_CDB_PAGE_FORMAT_OFFSET 1
197#define MODE_SELECT_CDB_SAVE_PAGES_OFFSET 1
198#define MODE_SELECT_6_CDB_PARAM_LIST_LENGTH_OFFSET 4
199#define MODE_SELECT_10_CDB_PARAM_LIST_LENGTH_OFFSET 7
200#define MODE_SELECT_CDB_PAGE_FORMAT_MASK 0x10
201#define MODE_SELECT_CDB_SAVE_PAGES_MASK 0x1
202#define MODE_SELECT_6_BD_OFFSET 3
203#define MODE_SELECT_10_BD_OFFSET 6
204#define MODE_SELECT_10_LLBAA_OFFSET 4
205#define MODE_SELECT_10_LLBAA_MASK 1
206#define MODE_SELECT_6_MPH_SIZE 4
207#define MODE_SELECT_10_MPH_SIZE 8
208#define CACHING_MODE_PAGE_WCE_MASK 0x04
209#define MODE_SENSE_BLK_DESC_ENABLED 0
210#define MODE_SENSE_BLK_DESC_COUNT 1
211#define MODE_SELECT_PAGE_CODE_MASK 0x3F
212#define SHORT_DESC_BLOCK 8
213#define LONG_DESC_BLOCK 16
214#define MODE_PAGE_POW_CND_LEN_FIELD 0x26
215#define MODE_PAGE_INF_EXC_LEN_FIELD 0x0A
216#define MODE_PAGE_CACHING_LEN_FIELD 0x12
217#define MODE_PAGE_CONTROL_LEN_FIELD 0x0A
218#define MODE_SENSE_PC_CURRENT_VALUES 0
219
220/* Log Sense defines */
221#define LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE 0x00
222#define LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH 0x07
223#define LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE 0x2F
224#define LOG_PAGE_TEMPERATURE_PAGE 0x0D
225#define LOG_SENSE_CDB_SP_OFFSET 1
226#define LOG_SENSE_CDB_SP_NOT_ENABLED 0
227#define LOG_SENSE_CDB_PC_OFFSET 2
228#define LOG_SENSE_CDB_PC_MASK 0xC0
229#define LOG_SENSE_CDB_PC_SHIFT 6
230#define LOG_SENSE_CDB_PC_CUMULATIVE_VALUES 1
231#define LOG_SENSE_CDB_PAGE_CODE_MASK 0x3F
232#define LOG_SENSE_CDB_ALLOC_LENGTH_OFFSET 7
233#define REMAINING_INFO_EXCP_PAGE_LENGTH 0x8
234#define LOG_INFO_EXCP_PAGE_LENGTH 0xC
235#define REMAINING_TEMP_PAGE_LENGTH 0xC
236#define LOG_TEMP_PAGE_LENGTH 0x10
237#define LOG_TEMP_UNKNOWN 0xFF
238#define SUPPORTED_LOG_PAGES_PAGE_LENGTH 0x3
239
240/* Read Capacity defines */
241#define READ_CAP_10_RESP_SIZE 8
242#define READ_CAP_16_RESP_SIZE 32
243
244/* NVMe Namespace and Command Defines */
245#define NVME_GET_SMART_LOG_PAGE 0x02
246#define NVME_GET_FEAT_TEMP_THRESH 0x04
247#define BYTES_TO_DWORDS 4
248#define NVME_MAX_FIRMWARE_SLOT 7
249
250/* Report LUNs defines */
251#define REPORT_LUNS_FIRST_LUN_OFFSET 8
252
253/* SCSI ADDITIONAL SENSE Codes */
254
255#define SCSI_ASC_NO_SENSE 0x00
256#define SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT 0x03
257#define SCSI_ASC_LUN_NOT_READY 0x04
258#define SCSI_ASC_WARNING 0x0B
259#define SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED 0x10
260#define SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED 0x10
261#define SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED 0x10
262#define SCSI_ASC_UNRECOVERED_READ_ERROR 0x11
263#define SCSI_ASC_MISCOMPARE_DURING_VERIFY 0x1D
264#define SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID 0x20
265#define SCSI_ASC_ILLEGAL_COMMAND 0x20
266#define SCSI_ASC_ILLEGAL_BLOCK 0x21
267#define SCSI_ASC_INVALID_CDB 0x24
268#define SCSI_ASC_INVALID_LUN 0x25
269#define SCSI_ASC_INVALID_PARAMETER 0x26
270#define SCSI_ASC_FORMAT_COMMAND_FAILED 0x31
271#define SCSI_ASC_INTERNAL_TARGET_FAILURE 0x44
272
273/* SCSI ADDITIONAL SENSE Code Qualifiers */
274
275#define SCSI_ASCQ_CAUSE_NOT_REPORTABLE 0x00
276#define SCSI_ASCQ_FORMAT_COMMAND_FAILED 0x01
277#define SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED 0x01
278#define SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED 0x02
279#define SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED 0x03
280#define SCSI_ASCQ_FORMAT_IN_PROGRESS 0x04
281#define SCSI_ASCQ_POWER_LOSS_EXPECTED 0x08
282#define SCSI_ASCQ_INVALID_LUN_ID 0x09
283
284/**
285 * DEVICE_SPECIFIC_PARAMETER in mode parameter header (see sbc2r16) to
286 * enable DPOFUA support type 0x10 value.
287 */
288#define DEVICE_SPECIFIC_PARAMETER 0
289#define VPD_ID_DESCRIPTOR_LENGTH sizeof(VPD_IDENTIFICATION_DESCRIPTOR)
290
291/* MACROs to extract information from CDBs */
292
293#define GET_OPCODE(cdb) cdb[0]
294
295#define GET_U8_FROM_CDB(cdb, index) (cdb[index] << 0)
296
297#define GET_U16_FROM_CDB(cdb, index) ((cdb[index] << 8) | (cdb[index + 1] << 0))
298
299#define GET_U24_FROM_CDB(cdb, index) ((cdb[index] << 16) | \
300(cdb[index + 1] << 8) | \
301(cdb[index + 2] << 0))
302
303#define GET_U32_FROM_CDB(cdb, index) ((cdb[index] << 24) | \
304(cdb[index + 1] << 16) | \
305(cdb[index + 2] << 8) | \
306(cdb[index + 3] << 0))
307
308#define GET_U64_FROM_CDB(cdb, index) ((((u64)cdb[index]) << 56) | \
309(((u64)cdb[index + 1]) << 48) | \
310(((u64)cdb[index + 2]) << 40) | \
311(((u64)cdb[index + 3]) << 32) | \
312(((u64)cdb[index + 4]) << 24) | \
313(((u64)cdb[index + 5]) << 16) | \
314(((u64)cdb[index + 6]) << 8) | \
315(((u64)cdb[index + 7]) << 0))
316
317/* Inquiry Helper Macros */
318#define GET_INQ_EVPD_BIT(cdb) \
319((GET_U8_FROM_CDB(cdb, INQUIRY_EVPD_BYTE_OFFSET) & \
320INQUIRY_EVPD_BIT_MASK) ? 1 : 0)
321
322#define GET_INQ_PAGE_CODE(cdb) \
323(GET_U8_FROM_CDB(cdb, INQUIRY_PAGE_CODE_BYTE_OFFSET))
324
325#define GET_INQ_ALLOC_LENGTH(cdb) \
326(GET_U16_FROM_CDB(cdb, INQUIRY_CDB_ALLOCATION_LENGTH_OFFSET))
327
328/* Report LUNs Helper Macros */
329#define GET_REPORT_LUNS_ALLOC_LENGTH(cdb) \
330(GET_U32_FROM_CDB(cdb, REPORT_LUNS_CDB_ALLOC_LENGTH_OFFSET))
331
332/* Read Capacity Helper Macros */
333#define GET_READ_CAP_16_ALLOC_LENGTH(cdb) \
334(GET_U32_FROM_CDB(cdb, READ_CAP_16_CDB_ALLOC_LENGTH_OFFSET))
335
336#define IS_READ_CAP_16(cdb) \
337((cdb[0] == SERVICE_ACTION_IN && cdb[1] == SAI_READ_CAPACITY_16) ? 1 : 0)
338
339/* Request Sense Helper Macros */
340#define GET_REQUEST_SENSE_ALLOC_LENGTH(cdb) \
341(GET_U8_FROM_CDB(cdb, REQUEST_SENSE_CDB_ALLOC_LENGTH_OFFSET))
342
343/* Mode Sense Helper Macros */
344#define GET_MODE_SENSE_DBD(cdb) \
345((GET_U8_FROM_CDB(cdb, MODE_SENSE_DBD_OFFSET) & MODE_SENSE_DBD_MASK) >> \
346MODE_SENSE_DBD_SHIFT)
347
348#define GET_MODE_SENSE_LLBAA(cdb) \
349((GET_U8_FROM_CDB(cdb, MODE_SENSE_LLBAA_OFFSET) & \
350MODE_SENSE_LLBAA_MASK) >> MODE_SENSE_LLBAA_SHIFT)
351
352#define GET_MODE_SENSE_MPH_SIZE(cdb10) \
353(cdb10 ? MODE_SENSE10_MPH_SIZE : MODE_SENSE6_MPH_SIZE)
354
355
356/* Struct to gather data that needs to be extracted from a SCSI CDB.
357 Not conforming to any particular CDB variant, but compatible with all. */
358
359struct nvme_trans_io_cdb {
360 u8 fua;
361 u8 prot_info;
362 u64 lba;
363 u32 xfer_len;
364};
365
366
367/* Internal Helper Functions */
368
369
370/* Copy data to userspace memory */
371
372static int nvme_trans_copy_to_user(struct sg_io_hdr *hdr, void *from,
373 unsigned long n)
374{
375 int res = SNTI_TRANSLATION_SUCCESS;
376 unsigned long not_copied;
377 int i;
378 void *index = from;
379 size_t remaining = n;
380 size_t xfer_len;
381
382 if (hdr->iovec_count > 0) {
383 struct sg_iovec *sgl = hdr->dxferp;
384
385 for (i = 0; i < hdr->iovec_count; i++) {
386 xfer_len = min(remaining, sgl[i].iov_len);
387 not_copied = copy_to_user(__user sgl[i].iov_base, index,
388 xfer_len);
389 if (not_copied) {
390 res = -EFAULT;
391 break;
392 }
393 index += xfer_len;
394 remaining -= xfer_len;
395 if (remaining == 0)
396 break;
397 }
398 return res;
399 }
400 not_copied = copy_to_user(__user hdr->dxferp, from, n);
401 if (not_copied)
402 res = -EFAULT;
403 return res;
404}
405
406/* Copy data from userspace memory */
407
408static int nvme_trans_copy_from_user(struct sg_io_hdr *hdr, void *to,
409 unsigned long n)
410{
411 int res = SNTI_TRANSLATION_SUCCESS;
412 unsigned long not_copied;
413 int i;
414 void *index = to;
415 size_t remaining = n;
416 size_t xfer_len;
417
418 if (hdr->iovec_count > 0) {
419 struct sg_iovec *sgl = hdr->dxferp;
420
421 for (i = 0; i < hdr->iovec_count; i++) {
422 xfer_len = min(remaining, sgl[i].iov_len);
423 not_copied = copy_from_user(index,
424 __user sgl[i].iov_base, xfer_len);
425 if (not_copied) {
426 res = -EFAULT;
427 break;
428 }
429 index += xfer_len;
430 remaining -= xfer_len;
431 if (remaining == 0)
432 break;
433 }
434 return res;
435 }
436
437 not_copied = copy_from_user(to, __user hdr->dxferp, n);
438 if (not_copied)
439 res = -EFAULT;
440 return res;
441}
442
443/* Status/Sense Buffer Writeback */
444
445static int nvme_trans_completion(struct sg_io_hdr *hdr, u8 status, u8 sense_key,
446 u8 asc, u8 ascq)
447{
448 int res = SNTI_TRANSLATION_SUCCESS;
449 u8 xfer_len;
450 u8 resp[DESC_FMT_SENSE_DATA_SIZE];
451
452 if (scsi_status_is_good(status)) {
453 hdr->status = SAM_STAT_GOOD;
454 hdr->masked_status = GOOD;
455 hdr->host_status = DID_OK;
456 hdr->driver_status = DRIVER_OK;
457 hdr->sb_len_wr = 0;
458 } else {
459 hdr->status = status;
460 hdr->masked_status = status >> 1;
461 hdr->host_status = DID_OK;
462 hdr->driver_status = DRIVER_OK;
463
464 memset(resp, 0, DESC_FMT_SENSE_DATA_SIZE);
465 resp[0] = DESC_FORMAT_SENSE_DATA;
466 resp[1] = sense_key;
467 resp[2] = asc;
468 resp[3] = ascq;
469
470 xfer_len = min_t(u8, hdr->mx_sb_len, DESC_FMT_SENSE_DATA_SIZE);
471 hdr->sb_len_wr = xfer_len;
472 if (copy_to_user(__user hdr->sbp, resp, xfer_len) > 0)
473 res = -EFAULT;
474 }
475
476 return res;
477}
478
479static int nvme_trans_status_code(struct sg_io_hdr *hdr, int nvme_sc)
480{
481 u8 status, sense_key, asc, ascq;
482 int res = SNTI_TRANSLATION_SUCCESS;
483
484 /* For non-nvme (Linux) errors, simply return the error code */
485 if (nvme_sc < 0)
486 return nvme_sc;
487
488 /* Mask DNR, More, and reserved fields */
489 nvme_sc &= 0x7FF;
490
491 switch (nvme_sc) {
492 /* Generic Command Status */
493 case NVME_SC_SUCCESS:
494 status = SAM_STAT_GOOD;
495 sense_key = NO_SENSE;
496 asc = SCSI_ASC_NO_SENSE;
497 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
498 break;
499 case NVME_SC_INVALID_OPCODE:
500 status = SAM_STAT_CHECK_CONDITION;
501 sense_key = ILLEGAL_REQUEST;
502 asc = SCSI_ASC_ILLEGAL_COMMAND;
503 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
504 break;
505 case NVME_SC_INVALID_FIELD:
506 status = SAM_STAT_CHECK_CONDITION;
507 sense_key = ILLEGAL_REQUEST;
508 asc = SCSI_ASC_INVALID_CDB;
