aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/usb
diff options
context:
space:
mode:
authorThomas Dahlmann <thomas.dahlmann@amd.com>2007-07-17 00:40:54 -0400
committerGreg Kroah-Hartman <gregkh@suse.de>2007-07-19 20:46:05 -0400
commit55d402d854ade6b63b26e958f201ee2ef00b7b15 (patch)
treebb91980a14cf9c21b466680d54b0f22a7d49554d /drivers/usb
parentbeafef072af10bc8497c9ee51ce2804aa7da26be (diff)
USB: amd5536 UDC driver (in GEODE southbridge)
Driver for the AMD5536 UDC, as found in the AMD Geode CS5536 (southbridge). This is a high speed DMA-capable controller, which can also be used in OTG configurations (which are not supported by this patch). Acked-by: Jordan Crouse <jordan.crouse@amd.com> Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'drivers/usb')
-rw-r--r--drivers/usb/gadget/Kconfig21
-rw-r--r--drivers/usb/gadget/Makefile1
-rw-r--r--drivers/usb/gadget/amd5536udc.c3454
-rw-r--r--drivers/usb/gadget/amd5536udc.h626
-rw-r--r--drivers/usb/gadget/ether.c4
-rw-r--r--drivers/usb/gadget/gadget_chips.h8
6 files changed, 4114 insertions, 0 deletions
diff --git a/drivers/usb/gadget/Kconfig b/drivers/usb/gadget/Kconfig
index 45e01e289455..1553e9a649cd 100644
--- a/drivers/usb/gadget/Kconfig
+++ b/drivers/usb/gadget/Kconfig
@@ -82,6 +82,27 @@ choice
82 Many controller drivers are platform-specific; these 82 Many controller drivers are platform-specific; these
83 often need board-specific hooks. 83 often need board-specific hooks.
84 84
85config USB_GADGET_AMD5536UDC
86 boolean "AMD5536 UDC"
87 depends on PCI
88 select USB_GADGET_DUALSPEED
89 help
90 The AMD5536 UDC is part of the AMD Geode CS5536, an x86 southbridge.
91 It is a USB Highspeed DMA capable USB device controller. Beside ep0
92 it provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
93 The UDC port supports OTG operation, and may be used as a host port
94 if it's not being used to implement peripheral or OTG roles.
95
96 Say "y" to link the driver statically, or "m" to build a
97 dynamically linked module called "amd5536udc" and force all
98 gadget drivers to also be dynamically linked.
99
100config USB_AMD5536UDC
101 tristate
102 depends on USB_GADGET_AMD5536UDC
103 default USB_GADGET
104 select USB_GADGET_SELECTED
105
85config USB_GADGET_FSL_USB2 106config USB_GADGET_FSL_USB2
86 boolean "Freescale Highspeed USB DR Peripheral Controller" 107 boolean "Freescale Highspeed USB DR Peripheral Controller"
87 depends on MPC834x || PPC_MPC831x 108 depends on MPC834x || PPC_MPC831x
diff --git a/drivers/usb/gadget/Makefile b/drivers/usb/gadget/Makefile
index 8ae76f738635..1bc0f03550ce 100644
--- a/drivers/usb/gadget/Makefile
+++ b/drivers/usb/gadget/Makefile
@@ -7,6 +7,7 @@ endif
7 7
8obj-$(CONFIG_USB_DUMMY_HCD) += dummy_hcd.o 8obj-$(CONFIG_USB_DUMMY_HCD) += dummy_hcd.o
9obj-$(CONFIG_USB_NET2280) += net2280.o 9obj-$(CONFIG_USB_NET2280) += net2280.o
10obj-$(CONFIG_USB_AMD5536UDC) += amd5536udc.o
10obj-$(CONFIG_USB_PXA2XX) += pxa2xx_udc.o 11obj-$(CONFIG_USB_PXA2XX) += pxa2xx_udc.o
11obj-$(CONFIG_USB_GOKU) += goku_udc.o 12obj-$(CONFIG_USB_GOKU) += goku_udc.o
12obj-$(CONFIG_USB_OMAP) += omap_udc.o 13obj-$(CONFIG_USB_OMAP) += omap_udc.o
diff --git a/drivers/usb/gadget/amd5536udc.c b/drivers/usb/gadget/amd5536udc.c
new file mode 100644
index 000000000000..714156ca8fe4
--- /dev/null
+++ b/drivers/usb/gadget/amd5536udc.c
@@ -0,0 +1,3454 @@
1/*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
3 *
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22/*
23 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
24 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
25 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
26 *
27 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
28 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
29 * by BIOS init).
30 *
31 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
32 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
33 * can be used with gadget ether.
34 */
35
36/* debug control */
37/* #define UDC_VERBOSE */
38
39/* Driver strings */
40#define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
41#define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
42
43/* system */
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/kernel.h>
47#include <linux/version.h>
48#include <linux/delay.h>
49#include <linux/ioport.h>
50#include <linux/sched.h>
51#include <linux/slab.h>
52#include <linux/smp_lock.h>
53#include <linux/errno.h>
54#include <linux/init.h>
55#include <linux/timer.h>
56#include <linux/list.h>
57#include <linux/interrupt.h>
58#include <linux/ioctl.h>
59#include <linux/fs.h>
60#include <linux/dmapool.h>
61#include <linux/moduleparam.h>
62#include <linux/device.h>
63#include <linux/io.h>
64#include <linux/irq.h>
65
66#include <asm/byteorder.h>
67#include <asm/system.h>
68#include <asm/unaligned.h>
69
70/* gadget stack */
71#include <linux/usb/ch9.h>
72#include <linux/usb_gadget.h>
73
74/* udc specific */
75#include "amd5536udc.h"
76
77
78static void udc_tasklet_disconnect(unsigned long);
79static void empty_req_queue(struct udc_ep *);
80static int udc_probe(struct udc *dev);
81static void udc_basic_init(struct udc *dev);
82static void udc_setup_endpoints(struct udc *dev);
83static void udc_soft_reset(struct udc *dev);
84static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
85static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
86static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
87static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
88 unsigned long buf_len, gfp_t gfp_flags);
89static int udc_remote_wakeup(struct udc *dev);
90static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
91static void udc_pci_remove(struct pci_dev *pdev);
92
93/* description */
94static const char mod_desc[] = UDC_MOD_DESCRIPTION;
95static const char name[] = "amd5536udc";
96
97/* structure to hold endpoint function pointers */
98static const struct usb_ep_ops udc_ep_ops;
99
100/* received setup data */
101static union udc_setup_data setup_data;
102
103/* pointer to device object */
104static struct udc *udc;
105
106/* irq spin lock for soft reset */
107static DEFINE_SPINLOCK(udc_irq_spinlock);
108/* stall spin lock */
109static DEFINE_SPINLOCK(udc_stall_spinlock);
110
111/*
112* slave mode: pending bytes in rx fifo after nyet,
113* used if EPIN irq came but no req was available
114*/
115static unsigned int udc_rxfifo_pending;
116
117/* count soft resets after suspend to avoid loop */
118static int soft_reset_occured;
119static int soft_reset_after_usbreset_occured;
120
121/* timer */
122static struct timer_list udc_timer;
123static int stop_timer;
124
125/* set_rde -- Is used to control enabling of RX DMA. Problem is
126 * that UDC has only one bit (RDE) to enable/disable RX DMA for
127 * all OUT endpoints. So we have to handle race conditions like
128 * when OUT data reaches the fifo but no request was queued yet.
129 * This cannot be solved by letting the RX DMA disabled until a
130 * request gets queued because there may be other OUT packets
131 * in the FIFO (important for not blocking control traffic).
132 * The value of set_rde controls the correspondig timer.
133 *
134 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
135 * set_rde 0 == do not touch RDE, do no start the RDE timer
136 * set_rde 1 == timer function will look whether FIFO has data
137 * set_rde 2 == set by timer function to enable RX DMA on next call
138 */
139static int set_rde = -1;
140
141static DECLARE_COMPLETION(on_exit);
142static struct timer_list udc_pollstall_timer;
143static int stop_pollstall_timer;
144static DECLARE_COMPLETION(on_pollstall_exit);
145
146/* tasklet for usb disconnect */
147static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
148 (unsigned long) &udc);
149
150
151/* endpoint names used for print */
152static const char ep0_string[] = "ep0in";
153static const char *ep_string[] = {
154 ep0_string,
155 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
156 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
157 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
158 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
159 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
160 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
161 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
162};
163
164/* DMA usage flag */
165static int use_dma = 1;
166/* packet per buffer dma */
167static int use_dma_ppb = 1;
168/* with per descr. update */
169static int use_dma_ppb_du;
170/* buffer fill mode */
171static int use_dma_bufferfill_mode;
172/* full speed only mode */
173static int use_fullspeed;
174/* tx buffer size for high speed */
175static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
176
177/* module parameters */
178module_param(use_dma, bool, S_IRUGO);
179MODULE_PARM_DESC(use_dma, "true for DMA");
180module_param(use_dma_ppb, bool, S_IRUGO);
181MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
182module_param(use_dma_ppb_du, bool, S_IRUGO);
183MODULE_PARM_DESC(use_dma_ppb_du,
184 "true for DMA in packet per buffer mode with descriptor update");
185module_param(use_fullspeed, bool, S_IRUGO);
186MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
187
188/*---------------------------------------------------------------------------*/
189/* Prints UDC device registers and endpoint irq registers */
190static void print_regs(struct udc *dev)
191{
192 DBG(dev, "------- Device registers -------\n");
193 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
194 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
195 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
196 DBG(dev, "\n");
197 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
198 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
199 DBG(dev, "\n");
200 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
201 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
202 DBG(dev, "\n");
203 DBG(dev, "USE DMA = %d\n", use_dma);
204 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
205 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
206 "WITHOUT desc. update)\n");
207 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
208 } else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) {
209 DBG(dev, "DMA mode = PPBDU (packet per buffer "
210 "WITH desc. update)\n");
211 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
212 }
213 if (use_dma && use_dma_bufferfill_mode) {
214 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
215 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
216 }
217 if (!use_dma) {
218 dev_info(&dev->pdev->dev, "FIFO mode\n");
219 }
220 DBG(dev, "-------------------------------------------------------\n");
221}
222
223/* Masks unused interrupts */
224static int udc_mask_unused_interrupts(struct udc *dev)
225{
226 u32 tmp;
227
228 /* mask all dev interrupts */
229 tmp = AMD_BIT(UDC_DEVINT_SVC) |
230 AMD_BIT(UDC_DEVINT_ENUM) |
231 AMD_BIT(UDC_DEVINT_US) |
232 AMD_BIT(UDC_DEVINT_UR) |
233 AMD_BIT(UDC_DEVINT_ES) |
234 AMD_BIT(UDC_DEVINT_SI) |
235 AMD_BIT(UDC_DEVINT_SOF)|
236 AMD_BIT(UDC_DEVINT_SC);
237 writel(tmp, &dev->regs->irqmsk);
238
239 /* mask all ep interrupts */
240 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
241
242 return 0;
243}
244
245/* Enables endpoint 0 interrupts */
246static int udc_enable_ep0_interrupts(struct udc *dev)
247{
248 u32 tmp;
249
250 DBG(dev, "udc_enable_ep0_interrupts()\n");
251
252 /* read irq mask */
253 tmp = readl(&dev->regs->ep_irqmsk);
254 /* enable ep0 irq's */
255 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
256 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
257 writel(tmp, &dev->regs->ep_irqmsk);
258
259 return 0;
260}
261
262/* Enables device interrupts for SET_INTF and SET_CONFIG */
263static int udc_enable_dev_setup_interrupts(struct udc *dev)
264{
265 u32 tmp;
266
267 DBG(dev, "enable device interrupts for setup data\n");
268
269 /* read irq mask */
270 tmp = readl(&dev->regs->irqmsk);
271
272 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
273 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
274 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
275 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
276 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
277 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
278 writel(tmp, &dev->regs->irqmsk);
279
280 return 0;
281}
282
283/* Calculates fifo start of endpoint based on preceeding endpoints */
284static int udc_set_txfifo_addr(struct udc_ep *ep)
285{
286 struct udc *dev;
287 u32 tmp;
288 int i;
289
290 if (!ep || !(ep->in))
291 return -EINVAL;
292
293 dev = ep->dev;
294 ep->txfifo = dev->txfifo;
295
296 /* traverse ep's */
297 for (i = 0; i < ep->num; i++) {
298 if (dev->ep[i].regs) {
299 /* read fifo size */
300 tmp = readl(&dev->ep[i].regs->bufin_framenum);
301 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
302 ep->txfifo += tmp;
303 }
304 }
305 return 0;
306}
307
308/* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
309static u32 cnak_pending;
310
311static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
312{
313 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
314 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
315 cnak_pending |= 1 << (num);
316 ep->naking = 1;
317 } else
318 cnak_pending = cnak_pending & (~(1 << (num)));
319}
320
321
322/* Enables endpoint, is called by gadget driver */
323static int
324udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
325{
326 struct udc_ep *ep;
327 struct udc *dev;
328 u32 tmp;
329 unsigned long iflags;
330 u8 udc_csr_epix;
331
332 if (!usbep
333 || usbep->name == ep0_string
334 || !desc
335 || desc->bDescriptorType != USB_DT_ENDPOINT)
336 return -EINVAL;
337
338 ep = container_of(usbep, struct udc_ep, ep);
339 dev = ep->dev;
340
341 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
342
343 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
344 return -ESHUTDOWN;
345
346 spin_lock_irqsave(&dev->lock, iflags);
347 ep->desc = desc;
348
349 ep->halted = 0;
350
351 /* set traffic type */
352 tmp = readl(&dev->ep[ep->num].regs->ctl);
353 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
354 writel(tmp, &dev->ep[ep->num].regs->ctl);
355
356 /* set max packet size */
357 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
358 tmp = AMD_ADDBITS(tmp, desc->wMaxPacketSize, UDC_EP_MAX_PKT_SIZE);
359 ep->ep.maxpacket = desc->wMaxPacketSize;
360 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
361
362 /* IN ep */
363 if (ep->in) {
364
365 /* ep ix in UDC CSR register space */
366 udc_csr_epix = ep->num;
367
368 /* set buffer size (tx fifo entries) */
369 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
370 /* double buffering: fifo size = 2 x max packet size */
371 tmp = AMD_ADDBITS(
372 tmp,
373 desc->wMaxPacketSize * UDC_EPIN_BUFF_SIZE_MULT
374 / UDC_DWORD_BYTES,
375 UDC_EPIN_BUFF_SIZE);
376 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
377
378 /* calc. tx fifo base addr */
379 udc_set_txfifo_addr(ep);
380
381 /* flush fifo */
382 tmp = readl(&ep->regs->ctl);
383 tmp |= AMD_BIT(UDC_EPCTL_F);
384 writel(tmp, &ep->regs->ctl);
385
386 /* OUT ep */
387 } else {
388 /* ep ix in UDC CSR register space */
389 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
390
391 /* set max packet size UDC CSR */
392 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
393 tmp = AMD_ADDBITS(tmp, desc->wMaxPacketSize,
394 UDC_CSR_NE_MAX_PKT);
395 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
396
397 if (use_dma && !ep->in) {
398 /* alloc and init BNA dummy request */
399 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
400 ep->bna_occurred = 0;
401 }
402
403 if (ep->num != UDC_EP0OUT_IX)
404 dev->data_ep_enabled = 1;
405 }
406
407 /* set ep values */
408 tmp = readl(&dev->csr->ne[udc_csr_epix]);
409 /* max packet */
410 tmp = AMD_ADDBITS(tmp, desc->wMaxPacketSize, UDC_CSR_NE_MAX_PKT);
411 /* ep number */
412 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
413 /* ep direction */
414 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
415 /* ep type */
416 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
417 /* ep config */
418 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
419 /* ep interface */
420 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
421 /* ep alt */
422 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
423 /* write reg */
424 writel(tmp, &dev->csr->ne[udc_csr_epix]);
425
426 /* enable ep irq */
427 tmp = readl(&dev->regs->ep_irqmsk);
428 tmp &= AMD_UNMASK_BIT(ep->num);
429 writel(tmp, &dev->regs->ep_irqmsk);
430
431 /*
432 * clear NAK by writing CNAK
433 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
434 */
435 if (!use_dma || ep->in) {
436 tmp = readl(&ep->regs->ctl);
437 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
438 writel(tmp, &ep->regs->ctl);
439 ep->naking = 0;
440 UDC_QUEUE_CNAK(ep, ep->num);
441 }
442 tmp = desc->bEndpointAddress;
443 DBG(dev, "%s enabled\n", usbep->name);
444
445 spin_unlock_irqrestore(&dev->lock, iflags);
446 return 0;
447}
448
449/* Resets endpoint */
450static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
451{
452 u32 tmp;
453
454 VDBG(ep->dev, "ep-%d reset\n", ep->num);
455 ep->desc = NULL;
456 ep->ep.ops = &udc_ep_ops;
457 INIT_LIST_HEAD(&ep->queue);
458
459 ep->ep.maxpacket = (u16) ~0;
460 /* set NAK */
461 tmp = readl(&ep->regs->ctl);
462 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
463 writel(tmp, &ep->regs->ctl);
464 ep->naking = 1;
465
466 /* disable interrupt */
467 tmp = readl(&regs->ep_irqmsk);
468 tmp |= AMD_BIT(ep->num);
469 writel(tmp, &regs->ep_irqmsk);
470
471 if (ep->in) {
472 /* unset P and IN bit of potential former DMA */
473 tmp = readl(&ep->regs->ctl);
474 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
475 writel(tmp, &ep->regs->ctl);
476
477 tmp = readl(&ep->regs->sts);
478 tmp |= AMD_BIT(UDC_EPSTS_IN);
479 writel(tmp, &ep->regs->sts);
480
481 /* flush the fifo */
482 tmp = readl(&ep->regs->ctl);
483 tmp |= AMD_BIT(UDC_EPCTL_F);
484 writel(tmp, &ep->regs->ctl);
485
486 }
487 /* reset desc pointer */
488 writel(0, &ep->regs->desptr);
489}
490
