aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/usb
diff options
context:
space:
mode:
authorInaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>2008-09-17 11:34:25 -0400
committerDavid Vrabel <dv02@dv02pc01.europe.root.pri>2008-09-17 11:54:30 -0400
commitd59db761b8559f07a7161ca3387d6c6949667ede (patch)
treefece32ae78c14364843ec809462903813784e1b4 /drivers/usb
parentb69fada68b92fa7061d59a3e54b428759a5e5717 (diff)
wusb: add the Wireless USB core (security)
Add the WUSB security (authentication) code. Signed-off-by: David Vrabel <david.vrabel@csr.com>
Diffstat (limited to 'drivers/usb')
-rw-r--r--drivers/usb/wusbcore/crypto.c538
-rw-r--r--drivers/usb/wusbcore/security.c642
2 files changed, 1180 insertions, 0 deletions
diff --git a/drivers/usb/wusbcore/crypto.c b/drivers/usb/wusbcore/crypto.c
new file mode 100644
index 000000000000..c36c4389baae
--- /dev/null
+++ b/drivers/usb/wusbcore/crypto.c
@@ -0,0 +1,538 @@
1/*
2 * Ultra Wide Band
3 * AES-128 CCM Encryption
4 *
5 * Copyright (C) 2007 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
21 *
22 *
23 * We don't do any encryption here; we use the Linux Kernel's AES-128
24 * crypto modules to construct keys and payload blocks in a way
25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26 * there.
27 *
28 * Thanks a zillion to John Keys for his help and clarifications over
29 * the designed-by-a-committee text.
30 *
31 * So the idea is that there is this basic Pseudo-Random-Function
32 * defined in WUSB1.0[6.5] which is the core of everything. It works
33 * by tweaking some blocks, AES crypting them and then xoring
34 * something else with them (this seems to be called CBC(AES) -- can
35 * you tell I know jack about crypto?). So we just funnel it into the
36 * Linux Crypto API.
37 *
38 * We leave a crypto test module so we can verify that vectors match,
39 * every now and then.
40 *
41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42 * am learning a lot...
43 *
44 * Conveniently, some data structures that need to be
45 * funneled through AES are...16 bytes in size!
46 */
47
48#include <linux/crypto.h>
49#include <linux/module.h>
50#include <linux/err.h>
51#include <linux/uwb.h>
52#include <linux/usb/wusb.h>
53#include <linux/scatterlist.h>
54#define D_LOCAL 0
55#include <linux/uwb/debug.h>
56
57
58/*
59 * Block of data, as understood by AES-CCM
60 *
61 * The code assumes this structure is nothing but a 16 byte array
62 * (packed in a struct to avoid common mess ups that I usually do with
63 * arrays and enforcing type checking).
64 */
65struct aes_ccm_block {
66 u8 data[16];
67} __attribute__((packed));
68
69/*
70 * Counter-mode Blocks (WUSB1.0[6.4])
71 *
72 * According to CCM (or so it seems), for the purpose of calculating
73 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
74 * ... BN.
75 *
76 * B0 contains flags, the CCM nonce and l(m).
77 *
78 * B1 contains l(a), the MAC header, the encryption offset and padding.
79 *
80 * If EO is nonzero, additional blocks are built from payload bytes
81 * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
82 * padding is not xmitted.
83 */
84
85/* WUSB1.0[T6.4] */
86struct aes_ccm_b0 {
87 u8 flags; /* 0x59, per CCM spec */
88 struct aes_ccm_nonce ccm_nonce;
89 __be16 lm;
90} __attribute__((packed));
91
92/* WUSB1.0[T6.5] */
93struct aes_ccm_b1 {
94 __be16 la;
95 u8 mac_header[10];
96 __le16 eo;
97 u8 security_reserved; /* This is always zero */
98 u8 padding; /* 0 */
99} __attribute__((packed));
100
101/*
102 * Encryption Blocks (WUSB1.0[6.4.4])
103 *
104 * CCM uses Ax blocks to generate a keystream with which the MIC and
105 * the message's payload are encoded. A0 always encrypts/decrypts the
106 * MIC. Ax (x>0) are used for the sucesive payload blocks.
107 *
108 * The x is the counter, and is increased for each block.
109 */
110struct aes_ccm_a {
111 u8 flags; /* 0x01, per CCM spec */
112 struct aes_ccm_nonce ccm_nonce;
113 __be16 counter; /* Value of x */
114} __attribute__((packed));
115
116static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
117 size_t size)
118{
119 u8 *bo = _bo;
120 const u8 *bi1 = _bi1, *bi2 = _bi2;
121 size_t itr;
122 for (itr = 0; itr < size; itr++)
123 bo[itr] = bi1[itr] ^ bi2[itr];
124}
125
126/*
127 * CC-MAC function WUSB1.0[6.5]
128 *
129 * Take a data string and produce the encrypted CBC Counter-mode MIC
130 *
131 * Note the names for most function arguments are made to (more or
132 * less) match those used in the pseudo-function definition given in
133 * WUSB1.0[6.5].