509 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
510 break;
511 case NVME_SC_DATA_XFER_ERROR:
512 status = SAM_STAT_CHECK_CONDITION;
513 sense_key = MEDIUM_ERROR;
514 asc = SCSI_ASC_NO_SENSE;
515 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
516 break;
517 case NVME_SC_POWER_LOSS:
518 status = SAM_STAT_TASK_ABORTED;
519 sense_key = ABORTED_COMMAND;
520 asc = SCSI_ASC_WARNING;
521 ascq = SCSI_ASCQ_POWER_LOSS_EXPECTED;
522 break;
523 case NVME_SC_INTERNAL:
524 status = SAM_STAT_CHECK_CONDITION;
525 sense_key = HARDWARE_ERROR;
526 asc = SCSI_ASC_INTERNAL_TARGET_FAILURE;
527 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
528 break;
529 case NVME_SC_ABORT_REQ:
530 status = SAM_STAT_TASK_ABORTED;
531 sense_key = ABORTED_COMMAND;
532 asc = SCSI_ASC_NO_SENSE;
533 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
534 break;
535 case NVME_SC_ABORT_QUEUE:
536 status = SAM_STAT_TASK_ABORTED;
537 sense_key = ABORTED_COMMAND;
538 asc = SCSI_ASC_NO_SENSE;
539 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
540 break;
541 case NVME_SC_FUSED_FAIL:
542 status = SAM_STAT_TASK_ABORTED;
543 sense_key = ABORTED_COMMAND;
544 asc = SCSI_ASC_NO_SENSE;
545 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
546 break;
547 case NVME_SC_FUSED_MISSING:
548 status = SAM_STAT_TASK_ABORTED;
549 sense_key = ABORTED_COMMAND;
550 asc = SCSI_ASC_NO_SENSE;
551 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
552 break;
553 case NVME_SC_INVALID_NS:
554 status = SAM_STAT_CHECK_CONDITION;
555 sense_key = ILLEGAL_REQUEST;
556 asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
557 ascq = SCSI_ASCQ_INVALID_LUN_ID;
558 break;
559 case NVME_SC_LBA_RANGE:
560 status = SAM_STAT_CHECK_CONDITION;
561 sense_key = ILLEGAL_REQUEST;
562 asc = SCSI_ASC_ILLEGAL_BLOCK;
563 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
564 break;
565 case NVME_SC_CAP_EXCEEDED:
566 status = SAM_STAT_CHECK_CONDITION;
567 sense_key = MEDIUM_ERROR;
568 asc = SCSI_ASC_NO_SENSE;
569 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
570 break;
571 case NVME_SC_NS_NOT_READY:
572 status = SAM_STAT_CHECK_CONDITION;
573 sense_key = NOT_READY;
574 asc = SCSI_ASC_LUN_NOT_READY;
575 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
576 break;
577
578 /* Command Specific Status */
579 case NVME_SC_INVALID_FORMAT:
580 status = SAM_STAT_CHECK_CONDITION;
581 sense_key = ILLEGAL_REQUEST;
582 asc = SCSI_ASC_FORMAT_COMMAND_FAILED;
583 ascq = SCSI_ASCQ_FORMAT_COMMAND_FAILED;
584 break;
585 case NVME_SC_BAD_ATTRIBUTES:
586 status = SAM_STAT_CHECK_CONDITION;
587 sense_key = ILLEGAL_REQUEST;
588 asc = SCSI_ASC_INVALID_CDB;
589 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
590 break;
591
592 /* Media Errors */
593 case NVME_SC_WRITE_FAULT:
594 status = SAM_STAT_CHECK_CONDITION;
595 sense_key = MEDIUM_ERROR;
596 asc = SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT;
597 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
598 break;
599 case NVME_SC_READ_ERROR:
600 status = SAM_STAT_CHECK_CONDITION;
601 sense_key = MEDIUM_ERROR;
602 asc = SCSI_ASC_UNRECOVERED_READ_ERROR;
603 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
604 break;
605 case NVME_SC_GUARD_CHECK:
606 status = SAM_STAT_CHECK_CONDITION;
607 sense_key = MEDIUM_ERROR;
608 asc = SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED;
609 ascq = SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED;
610 break;
611 case NVME_SC_APPTAG_CHECK:
612 status = SAM_STAT_CHECK_CONDITION;
613 sense_key = MEDIUM_ERROR;
614 asc = SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED;
615 ascq = SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED;
616 break;
617 case NVME_SC_REFTAG_CHECK:
618 status = SAM_STAT_CHECK_CONDITION;
619 sense_key = MEDIUM_ERROR;
620 asc = SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED;
621 ascq = SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED;
622 break;
623 case NVME_SC_COMPARE_FAILED:
624 status = SAM_STAT_CHECK_CONDITION;
625 sense_key = MISCOMPARE;
626 asc = SCSI_ASC_MISCOMPARE_DURING_VERIFY;
627 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
628 break;
629 case NVME_SC_ACCESS_DENIED:
630 status = SAM_STAT_CHECK_CONDITION;
631 sense_key = ILLEGAL_REQUEST;
632 asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
633 ascq = SCSI_ASCQ_INVALID_LUN_ID;
634 break;
635
636 /* Unspecified/Default */
637 case NVME_SC_CMDID_CONFLICT:
638 case NVME_SC_CMD_SEQ_ERROR:
639 case NVME_SC_CQ_INVALID:
640 case NVME_SC_QID_INVALID:
641 case NVME_SC_QUEUE_SIZE:
642 case NVME_SC_ABORT_LIMIT:
643 case NVME_SC_ABORT_MISSING:
644 case NVME_SC_ASYNC_LIMIT:
645 case NVME_SC_FIRMWARE_SLOT:
646 case NVME_SC_FIRMWARE_IMAGE:
647 case NVME_SC_INVALID_VECTOR:
648 case NVME_SC_INVALID_LOG_PAGE:
649 default:
650 status = SAM_STAT_CHECK_CONDITION;
651 sense_key = ILLEGAL_REQUEST;
652 asc = SCSI_ASC_NO_SENSE;
653 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
654 break;
655 }
656
657 res = nvme_trans_completion(hdr, status, sense_key, asc, ascq);
658
659 return res;
660}
661
662/* INQUIRY Helper Functions */
663
664static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
665 struct sg_io_hdr *hdr, u8 *inq_response,
666 int alloc_len)
667{
668 struct nvme_dev *dev = ns->dev;
669 dma_addr_t dma_addr;
670 void *mem;
671 struct nvme_id_ns *id_ns;
672 int res = SNTI_TRANSLATION_SUCCESS;
673 int nvme_sc;
674 int xfer_len;
675 u8 resp_data_format = 0x02;
676 u8 protect;
677 u8 cmdque = 0x01 << 1;
678
679 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
680 &dma_addr, GFP_KERNEL);
681 if (mem == NULL) {
682 res = -ENOMEM;
683 goto out_dma;
684 }
685
686 /* nvme ns identify - use DPS value for PROTECT field */
687 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
688 res = nvme_trans_status_code(hdr, nvme_sc);
689 /*
690 * If nvme_sc was -ve, res will be -ve here.
691 * If nvme_sc was +ve, the status would bace been translated, and res
692 * can only be 0 or -ve.
693 * - If 0 && nvme_sc > 0, then go into next if where res gets nvme_sc
694 * - If -ve, return because its a Linux error.
695 */
696 if (res)
697 goto out_free;
698 if (nvme_sc) {
699 res = nvme_sc;
700 goto out_free;
701 }
702 id_ns = mem;
703 (id_ns->dps) ? (protect = 0x01) : (protect = 0);
704
705 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
706 inq_response[2] = VERSION_SPC_4;
707 inq_response[3] = resp_data_format; /*normaca=0 | hisup=0 */
708 inq_response[4] = ADDITIONAL_STD_INQ_LENGTH;
709 inq_response[5] = protect; /* sccs=0 | acc=0 | tpgs=0 | pc3=0 */
710 inq_response[7] = cmdque; /* wbus16=0 | sync=0 | vs=0 */
711 strncpy(&inq_response[8], "NVMe ", 8);
712 strncpy(&inq_response[16], dev->model, 16);
713 strncpy(&inq_response[32], dev->firmware_rev, 4);
714
715 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
716 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
717
718 out_free:
719 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
720 dma_addr);
721 out_dma:
722 return res;
723}
724
725static int nvme_trans_supported_vpd_pages(struct nvme_ns *ns,
726 struct sg_io_hdr *hdr, u8 *inq_response,
727 int alloc_len)
728{
729 int res = SNTI_TRANSLATION_SUCCESS;
730 int xfer_len;
731
732 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
733 inq_response[1] = INQ_SUPPORTED_VPD_PAGES_PAGE; /* Page Code */
734 inq_response[3] = INQ_NUM_SUPPORTED_VPD_PAGES; /* Page Length */
735 inq_response[4] = INQ_SUPPORTED_VPD_PAGES_PAGE;
736 inq_response[5] = INQ_UNIT_SERIAL_NUMBER_PAGE;
737 inq_response[6] = INQ_DEVICE_IDENTIFICATION_PAGE;
738 inq_response[7] = INQ_EXTENDED_INQUIRY_DATA_PAGE;
739 inq_response[8] = INQ_BDEV_CHARACTERISTICS_PAGE;
740
741 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
742 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
743
744 return res;
745}
746
747static int nvme_trans_unit_serial_page(struct nvme_ns *ns,
748 struct sg_io_hdr *hdr, u8 *inq_response,
749 int alloc_len)
750{
751 struct nvme_dev *dev = ns->dev;
752 int res = SNTI_TRANSLATION_SUCCESS;
753 int xfer_len;
754
755 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
756 inq_response[1] = INQ_UNIT_SERIAL_NUMBER_PAGE; /* Page Code */
757 inq_response[3] = INQ_SERIAL_NUMBER_LENGTH; /* Page Length */
758 strncpy(&inq_response[4], dev->serial, INQ_SERIAL_NUMBER_LENGTH);
759
760 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
761 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
762
763 return res;
764}
765
766static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
767 u8 *inq_response, int alloc_len)
768{
769 struct nvme_dev *dev = ns->dev;
770 dma_addr_t dma_addr;
771 void *mem;
772 struct nvme_id_ctrl *id_ctrl;
773 int res = SNTI_TRANSLATION_SUCCESS;
774 int nvme_sc;
775 u8 ieee[4];
776 int xfer_len;
777 u32 tmp_id = cpu_to_be64(ns->ns_id);
778
779 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
780 &dma_addr, GFP_KERNEL);
781 if (mem == NULL) {
782 res = -ENOMEM;
783 goto out_dma;
784 }
785
786 /* nvme controller identify */
787 nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
788 res = nvme_trans_status_code(hdr, nvme_sc);
789 if (res)
790 goto out_free;
791 if (nvme_sc) {
792 res = nvme_sc;
793 goto out_free;
794 }
795 id_ctrl = mem;
796
797 /* Since SCSI tried to save 4 bits... [SPC-4(r34) Table 591] */
798 ieee[0] = id_ctrl->ieee[0] << 4;
799 ieee[1] = id_ctrl->ieee[0] >> 4 | id_ctrl->ieee[1] << 4;
800 ieee[2] = id_ctrl->ieee[1] >> 4 | id_ctrl->ieee[2] << 4;
801 ieee[3] = id_ctrl->ieee[2] >> 4;
802
803 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
804 inq_response[1] = INQ_DEVICE_IDENTIFICATION_PAGE; /* Page Code */
805 inq_response[3] = 20; /* Page Length */
806 /* Designation Descriptor start */
807 inq_response[4] = 0x01; /* Proto ID=0h | Code set=1h */
808 inq_response[5] = 0x03; /* PIV=0b | Asso=00b | Designator Type=3h */
809 inq_response[6] = 0x00; /* Rsvd */
810 inq_response[7] = 16; /* Designator Length */
811 /* Designator start */
812 inq_response[8] = 0x60 | ieee[3]; /* NAA=6h | IEEE ID MSB, High nibble*/