491/* Disables endpoint, is called by gadget driver */
492static int udc_ep_disable(struct usb_ep *usbep)
493{
494 struct udc_ep *ep = NULL;
495 unsigned long iflags;
496
497 if (!usbep)
498 return -EINVAL;
499
500 ep = container_of(usbep, struct udc_ep, ep);
501 if (usbep->name == ep0_string || !ep->desc)
502 return -EINVAL;
503
504 DBG(ep->dev, "Disable ep-%d\n", ep->num);
505
506 spin_lock_irqsave(&ep->dev->lock, iflags);
507 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
508 empty_req_queue(ep);
509 ep_init(ep->dev->regs, ep);
510 spin_unlock_irqrestore(&ep->dev->lock, iflags);
511
512 return 0;
513}
514
515/* Allocates request packet, called by gadget driver */
516static struct usb_request *
517udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
518{
519 struct udc_request *req;
520 struct udc_data_dma *dma_desc;
521 struct udc_ep *ep;
522
523 if (!usbep)
524 return NULL;
525
526 ep = container_of(usbep, struct udc_ep, ep);
527
528 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
529 req = kzalloc(sizeof(struct udc_request), gfp);
530 if (!req)
531 return NULL;
532
533 req->req.dma = DMA_DONT_USE;
534 INIT_LIST_HEAD(&req->queue);
535
536 if (ep->dma) {
537 /* ep0 in requests are allocated from data pool here */
538 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
539 &req->td_phys);
540 if (!dma_desc) {
541 kfree(req);
542 return NULL;
543 }
544
545 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
546 "td_phys = %lx\n",
547 req, dma_desc,
548 (unsigned long)req->td_phys);
549 /* prevent from using desc. - set HOST BUSY */
550 dma_desc->status = AMD_ADDBITS(dma_desc->status,
551 UDC_DMA_STP_STS_BS_HOST_BUSY,
552 UDC_DMA_STP_STS_BS);
553 dma_desc->bufptr = __constant_cpu_to_le32(DMA_DONT_USE);
554 req->td_data = dma_desc;
555 req->td_data_last = NULL;
556 req->chain_len = 1;
557 }
558
559 return &req->req;
560}
561
562/* Frees request packet, called by gadget driver */
563static void
564udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
565{
566 struct udc_ep *ep;
567 struct udc_request *req;
568
569 if (!usbep || !usbreq)
570 return;
571
572 ep = container_of(usbep, struct udc_ep, ep);
573 req = container_of(usbreq, struct udc_request, req);
574 VDBG(ep->dev, "free_req req=%p\n", req);
575 BUG_ON(!list_empty(&req->queue));
576 if (req->td_data) {
577 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
578
579 /* free dma chain if created */
580 if (req->chain_len > 1) {
581 udc_free_dma_chain(ep->dev, req);
582 }
583
584 pci_pool_free(ep->dev->data_requests, req->td_data,
585 req->td_phys);
586 }
587 kfree(req);
588}
589
590/* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
591static void udc_init_bna_dummy(struct udc_request *req)
592{
593 if (req) {
594 /* set last bit */
595 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
596 /* set next pointer to itself */
597 req->td_data->next = req->td_phys;
598 /* set HOST BUSY */
599 req->td_data->status
600 = AMD_ADDBITS(req->td_data->status,
601 UDC_DMA_STP_STS_BS_DMA_DONE,
602 UDC_DMA_STP_STS_BS);
603#ifdef UDC_VERBOSE
604 pr_debug("bna desc = %p, sts = %08x\n",
605 req->td_data, req->td_data->status);
606#endif
607 }
608}
609
610/* Allocate BNA dummy descriptor */
611static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
612{
613 struct udc_request *req = NULL;
614 struct usb_request *_req = NULL;
615
616 /* alloc the dummy request */
617 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
618 if (_req) {
619 req = container_of(_req, struct udc_request, req);
620 ep->bna_dummy_req = req;
621 udc_init_bna_dummy(req);
622 }
623 return req;
624}
625
626/* Write data to TX fifo for IN packets */
627static void
628udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
629{
630 u8 *req_buf;
631 u32 *buf;
632 int i, j;
633 unsigned bytes = 0;
634 unsigned remaining = 0;
635
636 if (!req || !ep)
637 return;
638
639 req_buf = req->buf + req->actual;
640 prefetch(req_buf);
641 remaining = req->length - req->actual;
642
643 buf = (u32 *) req_buf;
644
645 bytes = ep->ep.maxpacket;
646 if (bytes > remaining)
647 bytes = remaining;
648
649 /* dwords first */
650 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
651 writel(*(buf + i), ep->txfifo);
652 }
653
654 /* remaining bytes must be written by byte access */
655 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
656 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
657 ep->txfifo);
658 }
659
660 /* dummy write confirm */
661 writel(0, &ep->regs->confirm);
662}
663
664/* Read dwords from RX fifo for OUT transfers */
665static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
666{
667 int i;
668
669 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
670
671 for (i = 0; i < dwords; i++) {
672 *(buf + i) = readl(dev->rxfifo);
673 }
674 return 0;
675}
676
677/* Read bytes from RX fifo for OUT transfers */
678static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
679{
680 int i, j;
681 u32 tmp;
682
683 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
684
685 /* dwords first */
686 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
687 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
688 }
689
690 /* remaining bytes must be read by byte access */
691 if (bytes % UDC_DWORD_BYTES) {
692 tmp = readl(dev->rxfifo);
693 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
694 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
695 tmp = tmp >> UDC_BITS_PER_BYTE;
696 }
697 }
698
699 return 0;
700}
701
702/* Read data from RX fifo for OUT transfers */
703static int
704udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
705{
706 u8 *buf;
707 unsigned buf_space;
708 unsigned bytes = 0;
709 unsigned finished = 0;
710
711 /* received number bytes */
712 bytes = readl(&ep->regs->sts);
713 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
714
715 buf_space = req->req.length - req->req.actual;
716 buf = req->req.buf + req->req.actual;
717 if (bytes > buf_space) {
718 if ((buf_space % ep->ep.maxpacket) != 0) {
719 DBG(ep->dev,
720 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
721 ep->ep.name, bytes, buf_space);
722 req->req.status = -EOVERFLOW;
723 }
724 bytes = buf_space;
725 }
726 req->req.actual += bytes;
727
728 /* last packet ? */
729 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
730 || ((req->req.actual == req->req.length) && !req->req.zero))
731 finished = 1;
732
733 /* read rx fifo bytes */
734 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
735 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
736
737 return finished;
738}
739
740/* create/re-init a DMA descriptor or a DMA descriptor chain */
741static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
742{
743 int retval = 0;
744 u32 tmp;
745
746 VDBG(ep->dev, "prep_dma\n");
747 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
748 ep->num, req->td_data);
749
750 /* set buffer pointer */
751 req->td_data->bufptr = req->req.dma;
752
753 /* set last bit */
754 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
755
756 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
757 if (use_dma_ppb) {
758
759 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
760 if (retval != 0) {
761 if (retval == -ENOMEM)
762 DBG(ep->dev, "Out of DMA memory\n");
763 return retval;
764 }
765 if (ep->in) {
766 if (req->req.length == ep->ep.maxpacket) {
767 /* write tx bytes */
768 req->td_data->status =
769 AMD_ADDBITS(req->td_data->status,
770 ep->ep.maxpacket,
771 UDC_DMA_IN_STS_TXBYTES);
772
773 }
774 }
775
776 }
777
778 if (ep->in) {
779 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
780 "maxpacket=%d ep%d\n",
781 use_dma_ppb, req->req.length,
782 ep->ep.maxpacket, ep->num);
783 /*
784 * if bytes < max packet then tx bytes must
785 * be written in packet per buffer mode
786 */
787 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
788 || ep->num == UDC_EP0OUT_IX
789 || ep->num == UDC_EP0IN_IX) {
790 /* write tx bytes */
791 req->td_data->status =
792 AMD_ADDBITS(req->td_data->status,
793 req->req.length,
794 UDC_DMA_IN_STS_TXBYTES);
795 /* reset frame num */
796 req->td_data->status =
797 AMD_ADDBITS(req->td_data->status,
798 0,
799 UDC_DMA_IN_STS_FRAMENUM);
800 }
801 /* set HOST BUSY */
802 req->td_data->status =
803 AMD_ADDBITS(req->td_data->status,
804 UDC_DMA_STP_STS_BS_HOST_BUSY,
805 UDC_DMA_STP_STS_BS);
806 } else {
807 VDBG(ep->dev, "OUT set host ready\n");
808 /* set HOST READY */
809 req->td_data->status =
810 AMD_ADDBITS(req->td_data->status,
811 UDC_DMA_STP_STS_BS_HOST_READY,
812 UDC_DMA_STP_STS_BS);
813
814
815 /* clear NAK by writing CNAK */
816 if (ep->naking) {
817 tmp = readl(&ep->regs->ctl);
818 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
819 writel(tmp, &ep->regs->ctl);
820 ep->naking = 0;
821 UDC_QUEUE_CNAK(ep, ep->num);
822 }
823
824 }
825
826 return retval;
827}
828
829/* Completes request packet ... caller MUST hold lock */
830static void
831complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
832__releases(ep->dev->lock)
833__acquires(ep->dev->lock)
834{
835 struct udc *dev;
836 unsigned halted;
837
838 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
839
840 dev = ep->dev;
841 /* unmap DMA */
842 if (req->dma_mapping) {
843 if (ep->in)
844 pci_unmap_single(dev->pdev,
845 req->req.dma,
846 req->req.length,
847 PCI_DMA_TODEVICE);
848 else
849 pci_unmap_single(dev->pdev,
850 req->req.dma,
851 req->req.length,
852 PCI_DMA_FROMDEVICE);
853 req->dma_mapping = 0;
854 req->req.dma = DMA_DONT_USE;
855 }
856
857 halted = ep->halted;
858 ep->halted = 1;
859
860 /* set new status if pending */
861 if (req->req.status == -EINPROGRESS)
862 req->req.status = sts;
863
864 /* remove from ep queue */
865 list_del_init(&req->queue);
866
867 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
868 &req->req, req->req.length, ep->ep.name, sts);
869
870 spin_unlock(&dev->lock);
871 req->req.complete(&ep->ep, &req->req);
872 spin_lock(&dev->lock);
873 ep->halted = halted;
874}
875
876/* frees pci pool descriptors of a DMA chain */
877static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
878{
879
880 int ret_val = 0;
881 struct udc_data_dma *td;
882 struct udc_data_dma *td_last = NULL;
883 unsigned int i;
884
885 DBG(dev, "free chain req = %p\n", req);
886
887 /* do not free first desc., will be done by free for request */
888 td_last = req->td_data;
889 td = phys_to_virt(td_last->next);
890
891 for (i = 1; i < req->chain_len; i++) {
892
893 pci_pool_free(dev->data_requests, td,
894 (dma_addr_t) td_last->next);
895 td_last = td;
896 td = phys_to_virt(td_last->next);
897 }
898
899 return ret_val;
900}
901
902/* Iterates to the end of a DMA chain and returns last descriptor */
903static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
904{
905 struct udc_data_dma *td;
906
907 td = req->td_data;
908 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
909 td = phys_to_virt(td->next);
910 }
911
912 return td;
913
914}
915
916/* Iterates to the end of a DMA chain and counts bytes received */
917static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
918{
919 struct udc_data_dma *td;
920 u32 count;
921
922 td = req->td_data;
923 /* received number bytes */
924 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
925
926 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
927 td = phys_to_virt(td->next);
928 /* received number bytes */
929 if (td) {
930 count += AMD_GETBITS(td->status,
931 UDC_DMA_OUT_STS_RXBYTES);
932 }
933 }
934
935 return count;
936
937}
938
939/* Creates or re-inits a DMA chain */
940static int udc_create_dma_chain(
941 struct udc_ep *ep,
942 struct udc_request *req,
943 unsigned long buf_len, gfp_t gfp_flags
944)
945{
946 unsigned long bytes = req->req.length;
947 unsigned int i;
948 dma_addr_t dma_addr;
949 struct udc_data_dma *td = NULL;
950 struct udc_data_dma *last = NULL;
951 unsigned long txbytes;
952 unsigned create_new_chain = 0;
953 unsigned len;
954
955 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
956 bytes, buf_len);
957 dma_addr = DMA_DONT_USE;
958
959 /* unset L bit in first desc for OUT */
960 if (!ep->in) {
961 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
962 }
963
964 /* alloc only new desc's if not already available */
965 len = req->req.length / ep->ep.maxpacket;
966 if (req->req.length % ep->ep.maxpacket) {
967 len++;
968 }
969
970 if (len > req->chain_len) {
971 /* shorter chain already allocated before */
972 if (req->chain_len > 1) {
973 udc_free_dma_chain(ep->dev, req);
974 }
975 req->chain_len = len;
976 create_new_chain = 1;
977 }
978
979 td = req->td_data;
980 /* gen. required number of descriptors and buffers */
981 for (i = buf_len; i < bytes; i += buf_len) {
982 /* create or determine next desc. */
983 if (create_new_chain) {
984
985 td = pci_pool_alloc(ep->dev->data_requests,
986 gfp_flags, &dma_addr);
987 if (!td)
988 return -ENOMEM;
989
990 td->status = 0;
991 } else if (i == buf_len) {
992 /* first td */
993 td = (struct udc_data_dma *) phys_to_virt(
994 req->td_data->next);
995 td->status = 0;
996 } else {
997 td = (struct udc_data_dma *) phys_to_virt(last->next);
998 td->status = 0;
999 }
1000
1001
1002 if (td)
1003 td->bufptr = req->req.dma + i; /* assign buffer */
1004 else
1005 break;
1006
1007 /* short packet ? */
1008 if ((bytes - i) >= buf_len) {
1009 txbytes = buf_len;
1010 } else {
1011 /* short packet */
1012 txbytes = bytes - i;
1013 }
1014
1015 /* link td and assign tx bytes */
1016 if (i == buf_len) {
1017 if (create_new_chain) {
1018 req->td_data->next = dma_addr;
1019 } else {
1020 /* req->td_data->next = virt_to_phys(td); */
1021 }
1022 /* write tx bytes */
1023 if (ep->in) {
1024 /* first desc */
1025 req->td_data->status =
1026 AMD_ADDBITS(req->td_data->status,
1027 ep->ep.maxpacket,
1028 UDC_DMA_IN_STS_TXBYTES);
1029 /* second desc */
1030 td->status = AMD_ADDBITS(td->status,
1031 txbytes,
1032 UDC_DMA_IN_STS_TXBYTES);
1033 }
1034 } else {
1035 if (create_new_chain) {
1036 last->next = dma_addr;
1037 } else {
1038 /* last->next = virt_to_phys(td); */
1039 }
1040 if (ep->in) {
1041 /* write tx bytes */
1042 td->status = AMD_ADDBITS(td->status,
1043 txbytes,
1044 UDC_DMA_IN_STS_TXBYTES);
1045 }
1046 }
1047 last = td;
1048 }
1049 /* set last bit */
1050 if (td) {
1051 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1052 /* last desc. points to itself */
1053 req->td_data_last = td;
1054 }
1055
1056 return 0;
1057}
1058
1059/* Enabling RX DMA */
1060static void udc_set_rde(struct udc *dev)
1061{
1062 u32 tmp;
1063
1064 VDBG(dev, "udc_set_rde()\n");
1065 /* stop RDE timer */
1066 if (timer_pending(&udc_timer)) {
1067 set_rde = 0;
1068 mod_timer(&udc_timer, jiffies - 1);
1069 }
1070 /* set RDE */
1071 tmp = readl(&dev->regs->ctl);
1072 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1073 writel(tmp, &dev->regs->ctl);
1074}
1075
1076/* Queues a request packet, called by gadget driver */
1077static int
1078udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1079{
1080 int retval = 0;
1081 u8 open_rxfifo = 0;
1082 unsigned long iflags;
1083 struct udc_ep *ep;
1084 struct udc_request *req;
1085 struct udc *dev;
1086 u32 tmp;
1087
1088 /* check the inputs */
1089 req = container_of(usbreq, struct udc_request, req);
1090
1091 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1092 || !list_empty(&req->queue))
1093 return -EINVAL;
1094
1095 ep = container_of(usbep, struct udc_ep, ep);
1096 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1097 return -EINVAL;
1098
1099 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1100 dev = ep->dev;
1101
1102 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1103 return -ESHUTDOWN;
1104
1105 /* map dma (usually done before) */
1106 if (ep->dma && usbreq->length != 0
1107 && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
1108 VDBG(dev, "DMA map req %p\n", req);
1109 if (ep->in)
1110 usbreq->dma = pci_map_single(dev->pdev,
1111 usbreq->buf,
1112 usbreq->length,
1113 PCI_DMA_TODEVICE);
1114 else
1115 usbreq->dma = pci_map_single(dev->pdev,
1116 usbreq->buf,
1117 usbreq->length,
1118 PCI_DMA_FROMDEVICE);
1119 req->dma_mapping = 1;
1120 }
1121
1122 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1123 usbep->name, usbreq, usbreq->length,
1124 req->td_data, usbreq->buf);
1125
1126 spin_lock_irqsave(&dev->lock, iflags);
1127 usbreq->actual = 0;
1128 usbreq->status = -EINPROGRESS;
1129 req->dma_done = 0;
1130
1131 /* on empty queue just do first transfer */
1132 if (list_empty(&ep->queue)) {
1133 /* zlp */
1134 if (usbreq->length == 0) {
1135 /* IN zlp's are handled by hardware */
1136 complete_req(ep, req, 0);
1137 VDBG(dev, "%s: zlp\n", ep->ep.name);
1138 /*
1139 * if set_config or set_intf is waiting for ack by zlp
1140 * then set CSR_DONE
1141 */
1142 if (dev->set_cfg_not_acked) {
1143 tmp = readl(&dev->regs->ctl);
1144 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1145 writel(tmp, &dev->regs->ctl);
1146 dev->set_cfg_not_acked = 0;
1147 }
1148 /* setup command is ACK'ed now by zlp */
1149 if (dev->waiting_zlp_ack_ep0in) {
1150 /* clear NAK by writing CNAK in EP0_IN */
1151 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1152 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1153 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1154 dev->ep[UDC_EP0IN_IX].naking = 0;
1155 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1156 UDC_EP0IN_IX);
1157 dev->waiting_zlp_ack_ep0in = 0;
1158 }
1159 goto finished;
1160 }
1161 if (ep->dma) {
1162 retval = prep_dma(ep, req, gfp);
1163 if (retval != 0)
1164 goto finished;
1165 /* write desc pointer to enable DMA */
1166 if (ep->in) {
1167 /* set HOST READY */
1168 req->td_data->status =
1169 AMD_ADDBITS(req->td_data->status,
1170 UDC_DMA_IN_STS_BS_HOST_READY,
1171 UDC_DMA_IN_STS_BS);
1172 }
1173
1174 /* disabled rx dma while descriptor update */
1175 if (!ep->in) {
1176 /* stop RDE timer */
1177 if (timer_pending(&udc_timer)) {
1178 set_rde = 0;
1179 mod_timer(&udc_timer, jiffies - 1);
1180 }
1181 /* clear RDE */
1182 tmp = readl(&dev->regs->ctl);
1183 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1184 writel(tmp, &dev->regs->ctl);
1185 open_rxfifo = 1;
1186
1187 /*
1188 * if BNA occurred then let BNA dummy desc.
1189 * point to current desc.
1190 */
1191 if (ep->bna_occurred) {
1192 VDBG(dev, "copy to BNA dummy desc.\n");
1193 memcpy(ep->bna_dummy_req->td_data,
1194 req->td_data,
1195 sizeof(struct udc_data_dma));
1196 }
1197 }
1198 /* write desc pointer */
1199 writel(req->td_phys, &ep->regs->desptr);
1200
1201 /* clear NAK by writing CNAK */
1202 if (ep->naking) {
1203 tmp = readl(&ep->regs->ctl);
1204 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1205 writel(tmp, &ep->regs->ctl);
1206 ep->naking = 0;
1207 UDC_QUEUE_CNAK(ep, ep->num);
1208 }
1209
1210 if (ep->in) {
1211 /* enable ep irq */
1212 tmp = readl(&dev->regs->ep_irqmsk);
1213 tmp &= AMD_UNMASK_BIT(ep->num);
1214 writel(tmp, &dev->regs->ep_irqmsk);
1215 }
1216 }
1217
1218 } else if (ep->dma) {
1219
1220 /*
1221 * prep_dma not used for OUT ep's, this is not possible
1222 * for PPB modes, because of chain creation reasons
1223 */
1224 if (ep->in) {
1225 retval = prep_dma(ep, req, gfp);
1226 if (retval != 0)
1227 goto finished;
1228 }
1229 }
1230 VDBG(dev, "list_add\n");
1231 /* add request to ep queue */
1232 if (req) {
1233
1234 list_add_tail(&req->queue, &ep->queue);
1235
1236 /* open rxfifo if out data queued */
1237 if (open_rxfifo) {
1238 /* enable DMA */
1239 req->dma_going = 1;
1240 udc_set_rde(dev);
1241 if (ep->num != UDC_EP0OUT_IX)
1242 dev->data_ep_queued = 1;
1243 }
1244 /* stop OUT naking */
1245 if (!ep->in) {
1246 if (!use_dma && udc_rxfifo_pending) {
1247 DBG(dev, "udc_queue(): pending bytes in"
1248 "rxfifo after nyet\n");
1249 /*
1250 * read pending bytes afer nyet:
1251 * referring to isr
1252 */
1253 if (udc_rxfifo_read(ep, req)) {
1254 /* finish */
1255 complete_req(ep, req, 0);
1256 }
1257 udc_rxfifo_pending = 0;
1258
1259 }
1260 }
1261 }
1262
1263finished:
1264 spin_unlock_irqrestore(&dev->lock, iflags);
1265 return retval;
1266}
1267
1268/* Empty request queue of an endpoint; caller holds spinlock */
1269static void empty_req_queue(struct udc_ep *ep)
1270{
1271 struct udc_request *req;
1272
1273 ep->halted = 1;
1274 while (!list_empty(&ep->queue)) {
1275 req = list_entry(ep->queue.next,
1276 struct udc_request,
1277 queue);
1278 complete_req(ep, req, -ESHUTDOWN);
1279 }
1280}
1281
1282/* Dequeues a request packet, called by gadget driver */
1283static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1284{
1285 struct udc_ep *ep;
1286 struct udc_request *req;
1287 unsigned halted;
1288 unsigned long iflags;
1289
1290 ep = container_of(usbep, struct udc_ep, ep);
1291 if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
1292 && ep->num != UDC_EP0OUT_IX)))
1293 return -EINVAL;
1294
1295 req = container_of(usbreq, struct udc_request, req);
1296
1297 spin_lock_irqsave(&ep->dev->lock, iflags);
1298 halted = ep->halted;
1299 ep->halted = 1;
1300 /* request in processing or next one */
1301 if (ep->queue.next == &req->queue) {
1302 if (ep->dma && req->dma_going) {
1303 if (ep->in)
1304 ep->cancel_transfer = 1;
1305 else {
1306 u32 tmp;
1307 u32 dma_sts;
1308 /* stop potential receive DMA */
1309 tmp = readl(&udc->regs->ctl);
1310 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1311 &udc->regs->ctl);
1312 /*
1313 * Cancel transfer later in ISR
1314 * if descriptor was touched.
1315 */
1316 dma_sts = AMD_GETBITS(req->td_data->status,
1317 UDC_DMA_OUT_STS_BS);
1318 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1319 ep->cancel_transfer = 1;
1320 else {
1321 udc_init_bna_dummy(ep->req);
1322 writel(ep->bna_dummy_req->td_phys,
1323 &ep->regs->desptr);
1324 }
1325 writel(tmp, &udc->regs->ctl);
1326 }
1327 }
1328 }
1329 complete_req(ep, req, -ECONNRESET);
1330 ep->halted = halted;
1331
1332 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1333 return 0;
1334}
1335
1336/* Halt or clear halt of endpoint */
1337static int
1338udc_set_halt(struct usb_ep *usbep, int halt)
1339{
1340 struct udc_ep *ep;
1341 u32 tmp;
1342 unsigned long iflags;
1343 int retval = 0;
1344
1345 if (!usbep)
1346 return -EINVAL;
1347
1348 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1349
1350 ep = container_of(usbep, struct udc_ep, ep);
1351 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1352 return -EINVAL;
1353 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1354 return -ESHUTDOWN;
1355
1356 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1357 /* halt or clear halt */
1358 if (halt) {
1359 if (ep->num == 0)
1360 ep->dev->stall_ep0in = 1;
1361 else {
1362 /*
1363 * set STALL
1364 * rxfifo empty not taken into acount
1365 */
1366 tmp = readl(&ep->regs->ctl);
1367 tmp |= AMD_BIT(UDC_EPCTL_S);
1368 writel(tmp, &ep->regs->ctl);
1369 ep->halted = 1;
1370
1371 /* setup poll timer */
1372 if (!timer_pending(&udc_pollstall_timer)) {
1373 udc_pollstall_timer.expires = jiffies +
1374 HZ * UDC_POLLSTALL_TIMER_USECONDS
1375 / (1000 * 1000);
1376 if (!stop_pollstall_timer) {
1377 DBG(ep->dev, "start polltimer\n");
1378 add_timer(&udc_pollstall_timer);
1379 }
1380 }
1381 }
1382 } else {
1383 /* ep is halted by set_halt() before */
1384 if (ep->halted) {
1385 tmp = readl(&ep->regs->ctl);
1386 /* clear stall bit */
1387 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1388 /* clear NAK by writing CNAK */
1389 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1390 writel(tmp, &ep->regs->ctl);
1391 ep->halted = 0;
1392 UDC_QUEUE_CNAK(ep, ep->num);
1393 }
1394 }
1395 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1396 return retval;
1397}
1398
1399/* gadget interface */
1400static const struct usb_ep_ops udc_ep_ops = {
1401 .enable = udc_ep_enable,
1402 .disable = udc_ep_disable,
1403
1404 .alloc_request = udc_alloc_request,
1405 .free_request = udc_free_request,
1406
1407 .queue = udc_queue,
1408 .dequeue = udc_dequeue,
1409
1410 .set_halt = udc_set_halt,
1411 /* fifo ops not implemented */
1412};
1413
1414/*-------------------------------------------------------------------------*/
1415
1416/* Get frame counter (not implemented) */
1417static int udc_get_frame(struct usb_gadget *gadget)
1418{
1419 return -EOPNOTSUPP;
1420}
1421
1422/* Remote wakeup gadget interface */
1423static int udc_wakeup(struct usb_gadget *gadget)
1424{
1425 struct udc *dev;
1426
1427 if (!gadget)
1428 return -EINVAL;
1429 dev = container_of(gadget, struct udc, gadget);
1430 udc_remote_wakeup(dev);
1431
1432 return 0;
1433}
1434
1435/* gadget operations */
1436static const struct usb_gadget_ops udc_ops = {
1437 .wakeup = udc_wakeup,
1438 .get_frame = udc_get_frame,
1439};
1440
1441/* Setups endpoint parameters, adds endpoints to linked list */
1442static void make_ep_lists(struct udc *dev)
1443{
1444 /* make gadget ep lists */
1445 INIT_LIST_HEAD(&dev->gadget.ep_list);
1446 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1447 &dev->gadget.ep_list);
1448 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1449 &dev->gadget.ep_list);
1450 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1451 &dev->gadget.ep_list);
1452
1453 /* fifo config */
1454 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1455 if (dev->gadget.speed == USB_SPEED_FULL)
1456 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1457 else if (dev->gadget.speed == USB_SPEED_HIGH)
1458 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1459 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1460}
1461
1462/* init registers at driver load time */
1463static int startup_registers(struct udc *dev)
1464{
1465 u32 tmp;
1466
1467 /* init controller by soft reset */
1468 udc_soft_reset(dev);
1469
1470 /* mask not needed interrupts */
1471 udc_mask_unused_interrupts(dev);
1472
1473 /* put into initial config */
1474 udc_basic_init(dev);
1475 /* link up all endpoints */
1476 udc_setup_endpoints(dev);
1477
1478 /* program speed */
1479 tmp = readl(&dev->regs->cfg);
1480 if (use_fullspeed) {
1481 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1482 } else {
1483 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1484 }
1485 writel(tmp, &dev->regs->cfg);
1486
1487 return 0;
1488}
1489
1490/* Inits UDC context */
1491static void udc_basic_init(struct udc *dev)
1492{
1493 u32 tmp;
1494
1495 DBG(dev, "udc_basic_init()\n");
1496
1497 dev->gadget.speed = USB_SPEED_UNKNOWN;
1498
1499 /* stop RDE timer */
1500 if (timer_pending(&udc_timer)) {
1501 set_rde = 0;
1502 mod_timer(&udc_timer, jiffies - 1);
1503 }
1504 /* stop poll stall timer */
1505 if (timer_pending(&udc_pollstall_timer)) {
1506 mod_timer(&udc_pollstall_timer, jiffies - 1);
1507 }
1508 /* disable DMA */
1509 tmp = readl(&dev->regs->ctl);
1510 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1511 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1512 writel(tmp, &dev->regs->ctl);
1513
1514 /* enable dynamic CSR programming */
1515 tmp = readl(&dev->regs->cfg);
1516 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1517 /* set self powered */
1518 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1519 /* set remote wakeupable */
1520 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1521 writel(tmp, &dev->regs->cfg);
1522
1523 make_ep_lists(dev);
1524
1525 dev->data_ep_enabled = 0;
1526 dev->data_ep_queued = 0;
1527}
1528
1529/* Sets initial endpoint parameters */
1530static void udc_setup_endpoints(struct udc *dev)
1531{
1532 struct udc_ep *ep;
1533 u32 tmp;
1534 u32 reg;
1535
1536 DBG(dev, "udc_setup_endpoints()\n");
1537
1538 /* read enum speed */
1539 tmp = readl(&dev->regs->sts);
1540 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1541 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
1542 dev->gadget.speed = USB_SPEED_HIGH;
1543 } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
1544 dev->gadget.speed = USB_SPEED_FULL;
1545 }
1546
1547 /* set basic ep parameters */
1548 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1549 ep = &dev->ep[tmp];
1550 ep->dev = dev;
1551 ep->ep.name = ep_string[tmp];
1552 ep->num = tmp;
1553 /* txfifo size is calculated at enable time */
1554 ep->txfifo = dev->txfifo;
1555
1556 /* fifo size */
1557 if (tmp < UDC_EPIN_NUM) {
1558 ep->fifo_depth = UDC_TXFIFO_SIZE;
1559 ep->in = 1;
1560 } else {
1561 ep->fifo_depth = UDC_RXFIFO_SIZE;
1562 ep->in = 0;
1563
1564 }
1565 ep->regs = &dev->ep_regs[tmp];
1566 /*
1567 * ep will be reset only if ep was not enabled before to avoid
1568 * disabling ep interrupts when ENUM interrupt occurs but ep is
1569 * not enabled by gadget driver
1570 */
1571 if (!ep->desc) {
1572 ep_init(dev->regs, ep);
1573 }
1574
1575 if (use_dma) {
1576 /*
1577 * ep->dma is not really used, just to indicate that
1578 * DMA is active: remove this
1579 * dma regs = dev control regs
1580 */
1581 ep->dma = &dev->regs->ctl;
1582
1583 /* nak OUT endpoints until enable - not for ep0 */
1584 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1585 && tmp > UDC_EPIN_NUM) {
1586 /* set NAK */
1587 reg = readl(&dev->ep[tmp].regs->ctl);
1588 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1589 writel(reg, &dev->ep[tmp].regs->ctl);
1590 dev->ep[tmp].naking = 1;
1591
1592 }
1593 }
1594 }
1595 /* EP0 max packet */
1596 if (dev->gadget.speed == USB_SPEED_FULL) {
1597 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
1598 dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
1599 UDC_FS_EP0OUT_MAX_PKT_SIZE;
1600 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1601 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
1602 dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
1603 }
1604
1605 /*
1606 * with suspend bug workaround, ep0 params for gadget driver
1607 * are set at gadget driver bind() call
1608 */
1609 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1610 dev->ep[UDC_EP0IN_IX].halted = 0;
1611 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1612
1613 /* init cfg/alt/int */
1614 dev->cur_config = 0;
1615 dev->cur_intf = 0;
1616 dev->cur_alt = 0;
1617}
1618
1619/* Bringup after Connect event, initial bringup to be ready for ep0 events */
1620static void usb_connect(struct udc *dev)
1621{
1622
1623 dev_info(&dev->pdev->dev, "USB Connect\n");
1624
1625 dev->connected = 1;
1626
1627 /* put into initial config */
1628 udc_basic_init(dev);
1629
1630 /* enable device setup interrupts */
1631 udc_enable_dev_setup_interrupts(dev);
1632}
1633
1634/*
1635 * Calls gadget with disconnect event and resets the UDC and makes
1636 * initial bringup to be ready for ep0 events
1637 */
1638static void usb_disconnect(struct udc *dev)
1639{
1640
1641 dev_info(&dev->pdev->dev, "USB Disconnect\n");
1642
1643 dev->connected = 0;
1644
1645 /* mask interrupts */
1646 udc_mask_unused_interrupts(dev);
1647
1648 /* REVISIT there doesn't seem to be a point to having this
1649 * talk to a tasklet ... do it directly, we already hold
1650 * the spinlock needed to process the disconnect.