813 inq_response[9] = ieee[2]; /* IEEE ID */
814 inq_response[10] = ieee[1]; /* IEEE ID */
815 inq_response[11] = ieee[0]; /* IEEE ID| Vendor Specific ID... */
816 inq_response[12] = (dev->pci_dev->vendor & 0xFF00) >> 8;
817 inq_response[13] = (dev->pci_dev->vendor & 0x00FF);
818 inq_response[14] = dev->serial[0];
819 inq_response[15] = dev->serial[1];
820 inq_response[16] = dev->model[0];
821 inq_response[17] = dev->model[1];
822 memcpy(&inq_response[18], &tmp_id, sizeof(u32));
823 /* Last 2 bytes are zero */
824
825 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
826 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
827
828 out_free:
829 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
830 dma_addr);
831 out_dma:
832 return res;
833}
834
835static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
836 int alloc_len)
837{
838 u8 *inq_response;
839 int res = SNTI_TRANSLATION_SUCCESS;
840 int nvme_sc;
841 struct nvme_dev *dev = ns->dev;
842 dma_addr_t dma_addr;
843 void *mem;
844 struct nvme_id_ctrl *id_ctrl;
845 struct nvme_id_ns *id_ns;
846 int xfer_len;
847 u8 microcode = 0x80;
848 u8 spt;
849 u8 spt_lut[8] = {0, 0, 2, 1, 4, 6, 5, 7};
850 u8 grd_chk, app_chk, ref_chk, protect;
851 u8 uask_sup = 0x20;
852 u8 v_sup;
853 u8 luiclr = 0x01;
854
855 inq_response = kmalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
856 if (inq_response == NULL) {
857 res = -ENOMEM;
858 goto out_mem;
859 }
860
861 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
862 &dma_addr, GFP_KERNEL);
863 if (mem == NULL) {
864 res = -ENOMEM;
865 goto out_dma;
866 }
867
868 /* nvme ns identify */
869 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
870 res = nvme_trans_status_code(hdr, nvme_sc);
871 if (res)
872 goto out_free;
873 if (nvme_sc) {
874 res = nvme_sc;
875 goto out_free;
876 }
877 id_ns = mem;
878 spt = spt_lut[(id_ns->dpc) & 0x07] << 3;
879 (id_ns->dps) ? (protect = 0x01) : (protect = 0);
880 grd_chk = protect << 2;
881 app_chk = protect << 1;
882 ref_chk = protect;
883
884 /* nvme controller identify */
885 nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
886 res = nvme_trans_status_code(hdr, nvme_sc);
887 if (res)
888 goto out_free;
889 if (nvme_sc) {
890 res = nvme_sc;
891 goto out_free;
892 }
893 id_ctrl = mem;
894 v_sup = id_ctrl->vwc;
895
896 memset(inq_response, 0, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
897 inq_response[1] = INQ_EXTENDED_INQUIRY_DATA_PAGE; /* Page Code */
898 inq_response[2] = 0x00; /* Page Length MSB */
899 inq_response[3] = 0x3C; /* Page Length LSB */
900 inq_response[4] = microcode | spt | grd_chk | app_chk | ref_chk;
901 inq_response[5] = uask_sup;
902 inq_response[6] = v_sup;
903 inq_response[7] = luiclr;
904 inq_response[8] = 0;
905 inq_response[9] = 0;
906
907 xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
908 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
909
910 out_free:
911 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
912 dma_addr);
913 out_dma:
914 kfree(inq_response);
915 out_mem:
916 return res;
917}
918
919static int nvme_trans_bdev_char_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
920 int alloc_len)
921{
922 u8 *inq_response;
923 int res = SNTI_TRANSLATION_SUCCESS;
924 int xfer_len;
925
926 inq_response = kmalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
927 if (inq_response == NULL) {
928 res = -ENOMEM;
929 goto out_mem;
930 }
931
932 memset(inq_response, 0, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
933 inq_response[1] = INQ_BDEV_CHARACTERISTICS_PAGE; /* Page Code */
934 inq_response[2] = 0x00; /* Page Length MSB */
935 inq_response[3] = 0x3C; /* Page Length LSB */
936 inq_response[4] = 0x00; /* Medium Rotation Rate MSB */
937 inq_response[5] = 0x01; /* Medium Rotation Rate LSB */
938 inq_response[6] = 0x00; /* Form Factor */
939
940 xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
941 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
942
943 kfree(inq_response);
944 out_mem:
945 return res;
946}
947
948/* LOG SENSE Helper Functions */
949
950static int nvme_trans_log_supp_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
951 int alloc_len)
952{
953 int res = SNTI_TRANSLATION_SUCCESS;
954 int xfer_len;
955 u8 *log_response;
956
957 log_response = kmalloc(LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH, GFP_KERNEL);
958 if (log_response == NULL) {
959 res = -ENOMEM;
960 goto out_mem;
961 }
962 memset(log_response, 0, LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH);
963
964 log_response[0] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE;
965 /* Subpage=0x00, Page Length MSB=0 */
966 log_response[3] = SUPPORTED_LOG_PAGES_PAGE_LENGTH;
967 log_response[4] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE;
968 log_response[5] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
969 log_response[6] = LOG_PAGE_TEMPERATURE_PAGE;
970
971 xfer_len = min(alloc_len, LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH);
972 res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
973
974 kfree(log_response);
975 out_mem:
976 return res;
977}
978
979static int nvme_trans_log_info_exceptions(struct nvme_ns *ns,
980 struct sg_io_hdr *hdr, int alloc_len)
981{
982 int res = SNTI_TRANSLATION_SUCCESS;
983 int xfer_len;
984 u8 *log_response;
985 struct nvme_command c;
986 struct nvme_dev *dev = ns->dev;
987 struct nvme_smart_log *smart_log;
988 dma_addr_t dma_addr;
989 void *mem;
990 u8 temp_c;
991 u16 temp_k;
992
993 log_response = kmalloc(LOG_INFO_EXCP_PAGE_LENGTH, GFP_KERNEL);
994 if (log_response == NULL) {
995 res = -ENOMEM;
996 goto out_mem;
997 }
998 memset(log_response, 0, LOG_INFO_EXCP_PAGE_LENGTH);
999
1000 mem = dma_alloc_coherent(&dev->pci_dev->dev,
1001 sizeof(struct nvme_smart_log),
1002 &dma_addr, GFP_KERNEL);
1003 if (mem == NULL) {
1004 res = -ENOMEM;
1005 goto out_dma;
1006 }
1007
1008 /* Get SMART Log Page */
1009 memset(&c, 0, sizeof(c));
1010 c.common.opcode = nvme_admin_get_log_page;
1011 c.common.nsid = cpu_to_le32(0xFFFFFFFF);
1012 c.common.prp1 = cpu_to_le64(dma_addr);
1013 c.common.cdw10[0] = cpu_to_le32(((sizeof(struct nvme_smart_log) /
1014 BYTES_TO_DWORDS) << 16) | NVME_GET_SMART_LOG_PAGE);
1015 res = nvme_submit_admin_cmd(dev, &c, NULL);
1016 if (res != NVME_SC_SUCCESS) {
1017 temp_c = LOG_TEMP_UNKNOWN;
1018 } else {
1019 smart_log = mem;
1020 temp_k = (smart_log->temperature[1] << 8) +
1021 (smart_log->temperature[0]);
1022 temp_c = temp_k - KELVIN_TEMP_FACTOR;
1023 }
1024
1025 log_response[0] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
1026 /* Subpage=0x00, Page Length MSB=0 */
1027 log_response[3] = REMAINING_INFO_EXCP_PAGE_LENGTH;
1028 /* Informational Exceptions Log Parameter 1 Start */
1029 /* Parameter Code=0x0000 bytes 4,5 */
1030 log_response[6] = 0x23; /* DU=0, TSD=1, ETC=0, TMC=0, FMT_AND_LNK=11b */
1031 log_response[7] = 0x04; /* PARAMETER LENGTH */
1032 /* Add sense Code and qualifier = 0x00 each */
1033 /* Use Temperature from NVMe Get Log Page, convert to C from K */
1034 log_response[10] = temp_c;
1035
1036 xfer_len = min(alloc_len, LOG_INFO_EXCP_PAGE_LENGTH);
1037 res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
1038
1039 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log),
1040 mem, dma_addr);
1041 out_dma:
1042 kfree(log_response);
1043 out_mem:
1044 return res;
1045}
1046
1047static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1048 int alloc_len)
1049{
1050 int res = SNTI_TRANSLATION_SUCCESS;
1051 int xfer_len;
1052 u8 *log_response;
1053 struct nvme_command c;
1054 struct nvme_dev *dev = ns->dev;
1055 struct nvme_smart_log *smart_log;
1056 dma_addr_t dma_addr;
1057 void *mem;
1058 u32 feature_resp;
1059 u8 temp_c_cur, temp_c_thresh;
1060 u16 temp_k;
1061
1062 log_response = kmalloc(LOG_TEMP_PAGE_LENGTH, GFP_KERNEL);
1063 if (log_response == NULL) {
1064 res = -ENOMEM;
1065 goto out_mem;
1066 }
1067 memset(log_response, 0, LOG_TEMP_PAGE_LENGTH);
1068
1069 mem = dma_alloc_coherent(&dev->pci_dev->dev,
1070 sizeof(struct nvme_smart_log),
1071 &dma_addr, GFP_KERNEL);
1072 if (mem == NULL) {
1073 res = -ENOMEM;
1074 goto out_dma;
1075 }
1076
1077 /* Get SMART Log Page */
1078 memset(&c, 0, sizeof(c));
1079 c.common.opcode = nvme_admin_get_log_page;
1080 c.common.nsid = cpu_to_le32(0xFFFFFFFF);
1081 c.common.prp1 = cpu_to_le64(dma_addr);
1082 c.common.cdw10[0] = cpu_to_le32(((sizeof(struct nvme_smart_log) /
1083 BYTES_TO_DWORDS) << 16) | NVME_GET_SMART_LOG_PAGE);
1084 res = nvme_submit_admin_cmd(dev, &c, NULL);
1085 if (res != NVME_SC_SUCCESS) {
1086 temp_c_cur = LOG_TEMP_UNKNOWN;
1087 } else {
1088 smart_log = mem;
1089 temp_k = (smart_log->temperature[1] << 8) +
1090 (smart_log->temperature[0]);
1091 temp_c_cur = temp_k - KELVIN_TEMP_FACTOR;
1092 }
1093
1094 /* Get Features for Temp Threshold */
1095 res = nvme_get_features(dev, NVME_FEAT_TEMP_THRESH, 0, 0,
1096 &feature_resp);
1097 if (res != NVME_SC_SUCCESS)
1098 temp_c_thresh = LOG_TEMP_UNKNOWN;
1099 else
1100 temp_c_thresh = (feature_resp & 0xFFFF) - KELVIN_TEMP_FACTOR;
1101
1102 log_response[0] = LOG_PAGE_TEMPERATURE_PAGE;
1103 /* Subpage=0x00, Page Length MSB=0 */
1104 log_response[3] = REMAINING_TEMP_PAGE_LENGTH;
1105 /* Temperature Log Parameter 1 (Temperature) Start */
1106 /* Parameter Code = 0x0000 */
1107 log_response[6] = 0x01; /* Format and Linking = 01b */
1108 log_response[7] = 0x02; /* Parameter Length */
1109 /* Use Temperature from NVMe Get Log Page, convert to C from K */
1110 log_response[9] = temp_c_cur;
1111 /* Temperature Log Parameter 2 (Reference Temperature) Start */
1112 log_response[11] = 0x01; /* Parameter Code = 0x0001 */
1113 log_response[12] = 0x01; /* Format and Linking = 01b */
1114 log_response[13] = 0x02; /* Parameter Length */
1115 /* Use Temperature Thresh from NVMe Get Log Page, convert to C from K */
1116 log_response[15] = temp_c_thresh;
1117
1118 xfer_len = min(alloc_len, LOG_TEMP_PAGE_LENGTH);
1119 res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
1120
1121 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log),
1122 mem, dma_addr);
1123 out_dma:
1124 kfree(log_response);
1125 out_mem:
1126 return res;
1127}
1128
1129/* MODE SENSE Helper Functions */
1130
1131static int nvme_trans_fill_mode_parm_hdr(u8 *resp, int len, u8 cdb10, u8 llbaa,
1132 u16 mode_data_length, u16 blk_desc_len)
1133{
1134 /* Quick check to make sure I don't stomp on my own memory... */
1135 if ((cdb10 && len < 8) || (!cdb10 && len < 4))
1136 return SNTI_INTERNAL_ERROR;
1137
1138 if (cdb10) {
1139 resp[0] = (mode_data_length & 0xFF00) >> 8;
1140 resp[1] = (mode_data_length & 0x00FF);
1141 /* resp[2] and [3] are zero */
1142 resp[4] = llbaa;
1143 resp[5] = RESERVED_FIELD;
1144 resp[6] = (blk_desc_len & 0xFF00) >> 8;
1145 resp[7] = (blk_desc_len & 0x00FF);
1146 } else {
1147 resp[0] = (mode_data_length & 0x00FF);
1148 /* resp[1] and [2] are zero */
1149 resp[3] = (blk_desc_len & 0x00FF);
1150 }
1151
1152 return SNTI_TRANSLATION_SUCCESS;
1153}
1154
1155static int nvme_trans_fill_blk_desc(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1156 u8 *resp, int len, u8 llbaa)
1157{
1158 int res = SNTI_TRANSLATION_SUCCESS;
1159 int nvme_sc;
1160 struct nvme_dev *dev = ns->dev;
1161 dma_addr_t dma_addr;
1162 void *mem;
1163 struct nvme_id_ns *id_ns;
1164 u8 flbas;
1165 u32 lba_length;
1166
1167 if (llbaa == 0 && len < MODE_PAGE_BLK_DES_LEN)
1168 return SNTI_INTERNAL_ERROR;
1169 else if (llbaa > 0 && len < MODE_PAGE_LLBAA_BLK_DES_LEN)
1170 return SNTI_INTERNAL_ERROR;
1171
1172 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
1173 &dma_addr, GFP_KERNEL);
1174 if (mem == NULL) {
1175 res = -ENOMEM;
1176 goto out;
1177 }
1178
1179 /* nvme ns identify */
1180 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
1181 res = nvme_trans_status_code(hdr, nvme_sc);
1182 if (res)
1183 goto out_dma;
1184 if (nvme_sc) {
1185 res = nvme_sc;
1186 goto out_dma;
1187 }
1188 id_ns = mem;
1189 flbas = (id_ns->flbas) & 0x0F;
1190 lba_length = (1 << (id_ns->lbaf[flbas].ds));
1191
1192 if (llbaa == 0) {
1193 u32 tmp_cap = cpu_to_be32(id_ns->ncap);
1194 /* Byte 4 is reserved */
1195 u32 tmp_len = cpu_to_be32(lba_length) & 0x00FFFFFF;
1196
1197 memcpy(resp, &tmp_cap, sizeof(u32));
1198 memcpy(&resp[4], &tmp_len, sizeof(u32));
1199 } else {
1200 u64 tmp_cap = cpu_to_be64(id_ns->ncap);
1201 u32 tmp_len = cpu_to_be32(lba_length);
1202
1203 memcpy(resp, &tmp_cap, sizeof(u64));
1204 /* Bytes 8, 9, 10, 11 are reserved */
1205 memcpy(&resp[12], &tmp_len, sizeof(u32));
1206 }
1207
1208 out_dma:
1209 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
1210 dma_addr);
1211 out:
1212 return res;
1213}
1214
1215static int nvme_trans_fill_control_page(struct nvme_ns *ns,
1216 struct sg_io_hdr *hdr, u8 *resp,
1217 int len)
1218{
1219 if (len < MODE_PAGE_CONTROL_LEN)
1220 return SNTI_INTERNAL_ERROR;
1221
1222 resp[0] = MODE_PAGE_CONTROL;
1223 resp[1] = MODE_PAGE_CONTROL_LEN_FIELD;
1224 resp[2] = 0x0E; /* TST=000b, TMF_ONLY=0, DPICZ=1,
1225 * D_SENSE=1, GLTSD=1, RLEC=0 */
1226 resp[3] = 0x12; /* Q_ALGO_MODIFIER=1h, NUAR=0, QERR=01b */
1227 /* Byte 4: VS=0, RAC=0, UA_INT=0, SWP=0 */
1228 resp[5] = 0x40; /* ATO=0, TAS=1, ATMPE=0, RWWP=0, AUTOLOAD=0 */
1229 /* resp[6] and [7] are obsolete, thus zero */
1230 resp[8] = 0xFF; /* Busy timeout period = 0xffff */
1231 resp[9] = 0xFF;
1232 /* Bytes 10,11: Extended selftest completion time = 0x0000 */
1233
1234 return SNTI_TRANSLATION_SUCCESS;
1235}
1236
1237static int nvme_trans_fill_caching_page(struct nvme_ns *ns,
1238 struct sg_io_hdr *hdr,
1239 u8 *resp, int len)
1240{
1241 int res = SNTI_TRANSLATION_SUCCESS;
1242 int nvme_sc;
1243 struct nvme_dev *dev = ns->dev;
1244 u32 feature_resp;
1245 u8 vwc;
1246
1247 if (len < MODE_PAGE_CACHING_LEN)
1248 return SNTI_INTERNAL_ERROR;
1249
1250 nvme_sc = nvme_get_features(dev, NVME_FEAT_VOLATILE_WC, 0, 0,
1251 &feature_resp);
1252 res = nvme_trans_status_code(hdr, nvme_sc);
1253 if (res)
1254 goto out;
1255 if (nvme_sc) {
1256 res = nvme_sc;
1257 goto out;
1258 }
1259 vwc = feature_resp & 0x00000001;
1260
1261 resp[0] = MODE_PAGE_CACHING;
1262 resp[1] = MODE_PAGE_CACHING_LEN_FIELD;
1263 resp[2] = vwc << 2;
1264
1265 out:
1266 return res;
1267}
1268
1269static int nvme_trans_fill_pow_cnd_page(struct nvme_ns *ns,
1270 struct sg_io_hdr *hdr, u8 *resp,
1271 int len)
1272{
1273 int res = SNTI_TRANSLATION_SUCCESS;
1274
1275 if (len < MODE_PAGE_POW_CND_LEN)
1276 return SNTI_INTERNAL_ERROR;
1277
1278 resp[0] = MODE_PAGE_POWER_CONDITION;
1279 resp[1] = MODE_PAGE_POW_CND_LEN_FIELD;
1280 /* All other bytes are zero */
1281
1282 return res;
1283}
1284
1285static int nvme_trans_fill_inf_exc_page(struct nvme_ns *ns,
1286 struct sg_io_hdr *hdr, u8 *resp,
1287 int len)
1288{
1289 int res = SNTI_TRANSLATION_SUCCESS;
1290
1291 if (len < MODE_PAGE_INF_EXC_LEN)
1292 return SNTI_INTERNAL_ERROR;
1293
1294 resp[0] = MODE_PAGE_INFO_EXCEP;
1295 resp[1] = MODE_PAGE_INF_EXC_LEN_FIELD;
1296 resp[2] = 0x88;
1297 /* All other bytes are zero */
1298
1299 return res;
1300}
1301
1302static int nvme_trans_fill_all_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1303 u8 *resp, int len)
1304{
1305 int res = SNTI_TRANSLATION_SUCCESS;
1306 u16 mode_pages_offset_1 = 0;
1307 u16 mode_pages_offset_2, mode_pages_offset_3, mode_pages_offset_4;
1308
1309 mode_pages_offset_2 = mode_pages_offset_1 + MODE_PAGE_CACHING_LEN;
1310 mode_pages_offset_3 = mode_pages_offset_2 + MODE_PAGE_CONTROL_LEN;
1311 mode_pages_offset_4 = mode_pages_offset_3 + MODE_PAGE_POW_CND_LEN;
1312
1313 res = nvme_trans_fill_caching_page(ns, hdr, &resp[mode_pages_offset_1],
1314 MODE_PAGE_CACHING_LEN);
1315 if (res != SNTI_TRANSLATION_SUCCESS)
1316 goto out;
1317 res = nvme_trans_fill_control_page(ns, hdr, &resp[mode_pages_offset_2],
1318 MODE_PAGE_CONTROL_LEN);
1319 if (res != SNTI_TRANSLATION_SUCCESS)
1320 goto out;
1321 res = nvme_trans_fill_pow_cnd_page(ns, hdr, &resp[mode_pages_offset_3],
1322 MODE_PAGE_POW_CND_LEN);
1323 if (res != SNTI_TRANSLATION_SUCCESS)
1324 goto out;
1325 res = nvme_trans_fill_inf_exc_page(ns, hdr, &resp[mode_pages_offset_4],
1326 MODE_PAGE_INF_EXC_LEN);
1327 if (res != SNTI_TRANSLATION_SUCCESS)
1328 goto out;
1329
1330 out:
1331 return res;
1332}
1333
1334static inline int nvme_trans_get_blk_desc_len(u8 dbd, u8 llbaa)
1335{
1336 if (dbd == MODE_SENSE_BLK_DESC_ENABLED) {
1337 /* SPC-4: len = 8 x Num_of_descriptors if llbaa = 0, 16x if 1 */
1338 return 8 * (llbaa + 1) * MODE_SENSE_BLK_DESC_COUNT;
1339 } else {
1340 return 0;
1341 }
1342}
1343
1344static int nvme_trans_mode_page_create(struct nvme_ns *ns,
1345 struct sg_io_hdr *hdr, u8 *cmd,
1346 u16 alloc_len, u8 cdb10,
1347 int (*mode_page_fill_func)
1348 (struct nvme_ns *,
1349 struct sg_io_hdr *hdr, u8 *, int),
1350 u16 mode_pages_tot_len)
1351{
1352 int res = SNTI_TRANSLATION_SUCCESS;
1353 int xfer_len;
1354 u8 *response;
1355 u8 dbd, llbaa;
1356 u16 resp_size;
1357 int mph_size;
1358 u16 mode_pages_offset_1;
1359 u16 blk_desc_len, blk_desc_offset, mode_data_length;
1360
1361 dbd = GET_MODE_SENSE_DBD(cmd);
1362 llbaa = GET_MODE_SENSE_LLBAA(cmd);
1363 mph_size = GET_MODE_SENSE_MPH_SIZE(cdb10);
1364 blk_desc_len = nvme_trans_get_blk_desc_len(dbd, llbaa);
1365
1366 resp_size = mph_size + blk_desc_len + mode_pages_tot_len;
1367 /* Refer spc4r34 Table 440 for calculation of Mode data Length field */
1368 mode_data_length = 3 + (3 * cdb10) + blk_desc_len + mode_pages_tot_len;
1369
1370 blk_desc_offset = mph_size;
1371 mode_pages_offset_1 = blk_desc_offset + blk_desc_len;
1372
1373 response = kmalloc(resp_size, GFP_KERNEL);
1374 if (response == NULL) {
1375 res = -ENOMEM;
1376 goto out_mem;
1377 }
1378 memset(response, 0, resp_size);
1379
1380 res = nvme_trans_fill_mode_parm_hdr(&response[0], mph_size, cdb10,
1381 llbaa, mode_data_length, blk_desc_len);
1382 if (res != SNTI_TRANSLATION_SUCCESS)
1383 goto out_free;
1384 if (blk_desc_len > 0) {
1385 res = nvme_trans_fill_blk_desc(ns, hdr,
1386 &response[blk_desc_offset],
1387 blk_desc_len, llbaa);
1388 if (res != SNTI_TRANSLATION_SUCCESS)
1389 goto out_free;
1390 }
1391 res = mode_page_fill_func(ns, hdr, &response[mode_pages_offset_1],
1392 mode_pages_tot_len);
1393 if (res != SNTI_TRANSLATION_SUCCESS)
1394 goto out_free;
1395
1396 xfer_len = min(alloc_len, resp_size);
1397 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
1398
1399 out_free:
1400 kfree(response);
1401 out_mem:
1402 return res;
1403}
1404
1405/* Read Capacity Helper Functions */
1406
1407static void nvme_trans_fill_read_cap(u8 *response, struct nvme_id_ns *id_ns,
1408 u8 cdb16)
1409{
1410 u8 flbas;
1411 u32 lba_length;
1412 u64 rlba;
1413 u8 prot_en;
1414 u8 p_type_lut[4] = {0, 0, 1, 2};
1415 u64 tmp_rlba;
1416 u32 tmp_rlba_32;
1417 u32 tmp_len;
1418
1419 flbas = (id_ns->flbas) & 0x0F;
1420 lba_length = (1 << (id_ns->lbaf[flbas].ds));
1421 rlba = le64_to_cpup(&id_ns->nsze) - 1;
1422 (id_ns->dps) ? (prot_en = 0x01) : (prot_en = 0);
1423
1424 if (!cdb16) {
1425 if (rlba > 0xFFFFFFFF)
1426 rlba = 0xFFFFFFFF;
1427 tmp_rlba_32 = cpu_to_be32(rlba);
1428 tmp_len = cpu_to_be32(lba_length);
1429 memcpy(response, &tmp_rlba_32, sizeof(u32));
1430 memcpy(&response[4], &tmp_len, sizeof(u32));
1431 } else {
1432 tmp_rlba = cpu_to_be64(rlba);
1433 tmp_len = cpu_to_be32(lba_length);
1434 memcpy(response, &tmp_rlba, sizeof(u64));
1435 memcpy(&response[8], &tmp_len, sizeof(u32));
1436 response[12] = (p_type_lut[id_ns->dps & 0x3] << 1) | prot_en;
1437 /* P_I_Exponent = 0x0 | LBPPBE = 0x0 */
1438 /* LBPME = 0 | LBPRZ = 0 | LALBA = 0x00 */
1439 /* Bytes 16-31 - Reserved */
1440 }
1441}
1442
1443/* Start Stop Unit Helper Functions */
1444
1445static int nvme_trans_power_state(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1446 u8 pc, u8 pcmod, u8 start)
1447{
1448 int res = SNTI_TRANSLATION_SUCCESS;
1449 int nvme_sc;
1450 struct nvme_dev *dev = ns->dev;
1451 dma_addr_t dma_addr;
1452 void *mem;
1453 struct nvme_id_ctrl *id_ctrl;
1454 int lowest_pow_st; /* max npss = lowest power consumption */