1651 */
1652
1653 tasklet_schedule(&disconnect_tasklet);
1654}
1655
1656/* Tasklet for disconnect to be outside of interrupt context */
1657static void udc_tasklet_disconnect(unsigned long par)
1658{
1659 struct udc *dev = (struct udc *)(*((struct udc **) par));
1660 u32 tmp;
1661
1662 DBG(dev, "Tasklet disconnect\n");
1663 spin_lock_irq(&dev->lock);
1664
1665 if (dev->driver) {
1666 spin_unlock(&dev->lock);
1667 dev->driver->disconnect(&dev->gadget);
1668 spin_lock(&dev->lock);
1669
1670 /* empty queues */
1671 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1672 empty_req_queue(&dev->ep[tmp]);
1673 }
1674
1675 }
1676
1677 /* disable ep0 */
1678 ep_init(dev->regs,
1679 &dev->ep[UDC_EP0IN_IX]);
1680
1681
1682 if (!soft_reset_occured) {
1683 /* init controller by soft reset */
1684 udc_soft_reset(dev);
1685 soft_reset_occured++;
1686 }
1687
1688 /* re-enable dev interrupts */
1689 udc_enable_dev_setup_interrupts(dev);
1690 /* back to full speed ? */
1691 if (use_fullspeed) {
1692 tmp = readl(&dev->regs->cfg);
1693 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1694 writel(tmp, &dev->regs->cfg);
1695 }
1696
1697 spin_unlock_irq(&dev->lock);
1698}
1699
1700/* Reset the UDC core */
1701static void udc_soft_reset(struct udc *dev)
1702{
1703 unsigned long flags;
1704
1705 DBG(dev, "Soft reset\n");
1706 /*
1707 * reset possible waiting interrupts, because int.
1708 * status is lost after soft reset,
1709 * ep int. status reset
1710 */
1711 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1712 /* device int. status reset */
1713 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1714
1715 spin_lock_irqsave(&udc_irq_spinlock, flags);
1716 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1717 readl(&dev->regs->cfg);
1718 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1719
1720}
1721
1722/* RDE timer callback to set RDE bit */
1723static void udc_timer_function(unsigned long v)
1724{
1725 u32 tmp;
1726
1727 spin_lock_irq(&udc_irq_spinlock);
1728
1729 if (set_rde > 0) {
1730 /*
1731 * open the fifo if fifo was filled on last timer call
1732 * conditionally
1733 */
1734 if (set_rde > 1) {
1735 /* set RDE to receive setup data */
1736 tmp = readl(&udc->regs->ctl);
1737 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1738 writel(tmp, &udc->regs->ctl);
1739 set_rde = -1;
1740 } else if (readl(&udc->regs->sts)
1741 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1742 /*
1743 * if fifo empty setup polling, do not just
1744 * open the fifo
1745 */
1746 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1747 if (!stop_timer) {
1748 add_timer(&udc_timer);
1749 }
1750 } else {
1751 /*
1752 * fifo contains data now, setup timer for opening
1753 * the fifo when timer expires to be able to receive
1754 * setup packets, when data packets gets queued by
1755 * gadget layer then timer will forced to expire with
1756 * set_rde=0 (RDE is set in udc_queue())
1757 */
1758 set_rde++;
1759 /* debug: lhadmot_timer_start = 221070 */
1760 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1761 if (!stop_timer) {
1762 add_timer(&udc_timer);
1763 }
1764 }
1765
1766 } else
1767 set_rde = -1; /* RDE was set by udc_queue() */
1768 spin_unlock_irq(&udc_irq_spinlock);
1769 if (stop_timer)
1770 complete(&on_exit);
1771
1772}
1773
1774/* Handle halt state, used in stall poll timer */
1775static void udc_handle_halt_state(struct udc_ep *ep)
1776{
1777 u32 tmp;
1778 /* set stall as long not halted */
1779 if (ep->halted == 1) {
1780 tmp = readl(&ep->regs->ctl);
1781 /* STALL cleared ? */
1782 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1783 /*
1784 * FIXME: MSC spec requires that stall remains
1785 * even on receivng of CLEAR_FEATURE HALT. So
1786 * we would set STALL again here to be compliant.
1787 * But with current mass storage drivers this does
1788 * not work (would produce endless host retries).
1789 * So we clear halt on CLEAR_FEATURE.
1790 *
1791 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1792 tmp |= AMD_BIT(UDC_EPCTL_S);
1793 writel(tmp, &ep->regs->ctl);*/
1794
1795 /* clear NAK by writing CNAK */
1796 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1797 writel(tmp, &ep->regs->ctl);
1798 ep->halted = 0;
1799 UDC_QUEUE_CNAK(ep, ep->num);
1800 }
1801 }
1802}
1803
1804/* Stall timer callback to poll S bit and set it again after */
1805static void udc_pollstall_timer_function(unsigned long v)
1806{
1807 struct udc_ep *ep;
1808 int halted = 0;
1809
1810 spin_lock_irq(&udc_stall_spinlock);
1811 /*
1812 * only one IN and OUT endpoints are handled
1813 * IN poll stall
1814 */
1815 ep = &udc->ep[UDC_EPIN_IX];
1816 udc_handle_halt_state(ep);
1817 if (ep->halted)
1818 halted = 1;
1819 /* OUT poll stall */
1820 ep = &udc->ep[UDC_EPOUT_IX];
1821 udc_handle_halt_state(ep);
1822 if (ep->halted)
1823 halted = 1;
1824
1825 /* setup timer again when still halted */
1826 if (!stop_pollstall_timer && halted) {
1827 udc_pollstall_timer.expires = jiffies +
1828 HZ * UDC_POLLSTALL_TIMER_USECONDS
1829 / (1000 * 1000);
1830 add_timer(&udc_pollstall_timer);
1831 }
1832 spin_unlock_irq(&udc_stall_spinlock);
1833
1834 if (stop_pollstall_timer)
1835 complete(&on_pollstall_exit);
1836}
1837
1838/* Inits endpoint 0 so that SETUP packets are processed */
1839static void activate_control_endpoints(struct udc *dev)
1840{
1841 u32 tmp;
1842
1843 DBG(dev, "activate_control_endpoints\n");
1844
1845 /* flush fifo */
1846 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1847 tmp |= AMD_BIT(UDC_EPCTL_F);
1848 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1849
1850 /* set ep0 directions */
1851 dev->ep[UDC_EP0IN_IX].in = 1;
1852 dev->ep[UDC_EP0OUT_IX].in = 0;
1853
1854 /* set buffer size (tx fifo entries) of EP0_IN */
1855 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1856 if (dev->gadget.speed == USB_SPEED_FULL)
1857 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1858 UDC_EPIN_BUFF_SIZE);
1859 else if (dev->gadget.speed == USB_SPEED_HIGH)
1860 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1861 UDC_EPIN_BUFF_SIZE);
1862 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1863
1864 /* set max packet size of EP0_IN */
1865 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1866 if (dev->gadget.speed == USB_SPEED_FULL)
1867 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1868 UDC_EP_MAX_PKT_SIZE);
1869 else if (dev->gadget.speed == USB_SPEED_HIGH)
1870 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1871 UDC_EP_MAX_PKT_SIZE);
1872 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1873
1874 /* set max packet size of EP0_OUT */
1875 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1876 if (dev->gadget.speed == USB_SPEED_FULL)
1877 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1878 UDC_EP_MAX_PKT_SIZE);
1879 else if (dev->gadget.speed == USB_SPEED_HIGH)
1880 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1881 UDC_EP_MAX_PKT_SIZE);
1882 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1883
1884 /* set max packet size of EP0 in UDC CSR */
1885 tmp = readl(&dev->csr->ne[0]);
1886 if (dev->gadget.speed == USB_SPEED_FULL)
1887 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1888 UDC_CSR_NE_MAX_PKT);
1889 else if (dev->gadget.speed == USB_SPEED_HIGH)
1890 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1891 UDC_CSR_NE_MAX_PKT);
1892 writel(tmp, &dev->csr->ne[0]);
1893
1894 if (use_dma) {
1895 dev->ep[UDC_EP0OUT_IX].td->status |=
1896 AMD_BIT(UDC_DMA_OUT_STS_L);
1897 /* write dma desc address */
1898 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1899 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1900 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1901 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1902 /* stop RDE timer */
1903 if (timer_pending(&udc_timer)) {
1904 set_rde = 0;
1905 mod_timer(&udc_timer, jiffies - 1);
1906 }
1907 /* stop pollstall timer */
1908 if (timer_pending(&udc_pollstall_timer)) {
1909 mod_timer(&udc_pollstall_timer, jiffies - 1);
1910 }
1911 /* enable DMA */
1912 tmp = readl(&dev->regs->ctl);
1913 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1914 | AMD_BIT(UDC_DEVCTL_RDE)
1915 | AMD_BIT(UDC_DEVCTL_TDE);
1916 if (use_dma_bufferfill_mode) {
1917 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1918 } else if (use_dma_ppb_du) {
1919 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1920 }
1921 writel(tmp, &dev->regs->ctl);
1922 }
1923
1924 /* clear NAK by writing CNAK for EP0IN */
1925 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1926 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1927 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1928 dev->ep[UDC_EP0IN_IX].naking = 0;
1929 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1930
1931 /* clear NAK by writing CNAK for EP0OUT */
1932 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1933 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1934 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1935 dev->ep[UDC_EP0OUT_IX].naking = 0;
1936 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1937}
1938
1939/* Make endpoint 0 ready for control traffic */
1940static int setup_ep0(struct udc *dev)
1941{
1942 activate_control_endpoints(dev);
1943 /* enable ep0 interrupts */
1944 udc_enable_ep0_interrupts(dev);
1945 /* enable device setup interrupts */
1946 udc_enable_dev_setup_interrupts(dev);
1947
1948 return 0;
1949}
1950
1951/* Called by gadget driver to register itself */
1952int usb_gadget_register_driver(struct usb_gadget_driver *driver)
1953{
1954 struct udc *dev = udc;
1955 int retval;
1956 u32 tmp;
1957
1958 if (!driver || !driver->bind || !driver->setup
1959 || driver->speed != USB_SPEED_HIGH)
1960 return -EINVAL;
1961 if (!dev)
1962 return -ENODEV;
1963 if (dev->driver)
1964 return -EBUSY;
1965
1966 driver->driver.bus = NULL;
1967 dev->driver = driver;
1968 dev->gadget.dev.driver = &driver->driver;
1969
1970 retval = driver->bind(&dev->gadget);
1971
1972 /* Some gadget drivers use both ep0 directions.
1973 * NOTE: to gadget driver, ep0 is just one endpoint...
1974 */
1975 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1976 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1977
1978 if (retval) {
1979 DBG(dev, "binding to %s returning %d\n",
1980 driver->driver.name, retval);
1981 dev->driver = NULL;
1982 dev->gadget.dev.driver = NULL;
1983 return retval;
1984 }
1985
1986 /* get ready for ep0 traffic */
1987 setup_ep0(dev);
1988
1989 /* clear SD */
1990 tmp = readl(&dev->regs->ctl);
1991 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1992 writel(tmp, &dev->regs->ctl);
1993
1994 usb_connect(dev);
1995
1996 return 0;
1997}
1998EXPORT_SYMBOL(usb_gadget_register_driver);
1999
2000/* shutdown requests and disconnect from gadget */
2001static void
2002shutdown(struct udc *dev, struct usb_gadget_driver *driver)
2003__releases(dev->lock)
2004__acquires(dev->lock)
2005{
2006 int tmp;
2007
2008 /* empty queues and init hardware */
2009 udc_basic_init(dev);
2010 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
2011 empty_req_queue(&dev->ep[tmp]);
2012 }
2013
2014 if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
2015 spin_unlock(&dev->lock);
2016 driver->disconnect(&dev->gadget);
2017 spin_lock(&dev->lock);
2018 }
2019 /* init */
2020 udc_setup_endpoints(dev);
2021}
2022
2023/* Called by gadget driver to unregister itself */
2024int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2025{
2026 struct udc *dev = udc;
2027 unsigned long flags;
2028 u32 tmp;
2029
2030 if (!dev)
2031 return -ENODEV;
2032 if (!driver || driver != dev->driver || !driver->unbind)
2033 return -EINVAL;
2034
2035 spin_lock_irqsave(&dev->lock, flags);
2036 udc_mask_unused_interrupts(dev);
2037 shutdown(dev, driver);
2038 spin_unlock_irqrestore(&dev->lock, flags);
2039
2040 driver->unbind(&dev->gadget);
2041 dev->driver = NULL;
2042
2043 /* set SD */
2044 tmp = readl(&dev->regs->ctl);
2045 tmp |= AMD_BIT(UDC_DEVCTL_SD);
2046 writel(tmp, &dev->regs->ctl);
2047
2048
2049 DBG(dev, "%s: unregistered\n", driver->driver.name);
2050
2051 return 0;
2052}
2053EXPORT_SYMBOL(usb_gadget_unregister_driver);
2054
2055
2056/* Clear pending NAK bits */
2057static void udc_process_cnak_queue(struct udc *dev)
2058{
2059 u32 tmp;
2060 u32 reg;
2061
2062 /* check epin's */
2063 DBG(dev, "CNAK pending queue processing\n");
2064 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2065 if (cnak_pending & (1 << tmp)) {
2066 DBG(dev, "CNAK pending for ep%d\n", tmp);
2067 /* clear NAK by writing CNAK */
2068 reg = readl(&dev->ep[tmp].regs->ctl);
2069 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2070 writel(reg, &dev->ep[tmp].regs->ctl);
2071 dev->ep[tmp].naking = 0;
2072 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2073 }
2074 }
2075 /* ... and ep0out */
2076 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2077 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2078 /* clear NAK by writing CNAK */
2079 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2080 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2081 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2082 dev->ep[UDC_EP0OUT_IX].naking = 0;
2083 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2084 dev->ep[UDC_EP0OUT_IX].num);
2085 }
2086}
2087
2088/* Enabling RX DMA after setup packet */
2089static void udc_ep0_set_rde(struct udc *dev)
2090{
2091 if (use_dma) {
2092 /*
2093 * only enable RXDMA when no data endpoint enabled
2094 * or data is queued
2095 */
2096 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2097 udc_set_rde(dev);
2098 } else {
2099 /*
2100 * setup timer for enabling RDE (to not enable
2101 * RXFIFO DMA for data endpoints to early)
2102 */
2103 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2104 udc_timer.expires =
2105 jiffies + HZ/UDC_RDE_TIMER_DIV;
2106 set_rde = 1;
2107 if (!stop_timer) {
2108 add_timer(&udc_timer);
2109 }
2110 }
2111 }
2112 }
2113}
2114
2115
2116/* Interrupt handler for data OUT traffic */
2117static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2118{
2119 irqreturn_t ret_val = IRQ_NONE;
2120 u32 tmp;
2121 struct udc_ep *ep;
2122 struct udc_request *req;
2123 unsigned int count;
2124 struct udc_data_dma *td = NULL;
2125 unsigned dma_done;
2126
2127 VDBG(dev, "ep%d irq\n", ep_ix);
2128 ep = &dev->ep[ep_ix];
2129
2130 tmp = readl(&ep->regs->sts);
2131 if (use_dma) {
2132 /* BNA event ? */
2133 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2134 DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
2135 ep->num, readl(&ep->regs->desptr));
2136 /* clear BNA */
2137 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2138 if (!ep->cancel_transfer)
2139 ep->bna_occurred = 1;
2140 else
2141 ep->cancel_transfer = 0;
2142 ret_val = IRQ_HANDLED;
2143 goto finished;
2144 }
2145 }
2146 /* HE event ? */
2147 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2148 dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
2149
2150 /* clear HE */
2151 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2152 ret_val = IRQ_HANDLED;
2153 goto finished;
2154 }
2155
2156 if (!list_empty(&ep->queue)) {
2157
2158 /* next request */
2159 req = list_entry(ep->queue.next,
2160 struct udc_request, queue);
2161 } else {
2162 req = NULL;
2163 udc_rxfifo_pending = 1;
2164 }
2165 VDBG(dev, "req = %p\n", req);
2166 /* fifo mode */
2167 if (!use_dma) {
2168
2169 /* read fifo */
2170 if (req && udc_rxfifo_read(ep, req)) {
2171 ret_val = IRQ_HANDLED;
2172
2173 /* finish */
2174 complete_req(ep, req, 0);
2175 /* next request */
2176 if (!list_empty(&ep->queue) && !ep->halted) {
2177 req = list_entry(ep->queue.next,
2178 struct udc_request, queue);
2179 } else
2180 req = NULL;
2181 }
2182
2183 /* DMA */
2184 } else if (!ep->cancel_transfer && req != NULL) {
2185 ret_val = IRQ_HANDLED;
2186
2187 /* check for DMA done */
2188 if (!use_dma_ppb) {
2189 dma_done = AMD_GETBITS(req->td_data->status,
2190 UDC_DMA_OUT_STS_BS);
2191 /* packet per buffer mode - rx bytes */
2192 } else {
2193 /*
2194 * if BNA occurred then recover desc. from
2195 * BNA dummy desc.