1455 unsigned ps_desired = 0;
1456
1457 /* NVMe Controller Identify */
1458 mem = dma_alloc_coherent(&dev->pci_dev->dev,
1459 sizeof(struct nvme_id_ctrl),
1460 &dma_addr, GFP_KERNEL);
1461 if (mem == NULL) {
1462 res = -ENOMEM;
1463 goto out;
1464 }
1465 nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
1466 res = nvme_trans_status_code(hdr, nvme_sc);
1467 if (res)
1468 goto out_dma;
1469 if (nvme_sc) {
1470 res = nvme_sc;
1471 goto out_dma;
1472 }
1473 id_ctrl = mem;
1474 lowest_pow_st = id_ctrl->npss - 1;
1475
1476 switch (pc) {
1477 case NVME_POWER_STATE_START_VALID:
1478 /* Action unspecified if POWER CONDITION MODIFIER != 0 */
1479 if (pcmod == 0 && start == 0x1)
1480 ps_desired = POWER_STATE_0;
1481 if (pcmod == 0 && start == 0x0)
1482 ps_desired = lowest_pow_st;
1483 break;
1484 case NVME_POWER_STATE_ACTIVE:
1485 /* Action unspecified if POWER CONDITION MODIFIER != 0 */
1486 if (pcmod == 0)
1487 ps_desired = POWER_STATE_0;
1488 break;
1489 case NVME_POWER_STATE_IDLE:
1490 /* Action unspecified if POWER CONDITION MODIFIER != [0,1,2] */
1491 /* min of desired state and (lps-1) because lps is STOP */
1492 if (pcmod == 0x0)
1493 ps_desired = min(POWER_STATE_1, (lowest_pow_st - 1));
1494 else if (pcmod == 0x1)
1495 ps_desired = min(POWER_STATE_2, (lowest_pow_st - 1));
1496 else if (pcmod == 0x2)
1497 ps_desired = min(POWER_STATE_3, (lowest_pow_st - 1));
1498 break;
1499 case NVME_POWER_STATE_STANDBY:
1500 /* Action unspecified if POWER CONDITION MODIFIER != [0,1] */
1501 if (pcmod == 0x0)
1502 ps_desired = max(0, (lowest_pow_st - 2));
1503 else if (pcmod == 0x1)
1504 ps_desired = max(0, (lowest_pow_st - 1));
1505 break;
1506 case NVME_POWER_STATE_LU_CONTROL:
1507 default:
1508 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1509 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1510 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1511 break;
1512 }
1513 nvme_sc = nvme_set_features(dev, NVME_FEAT_POWER_MGMT, ps_desired, 0,
1514 NULL);
1515 res = nvme_trans_status_code(hdr, nvme_sc);
1516 if (res)
1517 goto out_dma;
1518 if (nvme_sc)
1519 res = nvme_sc;
1520 out_dma:
1521 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), mem,
1522 dma_addr);
1523 out:
1524 return res;
1525}
1526
1527/* Write Buffer Helper Functions */
1528/* Also using this for Format Unit with hdr passed as NULL, and buffer_id, 0 */
1529
1530static int nvme_trans_send_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1531 u8 opcode, u32 tot_len, u32 offset,
1532 u8 buffer_id)
1533{
1534 int res = SNTI_TRANSLATION_SUCCESS;
1535 int nvme_sc;
1536 struct nvme_dev *dev = ns->dev;
1537 struct nvme_command c;
1538 struct nvme_iod *iod = NULL;
1539 unsigned length;
1540
1541 memset(&c, 0, sizeof(c));
1542 c.common.opcode = opcode;
1543 if (opcode == nvme_admin_download_fw) {
1544 if (hdr->iovec_count > 0) {
1545 /* Assuming SGL is not allowed for this command */
1546 res = nvme_trans_completion(hdr,
1547 SAM_STAT_CHECK_CONDITION,
1548 ILLEGAL_REQUEST,
1549 SCSI_ASC_INVALID_CDB,
1550 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1551 goto out;
1552 }
1553 iod = nvme_map_user_pages(dev, DMA_TO_DEVICE,
1554 (unsigned long)hdr->dxferp, tot_len);
1555 if (IS_ERR(iod)) {
1556 res = PTR_ERR(iod);
1557 goto out;
1558 }
1559 length = nvme_setup_prps(dev, &c.common, iod, tot_len,
1560 GFP_KERNEL);
1561 if (length != tot_len) {
1562 res = -ENOMEM;
1563 goto out_unmap;
1564 }
1565
1566 c.dlfw.numd = (tot_len/BYTES_TO_DWORDS) - 1;
1567 c.dlfw.offset = offset/BYTES_TO_DWORDS;
1568 } else if (opcode == nvme_admin_activate_fw) {
1569 c.common.cdw10[0] = buffer_id;
1570 /* AA=01b Replace & activate at reset */
1571 c.common.cdw10[0] |= 0x00000008;
1572 }
1573
1574 nvme_sc = nvme_submit_admin_cmd(dev, &c, NULL);
1575 res = nvme_trans_status_code(hdr, nvme_sc);
1576 if (res)
1577 goto out_unmap;
1578 if (nvme_sc)
1579 res = nvme_sc;
1580
1581 out_unmap:
1582 if (opcode == nvme_admin_download_fw) {
1583 nvme_unmap_user_pages(dev, DMA_TO_DEVICE, iod);
1584 nvme_free_iod(dev, iod);
1585 }
1586 out:
1587 return res;
1588}
1589
1590/* Mode Select Helper Functions */
1591
1592static inline void nvme_trans_modesel_get_bd_len(u8 *parm_list, u8 cdb10,
1593 u16 *bd_len, u8 *llbaa)
1594{
1595 if (cdb10) {
1596 /* 10 Byte CDB */
1597 *bd_len = (parm_list[MODE_SELECT_10_BD_OFFSET] << 8) +
1598 parm_list[MODE_SELECT_10_BD_OFFSET + 1];
1599 *llbaa = parm_list[MODE_SELECT_10_LLBAA_OFFSET] &&
1600 MODE_SELECT_10_LLBAA_MASK;
1601 } else {
1602 /* 6 Byte CDB */
1603 *bd_len = parm_list[MODE_SELECT_6_BD_OFFSET];
1604 }
1605}
1606
1607static void nvme_trans_modesel_save_bd(struct nvme_ns *ns, u8 *parm_list,
1608 u16 idx, u16 bd_len, u8 llbaa)
1609{
1610 u16 bd_num;
1611
1612 bd_num = bd_len / ((llbaa == 0) ?
1613 SHORT_DESC_BLOCK : LONG_DESC_BLOCK);
1614 /* Store block descriptor info if a FORMAT UNIT comes later */
1615 /* TODO Saving 1st BD info; what to do if multiple BD received? */
1616 if (llbaa == 0) {
1617 /* Standard Block Descriptor - spc4r34 7.5.5.1 */
1618 ns->mode_select_num_blocks =
1619 (parm_list[idx + 1] << 16) +
1620 (parm_list[idx + 2] << 8) +
1621 (parm_list[idx + 3]);
1622
1623 ns->mode_select_block_len =
1624 (parm_list[idx + 5] << 16) +
1625 (parm_list[idx + 6] << 8) +
1626 (parm_list[idx + 7]);
1627 } else {
1628 /* Long LBA Block Descriptor - sbc3r27 6.4.2.3 */
1629 ns->mode_select_num_blocks =
1630 (((u64)parm_list[idx + 0]) << 56) +
1631 (((u64)parm_list[idx + 1]) << 48) +
1632 (((u64)parm_list[idx + 2]) << 40) +
1633 (((u64)parm_list[idx + 3]) << 32) +
1634 (((u64)parm_list[idx + 4]) << 24) +
1635 (((u64)parm_list[idx + 5]) << 16) +
1636 (((u64)parm_list[idx + 6]) << 8) +
1637 ((u64)parm_list[idx + 7]);
1638
1639 ns->mode_select_block_len =
1640 (parm_list[idx + 12] << 24) +
1641 (parm_list[idx + 13] << 16) +
1642 (parm_list[idx + 14] << 8) +
1643 (parm_list[idx + 15]);
1644 }
1645}
1646
1647static u16 nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1648 u8 *mode_page, u8 page_code)
1649{
1650 int res = SNTI_TRANSLATION_SUCCESS;
1651 int nvme_sc;
1652 struct nvme_dev *dev = ns->dev;
1653 unsigned dword11;
1654
1655 switch (page_code) {
1656 case MODE_PAGE_CACHING:
1657 dword11 = ((mode_page[2] & CACHING_MODE_PAGE_WCE_MASK) ? 1 : 0);
1658 nvme_sc = nvme_set_features(dev, NVME_FEAT_VOLATILE_WC, dword11,
1659 0, NULL);
1660 res = nvme_trans_status_code(hdr, nvme_sc);
1661 if (res)
1662 break;
1663 if (nvme_sc) {
1664 res = nvme_sc;
1665 break;
1666 }
1667 break;
1668 case MODE_PAGE_CONTROL:
1669 break;
1670 case MODE_PAGE_POWER_CONDITION:
1671 /* Verify the OS is not trying to set timers */
1672 if ((mode_page[2] & 0x01) != 0 || (mode_page[3] & 0x0F) != 0) {
1673 res = nvme_trans_completion(hdr,
1674 SAM_STAT_CHECK_CONDITION,
1675 ILLEGAL_REQUEST,
1676 SCSI_ASC_INVALID_PARAMETER,
1677 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1678 if (!res)
1679 res = SNTI_INTERNAL_ERROR;
1680 break;
1681 }
1682 break;
1683 default:
1684 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1685 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1686 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1687 if (!res)
1688 res = SNTI_INTERNAL_ERROR;
1689 break;
1690 }
1691
1692 return res;
1693}
1694
1695static int nvme_trans_modesel_data(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1696 u8 *cmd, u16 parm_list_len, u8 pf,
1697 u8 sp, u8 cdb10)
1698{
1699 int res = SNTI_TRANSLATION_SUCCESS;
1700 u8 *parm_list;
1701 u16 bd_len;
1702 u8 llbaa = 0;
1703 u16 index, saved_index;
1704 u8 page_code;
1705 u16 mp_size;
1706
1707 /* Get parm list from data-in/out buffer */
1708 parm_list = kmalloc(parm_list_len, GFP_KERNEL);
1709 if (parm_list == NULL) {
1710 res = -ENOMEM;
1711 goto out;
1712 }
1713
1714 res = nvme_trans_copy_from_user(hdr, parm_list, parm_list_len);
1715 if (res != SNTI_TRANSLATION_SUCCESS)
1716 goto out_mem;
1717
1718 nvme_trans_modesel_get_bd_len(parm_list, cdb10, &bd_len, &llbaa);
1719 index = (cdb10) ? (MODE_SELECT_10_MPH_SIZE) : (MODE_SELECT_6_MPH_SIZE);
1720
1721 if (bd_len != 0) {
1722 /* Block Descriptors present, parse */
1723 nvme_trans_modesel_save_bd(ns, parm_list, index, bd_len, llbaa);
1724 index += bd_len;
1725 }
1726 saved_index = index;
1727
1728 /* Multiple mode pages may be present; iterate through all */
1729 /* In 1st Iteration, don't do NVME Command, only check for CDB errors */
1730 do {
1731 page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK;
1732 mp_size = parm_list[index + 1] + 2;
1733 if ((page_code != MODE_PAGE_CACHING) &&
1734 (page_code != MODE_PAGE_CONTROL) &&
1735 (page_code != MODE_PAGE_POWER_CONDITION)) {
1736 res = nvme_trans_completion(hdr,
1737 SAM_STAT_CHECK_CONDITION,
1738 ILLEGAL_REQUEST,
1739 SCSI_ASC_INVALID_CDB,
1740 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1741 goto out_mem;
1742 }
1743 index += mp_size;
1744 } while (index < parm_list_len);
1745
1746 /* In 2nd Iteration, do the NVME Commands */
1747 index = saved_index;
1748 do {
1749 page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK;
1750 mp_size = parm_list[index + 1] + 2;
1751 res = nvme_trans_modesel_get_mp(ns, hdr, &parm_list[index],
1752 page_code);
1753 if (res != SNTI_TRANSLATION_SUCCESS)
1754 break;
1755 index += mp_size;
1756 } while (index < parm_list_len);
1757
1758 out_mem:
1759 kfree(parm_list);
1760 out:
1761 return res;
1762}
1763
1764/* Format Unit Helper Functions */
1765
1766static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns,
1767 struct sg_io_hdr *hdr)
1768{
1769 int res = SNTI_TRANSLATION_SUCCESS;
1770 int nvme_sc;
1771 struct nvme_dev *dev = ns->dev;
1772 dma_addr_t dma_addr;
1773 void *mem;
1774 struct nvme_id_ns *id_ns;
1775 u8 flbas;
1776
1777 /*
1778 * SCSI Expects a MODE SELECT would have been issued prior to
1779 * a FORMAT UNIT, and the block size and number would be used
1780 * from the block descriptor in it. If a MODE SELECT had not
1781 * been issued, FORMAT shall use the current values for both.
1782 */
1783
1784 if (ns->mode_select_num_blocks == 0 || ns->mode_select_block_len == 0) {
1785 mem = dma_alloc_coherent(&dev->pci_dev->dev,
1786 sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL);
1787 if (mem == NULL) {
1788 res = -ENOMEM;
1789 goto out;
1790 }
1791 /* nvme ns identify */
1792 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
1793 res = nvme_trans_status_code(hdr, nvme_sc);
1794 if (res)
1795 goto out_dma;
1796 if (nvme_sc) {
1797 res = nvme_sc;
1798 goto out_dma;
1799 }
1800 id_ns = mem;
1801
1802 if (ns->mode_select_num_blocks == 0)
1803 ns->mode_select_num_blocks = id_ns->ncap;
1804 if (ns->mode_select_block_len == 0) {
1805 flbas = (id_ns->flbas) & 0x0F;
1806 ns->mode_select_block_len =
1807 (1 << (id_ns->lbaf[flbas].ds));
1808 }
1809 out_dma:
1810 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
1811 mem, dma_addr);
1812 }
1813 out:
1814 return res;
1815}
1816
1817static int nvme_trans_fmt_get_parm_header(struct sg_io_hdr *hdr, u8 len,
1818 u8 format_prot_info, u8 *nvme_pf_code)
1819{
1820 int res = SNTI_TRANSLATION_SUCCESS;
1821 u8 *parm_list;
1822 u8 pf_usage, pf_code;
1823
1824 parm_list = kmalloc(len, GFP_KERNEL);
1825 if (parm_list == NULL) {
1826 res = -ENOMEM;
1827 goto out;
1828 }
1829 res = nvme_trans_copy_from_user(hdr, parm_list, len);
1830 if (res != SNTI_TRANSLATION_SUCCESS)
1831 goto out_mem;
1832
1833 if ((parm_list[FORMAT_UNIT_IMMED_OFFSET] &
1834 FORMAT_UNIT_IMMED_MASK) != 0) {
1835 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1836 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1837 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1838 goto out_mem;
1839 }
1840
1841 if (len == FORMAT_UNIT_LONG_PARM_LIST_LEN &&
1842 (parm_list[FORMAT_UNIT_PROT_INT_OFFSET] & 0x0F) != 0) {
1843 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1844 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1845 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1846 goto out_mem;
1847 }
1848 pf_usage = parm_list[FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET] &
1849 FORMAT_UNIT_PROT_FIELD_USAGE_MASK;
1850 pf_code = (pf_usage << 2) | format_prot_info;
1851 switch (pf_code) {
1852 case 0:
1853 *nvme_pf_code = 0;
1854 break;
1855 case 2:
1856 *nvme_pf_code = 1;
1857 break;
1858 case 3:
1859 *nvme_pf_code = 2;
1860 break;
1861 case 7:
1862 *nvme_pf_code = 3;
1863 break;
1864 default:
1865 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1866 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1867 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1868 break;
1869 }
1870
1871 out_mem:
1872 kfree(parm_list);
1873 out:
1874 return res;
1875}
1876
1877static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1878 u8 prot_info)
1879{
1880 int res = SNTI_TRANSLATION_SUCCESS;
1881 int nvme_sc;
1882 struct nvme_dev *dev = ns->dev;
1883 dma_addr_t dma_addr;
1884 void *mem;
1885 struct nvme_id_ns *id_ns;
1886 u8 i;
1887 u8 flbas, nlbaf;
1888 u8 selected_lbaf = 0xFF;
1889 u32 cdw10 = 0;
1890 struct nvme_command c;
1891
1892 /* Loop thru LBAF's in id_ns to match reqd lbaf, put in cdw10 */
1893 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
1894 &dma_addr, GFP_KERNEL);
1895 if (mem == NULL) {
1896 res = -ENOMEM;
1897 goto out;
1898 }
1899 /* nvme ns identify */
1900 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
1901 res = nvme_trans_status_code(hdr, nvme_sc);
1902 if (res)
1903 goto out_dma;
1904 if (nvme_sc) {
1905 res = nvme_sc;
1906 goto out_dma;
1907 }
1908 id_ns = mem;
1909 flbas = (id_ns->flbas) & 0x0F;
1910 nlbaf = id_ns->nlbaf;
1911
1912 for (i = 0; i < nlbaf; i++) {
1913 if (ns->mode_select_block_len == (1 << (id_ns->lbaf[i].ds))) {
1914 selected_lbaf = i;
1915 break;
1916 }
1917 }
1918 if (selected_lbaf > 0x0F) {
1919 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1920 ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER,
1921 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1922 }
1923 if (ns->mode_select_num_blocks != id_ns->ncap) {
1924 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1925 ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER,
1926 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1927 }
1928
1929 cdw10 |= prot_info << 5;
1930 cdw10 |= selected_lbaf & 0x0F;
1931 memset(&c, 0, sizeof(c));
1932 c.format.opcode = nvme_admin_format_nvm;
1933 c.format.nsid = ns->ns_id;
1934 c.format.cdw10 = cpu_to_le32(cdw10);
1935
1936 nvme_sc = nvme_submit_admin_cmd(dev, &c, NULL);
1937 res = nvme_trans_status_code(hdr, nvme_sc);
1938 if (res)
1939 goto out_dma;
1940 if (nvme_sc)
1941 res = nvme_sc;
1942
1943 out_dma:
1944 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
1945 dma_addr);
1946 out:
1947 return res;
1948}
1949
1950/* Read/Write Helper Functions */
1951
1952static inline void nvme_trans_get_io_cdb6(u8 *cmd,
1953 struct nvme_trans_io_cdb *cdb_info)
1954{
1955 cdb_info->fua = 0;
1956 cdb_info->prot_info = 0;
1957 cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_6_CDB_LBA_OFFSET) &
1958 IO_6_CDB_LBA_MASK;
1959 cdb_info->xfer_len = GET_U8_FROM_CDB(cmd, IO_6_CDB_TX_LEN_OFFSET);
1960
1961 /* sbc3r27 sec 5.32 - TRANSFER LEN of 0 implies a 256 Block transfer */
1962 if (cdb_info->xfer_len == 0)
1963 cdb_info->xfer_len = IO_6_DEFAULT_TX_LEN;
1964}
1965
1966static inline void nvme_trans_get_io_cdb10(u8 *cmd,
1967 struct nvme_trans_io_cdb *cdb_info)
1968{
1969 cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_10_CDB_FUA_OFFSET) &
1970 IO_CDB_FUA_MASK;
1971 cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_10_CDB_WP_OFFSET) &
1972 IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
1973 cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_10_CDB_LBA_OFFSET);
1974 cdb_info->xfer_len = GET_U16_FROM_CDB(cmd, IO_10_CDB_TX_LEN_OFFSET);
1975}
1976
1977static inline void nvme_trans_get_io_cdb12(u8 *cmd,
1978 struct nvme_trans_io_cdb *cdb_info)
1979{
1980 cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_12_CDB_FUA_OFFSET) &
1981 IO_CDB_FUA_MASK;
1982 cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_12_CDB_WP_OFFSET) &
1983 IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
1984 cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_12_CDB_LBA_OFFSET);
1985 cdb_info->xfer_len = GET_U32_FROM_CDB(cmd, IO_12_CDB_TX_LEN_OFFSET);
1986}
1987
1988static inline void nvme_trans_get_io_cdb16(u8 *cmd,
1989 struct nvme_trans_io_cdb *cdb_info)
1990{
1991 cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_16_CDB_FUA_OFFSET) &
1992 IO_CDB_FUA_MASK;
1993 cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_16_CDB_WP_OFFSET) &
1994 IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
1995 cdb_info->lba = GET_U64_FROM_CDB(cmd, IO_16_CDB_LBA_OFFSET);
1996 cdb_info->xfer_len = GET_U32_FROM_CDB(cmd, IO_16_CDB_TX_LEN_OFFSET);
1997}
1998
1999static inline u32 nvme_trans_io_get_num_cmds(struct sg_io_hdr *hdr,
2000 struct nvme_trans_io_cdb *cdb_info,
2001 u32 max_blocks)
2002{
2003 /* If using iovecs, send one nvme command per vector */
2004 if (hdr->iovec_count > 0)
2005 return hdr->iovec_count;
2006 else if (cdb_info->xfer_len > max_blocks)
2007 return ((cdb_info->xfer_len - 1) / max_blocks) + 1;
2008 else
2009 return 1;
2010}
2011
2012static u16 nvme_trans_io_get_control(struct nvme_ns *ns,
2013 struct nvme_trans_io_cdb *cdb_info)
2014{
2015 u16 control = 0;
2016
2017 /* When Protection information support is added, implement here */
2018
2019 if (cdb_info->fua > 0)
2020 control |= NVME_RW_FUA;
2021
2022 return control;
2023}
2024
2025static int nvme_trans_do_nvme_io(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2026 struct nvme_trans_io_cdb *cdb_info, u8 is_write)
2027{
2028 int res = SNTI_TRANSLATION_SUCCESS;
2029 int nvme_sc;
2030 struct nvme_dev *dev = ns->dev;
2031 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
2032 u32 num_cmds;
2033 struct nvme_iod *iod;
2034 u64 unit_len;
2035 u64 unit_num_blocks; /* Number of blocks to xfer in each nvme cmd */
2036 u32 retcode;
2037 u32 i = 0;
2038 u64 nvme_offset = 0;
2039 void *next_mapping_addr;
2040 struct nvme_command c;
2041 u8 opcode = (is_write ? nvme_cmd_write : nvme_cmd_read);
2042 u16 control;
2043 u32 max_blocks = (dev->max_hw_sectors << 9) >> ns->lba_shift;
2044
2045 num_cmds = nvme_trans_io_get_num_cmds(hdr, cdb_info, max_blocks);
2046
2047 /*
2048 * This loop handles two cases.
2049 * First, when an SGL is used in the form of an iovec list:
2050 * - Use iov_base as the next mapping address for the nvme command_id
2051 * - Use iov_len as the data transfer length for the command.
2052 * Second, when we have a single buffer
2053 * - If larger than max_blocks, split into chunks, offset
2054 * each nvme command accordingly.
2055 */
2056 for (i = 0; i < num_cmds; i++) {
2057 memset(&c, 0, sizeof(c));
2058 if (hdr->iovec_count > 0) {
2059 struct sg_iovec *sgl = hdr->dxferp;
2060
2061 unit_len = sgl[i].iov_len;
2062 unit_num_blocks = unit_len >> ns->lba_shift;
2063 next_mapping_addr = sgl[i].iov_base;
2064 } else {
2065 unit_num_blocks = min((u64)max_blocks,
2066 (cdb_info->xfer_len - nvme_offset));
2067 unit_len = unit_num_blocks << ns->lba_shift;
2068 next_mapping_addr = hdr->dxferp +
2069 ((1 << ns->lba_shift) * nvme_offset);
2070 }
2071
2072 c.rw.opcode = opcode;
2073 c.rw.nsid = cpu_to_le32(ns->ns_id);
2074 c.rw.slba = cpu_to_le64(cdb_info->lba + nvme_offset);
2075 c.rw.length = cpu_to_le16(unit_num_blocks - 1);
2076 control = nvme_trans_io_get_control(ns, cdb_info);
2077 c.rw.control = cpu_to_le16(control);
2078
2079 iod = nvme_map_user_pages(dev,
2080 (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
2081 (unsigned long)next_mapping_addr, unit_len);
2082 if (IS_ERR(iod)) {
2083 res = PTR_ERR(iod);
2084 goto out;
2085 }
2086 retcode = nvme_setup_prps(dev, &c.common, iod, unit_len,
2087 GFP_KERNEL);
2088 if (retcode != unit_len) {
2089 nvme_unmap_user_pages(dev,
2090 (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
2091 iod);
2092 nvme_free_iod(dev, iod);
2093 res = -ENOMEM;
2094 goto out;
2095 }
2096
2097 nvme_offset += unit_num_blocks;
2098
2099 nvmeq = get_nvmeq(dev);
2100 /*
2101 * Since nvme_submit_sync_cmd sleeps, we can't keep
2102 * preemption disabled. We may be preempted at any
2103 * point, and be rescheduled to a different CPU. That
2104 * will cause cacheline bouncing, but no additional
2105 * races since q_lock already protects against other
2106 * CPUs.