2196 */
2197 if (ep->bna_occurred) {
2198 VDBG(dev, "Recover desc. from BNA dummy\n");
2199 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2200 sizeof(struct udc_data_dma));
2201 ep->bna_occurred = 0;
2202 udc_init_bna_dummy(ep->req);
2203 }
2204 td = udc_get_last_dma_desc(req);
2205 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2206 }
2207 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2208 /* buffer fill mode - rx bytes */
2209 if (!use_dma_ppb) {
2210 /* received number bytes */
2211 count = AMD_GETBITS(req->td_data->status,
2212 UDC_DMA_OUT_STS_RXBYTES);
2213 VDBG(dev, "rx bytes=%u\n", count);
2214 /* packet per buffer mode - rx bytes */
2215 } else {
2216 VDBG(dev, "req->td_data=%p\n", req->td_data);
2217 VDBG(dev, "last desc = %p\n", td);
2218 /* received number bytes */
2219 if (use_dma_ppb_du) {
2220 /* every desc. counts bytes */
2221 count = udc_get_ppbdu_rxbytes(req);
2222 } else {
2223 /* last desc. counts bytes */
2224 count = AMD_GETBITS(td->status,
2225 UDC_DMA_OUT_STS_RXBYTES);
2226 if (!count && req->req.length
2227 == UDC_DMA_MAXPACKET) {
2228 /*
2229 * on 64k packets the RXBYTES
2230 * field is zero
2231 */
2232 count = UDC_DMA_MAXPACKET;
2233 }
2234 }
2235 VDBG(dev, "last desc rx bytes=%u\n", count);
2236 }
2237
2238 tmp = req->req.length - req->req.actual;
2239 if (count > tmp) {
2240 if ((tmp % ep->ep.maxpacket) != 0) {
2241 DBG(dev, "%s: rx %db, space=%db\n",
2242 ep->ep.name, count, tmp);
2243 req->req.status = -EOVERFLOW;
2244 }
2245 count = tmp;
2246 }
2247 req->req.actual += count;
2248 req->dma_going = 0;
2249 /* complete request */
2250 complete_req(ep, req, 0);
2251
2252 /* next request */
2253 if (!list_empty(&ep->queue) && !ep->halted) {
2254 req = list_entry(ep->queue.next,
2255 struct udc_request,
2256 queue);
2257 /*
2258 * DMA may be already started by udc_queue()
2259 * called by gadget drivers completion
2260 * routine. This happens when queue
2261 * holds one request only.
2262 */
2263 if (req->dma_going == 0) {
2264 /* next dma */
2265 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2266 goto finished;
2267 /* write desc pointer */
2268 writel(req->td_phys,
2269 &ep->regs->desptr);
2270 req->dma_going = 1;
2271 /* enable DMA */
2272 udc_set_rde(dev);
2273 }
2274 } else {
2275 /*
2276 * implant BNA dummy descriptor to allow
2277 * RXFIFO opening by RDE
2278 */
2279 if (ep->bna_dummy_req) {
2280 /* write desc pointer */
2281 writel(ep->bna_dummy_req->td_phys,
2282 &ep->regs->desptr);
2283 ep->bna_occurred = 0;
2284 }
2285
2286 /*
2287 * schedule timer for setting RDE if queue
2288 * remains empty to allow ep0 packets pass
2289 * through
2290 */
2291 if (set_rde != 0
2292 && !timer_pending(&udc_timer)) {
2293 udc_timer.expires =
2294 jiffies
2295 + HZ*UDC_RDE_TIMER_SECONDS;
2296 set_rde = 1;
2297 if (!stop_timer) {
2298 add_timer(&udc_timer);
2299 }
2300 }
2301 if (ep->num != UDC_EP0OUT_IX)
2302 dev->data_ep_queued = 0;
2303 }
2304
2305 } else {
2306 /*
2307 * RX DMA must be reenabled for each desc in PPBDU mode
2308 * and must be enabled for PPBNDU mode in case of BNA
2309 */
2310 udc_set_rde(dev);
2311 }
2312
2313 } else if (ep->cancel_transfer) {
2314 ret_val = IRQ_HANDLED;
2315 ep->cancel_transfer = 0;
2316 }
2317
2318 /* check pending CNAKS */
2319 if (cnak_pending) {
2320 /* CNAk processing when rxfifo empty only */
2321 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2322 udc_process_cnak_queue(dev);
2323 }
2324 }
2325
2326 /* clear OUT bits in ep status */
2327 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2328finished:
2329 return ret_val;
2330}
2331
2332/* Interrupt handler for data IN traffic */
2333static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2334{
2335 irqreturn_t ret_val = IRQ_NONE;
2336 u32 tmp;
2337 u32 epsts;
2338 struct udc_ep *ep;
2339 struct udc_request *req;
2340 struct udc_data_dma *td;
2341 unsigned dma_done;
2342 unsigned len;
2343
2344 ep = &dev->ep[ep_ix];
2345
2346 epsts = readl(&ep->regs->sts);
2347 if (use_dma) {
2348 /* BNA ? */
2349 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2350 dev_err(&dev->pdev->dev,
2351 "BNA ep%din occured - DESPTR = %08lx \n",
2352 ep->num,
2353 (unsigned long) readl(&ep->regs->desptr));
2354
2355 /* clear BNA */
2356 writel(epsts, &ep->regs->sts);
2357 ret_val = IRQ_HANDLED;
2358 goto finished;
2359 }
2360 }
2361 /* HE event ? */
2362 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2363 dev_err(&dev->pdev->dev,
2364 "HE ep%dn occured - DESPTR = %08lx \n",
2365 ep->num, (unsigned long) readl(&ep->regs->desptr));
2366
2367 /* clear HE */
2368 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2369 ret_val = IRQ_HANDLED;
2370 goto finished;
2371 }
2372
2373 /* DMA completion */
2374 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2375 VDBG(dev, "TDC set- completion\n");
2376 ret_val = IRQ_HANDLED;
2377 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2378 req = list_entry(ep->queue.next,
2379 struct udc_request, queue);
2380 if (req) {
2381 /*
2382 * length bytes transfered
2383 * check dma done of last desc. in PPBDU mode
2384 */
2385 if (use_dma_ppb_du) {
2386 td = udc_get_last_dma_desc(req);
2387 if (td) {
2388 dma_done =
2389 AMD_GETBITS(td->status,
2390 UDC_DMA_IN_STS_BS);
2391 /* don't care DMA done */
2392 req->req.actual =
2393 req->req.length;
2394 }
2395 } else {
2396 /* assume all bytes transferred */
2397 req->req.actual = req->req.length;
2398 }
2399
2400 if (req->req.actual == req->req.length) {
2401 /* complete req */
2402 complete_req(ep, req, 0);
2403 req->dma_going = 0;
2404 /* further request available ? */
2405 if (list_empty(&ep->queue)) {
2406 /* disable interrupt */
2407 tmp = readl(
2408 &dev->regs->ep_irqmsk);
2409 tmp |= AMD_BIT(ep->num);
2410 writel(tmp,
2411 &dev->regs->ep_irqmsk);
2412 }
2413
2414 }
2415 }
2416 }
2417 ep->cancel_transfer = 0;
2418
2419 }
2420 /*
2421 * status reg has IN bit set and TDC not set (if TDC was handled,
2422 * IN must not be handled (UDC defect) ?
2423 */
2424 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2425 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2426 ret_val = IRQ_HANDLED;
2427 if (!list_empty(&ep->queue)) {
2428 /* next request */
2429 req = list_entry(ep->queue.next,
2430 struct udc_request, queue);
2431 /* FIFO mode */
2432 if (!use_dma) {
2433 /* write fifo */
2434 udc_txfifo_write(ep, &req->req);
2435 len = req->req.length - req->req.actual;
2436 if (len > ep->ep.maxpacket)
2437 len = ep->ep.maxpacket;
2438 req->req.actual += len;
2439 if (req->req.actual == req->req.length
2440 || (len != ep->ep.maxpacket)) {
2441 /* complete req */
2442 complete_req(ep, req, 0);
2443 }
2444 /* DMA */
2445 } else if (req && !req->dma_going) {
2446 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2447 req, req->td_data);
2448 if (req->td_data) {
2449
2450 req->dma_going = 1;
2451
2452 /*
2453 * unset L bit of first desc.
2454 * for chain
2455 */
2456 if (use_dma_ppb && req->req.length >
2457 ep->ep.maxpacket) {
2458 req->td_data->status &=
2459 AMD_CLEAR_BIT(
2460 UDC_DMA_IN_STS_L);
2461 }
2462
2463 /* write desc pointer */
2464 writel(req->td_phys, &ep->regs->desptr);
2465
2466 /* set HOST READY */
2467 req->td_data->status =
2468 AMD_ADDBITS(
2469 req->td_data->status,
2470 UDC_DMA_IN_STS_BS_HOST_READY,
2471 UDC_DMA_IN_STS_BS);
2472
2473 /* set poll demand bit */
2474 tmp = readl(&ep->regs->ctl);
2475 tmp |= AMD_BIT(UDC_EPCTL_P);
2476 writel(tmp, &ep->regs->ctl);
2477 }
2478 }
2479
2480 }
2481 }
2482 /* clear status bits */
2483 writel(epsts, &ep->regs->sts);
2484
2485finished:
2486 return ret_val;
2487
2488}
2489
2490/* Interrupt handler for Control OUT traffic */
2491static irqreturn_t udc_control_out_isr(struct udc *dev)
2492__releases(dev->lock)
2493__acquires(dev->lock)
2494{
2495 irqreturn_t ret_val = IRQ_NONE;
2496 u32 tmp;
2497 int setup_supported;
2498 u32 count;
2499 int set = 0;
2500 struct udc_ep *ep;
2501 struct udc_ep *ep_tmp;
2502
2503 ep = &dev->ep[UDC_EP0OUT_IX];
2504
2505 /* clear irq */
2506 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2507
2508 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2509 /* check BNA and clear if set */
2510 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2511 VDBG(dev, "ep0: BNA set\n");
2512 writel(AMD_BIT(UDC_EPSTS_BNA),
2513 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2514 ep->bna_occurred = 1;
2515 ret_val = IRQ_HANDLED;
2516 goto finished;
2517 }
2518
2519 /* type of data: SETUP or DATA 0 bytes */
2520 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2521 VDBG(dev, "data_typ = %x\n", tmp);
2522
2523 /* setup data */
2524 if (tmp == UDC_EPSTS_OUT_SETUP) {
2525 ret_val = IRQ_HANDLED;
2526
2527 ep->dev->stall_ep0in = 0;
2528 dev->waiting_zlp_ack_ep0in = 0;
2529
2530 /* set NAK for EP0_IN */
2531 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2532 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2533 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2534 dev->ep[UDC_EP0IN_IX].naking = 1;
2535 /* get setup data */
2536 if (use_dma) {
2537
2538 /* clear OUT bits in ep status */
2539 writel(UDC_EPSTS_OUT_CLEAR,
2540 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2541
2542 setup_data.data[0] =
2543 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2544 setup_data.data[1] =
2545 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2546 /* set HOST READY */
2547 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2548 UDC_DMA_STP_STS_BS_HOST_READY;
2549 } else {
2550 /* read fifo */
2551 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2552 }
2553
2554 /* determine direction of control data */
2555 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2556 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2557 /* enable RDE */
2558 udc_ep0_set_rde(dev);
2559 set = 0;
2560 } else {
2561 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2562 /*
2563 * implant BNA dummy descriptor to allow RXFIFO opening
2564 * by RDE
2565 */
2566 if (ep->bna_dummy_req) {
2567 /* write desc pointer */
2568 writel(ep->bna_dummy_req->td_phys,
2569 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2570 ep->bna_occurred = 0;
2571 }
2572
2573 set = 1;
2574 dev->ep[UDC_EP0OUT_IX].naking = 1;
2575 /*
2576 * setup timer for enabling RDE (to not enable
2577 * RXFIFO DMA for data to early)
2578 */
2579 set_rde = 1;
2580 if (!timer_pending(&udc_timer)) {
2581 udc_timer.expires = jiffies +
2582 HZ/UDC_RDE_TIMER_DIV;
2583 if (!stop_timer) {
2584 add_timer(&udc_timer);
2585 }
2586 }
2587 }
2588
2589 /*
2590 * mass storage reset must be processed here because
2591 * next packet may be a CLEAR_FEATURE HALT which would not
2592 * clear the stall bit when no STALL handshake was received
2593 * before (autostall can cause this)
2594 */
2595 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2596 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2597 DBG(dev, "MSC Reset\n");
2598 /*
2599 * clear stall bits
2600 * only one IN and OUT endpoints are handled
2601 */
2602 ep_tmp = &udc->ep[UDC_EPIN_IX];
2603 udc_set_halt(&ep_tmp->ep, 0);
2604 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2605 udc_set_halt(&ep_tmp->ep, 0);
2606 }
2607
2608 /* call gadget with setup data received */
2609 spin_unlock(&dev->lock);
2610 setup_supported = dev->driver->setup(&dev->gadget,
2611 &setup_data.request);
2612 spin_lock(&dev->lock);
2613
2614 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2615 /* ep0 in returns data (not zlp) on IN phase */
2616 if (setup_supported >= 0 && setup_supported <
2617 UDC_EP0IN_MAXPACKET) {
2618 /* clear NAK by writing CNAK in EP0_IN */
2619 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2620 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2621 dev->ep[UDC_EP0IN_IX].naking = 0;
2622 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2623
2624 /* if unsupported request then stall */
2625 } else if (setup_supported < 0) {
2626 tmp |= AMD_BIT(UDC_EPCTL_S);
2627 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2628 } else
2629 dev->waiting_zlp_ack_ep0in = 1;
2630
2631
2632 /* clear NAK by writing CNAK in EP0_OUT */
2633 if (!set) {
2634 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2635 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2636 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2637 dev->ep[UDC_EP0OUT_IX].naking = 0;
2638 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2639 }
2640
2641 if (!use_dma) {
2642 /* clear OUT bits in ep status */
2643 writel(UDC_EPSTS_OUT_CLEAR,
2644 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2645 }
2646
2647 /* data packet 0 bytes */
2648 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2649 /* clear OUT bits in ep status */
2650 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2651
2652 /* get setup data: only 0 packet */
2653 if (use_dma) {
2654 /* no req if 0 packet, just reactivate */
2655 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2656 VDBG(dev, "ZLP\n");
2657
2658 /* set HOST READY */
2659 dev->ep[UDC_EP0OUT_IX].td->status =
2660 AMD_ADDBITS(
2661 dev->ep[UDC_EP0OUT_IX].td->status,
2662 UDC_DMA_OUT_STS_BS_HOST_READY,
2663 UDC_DMA_OUT_STS_BS);
2664 /* enable RDE */
2665 udc_ep0_set_rde(dev);
2666 ret_val = IRQ_HANDLED;
2667
2668 } else {
2669 /* control write */
2670 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2671 /* re-program desc. pointer for possible ZLPs */
2672 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2673 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2674 /* enable RDE */
2675 udc_ep0_set_rde(dev);
2676 }
2677 } else {
2678
2679 /* received number bytes */
2680 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2681 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2682 /* out data for fifo mode not working */
2683 count = 0;
2684
2685 /* 0 packet or real data ? */
2686 if (count != 0) {
2687 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2688 } else {
2689 /* dummy read confirm */
2690 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2691 ret_val = IRQ_HANDLED;
2692 }
2693 }
2694 }
2695
2696 /* check pending CNAKS */
2697 if (cnak_pending) {
2698 /* CNAk processing when rxfifo empty only */
2699 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2700 udc_process_cnak_queue(dev);
2701 }
2702 }
2703
2704finished:
2705 return ret_val;
2706}
2707
2708/* Interrupt handler for Control IN traffic */
2709static irqreturn_t udc_control_in_isr(struct udc *dev)
2710{
2711 irqreturn_t ret_val = IRQ_NONE;
2712 u32 tmp;
2713 struct udc_ep *ep;
2714 struct udc_request *req;
2715 unsigned len;
2716
2717 ep = &dev->ep[UDC_EP0IN_IX];
2718
2719 /* clear irq */
2720 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2721
2722 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2723 /* DMA completion */
2724 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2725 VDBG(dev, "isr: TDC clear \n");
2726 ret_val = IRQ_HANDLED;
2727
2728 /* clear TDC bit */
2729 writel(AMD_BIT(UDC_EPSTS_TDC),
2730 &dev->ep[UDC_EP0IN_IX].regs->sts);
2731
2732 /* status reg has IN bit set ? */
2733 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2734 ret_val = IRQ_HANDLED;
2735
2736 if (ep->dma) {
2737 /* clear IN bit */
2738 writel(AMD_BIT(UDC_EPSTS_IN),
2739 &dev->ep[UDC_EP0IN_IX].regs->sts);
2740 }
2741 if (dev->stall_ep0in) {
2742 DBG(dev, "stall ep0in\n");
2743 /* halt ep0in */
2744 tmp = readl(&ep->regs->ctl);
2745 tmp |= AMD_BIT(UDC_EPCTL_S);
2746 writel(tmp, &ep->regs->ctl);
2747 } else {
2748 if (!list_empty(&ep->queue)) {
2749 /* next request */
2750 req = list_entry(ep->queue.next,
2751 struct udc_request, queue);
2752
2753 if (ep->dma) {
2754 /* write desc pointer */
2755 writel(req->td_phys, &ep->regs->desptr);
2756 /* set HOST READY */
2757 req->td_data->status =
2758 AMD_ADDBITS(
2759 req->td_data->status,
2760 UDC_DMA_STP_STS_BS_HOST_READY,
2761 UDC_DMA_STP_STS_BS);
2762
2763 /* set poll demand bit */
2764 tmp =
2765 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2766 tmp |= AMD_BIT(UDC_EPCTL_P);
2767 writel(tmp,
2768 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2769
2770 /* all bytes will be transferred */
2771 req->req.actual = req->req.length;
2772
2773 /* complete req */
2774 complete_req(ep, req, 0);
2775
2776 } else {
2777 /* write fifo */
2778 udc_txfifo_write(ep, &req->req);
2779
2780 /* lengh bytes transfered */
2781 len = req->req.length - req->req.actual;
2782 if (len > ep->ep.maxpacket)
2783 len = ep->ep.maxpacket;
2784
2785 req->req.actual += len;
2786 if (req->req.actual == req->req.length
2787 || (len != ep->ep.maxpacket)) {
2788 /* complete req */
2789 complete_req(ep, req, 0);
2790 }
2791 }
2792
2793 }
2794 }
2795 ep->halted = 0;
2796 dev->stall_ep0in = 0;
2797 if (!ep->dma) {
2798 /* clear IN bit */
2799 writel(AMD_BIT(UDC_EPSTS_IN),
2800 &dev->ep[UDC_EP0IN_IX].regs->sts);
2801 }
2802 }
2803
2804 return ret_val;
2805}
2806
2807
2808/* Interrupt handler for global device events */
2809static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2810__releases(dev->lock)
2811__acquires(dev->lock)
2812{
2813 irqreturn_t ret_val = IRQ_NONE;
2814 u32 tmp;
2815 u32 cfg;
2816 struct udc_ep *ep;
2817 u16 i;
2818 u8 udc_csr_epix;
2819
2820 /* SET_CONFIG irq ? */
2821 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2822 ret_val = IRQ_HANDLED;
2823
2824 /* read config value */
2825 tmp = readl(&dev->regs->sts);
2826 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2827 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2828 dev->cur_config = cfg;
2829 dev->set_cfg_not_acked = 1;
2830
2831 /* make usb request for gadget driver */
2832 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2833 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2834 setup_data.request.wValue = dev->cur_config;
2835
2836 /* programm the NE registers */
2837 for (i = 0; i < UDC_EP_NUM; i++) {
2838 ep = &dev->ep[i];
2839 if (ep->in) {
2840
2841 /* ep ix in UDC CSR register space */
2842 udc_csr_epix = ep->num;
2843
2844
2845 /* OUT ep */
2846 } else {
2847 /* ep ix in UDC CSR register space */
2848 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2849 }
2850
2851 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2852 /* ep cfg */
2853 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2854 UDC_CSR_NE_CFG);
2855 /* write reg */
2856 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2857
2858 /* clear stall bits */
2859 ep->halted = 0;
2860 tmp = readl(&ep->regs->ctl);
2861 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2862 writel(tmp, &ep->regs->ctl);
2863 }
2864 /* call gadget zero with setup data received */
2865 spin_unlock(&dev->lock);
2866 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2867 spin_lock(&dev->lock);
2868
2869 } /* SET_INTERFACE ? */
2870 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2871 ret_val = IRQ_HANDLED;
2872
2873 dev->set_cfg_not_acked = 1;
2874 /* read interface and alt setting values */
2875 tmp = readl(&dev->regs->sts);
2876 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2877 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2878
2879 /* make usb request for gadget driver */
2880 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2881 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2882 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2883 setup_data.request.wValue = dev->cur_alt;
2884 setup_data.request.wIndex = dev->cur_intf;
2885
2886 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2887 dev->cur_alt, dev->cur_intf);
2888
2889 /* programm the NE registers */
2890 for (i = 0; i < UDC_EP_NUM; i++) {
2891 ep = &dev->ep[i];
2892 if (ep->in) {
2893
2894 /* ep ix in UDC CSR register space */
2895 udc_csr_epix = ep->num;
2896
2897
2898 /* OUT ep */
2899 } else {
2900 /* ep ix in UDC CSR register space */
2901 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2902 }
2903
2904 /* UDC CSR reg */
2905 /* set ep values */
2906 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2907 /* ep interface */
2908 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2909 UDC_CSR_NE_INTF);
2910 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2911 /* ep alt */
2912 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2913 UDC_CSR_NE_ALT);
2914 /* write reg */
2915 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2916
2917 /* clear stall bits */
2918 ep->halted = 0;
2919 tmp = readl(&ep->regs->ctl);
2920 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2921 writel(tmp, &ep->regs->ctl);
2922 }
2923
2924 /* call gadget zero with setup data received */
2925 spin_unlock(&dev->lock);
2926 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2927 spin_lock(&dev->lock);
2928
2929 } /* USB reset */
2930 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2931 DBG(dev, "USB Reset interrupt\n");
2932 ret_val = IRQ_HANDLED;
2933
2934 /* allow soft reset when suspend occurs */
2935 soft_reset_occured = 0;
2936
2937 dev->waiting_zlp_ack_ep0in = 0;
2938 dev->set_cfg_not_acked = 0;
2939
2940 /* mask not needed interrupts */
2941 udc_mask_unused_interrupts(dev);
2942
2943 /* call gadget to resume and reset configs etc. */
2944 spin_unlock(&dev->lock);
2945 if (dev->sys_suspended && dev->driver->resume) {
2946 dev->driver->resume(&dev->gadget);
2947 dev->sys_suspended = 0;
2948 }
2949 dev->driver->disconnect(&dev->gadget);
2950 spin_lock(&dev->lock);
2951
2952 /* disable ep0 to empty req queue */
2953 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2954 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2955
2956 /* soft reset when rxfifo not empty */
2957 tmp = readl(&dev->regs->sts);
2958 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2959 && !soft_reset_after_usbreset_occured) {
2960 udc_soft_reset(dev);
2961 soft_reset_after_usbreset_occured++;
2962 }
2963
2964 /*
2965 * DMA reset to kill potential old DMA hw hang,
2966 * POLL bit is already reset by ep_init() through
2967 * disconnect()
2968 */
2969 DBG(dev, "DMA machine reset\n");
2970 tmp = readl(&dev->regs->cfg);
2971 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2972 writel(tmp, &dev->regs->cfg);
2973
2974 /* put into initial config */
2975 udc_basic_init(dev);
2976
2977 /* enable device setup interrupts */
2978 udc_enable_dev_setup_interrupts(dev);
2979
2980 /* enable suspend interrupt */
2981 tmp = readl(&dev->regs->irqmsk);
2982 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2983 writel(tmp, &dev->regs->irqmsk);
2984
2985 } /* USB suspend */
2986 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2987 DBG(dev, "USB Suspend interrupt\n");
2988 ret_val = IRQ_HANDLED;
2989 if (dev->driver->suspend) {
2990 spin_unlock(&dev->lock);
2991 dev->sys_suspended = 1;
2992 dev->driver->suspend(&dev->gadget);
2993 spin_lock(&dev->lock);
2994 }
2995 } /* new speed ? */
2996 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2997 DBG(dev, "ENUM interrupt\n");
2998 ret_val = IRQ_HANDLED;
2999 soft_reset_after_usbreset_occured = 0;
3000
3001 /* disable ep0 to empty req queue */
3002 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
3003 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
3004
3005 /* link up all endpoints */
3006 udc_setup_endpoints(dev);
3007 if (dev->gadget.speed == USB_SPEED_HIGH) {
3008 dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
3009 "high");
3010 } else if (dev->gadget.speed == USB_SPEED_FULL) {
3011 dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
3012 "full");
3013 }
3014
3015 /* init ep 0 */
3016 activate_control_endpoints(dev);
3017
3018 /* enable ep0 interrupts */
3019 udc_enable_ep0_interrupts(dev);
3020 }
3021 /* session valid change interrupt */
3022 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
3023 DBG(dev, "USB SVC interrupt\n");
3024 ret_val = IRQ_HANDLED;
3025
3026 /* check that session is not valid to detect disconnect */
3027 tmp = readl(&dev->regs->sts);
3028 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
3029 /* disable suspend interrupt */
3030 tmp = readl(&dev->regs->irqmsk);
3031 tmp |= AMD_BIT(UDC_DEVINT_US);
3032 writel(tmp, &dev->regs->irqmsk);
3033 DBG(dev, "USB Disconnect (session valid low)\n");
3034 /* cleanup on disconnect */
3035 usb_disconnect(udc);
3036 }
3037
3038 }
3039
3040 return ret_val;
3041}
3042
3043/* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3044static irqreturn_t udc_irq(int irq, void *pdev)
3045{
3046 struct udc *dev = pdev;
3047 u32 reg;
3048 u16 i;
3049 u32 ep_irq;
3050 irqreturn_t ret_val = IRQ_NONE;
3051
3052 spin_lock(&dev->lock);
3053
3054 /* check for ep irq */
3055 reg = readl(&dev->regs->ep_irqsts);
3056 if (reg) {
3057 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3058 ret_val |= udc_control_out_isr(dev);
3059 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3060 ret_val |= udc_control_in_isr(dev);
3061
3062 /*
3063 * data endpoint
3064 * iterate ep's
3065 */
3066 for (i = 1; i < UDC_EP_NUM; i++) {
3067 ep_irq = 1 << i;
3068 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3069 continue;
3070
3071 /* clear irq status */
3072 writel(ep_irq, &dev->regs->ep_irqsts);
3073
3074 /* irq for out ep ? */
3075 if (i > UDC_EPIN_NUM)
3076 ret_val |= udc_data_out_isr(dev, i);
3077 else
3078 ret_val |= udc_data_in_isr(dev, i);
3079 }
3080
3081 }
3082
3083
3084 /* check for dev irq */
3085 reg = readl(&dev->regs->irqsts);
3086 if (reg) {
3087 /* clear irq */
3088 writel(reg, &dev->regs->irqsts);
3089 ret_val |= udc_dev_isr(dev, reg);
3090 }
3091
3092
3093 spin_unlock(&dev->lock);
3094 return ret_val;
3095}
3096
3097/* Tears down device */
3098static void gadget_release(struct device *pdev)
3099{
3100 struct amd5536udc *dev = dev_get_drvdata(pdev);
3101 kfree(dev);
3102}
3103
3104/* Cleanup on device remove */
3105static void udc_remove(struct udc *dev)
3106{
3107 /* remove timer */
3108 stop_timer++;
3109 if (timer_pending(&udc_timer))
3110 wait_for_completion(&on_exit);
3111 if (udc_timer.data)
3112 del_timer_sync(&udc_timer);
3113 /* remove pollstall timer */
3114 stop_pollstall_timer++;
3115 if (timer_pending(&udc_pollstall_timer))
3116 wait_for_completion(&on_pollstall_exit);
3117 if (udc_pollstall_timer.data)
3118 del_timer_sync(&udc_pollstall_timer);
3119 udc = NULL;
3120}
3121
3122/* Reset all pci context */
3123static void udc_pci_remove(struct pci_dev *pdev)
3124{
3125 struct udc *dev;
3126
3127 dev = pci_get_drvdata(pdev);
3128
3129 /* gadget driver must not be registered */
3130 BUG_ON(dev->driver != NULL);
3131
3132 /* dma pool cleanup */
3133 if (dev->data_requests)
3134 pci_pool_destroy(dev->data_requests);
3135
3136 if (dev->stp_requests) {
3137 /* cleanup DMA desc's for ep0in */
3138 pci_pool_free(dev->stp_requests,
3139 dev->ep[UDC_EP0OUT_IX].td_stp,
3140 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3141 pci_pool_free(dev->stp_requests,
3142 dev->ep[UDC_EP0OUT_IX].td,
3143 dev->ep[UDC_EP0OUT_IX].td_phys);
3144
3145 pci_pool_destroy(dev->stp_requests);
3146 }
3147
3148 /* reset controller */
3149 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3150 if (dev->irq_registered)
3151 free_irq(pdev->irq, dev);
3152 if (dev->regs)
3153 iounmap(dev->regs);
3154 if (dev->mem_region)
3155 release_mem_region(pci_resource_start(pdev, 0),
3156 pci_resource_len(pdev, 0));
3157 if (dev->active)
3158 pci_disable_device(pdev);
3159
3160 device_unregister(&dev->gadget.dev);
3161 pci_set_drvdata(pdev, NULL);