2107 */
2108 put_nvmeq(nvmeq);
2109 nvme_sc = nvme_submit_sync_cmd(nvmeq, &c, NULL,
2110 NVME_IO_TIMEOUT);
2111 if (nvme_sc != NVME_SC_SUCCESS) {
2112 nvme_unmap_user_pages(dev,
2113 (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
2114 iod);
2115 nvme_free_iod(dev, iod);
2116 res = nvme_trans_status_code(hdr, nvme_sc);
2117 goto out;
2118 }
2119 nvme_unmap_user_pages(dev,
2120 (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
2121 iod);
2122 nvme_free_iod(dev, iod);
2123 }
2124 res = nvme_trans_status_code(hdr, NVME_SC_SUCCESS);
2125
2126 out:
2127 return res;
2128}
2129
2130
2131/* SCSI Command Translation Functions */
2132
2133static int nvme_trans_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 is_write,
2134 u8 *cmd)
2135{
2136 int res = SNTI_TRANSLATION_SUCCESS;
2137 struct nvme_trans_io_cdb cdb_info;
2138 u8 opcode = cmd[0];
2139 u64 xfer_bytes;
2140 u64 sum_iov_len = 0;
2141 struct sg_iovec *sgl;
2142 int i;
2143
2144 /* Extract Fields from CDB */
2145 switch (opcode) {
2146 case WRITE_6:
2147 case READ_6:
2148 nvme_trans_get_io_cdb6(cmd, &cdb_info);
2149 break;
2150 case WRITE_10:
2151 case READ_10:
2152 nvme_trans_get_io_cdb10(cmd, &cdb_info);
2153 break;
2154 case WRITE_12:
2155 case READ_12:
2156 nvme_trans_get_io_cdb12(cmd, &cdb_info);
2157 break;
2158 case WRITE_16:
2159 case READ_16:
2160 nvme_trans_get_io_cdb16(cmd, &cdb_info);
2161 break;
2162 default:
2163 /* Will never really reach here */
2164 res = SNTI_INTERNAL_ERROR;
2165 goto out;
2166 }
2167
2168 /* Calculate total length of transfer (in bytes) */
2169 if (hdr->iovec_count > 0) {
2170 sgl = hdr->dxferp;
2171 for (i = 0; i < hdr->iovec_count; i++) {
2172 sum_iov_len += sgl[i].iov_len;
2173 /* IO vector sizes should be multiples of block size */
2174 if (sgl[i].iov_len % (1 << ns->lba_shift) != 0) {
2175 res = nvme_trans_completion(hdr,
2176 SAM_STAT_CHECK_CONDITION,
2177 ILLEGAL_REQUEST,
2178 SCSI_ASC_INVALID_PARAMETER,
2179 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2180 goto out;
2181 }
2182 }
2183 } else {
2184 sum_iov_len = hdr->dxfer_len;
2185 }
2186
2187 /* As Per sg ioctl howto, if the lengths differ, use the lower one */
2188 xfer_bytes = min(((u64)hdr->dxfer_len), sum_iov_len);
2189
2190 /* If block count and actual data buffer size dont match, error out */
2191 if (xfer_bytes != (cdb_info.xfer_len << ns->lba_shift)) {
2192 res = -EINVAL;
2193 goto out;
2194 }
2195
2196 /* Check for 0 length transfer - it is not illegal */
2197 if (cdb_info.xfer_len == 0)
2198 goto out;
2199
2200 /* Send NVMe IO Command(s) */
2201 res = nvme_trans_do_nvme_io(ns, hdr, &cdb_info, is_write);
2202 if (res != SNTI_TRANSLATION_SUCCESS)
2203 goto out;
2204
2205 out:
2206 return res;
2207}
2208
2209static int nvme_trans_inquiry(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2210 u8 *cmd)
2211{
2212 int res = SNTI_TRANSLATION_SUCCESS;
2213 u8 evpd;
2214 u8 page_code;
2215 int alloc_len;
2216 u8 *inq_response;
2217
2218 evpd = GET_INQ_EVPD_BIT(cmd);
2219 page_code = GET_INQ_PAGE_CODE(cmd);
2220 alloc_len = GET_INQ_ALLOC_LENGTH(cmd);
2221
2222 inq_response = kmalloc(STANDARD_INQUIRY_LENGTH, GFP_KERNEL);
2223 if (inq_response == NULL) {
2224 res = -ENOMEM;
2225 goto out_mem;
2226 }
2227
2228 if (evpd == 0) {
2229 if (page_code == INQ_STANDARD_INQUIRY_PAGE) {
2230 res = nvme_trans_standard_inquiry_page(ns, hdr,
2231 inq_response, alloc_len);
2232 } else {
2233 res = nvme_trans_completion(hdr,
2234 SAM_STAT_CHECK_CONDITION,
2235 ILLEGAL_REQUEST,
2236 SCSI_ASC_INVALID_CDB,
2237 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2238 }
2239 } else {
2240 switch (page_code) {
2241 case VPD_SUPPORTED_PAGES:
2242 res = nvme_trans_supported_vpd_pages(ns, hdr,
2243 inq_response, alloc_len);
2244 break;
2245 case VPD_SERIAL_NUMBER:
2246 res = nvme_trans_unit_serial_page(ns, hdr, inq_response,
2247 alloc_len);
2248 break;
2249 case VPD_DEVICE_IDENTIFIERS:
2250 res = nvme_trans_device_id_page(ns, hdr, inq_response,
2251 alloc_len);
2252 break;
2253 case VPD_EXTENDED_INQUIRY:
2254 res = nvme_trans_ext_inq_page(ns, hdr, alloc_len);
2255 break;
2256 case VPD_BLOCK_DEV_CHARACTERISTICS:
2257 res = nvme_trans_bdev_char_page(ns, hdr, alloc_len);
2258 break;
2259 default:
2260 res = nvme_trans_completion(hdr,
2261 SAM_STAT_CHECK_CONDITION,
2262 ILLEGAL_REQUEST,
2263 SCSI_ASC_INVALID_CDB,
2264 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2265 break;
2266 }
2267 }
2268 kfree(inq_response);
2269 out_mem:
2270 return res;
2271}
2272
2273static int nvme_trans_log_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2274 u8 *cmd)
2275{
2276 int res = SNTI_TRANSLATION_SUCCESS;
2277 u16 alloc_len;
2278 u8 sp;
2279 u8 pc;
2280 u8 page_code;
2281
2282 sp = GET_U8_FROM_CDB(cmd, LOG_SENSE_CDB_SP_OFFSET);
2283 if (sp != LOG_SENSE_CDB_SP_NOT_ENABLED) {
2284 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2285 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2286 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2287 goto out;
2288 }
2289 pc = GET_U8_FROM_CDB(cmd, LOG_SENSE_CDB_PC_OFFSET);
2290 page_code = pc & LOG_SENSE_CDB_PAGE_CODE_MASK;
2291 pc = (pc & LOG_SENSE_CDB_PC_MASK) >> LOG_SENSE_CDB_PC_SHIFT;
2292 if (pc != LOG_SENSE_CDB_PC_CUMULATIVE_VALUES) {
2293 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2294 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2295 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2296 goto out;
2297 }
2298 alloc_len = GET_U16_FROM_CDB(cmd, LOG_SENSE_CDB_ALLOC_LENGTH_OFFSET);
2299 switch (page_code) {
2300 case LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE:
2301 res = nvme_trans_log_supp_pages(ns, hdr, alloc_len);
2302 break;
2303 case LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE:
2304 res = nvme_trans_log_info_exceptions(ns, hdr, alloc_len);
2305 break;
2306 case LOG_PAGE_TEMPERATURE_PAGE:
2307 res = nvme_trans_log_temperature(ns, hdr, alloc_len);
2308 break;
2309 default:
2310 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2311 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2312 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2313 break;
2314 }
2315
2316 out:
2317 return res;
2318}
2319
2320static int nvme_trans_mode_select(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2321 u8 *cmd)
2322{
2323 int res = SNTI_TRANSLATION_SUCCESS;
2324 u8 cdb10 = 0;
2325 u16 parm_list_len;
2326 u8 page_format;
2327 u8 save_pages;
2328
2329 page_format = GET_U8_FROM_CDB(cmd, MODE_SELECT_CDB_PAGE_FORMAT_OFFSET);
2330 page_format &= MODE_SELECT_CDB_PAGE_FORMAT_MASK;
2331
2332 save_pages = GET_U8_FROM_CDB(cmd, MODE_SELECT_CDB_SAVE_PAGES_OFFSET);
2333 save_pages &= MODE_SELECT_CDB_SAVE_PAGES_MASK;
2334
2335 if (GET_OPCODE(cmd) == MODE_SELECT) {
2336 parm_list_len = GET_U8_FROM_CDB(cmd,
2337 MODE_SELECT_6_CDB_PARAM_LIST_LENGTH_OFFSET);
2338 } else {
2339 parm_list_len = GET_U16_FROM_CDB(cmd,
2340 MODE_SELECT_10_CDB_PARAM_LIST_LENGTH_OFFSET);
2341 cdb10 = 1;
2342 }
2343
2344 if (parm_list_len != 0) {
2345 /*
2346 * According to SPC-4 r24, a paramter list length field of 0
2347 * shall not be considered an error
2348 */
2349 res = nvme_trans_modesel_data(ns, hdr, cmd, parm_list_len,
2350 page_format, save_pages, cdb10);
2351 }
2352
2353 return res;
2354}
2355
2356static int nvme_trans_mode_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2357 u8 *cmd)
2358{
2359 int res = SNTI_TRANSLATION_SUCCESS;
2360 u16 alloc_len;
2361 u8 cdb10 = 0;
2362 u8 page_code;
2363 u8 pc;
2364
2365 if (GET_OPCODE(cmd) == MODE_SENSE) {
2366 alloc_len = GET_U8_FROM_CDB(cmd, MODE_SENSE6_ALLOC_LEN_OFFSET);
2367 } else {
2368 alloc_len = GET_U16_FROM_CDB(cmd,
2369 MODE_SENSE10_ALLOC_LEN_OFFSET);
2370 cdb10 = 1;
2371 }
2372
2373 pc = GET_U8_FROM_CDB(cmd, MODE_SENSE_PAGE_CONTROL_OFFSET) &
2374 MODE_SENSE_PAGE_CONTROL_MASK;
2375 if (pc != MODE_SENSE_PC_CURRENT_VALUES) {
2376 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2377 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2378 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2379 goto out;
2380 }
2381
2382 page_code = GET_U8_FROM_CDB(cmd, MODE_SENSE_PAGE_CODE_OFFSET) &
2383 MODE_SENSE_PAGE_CODE_MASK;
2384 switch (page_code) {
2385 case MODE_PAGE_CACHING:
2386 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2387 cdb10,
2388 &nvme_trans_fill_caching_page,
2389 MODE_PAGE_CACHING_LEN);
2390 break;
2391 case MODE_PAGE_CONTROL:
2392 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2393 cdb10,
2394 &nvme_trans_fill_control_page,
2395 MODE_PAGE_CONTROL_LEN);
2396 break;
2397 case MODE_PAGE_POWER_CONDITION:
2398 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2399 cdb10,
2400 &nvme_trans_fill_pow_cnd_page,
2401 MODE_PAGE_POW_CND_LEN);
2402 break;
2403 case MODE_PAGE_INFO_EXCEP:
2404 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2405 cdb10,
2406 &nvme_trans_fill_inf_exc_page,
2407 MODE_PAGE_INF_EXC_LEN);
2408 break;
2409 case MODE_PAGE_RETURN_ALL:
2410 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2411 cdb10,
2412 &nvme_trans_fill_all_pages,
2413 MODE_PAGE_ALL_LEN);
2414 break;
2415 default:
2416 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2417 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2418 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2419 break;
2420 }
2421
2422 out:
2423 return res;
2424}
2425
2426static int nvme_trans_read_capacity(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2427 u8 *cmd)
2428{
2429 int res = SNTI_TRANSLATION_SUCCESS;
2430 int nvme_sc;
2431 u32 alloc_len = READ_CAP_10_RESP_SIZE;
2432 u32 resp_size = READ_CAP_10_RESP_SIZE;
2433 u32 xfer_len;
2434 u8 cdb16;
2435 struct nvme_dev *dev = ns->dev;
2436 dma_addr_t dma_addr;
2437 void *mem;
2438 struct nvme_id_ns *id_ns;
2439 u8 *response;
2440
2441 cdb16 = IS_READ_CAP_16(cmd);
2442 if (cdb16) {
2443 alloc_len = GET_READ_CAP_16_ALLOC_LENGTH(cmd);
2444 resp_size = READ_CAP_16_RESP_SIZE;
2445 }
2446
2447 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
2448 &dma_addr, GFP_KERNEL);
2449 if (mem == NULL) {
2450 res = -ENOMEM;
2451 goto out;
2452 }
2453 /* nvme ns identify */
2454 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
2455 res = nvme_trans_status_code(hdr, nvme_sc);
2456 if (res)
2457 goto out_dma;
2458 if (nvme_sc) {
2459 res = nvme_sc;
2460 goto out_dma;
2461 }
2462 id_ns = mem;
2463
2464 response = kmalloc(resp_size, GFP_KERNEL);
2465 if (response == NULL) {
2466 res = -ENOMEM;
2467 goto out_dma;
2468 }
2469 memset(response, 0, resp_size);
2470 nvme_trans_fill_read_cap(response, id_ns, cdb16);
2471
2472 xfer_len = min(alloc_len, resp_size);
2473 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2474
2475 kfree(response);
2476 out_dma:
2477 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
2478 dma_addr);
2479 out:
2480 return res;
2481}
2482
2483static int nvme_trans_report_luns(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2484 u8 *cmd)
2485{
2486 int res = SNTI_TRANSLATION_SUCCESS;
2487 int nvme_sc;
2488 u32 alloc_len, xfer_len, resp_size;
2489 u8 select_report;
2490 u8 *response;
2491 struct nvme_dev *dev = ns->dev;
2492 dma_addr_t dma_addr;
2493 void *mem;
2494 struct nvme_id_ctrl *id_ctrl;
2495 u32 ll_length, lun_id;
2496 u8 lun_id_offset = REPORT_LUNS_FIRST_LUN_OFFSET;
2497 u32 tmp_len;
2498
2499 alloc_len = GET_REPORT_LUNS_ALLOC_LENGTH(cmd);
2500 select_report = GET_U8_FROM_CDB(cmd, REPORT_LUNS_SR_OFFSET);
2501
2502 if ((select_report != ALL_LUNS_RETURNED) &&
2503 (select_report != ALL_WELL_KNOWN_LUNS_RETURNED) &&
2504 (select_report != RESTRICTED_LUNS_RETURNED)) {
2505 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2506 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2507 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2508 goto out;
2509 } else {
2510 /* NVMe Controller Identify */
2511 mem = dma_alloc_coherent(&dev->pci_dev->dev,
2512 sizeof(struct nvme_id_ctrl),
2513 &dma_addr, GFP_KERNEL);
2514 if (mem == NULL) {
2515 res = -ENOMEM;
2516 goto out;
2517 }
2518 nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
2519 res = nvme_trans_status_code(hdr, nvme_sc);
2520 if (res)
2521 goto out_dma;
2522 if (nvme_sc) {
2523 res = nvme_sc;
2524 goto out_dma;
2525 }
2526 id_ctrl = mem;
2527 ll_length = id_ctrl->nn * LUN_ENTRY_SIZE;
2528 resp_size = ll_length + LUN_DATA_HEADER_SIZE;
2529
2530 if (alloc_len < resp_size) {
2531 res = nvme_trans_completion(hdr,
2532 SAM_STAT_CHECK_CONDITION,
2533 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2534 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2535 goto out_dma;
2536 }
2537
2538 response = kmalloc(resp_size, GFP_KERNEL);
2539 if (response == NULL) {
2540 res = -ENOMEM;
2541 goto out_dma;
2542 }
2543 memset(response, 0, resp_size);
2544
2545 /* The first LUN ID will always be 0 per the SAM spec */
2546 for (lun_id = 0; lun_id < id_ctrl->nn; lun_id++) {
2547 /*
2548 * Set the LUN Id and then increment to the next LUN
2549 * location in the parameter data.