3162
3163 udc_remove(dev);
3164}
3165
3166/* create dma pools on init */
3167static int init_dma_pools(struct udc *dev)
3168{
3169 struct udc_stp_dma *td_stp;
3170 struct udc_data_dma *td_data;
3171 int retval;
3172
3173 /* consistent DMA mode setting ? */
3174 if (use_dma_ppb) {
3175 use_dma_bufferfill_mode = 0;
3176 } else {
3177 use_dma_ppb_du = 0;
3178 use_dma_bufferfill_mode = 1;
3179 }
3180
3181 /* DMA setup */
3182 dev->data_requests = dma_pool_create("data_requests", NULL,
3183 sizeof(struct udc_data_dma), 0, 0);
3184 if (!dev->data_requests) {
3185 DBG(dev, "can't get request data pool\n");
3186 retval = -ENOMEM;
3187 goto finished;
3188 }
3189
3190 /* EP0 in dma regs = dev control regs */
3191 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3192
3193 /* dma desc for setup data */
3194 dev->stp_requests = dma_pool_create("setup requests", NULL,
3195 sizeof(struct udc_stp_dma), 0, 0);
3196 if (!dev->stp_requests) {
3197 DBG(dev, "can't get stp request pool\n");
3198 retval = -ENOMEM;
3199 goto finished;
3200 }
3201 /* setup */
3202 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3203 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3204 if (td_stp == NULL) {
3205 retval = -ENOMEM;
3206 goto finished;
3207 }
3208 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3209
3210 /* data: 0 packets !? */
3211 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3212 &dev->ep[UDC_EP0OUT_IX].td_phys);
3213 if (td_data == NULL) {
3214 retval = -ENOMEM;
3215 goto finished;
3216 }
3217 dev->ep[UDC_EP0OUT_IX].td = td_data;
3218 return 0;
3219
3220finished:
3221 return retval;
3222}
3223
3224/* Called by pci bus driver to init pci context */
3225static int udc_pci_probe(
3226 struct pci_dev *pdev,
3227 const struct pci_device_id *id
3228)
3229{
3230 struct udc *dev;
3231 unsigned long resource;
3232 unsigned long len;
3233 int retval = 0;
3234
3235 /* one udc only */
3236 if (udc) {
3237 dev_dbg(&pdev->dev, "already probed\n");
3238 return -EBUSY;
3239 }
3240
3241 /* init */
3242 dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3243 if (!dev) {
3244 retval = -ENOMEM;
3245 goto finished;
3246 }
3247 memset(dev, 0, sizeof(struct udc));
3248
3249 /* pci setup */
3250 if (pci_enable_device(pdev) < 0) {
3251 retval = -ENODEV;
3252 goto finished;
3253 }
3254 dev->active = 1;
3255
3256 /* PCI resource allocation */
3257 resource = pci_resource_start(pdev, 0);
3258 len = pci_resource_len(pdev, 0);
3259
3260 if (!request_mem_region(resource, len, name)) {
3261 dev_dbg(&pdev->dev, "pci device used already\n");
3262 retval = -EBUSY;
3263 goto finished;
3264 }
3265 dev->mem_region = 1;
3266
3267 dev->virt_addr = ioremap_nocache(resource, len);
3268 if (dev->virt_addr == NULL) {
3269 dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3270 retval = -EFAULT;
3271 goto finished;
3272 }
3273
3274 if (!pdev->irq) {
3275 dev_err(&dev->pdev->dev, "irq not set\n");
3276 retval = -ENODEV;
3277 goto finished;
3278 }
3279
3280 if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3281 dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3282 retval = -EBUSY;
3283 goto finished;
3284 }
3285 dev->irq_registered = 1;
3286
3287 pci_set_drvdata(pdev, dev);
3288
3289 /* chip revision */
3290 dev->chiprev = 0;
3291
3292 pci_set_master(pdev);
3293 pci_set_mwi(pdev);
3294
3295 /* chip rev for Hs AMD5536 */
3296 pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) &dev->chiprev);
3297 /* init dma pools */
3298 if (use_dma) {
3299 retval = init_dma_pools(dev);
3300 if (retval != 0)
3301 goto finished;
3302 }
3303
3304 dev->phys_addr = resource;
3305 dev->irq = pdev->irq;
3306 dev->pdev = pdev;
3307 dev->gadget.dev.parent = &pdev->dev;
3308 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3309
3310 /* general probing */
3311 if (udc_probe(dev) == 0)
3312 return 0;
3313
3314finished:
3315 if (dev)
3316 udc_pci_remove(pdev);
3317 return retval;
3318}
3319
3320/* general probe */
3321static int udc_probe(struct udc *dev)
3322{
3323 char tmp[128];
3324 u32 reg;
3325 int retval;
3326
3327 /* mark timer as not initialized */
3328 udc_timer.data = 0;
3329 udc_pollstall_timer.data = 0;
3330
3331 /* device struct setup */
3332 spin_lock_init(&dev->lock);
3333 dev->gadget.ops = &udc_ops;
3334
3335 strcpy(dev->gadget.dev.bus_id, "gadget");
3336 dev->gadget.dev.release = gadget_release;
3337 dev->gadget.name = name;
3338 dev->gadget.name = name;
3339 dev->gadget.is_dualspeed = 1;
3340
3341 /* udc csr registers base */
3342 dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3343 /* dev registers base */
3344 dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3345 /* ep registers base */
3346 dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3347 /* fifo's base */
3348 dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3349 dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3350
3351 /* init registers, interrupts, ... */
3352 startup_registers(dev);
3353
3354 dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3355
3356 snprintf(tmp, sizeof tmp, "%d", dev->irq);
3357 dev_info(&dev->pdev->dev,
3358 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3359 tmp, dev->phys_addr, dev->chiprev,
3360 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3361 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3362 if (dev->chiprev == UDC_HSA0_REV) {
3363 dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3364 retval = -ENODEV;
3365 goto finished;
3366 }
3367 dev_info(&dev->pdev->dev,
3368 "driver version: %s(for Geode5536 B1)\n", tmp);
3369 udc = dev;
3370
3371 retval = device_register(&dev->gadget.dev);
3372 if (retval)
3373 goto finished;
3374
3375 /* timer init */
3376 init_timer(&udc_timer);
3377 udc_timer.function = udc_timer_function;
3378 udc_timer.data = 1;
3379 /* timer pollstall init */
3380 init_timer(&udc_pollstall_timer);
3381 udc_pollstall_timer.function = udc_pollstall_timer_function;
3382 udc_pollstall_timer.data = 1;
3383
3384 /* set SD */
3385 reg = readl(&dev->regs->ctl);
3386 reg |= AMD_BIT(UDC_DEVCTL_SD);
3387 writel(reg, &dev->regs->ctl);
3388
3389 /* print dev register info */
3390 print_regs(dev);
3391
3392 return 0;
3393
3394finished:
3395 return retval;
3396}
3397
3398/* Initiates a remote wakeup */
3399static int udc_remote_wakeup(struct udc *dev)
3400{
3401 unsigned long flags;
3402 u32 tmp;
3403
3404 DBG(dev, "UDC initiates remote wakeup\n");
3405
3406 spin_lock_irqsave(&dev->lock, flags);
3407
3408 tmp = readl(&dev->regs->ctl);
3409 tmp |= AMD_BIT(UDC_DEVCTL_RES);
3410 writel(tmp, &dev->regs->ctl);
3411 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3412 writel(tmp, &dev->regs->ctl);
3413
3414 spin_unlock_irqrestore(&dev->lock, flags);
3415 return 0;
3416}
3417
3418/* PCI device parameters */
3419static const struct pci_device_id pci_id[] = {
3420 {
3421 PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3422 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3423 .class_mask = 0xffffffff,
3424 },
3425 {},
3426};
3427MODULE_DEVICE_TABLE(pci, pci_id);
3428
3429/* PCI functions */
3430static struct pci_driver udc_pci_driver = {
3431 .name = (char *) name,
3432 .id_table = pci_id,
3433 .probe = udc_pci_probe,
3434 .remove = udc_pci_remove,
3435};
3436
3437/* Inits driver */
3438static int __init init(void)
3439{
3440 return pci_register_driver(&udc_pci_driver);
3441}
3442module_init(init);
3443
3444/* Cleans driver */
3445static void __exit cleanup(void)
3446{
3447 pci_unregister_driver(&udc_pci_driver);
3448}
3449module_exit(cleanup);
3450
3451MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3452MODULE_AUTHOR("Thomas Dahlmann");
3453MODULE_LICENSE("GPL");
3454
diff --git a/drivers/usb/gadget/amd5536udc.h b/drivers/usb/gadget/amd5536udc.h
new file mode 100644
index 000000000000..4bbabbbfc93f
--- /dev/null
+++ b/drivers/usb/gadget/amd5536udc.h
@@ -0,0 +1,626 @@
1/*
2 * amd5536.h -- header for AMD 5536 UDC high/full speed USB device controller
3 *
4 * Copyright (C) 2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#ifndef AMD5536UDC_H
23#define AMD5536UDC_H
24
25/* various constants */
26#define UDC_RDE_TIMER_SECONDS 1
27#define UDC_RDE_TIMER_DIV 10
28#define UDC_POLLSTALL_TIMER_USECONDS 500
29
30/* Hs AMD5536 chip rev. */
31#define UDC_HSA0_REV 1
32#define UDC_HSB1_REV 2
33
34/*
35 * SETUP usb commands
36 * needed, because some SETUP's are handled in hw, but must be passed to
37 * gadget driver above
38 * SET_CONFIG
39 */
40#define UDC_SETCONFIG_DWORD0 0x00000900
41#define UDC_SETCONFIG_DWORD0_VALUE_MASK 0xffff0000
42#define UDC_SETCONFIG_DWORD0_VALUE_OFS 16
43
44#define UDC_SETCONFIG_DWORD1 0x00000000
45
46/* SET_INTERFACE */
47#define UDC_SETINTF_DWORD0 0x00000b00
48#define UDC_SETINTF_DWORD0_ALT_MASK 0xffff0000
49#define UDC_SETINTF_DWORD0_ALT_OFS 16
50
51#define UDC_SETINTF_DWORD1 0x00000000
52#define UDC_SETINTF_DWORD1_INTF_MASK 0x0000ffff
53#define UDC_SETINTF_DWORD1_INTF_OFS 0
54
55/* Mass storage reset */
56#define UDC_MSCRES_DWORD0 0x0000ff21
57#define UDC_MSCRES_DWORD1 0x00000000
58
59/* Global CSR's -------------------------------------------------------------*/
60#define UDC_CSR_ADDR 0x500
61
62/* EP NE bits */
63/* EP number */
64#define UDC_CSR_NE_NUM_MASK 0x0000000f
65#define UDC_CSR_NE_NUM_OFS 0
66/* EP direction */
67#define UDC_CSR_NE_DIR_MASK 0x00000010
68#define UDC_CSR_NE_DIR_OFS 4
69/* EP type */
70#define UDC_CSR_NE_TYPE_MASK 0x00000060
71#define UDC_CSR_NE_TYPE_OFS 5
72/* EP config number */
73#define UDC_CSR_NE_CFG_MASK 0x00000780
74#define UDC_CSR_NE_CFG_OFS 7
75/* EP interface number */
76#define UDC_CSR_NE_INTF_MASK 0x00007800
77#define UDC_CSR_NE_INTF_OFS 11
78/* EP alt setting */
79#define UDC_CSR_NE_ALT_MASK 0x00078000
80#define UDC_CSR_NE_ALT_OFS 15
81
82/* max pkt */
83#define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
84#define UDC_CSR_NE_MAX_PKT_OFS 19
85
86/* Device Config Register ---------------------------------------------------*/
87#define UDC_DEVCFG_ADDR 0x400
88
89#define UDC_DEVCFG_SOFTRESET 31
90#define UDC_DEVCFG_HNPSFEN 30
91#define UDC_DEVCFG_DMARST 29
92#define UDC_DEVCFG_SET_DESC 18
93#define UDC_DEVCFG_CSR_PRG 17
94#define UDC_DEVCFG_STATUS 7
95#define UDC_DEVCFG_DIR 6
96#define UDC_DEVCFG_PI 5
97#define UDC_DEVCFG_SS 4
98#define UDC_DEVCFG_SP 3
99#define UDC_DEVCFG_RWKP 2
100
101#define UDC_DEVCFG_SPD_MASK 0x3
102#define UDC_DEVCFG_SPD_OFS 0
103#define UDC_DEVCFG_SPD_HS 0x0
104#define UDC_DEVCFG_SPD_FS 0x1
105#define UDC_DEVCFG_SPD_LS 0x2
106/*#define UDC_DEVCFG_SPD_FS 0x3*/
107
108
109/* Device Control Register --------------------------------------------------*/
110#define UDC_DEVCTL_ADDR 0x404
111
112#define UDC_DEVCTL_THLEN_MASK 0xff000000
113#define UDC_DEVCTL_THLEN_OFS 24
114
115#define UDC_DEVCTL_BRLEN_MASK 0x00ff0000
116#define UDC_DEVCTL_BRLEN_OFS 16
117
118#define UDC_DEVCTL_CSR_DONE 13
119#define UDC_DEVCTL_DEVNAK 12
120#define UDC_DEVCTL_SD 10
121#define UDC_DEVCTL_MODE 9
122#define UDC_DEVCTL_BREN 8
123#define UDC_DEVCTL_THE 7
124#define UDC_DEVCTL_BF 6
125#define UDC_DEVCTL_BE 5
126#define UDC_DEVCTL_DU 4
127#define UDC_DEVCTL_TDE 3
128#define UDC_DEVCTL_RDE 2
129#define UDC_DEVCTL_RES 0
130
131
132/* Device Status Register ---------------------------------------------------*/
133#define UDC_DEVSTS_ADDR 0x408
134
135#define UDC_DEVSTS_TS_MASK 0xfffc0000
136#define UDC_DEVSTS_TS_OFS 18
137
138#define UDC_DEVSTS_SESSVLD 17
139#define UDC_DEVSTS_PHY_ERROR 16
140#define UDC_DEVSTS_RXFIFO_EMPTY 15
141
142#define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
143#define UDC_DEVSTS_ENUM_SPEED_OFS 13
144#define UDC_DEVSTS_ENUM_SPEED_FULL 1
145#define UDC_DEVSTS_ENUM_SPEED_HIGH 0
146
147#define UDC_DEVSTS_SUSP 12
148
149#define UDC_DEVSTS_ALT_MASK 0x00000f00
150#define UDC_DEVSTS_ALT_OFS 8
151
152#define UDC_DEVSTS_INTF_MASK 0x000000f0
153#define UDC_DEVSTS_INTF_OFS 4
154
155#define UDC_DEVSTS_CFG_MASK 0x0000000f
156#define UDC_DEVSTS_CFG_OFS 0
157
158
159/* Device Interrupt Register ------------------------------------------------*/
160#define UDC_DEVINT_ADDR 0x40c
161
162#define UDC_DEVINT_SVC 7
163#define UDC_DEVINT_ENUM 6
164#define UDC_DEVINT_SOF 5
165#define UDC_DEVINT_US 4
166#define UDC_DEVINT_UR 3
167#define UDC_DEVINT_ES 2
168#define UDC_DEVINT_SI 1
169#define UDC_DEVINT_SC 0
170
171/* Device Interrupt Mask Register -------------------------------------------*/
172#define UDC_DEVINT_MSK_ADDR 0x410
173
174#define UDC_DEVINT_MSK 0x7f
175
176/* Endpoint Interrupt Register ----------------------------------------------*/
177#define UDC_EPINT_ADDR 0x414
178
179#define UDC_EPINT_OUT_MASK 0xffff0000
180#define UDC_EPINT_OUT_OFS 16
181#define UDC_EPINT_IN_MASK 0x0000ffff
182#define UDC_EPINT_IN_OFS 0
183
184#define UDC_EPINT_IN_EP0 0
185#define UDC_EPINT_IN_EP1 1
186#define UDC_EPINT_IN_EP2 2
187#define UDC_EPINT_IN_EP3 3
188#define UDC_EPINT_OUT_EP0 16
189#define UDC_EPINT_OUT_EP1 17
190#define UDC_EPINT_OUT_EP2 18
191#define UDC_EPINT_OUT_EP3 19
192
193#define UDC_EPINT_EP0_ENABLE_MSK 0x001e001e
194
195/* Endpoint Interrupt Mask Register -----------------------------------------*/
196#define UDC_EPINT_MSK_ADDR 0x418
197
198#define UDC_EPINT_OUT_MSK_MASK 0xffff0000
199#define UDC_EPINT_OUT_MSK_OFS 16
200#define UDC_EPINT_IN_MSK_MASK 0x0000ffff
201#define UDC_EPINT_IN_MSK_OFS 0
202
203#define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
204/* mask non-EP0 endpoints */
205#define UDC_EPDATAINT_MSK_DISABLE 0xfffefffe
206/* mask all dev interrupts */
207#define UDC_DEV_MSK_DISABLE 0x7f
208
209/* Endpoint-specific CSR's --------------------------------------------------*/
210#define UDC_EPREGS_ADDR 0x0
211#define UDC_EPIN_REGS_ADDR 0x0
212#define UDC_EPOUT_REGS_ADDR 0x200
213
214#define UDC_EPCTL_ADDR 0x0
215
216#define UDC_EPCTL_RRDY 9
217#define UDC_EPCTL_CNAK 8
218#define UDC_EPCTL_SNAK 7
219#define UDC_EPCTL_NAK 6
220
221#define UDC_EPCTL_ET_MASK 0x00000030
222#define UDC_EPCTL_ET_OFS 4
223#define UDC_EPCTL_ET_CONTROL 0
224#define UDC_EPCTL_ET_ISO 1
225#define UDC_EPCTL_ET_BULK 2
226#define UDC_EPCTL_ET_INTERRUPT 3
227
228#define UDC_EPCTL_P 3
229#define UDC_EPCTL_SN 2
230#define UDC_EPCTL_F 1
231#define UDC_EPCTL_S 0
232
233/* Endpoint Status Registers ------------------------------------------------*/
234#define UDC_EPSTS_ADDR 0x4
235
236#define UDC_EPSTS_RX_PKT_SIZE_MASK 0x007ff800
237#define UDC_EPSTS_RX_PKT_SIZE_OFS 11
238
239#define UDC_EPSTS_TDC 10
240#define UDC_EPSTS_HE 9
241#define UDC_EPSTS_BNA 7
242#define UDC_EPSTS_IN 6
243
244#define UDC_EPSTS_OUT_MASK 0x00000030
245#define UDC_EPSTS_OUT_OFS 4
246#define UDC_EPSTS_OUT_DATA 1
247#define UDC_EPSTS_OUT_DATA_CLEAR 0x10
248#define UDC_EPSTS_OUT_SETUP 2
249#define UDC_EPSTS_OUT_SETUP_CLEAR 0x20
250#define UDC_EPSTS_OUT_CLEAR 0x30
251
252/* Endpoint Buffer Size IN/ Receive Packet Frame Number OUT Registers ------*/
253#define UDC_EPIN_BUFF_SIZE_ADDR 0x8
254#define UDC_EPOUT_FRAME_NUMBER_ADDR 0x8
255
256#define UDC_EPIN_BUFF_SIZE_MASK 0x0000ffff
257#define UDC_EPIN_BUFF_SIZE_OFS 0
258/* EP0in txfifo = 128 bytes*/
259#define UDC_EPIN0_BUFF_SIZE 32
260/* EP0in fullspeed txfifo = 128 bytes*/
261#define UDC_FS_EPIN0_BUFF_SIZE 32
262
263/* fifo size mult = fifo size / max packet */
264#define UDC_EPIN_BUFF_SIZE_MULT 2
265
266/* EPin data fifo size = 1024 bytes DOUBLE BUFFERING */
267#define UDC_EPIN_BUFF_SIZE 256
268/* EPin small INT data fifo size = 128 bytes */
269#define UDC_EPIN_SMALLINT_BUFF_SIZE 32
270
271/* EPin fullspeed data fifo size = 128 bytes DOUBLE BUFFERING */
272#define UDC_FS_EPIN_BUFF_SIZE 32
273
274#define UDC_EPOUT_FRAME_NUMBER_MASK 0x0000ffff
275#define UDC_EPOUT_FRAME_NUMBER_OFS 0
276
277/* Endpoint Buffer Size OUT/Max Packet Size Registers -----------------------*/
278#define UDC_EPOUT_BUFF_SIZE_ADDR 0x0c
279#define UDC_EP_MAX_PKT_SIZE_ADDR 0x0c
280
281#define UDC_EPOUT_BUFF_SIZE_MASK 0xffff0000
282#define UDC_EPOUT_BUFF_SIZE_OFS 16
283#define UDC_EP_MAX_PKT_SIZE_MASK 0x0000ffff
284#define UDC_EP_MAX_PKT_SIZE_OFS 0
285/* EP0in max packet size = 64 bytes */
286#define UDC_EP0IN_MAX_PKT_SIZE 64
287/* EP0out max packet size = 64 bytes */
288#define UDC_EP0OUT_MAX_PKT_SIZE 64
289/* EP0in fullspeed max packet size = 64 bytes */
290#define UDC_FS_EP0IN_MAX_PKT_SIZE 64
291/* EP0out fullspeed max packet size = 64 bytes */
292#define UDC_FS_EP0OUT_MAX_PKT_SIZE 64
293
294/*
295 * Endpoint dma descriptors ------------------------------------------------
296 *
297 * Setup data, Status dword
298 */
299#define UDC_DMA_STP_STS_CFG_MASK 0x0fff0000
300#define UDC_DMA_STP_STS_CFG_OFS 16
301#define UDC_DMA_STP_STS_CFG_ALT_MASK 0x000f0000
302#define UDC_DMA_STP_STS_CFG_ALT_OFS 16
303#define UDC_DMA_STP_STS_CFG_INTF_MASK 0x00f00000
304#define UDC_DMA_STP_STS_CFG_INTF_OFS 20
305#define UDC_DMA_STP_STS_CFG_NUM_MASK 0x0f000000
306#define UDC_DMA_STP_STS_CFG_NUM_OFS 24
307#define UDC_DMA_STP_STS_RX_MASK 0x30000000
308#define UDC_DMA_STP_STS_RX_OFS 28
309#define UDC_DMA_STP_STS_BS_MASK 0xc0000000
310#define UDC_DMA_STP_STS_BS_OFS 30
311#define UDC_DMA_STP_STS_BS_HOST_READY 0
312#define UDC_DMA_STP_STS_BS_DMA_BUSY 1
313#define UDC_DMA_STP_STS_BS_DMA_DONE 2
314#define UDC_DMA_STP_STS_BS_HOST_BUSY 3
315/* IN data, Status dword */
316#define UDC_DMA_IN_STS_TXBYTES_MASK 0x0000ffff
317#define UDC_DMA_IN_STS_TXBYTES_OFS 0
318#define UDC_DMA_IN_STS_FRAMENUM_MASK 0x07ff0000
319#define UDC_DMA_IN_STS_FRAMENUM_OFS 0
320#define UDC_DMA_IN_STS_L 27
321#define UDC_DMA_IN_STS_TX_MASK 0x30000000
322#define UDC_DMA_IN_STS_TX_OFS 28
323#define UDC_DMA_IN_STS_BS_MASK 0xc0000000
324#define UDC_DMA_IN_STS_BS_OFS 30
325#define UDC_DMA_IN_STS_BS_HOST_READY 0
326#define UDC_DMA_IN_STS_BS_DMA_BUSY 1
327#define UDC_DMA_IN_STS_BS_DMA_DONE 2
328#define UDC_DMA_IN_STS_BS_HOST_BUSY 3
329/* OUT data, Status dword */
330#define UDC_DMA_OUT_STS_RXBYTES_MASK 0x0000ffff
331#define UDC_DMA_OUT_STS_RXBYTES_OFS 0
332#define UDC_DMA_OUT_STS_FRAMENUM_MASK 0x07ff0000
333#define UDC_DMA_OUT_STS_FRAMENUM_OFS 0
334#define UDC_DMA_OUT_STS_L 27
335#define UDC_DMA_OUT_STS_RX_MASK 0x30000000
336#define UDC_DMA_OUT_STS_RX_OFS 28
337#define UDC_DMA_OUT_STS_BS_MASK 0xc0000000
338#define UDC_DMA_OUT_STS_BS_OFS 30
339#define UDC_DMA_OUT_STS_BS_HOST_READY 0
340#define UDC_DMA_OUT_STS_BS_DMA_BUSY 1
341#define UDC_DMA_OUT_STS_BS_DMA_DONE 2
342#define UDC_DMA_OUT_STS_BS_HOST_BUSY 3
343/* max ep0in packet */
344#define UDC_EP0IN_MAXPACKET 1000
345/* max dma packet */
346#define UDC_DMA_MAXPACKET 65536
347
348/* un-usable DMA address */
349#define DMA_DONT_USE (~(dma_addr_t) 0 )
350
351/* other Endpoint register addresses and values-----------------------------*/
352#define UDC_EP_SUBPTR_ADDR 0x10
353#define UDC_EP_DESPTR_ADDR 0x14
354#define UDC_EP_WRITE_CONFIRM_ADDR 0x1c
355
356/* EP number as layouted in AHB space */
357#define UDC_EP_NUM 32
358#define UDC_EPIN_NUM 16
359#define UDC_EPIN_NUM_USED 5
360#define UDC_EPOUT_NUM 16
361/* EP number of EP's really used = EP0 + 8 data EP's */
362#define UDC_USED_EP_NUM 9
363/* UDC CSR regs are aligned but AHB regs not - offset for OUT EP's */
364#define UDC_CSR_EP_OUT_IX_OFS 12
365
366#define UDC_EP0OUT_IX 16
367#define UDC_EP0IN_IX 0
368
369/* Rx fifo address and size = 1k -------------------------------------------*/
370#define UDC_RXFIFO_ADDR 0x800
371#define UDC_RXFIFO_SIZE 0x400
372
373/* Tx fifo address and size = 1.5k -----------------------------------------*/
374#define UDC_TXFIFO_ADDR 0xc00
375#define UDC_TXFIFO_SIZE 0x600
376
377/* default data endpoints --------------------------------------------------*/
378#define UDC_EPIN_STATUS_IX 1
379#define UDC_EPIN_IX 2
380#define UDC_EPOUT_IX 18
381
382/* general constants -------------------------------------------------------*/
383#define UDC_DWORD_BYTES 4
384#define UDC_BITS_PER_BYTE_SHIFT 3
385#define UDC_BYTE_MASK 0xff
386#define UDC_BITS_PER_BYTE 8
387
388/*---------------------------------------------------------------------------*/
389/* UDC CSR's */
390struct udc_csrs {
391
392 /* sca - setup command address */
393 u32 sca;
394
395 /* ep ne's */
396 u32 ne[UDC_USED_EP_NUM];
397} __attribute__ ((packed));
398
399/* AHB subsystem CSR registers */
400struct udc_regs {
401
402 /* device configuration */
403 u32 cfg;
404
405 /* device control */
406 u32 ctl;
407
408 /* device status */
409 u32 sts;
410
411 /* device interrupt */
412 u32 irqsts;
413
414 /* device interrupt mask */
415 u32 irqmsk;
416
417 /* endpoint interrupt */
418 u32 ep_irqsts;
419
420 /* endpoint interrupt mask */
421 u32 ep_irqmsk;
422} __attribute__ ((packed));
423
424/* endpoint specific registers */
425struct udc_ep_regs {
426
427 /* endpoint control */
428 u32 ctl;
429
430 /* endpoint status */
431 u32 sts;
432
433 /* endpoint buffer size in/ receive packet frame number out */
434 u32 bufin_framenum;
435
436 /* endpoint buffer size out/max packet size */
437 u32 bufout_maxpkt;
438
439 /* endpoint setup buffer pointer */
440 u32 subptr;
441
442 /* endpoint data descriptor pointer */
443 u32 desptr;
444
445 /* reserverd */
446 u32 reserved;
447
448 /* write/read confirmation */
449 u32 confirm;
450
451} __attribute__ ((packed));
452
453/* control data DMA desc */
454struct udc_stp_dma {
455 /* status quadlet */
456 u32 status;
457 /* reserved */
458 u32 _reserved;
459 /* first setup word */
460 u32 data12;
461 /* second setup word */
462 u32 data34;
463} __attribute__ ((aligned (16)));
464
465/* normal data DMA desc */
466struct udc_data_dma {
467 /* status quadlet */
468 u32 status;
469 /* reserved */
470 u32 _reserved;
471 /* buffer pointer */
472 u32 bufptr;
473 /* next descriptor pointer */
474 u32 next;
475} __attribute__ ((aligned (16)));
476
477/* request packet */
478struct udc_request {
479 /* embedded gadget ep */
480 struct usb_request req;
481
482 /* flags */
483 unsigned dma_going : 1,
484 dma_mapping : 1,
485 dma_done : 1;
486 /* phys. address */
487 dma_addr_t td_phys;
488 /* first dma desc. of chain */
489 struct udc_data_dma *td_data;
490 /* last dma desc. of chain */
491 struct udc_data_dma *td_data_last;
492 struct list_head queue;
493
494 /* chain length */
495 unsigned chain_len;
496
497};
498
499/* UDC specific endpoint parameters */
500struct udc_ep {
501 struct usb_ep ep;
502 struct udc_ep_regs __iomem *regs;
503 u32 __iomem *txfifo;
504 u32 __iomem *dma;
505 dma_addr_t td_phys;
506 dma_addr_t td_stp_dma;
507 struct udc_stp_dma *td_stp;
508 struct udc_data_dma *td;
509 /* temp request */
510 struct udc_request *req;
511 unsigned req_used;
512 unsigned req_completed;
513 /* dummy DMA desc for BNA dummy */
514 struct udc_request *bna_dummy_req;
515 unsigned bna_occurred;
516
517 /* NAK state */
518 unsigned naking;
519
520 struct udc *dev;
521
522 /* queue for requests */
523 struct list_head queue;
524 const struct usb_endpoint_descriptor *desc;
525 unsigned halted;
526 unsigned cancel_transfer;
527 unsigned num : 5,
528 fifo_depth : 14,
529 in : 1;
530};
531
532/* device struct */
533struct udc {
534 struct usb_gadget gadget;
535 spinlock_t lock; /* protects all state */
536 /* all endpoints */
537 struct udc_ep ep[UDC_EP_NUM];
538 struct usb_gadget_driver *driver;
539 /* operational flags */
540 unsigned active : 1,
541 stall_ep0in : 1,
542 waiting_zlp_ack_ep0in : 1,
543 set_cfg_not_acked : 1,
544 irq_registered : 1,
545 data_ep_enabled : 1,
546 data_ep_queued : 1,
547 mem_region : 1,
548 sys_suspended : 1,
549 connected;
550
551 u16 chiprev;
552
553 /* registers */
554 struct pci_dev *pdev;
555 struct udc_csrs __iomem *csr;
556 struct udc_regs __iomem *regs;
557 struct udc_ep_regs __iomem *ep_regs;
558 u32 __iomem *rxfifo;
559 u32 __iomem *txfifo;
560
561 /* DMA desc pools */
562 struct pci_pool *data_requests;
563 struct pci_pool *stp_requests;
564
565 /* device data */
566 unsigned long phys_addr;
567 void __iomem *virt_addr;
568 unsigned irq;
569
570 /* states */
571 u16 cur_config;
572 u16 cur_intf;
573 u16 cur_alt;
574};
575
576/* setup request data */
577union udc_setup_data {
578 u32 data[2];
579 struct usb_ctrlrequest request;
580};
581
582/*
583 *---------------------------------------------------------------------------
584 * SET and GET bitfields in u32 values
585 * via constants for mask/offset:
586 * <bit_field_stub_name> is the text between
587 * UDC_ and _MASK|_OFS of appropiate
588 * constant
589 *
590 * set bitfield value in u32 u32Val
591 */
592#define AMD_ADDBITS(u32Val, bitfield_val, bitfield_stub_name) \
593 (((u32Val) & (((u32) ~((u32) bitfield_stub_name##_MASK)))) \
594 | (((bitfield_val) << ((u32) bitfield_stub_name##_OFS)) \
595 & ((u32) bitfield_stub_name##_MASK)))
596
597/*
598 * set bitfield value in zero-initialized u32 u32Val
599 * => bitfield bits in u32Val are all zero
600 */
601#define AMD_INIT_SETBITS(u32Val, bitfield_val, bitfield_stub_name) \
602 ((u32Val) \
603 | (((bitfield_val) << ((u32) bitfield_stub_name##_OFS)) \
604 & ((u32) bitfield_stub_name##_MASK)))
605
606/* get bitfield value from u32 u32Val */
607#define AMD_GETBITS(u32Val, bitfield_stub_name) \
608 ((u32Val & ((u32) bitfield_stub_name##_MASK)) \
609 >> ((u32) bitfield_stub_name##_OFS))
610
611/* SET and GET bits in u32 values ------------------------------------------*/
612#define AMD_BIT(bit_stub_name) (1 << bit_stub_name)
613#define AMD_UNMASK_BIT(bit_stub_name) (~AMD_BIT(bit_stub_name))
614#define AMD_CLEAR_BIT(bit_stub_name) (~AMD_BIT(bit_stub_name))
615
616/* debug macros ------------------------------------------------------------*/
617
618#define DBG(udc , args...) dev_dbg(&(udc)->pdev->dev, args)
619
620#ifdef UDC_VERBOSE
621#define VDBG DBG
622#else
623#define VDBG(udc , args...) do {} while (0)
624#endif
625
626#endif /* #ifdef AMD5536UDC_H */
diff --git a/drivers/usb/gadget/ether.c b/drivers/usb/gadget/ether.c
index dbaf867436df..a3376739a81b 100644
--- a/drivers/usb/gadget/ether.c
+++ b/drivers/usb/gadget/ether.c
@@ -305,6 +305,10 @@ MODULE_PARM_DESC(host_addr, "Host Ethernet Address");
305#define DEV_CONFIG_CDC 305#define DEV_CONFIG_CDC
306#endif 306#endif
307 307
308#ifdef CONFIG_USB_GADGET_AMD5536UDC
309#define DEV_CONFIG_CDC
310#endif
311
308 312
309/*-------------------------------------------------------------------------*/ 313/*-------------------------------------------------------------------------*/
310 314
diff --git a/drivers/usb/gadget/gadget_chips.h b/drivers/usb/gadget/gadget_chips.h
index 53e9139ba388..e7fbefefe7b0 100644
--- a/drivers/usb/gadget/gadget_chips.h
+++ b/drivers/usb/gadget/gadget_chips.h
@@ -17,6 +17,12 @@
17#define gadget_is_net2280(g) 0 17#define gadget_is_net2280(g) 0
18#endif 18#endif
19 19
20#ifdef CONFIG_USB_GADGET_AMD5536UDC
21#define gadget_is_amd5536udc(g) !strcmp("amd5536udc", (g)->name)
22#else
23#define gadget_is_amd5536udc(g) 0
24#endif
25
20#ifdef CONFIG_USB_GADGET_DUMMY_HCD 26#ifdef CONFIG_USB_GADGET_DUMMY_HCD
21#define gadget_is_dummy(g) !strcmp("dummy_udc", (g)->name) 27#define gadget_is_dummy(g) !strcmp("dummy_udc", (g)->name)
22#else 28#else
@@ -202,6 +208,8 @@ static inline int usb_gadget_controller_number(struct usb_gadget *gadget)
202 return 0x18; 208 return 0x18;
203 else if (gadget_is_fsl_usb2(gadget)) 209 else if (gadget_is_fsl_usb2(gadget))
204 return 0x19; 210 return 0x19;
211 else if (gadget_is_amd5536udc(gadget))
212 return 0x20;
205 else if (gadget_is_m66592(gadget)) 213 else if (gadget_is_m66592(gadget))
206 return 0x20; 214 return 0x20;
207 return -ENOENT; 215 return -ENOENT;