2550 */
2551 u64 tmp_id = cpu_to_be64(lun_id);
2552 memcpy(&response[lun_id_offset], &tmp_id, sizeof(u64));
2553 lun_id_offset += LUN_ENTRY_SIZE;
2554 }
2555 tmp_len = cpu_to_be32(ll_length);
2556 memcpy(response, &tmp_len, sizeof(u32));
2557 }
2558
2559 xfer_len = min(alloc_len, resp_size);
2560 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2561
2562 kfree(response);
2563 out_dma:
2564 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), mem,
2565 dma_addr);
2566 out:
2567 return res;
2568}
2569
2570static int nvme_trans_request_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2571 u8 *cmd)
2572{
2573 int res = SNTI_TRANSLATION_SUCCESS;
2574 u8 alloc_len, xfer_len, resp_size;
2575 u8 desc_format;
2576 u8 *response;
2577
2578 alloc_len = GET_REQUEST_SENSE_ALLOC_LENGTH(cmd);
2579 desc_format = GET_U8_FROM_CDB(cmd, REQUEST_SENSE_DESC_OFFSET);
2580 desc_format &= REQUEST_SENSE_DESC_MASK;
2581
2582 resp_size = ((desc_format) ? (DESC_FMT_SENSE_DATA_SIZE) :
2583 (FIXED_FMT_SENSE_DATA_SIZE));
2584 response = kmalloc(resp_size, GFP_KERNEL);
2585 if (response == NULL) {
2586 res = -ENOMEM;
2587 goto out;
2588 }
2589 memset(response, 0, resp_size);
2590
2591 if (desc_format == DESCRIPTOR_FORMAT_SENSE_DATA_TYPE) {
2592 /* Descriptor Format Sense Data */
2593 response[0] = DESC_FORMAT_SENSE_DATA;
2594 response[1] = NO_SENSE;
2595 /* TODO How is LOW POWER CONDITION ON handled? (byte 2) */
2596 response[2] = SCSI_ASC_NO_SENSE;
2597 response[3] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2598 /* SDAT_OVFL = 0 | Additional Sense Length = 0 */
2599 } else {
2600 /* Fixed Format Sense Data */
2601 response[0] = FIXED_SENSE_DATA;
2602 /* Byte 1 = Obsolete */
2603 response[2] = NO_SENSE; /* FM, EOM, ILI, SDAT_OVFL = 0 */
2604 /* Bytes 3-6 - Information - set to zero */
2605 response[7] = FIXED_SENSE_DATA_ADD_LENGTH;
2606 /* Bytes 8-11 - Cmd Specific Information - set to zero */
2607 response[12] = SCSI_ASC_NO_SENSE;
2608 response[13] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2609 /* Byte 14 = Field Replaceable Unit Code = 0 */
2610 /* Bytes 15-17 - SKSV=0; Sense Key Specific = 0 */
2611 }
2612
2613 xfer_len = min(alloc_len, resp_size);
2614 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2615
2616 kfree(response);
2617 out:
2618 return res;
2619}
2620
2621static int nvme_trans_security_protocol(struct nvme_ns *ns,
2622 struct sg_io_hdr *hdr,
2623 u8 *cmd)
2624{
2625 return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2626 ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND,
2627 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2628}
2629
2630static int nvme_trans_start_stop(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2631 u8 *cmd)
2632{
2633 int res = SNTI_TRANSLATION_SUCCESS;
2634 int nvme_sc;
2635 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
2636 u8 immed, pcmod, pc, no_flush, start;
2637
2638 immed = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_IMMED_OFFSET);
2639 pcmod = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_POWER_COND_MOD_OFFSET);
2640 pc = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_POWER_COND_OFFSET);
2641 no_flush = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_NO_FLUSH_OFFSET);
2642 start = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_START_OFFSET);
2643
2644 immed &= START_STOP_UNIT_CDB_IMMED_MASK;
2645 pcmod &= START_STOP_UNIT_CDB_POWER_COND_MOD_MASK;
2646 pc = (pc & START_STOP_UNIT_CDB_POWER_COND_MASK) >> NIBBLE_SHIFT;
2647 no_flush &= START_STOP_UNIT_CDB_NO_FLUSH_MASK;
2648 start &= START_STOP_UNIT_CDB_START_MASK;
2649
2650 if (immed != 0) {
2651 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2652 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2653 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2654 } else {
2655 if (no_flush == 0) {
2656 /* Issue NVME FLUSH command prior to START STOP UNIT */
2657 nvme_sc = nvme_submit_flush_data(nvmeq, ns);
2658 put_nvmeq(nvmeq);
2659 res = nvme_trans_status_code(hdr, nvme_sc);
2660 if (res)
2661 goto out;
2662 if (nvme_sc) {
2663 res = nvme_sc;
2664 goto out;
2665 }
2666 }
2667 /* Setup the expected power state transition */
2668 res = nvme_trans_power_state(ns, hdr, pc, pcmod, start);
2669 }
2670
2671 out:
2672 return res;
2673}
2674
2675static int nvme_trans_synchronize_cache(struct nvme_ns *ns,
2676 struct sg_io_hdr *hdr, u8 *cmd)
2677{
2678 int res = SNTI_TRANSLATION_SUCCESS;
2679 int nvme_sc;
2680 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
2681 put_nvmeq(nvmeq);
2682 nvme_sc = nvme_submit_flush_data(nvmeq, ns);
2683 res = nvme_trans_status_code(hdr, nvme_sc);
2684 if (res)
2685 goto out;
2686 if (nvme_sc)
2687 res = nvme_sc;
2688
2689 out:
2690 return res;
2691}
2692
2693static int nvme_trans_format_unit(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2694 u8 *cmd)
2695{
2696 int res = SNTI_TRANSLATION_SUCCESS;
2697 u8 parm_hdr_len = 0;
2698 u8 nvme_pf_code = 0;
2699 u8 format_prot_info, long_list, format_data;
2700
2701 format_prot_info = GET_U8_FROM_CDB(cmd,
2702 FORMAT_UNIT_CDB_FORMAT_PROT_INFO_OFFSET);
2703 long_list = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_LONG_LIST_OFFSET);
2704 format_data = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_FORMAT_DATA_OFFSET);
2705
2706 format_prot_info = (format_prot_info &
2707 FORMAT_UNIT_CDB_FORMAT_PROT_INFO_MASK) >>
2708 FORMAT_UNIT_CDB_FORMAT_PROT_INFO_SHIFT;
2709 long_list &= FORMAT_UNIT_CDB_LONG_LIST_MASK;
2710 format_data &= FORMAT_UNIT_CDB_FORMAT_DATA_MASK;
2711
2712 if (format_data != 0) {
2713 if (format_prot_info != 0) {
2714 if (long_list == 0)
2715 parm_hdr_len = FORMAT_UNIT_SHORT_PARM_LIST_LEN;
2716 else
2717 parm_hdr_len = FORMAT_UNIT_LONG_PARM_LIST_LEN;
2718 }
2719 } else if (format_data == 0 && format_prot_info != 0) {
2720 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2721 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2722 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2723 goto out;
2724 }
2725
2726 /* Get parm header from data-in/out buffer */
2727 /*
2728 * According to the translation spec, the only fields in the parameter
2729 * list we are concerned with are in the header. So allocate only that.
2730 */
2731 if (parm_hdr_len > 0) {
2732 res = nvme_trans_fmt_get_parm_header(hdr, parm_hdr_len,
2733 format_prot_info, &nvme_pf_code);
2734 if (res != SNTI_TRANSLATION_SUCCESS)
2735 goto out;
2736 }
2737
2738 /* Attempt to activate any previously downloaded firmware image */
2739 res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw, 0, 0, 0);
2740
2741 /* Determine Block size and count and send format command */
2742 res = nvme_trans_fmt_set_blk_size_count(ns, hdr);
2743 if (res != SNTI_TRANSLATION_SUCCESS)
2744 goto out;
2745
2746 res = nvme_trans_fmt_send_cmd(ns, hdr, nvme_pf_code);
2747
2748 out:
2749 return res;
2750}
2751
2752static int nvme_trans_test_unit_ready(struct nvme_ns *ns,
2753 struct sg_io_hdr *hdr,
2754 u8 *cmd)
2755{
2756 int res = SNTI_TRANSLATION_SUCCESS;
2757 struct nvme_dev *dev = ns->dev;
2758
2759 if (!(readl(&dev->bar->csts) & NVME_CSTS_RDY))
2760 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2761 NOT_READY, SCSI_ASC_LUN_NOT_READY,
2762 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2763 else
2764 res = nvme_trans_completion(hdr, SAM_STAT_GOOD, NO_SENSE, 0, 0);
2765
2766 return res;
2767}
2768
2769static int nvme_trans_write_buffer(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2770 u8 *cmd)
2771{
2772 int res = SNTI_TRANSLATION_SUCCESS;
2773 u32 buffer_offset, parm_list_length;
2774 u8 buffer_id, mode;
2775
2776 parm_list_length =
2777 GET_U24_FROM_CDB(cmd, WRITE_BUFFER_CDB_PARM_LIST_LENGTH_OFFSET);
2778 if (parm_list_length % BYTES_TO_DWORDS != 0) {
2779 /* NVMe expects Firmware file to be a whole number of DWORDS */
2780 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2781 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2782 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2783 goto out;
2784 }
2785 buffer_id = GET_U8_FROM_CDB(cmd, WRITE_BUFFER_CDB_BUFFER_ID_OFFSET);
2786 if (buffer_id > NVME_MAX_FIRMWARE_SLOT) {
2787 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2788 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2789 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2790 goto out;
2791 }
2792 mode = GET_U8_FROM_CDB(cmd, WRITE_BUFFER_CDB_MODE_OFFSET) &
2793 WRITE_BUFFER_CDB_MODE_MASK;
2794 buffer_offset =
2795 GET_U24_FROM_CDB(cmd, WRITE_BUFFER_CDB_BUFFER_OFFSET_OFFSET);
2796
2797 switch (mode) {
2798 case DOWNLOAD_SAVE_ACTIVATE:
2799 res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_download_fw,
2800 parm_list_length, buffer_offset,
2801 buffer_id);
2802 if (res != SNTI_TRANSLATION_SUCCESS)
2803 goto out;
2804 res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw,
2805 parm_list_length, buffer_offset,
2806 buffer_id);
2807 break;
2808 case DOWNLOAD_SAVE_DEFER_ACTIVATE:
2809 res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_download_fw,
2810 parm_list_length, buffer_offset,
2811 buffer_id);
2812 break;
2813 case ACTIVATE_DEFERRED_MICROCODE:
2814 res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw,
2815 parm_list_length, buffer_offset,
2816 buffer_id);
2817 break;
2818 default:
2819 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2820 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2821 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2822 break;
2823 }
2824
2825 out:
2826 return res;
2827}
2828
2829static int nvme_scsi_translate(struct nvme_ns *ns, struct sg_io_hdr *hdr)
2830{
2831 u8 cmd[BLK_MAX_CDB];
2832 int retcode;
2833 unsigned int opcode;
2834
2835 if (hdr->cmdp == NULL)
2836 return -EMSGSIZE;
2837 if (copy_from_user(cmd, hdr->cmdp, hdr->cmd_len))
2838 return -EFAULT;
2839
2840 opcode = cmd[0];
2841
2842 switch (opcode) {
2843 case READ_6:
2844 case READ_10:
2845 case READ_12:
2846 case READ_16:
2847 retcode = nvme_trans_io(ns, hdr, 0, cmd);
2848 break;
2849 case WRITE_6:
2850 case WRITE_10:
2851 case WRITE_12:
2852 case WRITE_16:
2853 retcode = nvme_trans_io(ns, hdr, 1, cmd);
2854 break;
2855 case INQUIRY:
2856 retcode = nvme_trans_inquiry(ns, hdr, cmd);
2857 break;
2858 case LOG_SENSE:
2859 retcode = nvme_trans_log_sense(ns, hdr, cmd);
2860 break;
2861 case MODE_SELECT:
2862 case MODE_SELECT_10:
2863 retcode = nvme_trans_mode_select(ns, hdr, cmd);
2864 break;
2865 case MODE_SENSE:
2866 case MODE_SENSE_10:
2867 retcode = nvme_trans_mode_sense(ns, hdr, cmd);
2868 break;
2869 case READ_CAPACITY:
2870 retcode = nvme_trans_read_capacity(ns, hdr, cmd);
2871 break;
2872 case SERVICE_ACTION_IN:
2873 if (IS_READ_CAP_16(cmd))
2874 retcode = nvme_trans_read_capacity(ns, hdr, cmd);
2875 else
2876 goto out;
2877 break;
2878 case REPORT_LUNS:
2879 retcode = nvme_trans_report_luns(ns, hdr, cmd);
2880 break;
2881 case REQUEST_SENSE:
2882 retcode = nvme_trans_request_sense(ns, hdr, cmd);
2883 break;
2884 case SECURITY_PROTOCOL_IN:
2885 case SECURITY_PROTOCOL_OUT:
2886 retcode = nvme_trans_security_protocol(ns, hdr, cmd);
2887 break;
2888 case START_STOP:
2889 retcode = nvme_trans_start_stop(ns, hdr, cmd);
2890 break;
2891 case SYNCHRONIZE_CACHE:
2892 retcode = nvme_trans_synchronize_cache(ns, hdr, cmd);
2893 break;
2894 case FORMAT_UNIT:
2895 retcode = nvme_trans_format_unit(ns, hdr, cmd);
2896 break;
2897 case TEST_UNIT_READY:
2898 retcode = nvme_trans_test_unit_ready(ns, hdr, cmd);
2899 break;
2900 case WRITE_BUFFER:
2901 retcode = nvme_trans_write_buffer(ns, hdr, cmd);
2902 break;
2903 default:
2904 out:
2905 retcode = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2906 ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND,
2907 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2908 break;
2909 }
2910 return retcode;
2911}
2912
2913int nvme_sg_io(struct nvme_ns *ns, struct sg_io_hdr __user *u_hdr)
2914{
2915 struct sg_io_hdr hdr;
2916 int retcode;
2917
2918 if (!capable(CAP_SYS_ADMIN))
2919 return -EACCES;
2920 if (copy_from_user(&hdr, u_hdr, sizeof(hdr)))
2921 return -EFAULT;
2922 if (hdr.interface_id != 'S')
2923 return -EINVAL;
2924 if (hdr.cmd_len > BLK_MAX_CDB)
2925 return -EINVAL;
2926
2927 retcode = nvme_scsi_translate(ns, &hdr);
2928 if (retcode < 0)
2929 return retcode;
2930 if (retcode > 0)
2931 retcode = SNTI_TRANSLATION_SUCCESS;
2932 if (copy_to_user(__user u_hdr, &hdr, sizeof(sg_io_hdr_t)) > 0)
2933 return -EFAULT;
2934
2935 return retcode;
2936}
2937
2938int nvme_sg_get_version_num(int __user *ip)
2939{
2940 return put_user(sg_version_num, ip);
2941}