134 *
135 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
136 *
137 * @tfm_aes: AES cipher handle (initialized)
138 *
139 * @mic: buffer for placing the computed MIC (Message Integrity
140 * Code). This is exactly 8 bytes, and we expect the buffer to
141 * be at least eight bytes in length.
142 *
143 * @key: 128 bit symmetric key
144 *
145 * @n: CCM nonce
146 *
147 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
148 * we use exactly 14 bytes).
149 *
150 * @b: data stream to be processed; cannot be a global or const local
151 * (will confuse the scatterlists)
152 *
153 * @blen: size of b...
154 *
155 * Still not very clear how this is done, but looks like this: we
156 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
157 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
158 * take the payload and divide it in blocks (16 bytes), xor them with
159 * the previous crypto result (16 bytes) and crypt it, repeat the next
160 * block with the output of the previous one, rinse wash (I guess this
161 * is what AES CBC mode means...but I truly have no idea). So we use
162 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
163 * Vector) is 16 bytes and is set to zero, so
164 *
165 * See rfc3610. Linux crypto has a CBC implementation, but the
166 * documentation is scarce, to say the least, and the example code is
167 * so intricated that is difficult to understand how things work. Most
168 * of this is guess work -- bite me.
169 *
170 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
171 * using the 14 bytes of @a to fill up
172 * b1.{mac_header,e0,security_reserved,padding}.
173 *
174 * NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of
175 * l(m) is orthogonal, they bear no relationship, so it is not
176 * in conflict with the parameter's relation that
177 * WUSB1.0[6.4.2]) defines.
178 *
179 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
180 * first errata released on 2005/07.
181 *
182 * NOTE: we need to clean IV to zero at each invocation to make sure
183 * we start with a fresh empty Initial Vector, so that the CBC
184 * works ok.
185 *
186 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
187 * what sg[4] is for. Maybe there is a smarter way to do this.
188 */
189static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
190 struct crypto_cipher *tfm_aes, void *mic,
191 const struct aes_ccm_nonce *n,
192 const struct aes_ccm_label *a, const void *b,
193 size_t blen)
194{
195 int result = 0;
196 struct blkcipher_desc desc;
197 struct aes_ccm_b0 b0;
198 struct aes_ccm_b1 b1;
199 struct aes_ccm_a ax;
200 struct scatterlist sg[4], sg_dst;
201 void *iv, *dst_buf;
202 size_t ivsize, dst_size;
203 const u8 bzero[16] = { 0 };
204 size_t zero_padding;
205
206 d_fnstart(3, NULL, "(tfm_cbc %p, tfm_aes %p, mic %p, "
207 "n %p, a %p, b %p, blen %zu)\n",
208 tfm_cbc, tfm_aes, mic, n, a, b, blen);
209 /*
210 * These checks should be compile time optimized out
211 * ensure @a fills b1's mac_header and following fields
212 */
213 WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
214 WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
215 WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
216 WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
217
218 result = -ENOMEM;
219 zero_padding = sizeof(struct aes_ccm_block)
220 - blen % sizeof(struct aes_ccm_block);
221 zero_padding = blen % sizeof(struct aes_ccm_block);
222 if (zero_padding)
223 zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
224 dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
225 dst_buf = kzalloc(dst_size, GFP_KERNEL);
226 if (dst_buf == NULL) {
227 printk(KERN_ERR "E: can't alloc destination buffer\n");
228 goto error_dst_buf;
229 }
230
231 iv = crypto_blkcipher_crt(tfm_cbc)->iv;
232 ivsize = crypto_blkcipher_ivsize(tfm_cbc);
233 memset(iv, 0, ivsize);
234
235 /* Setup B0 */
236 b0.flags = 0x59; /* Format B0 */
237 b0.ccm_nonce = *n;
238 b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
239
240 /* Setup B1
241 *
242 * The WUSB spec is anything but clear! WUSB1.0[6.5]
243 * says that to initialize B1 from A with 'l(a) = blen +
244 * 14'--after clarification, it means to use A's contents
245 * for MAC Header, EO, sec reserved and padding.
246 */
247 b1.la = cpu_to_be16(blen + 14);
248 memcpy(&b1.mac_header, a, sizeof(*a));
249
250 d_printf(4, NULL, "I: B0 (%zu bytes)\n", sizeof(b0));
251 d_dump(4, NULL, &b0, sizeof(b0));
252 d_printf(4, NULL, "I: B1 (%zu bytes)\n", sizeof(b1));
253 d_dump(4, NULL, &b1, sizeof(b1));
254 d_printf(4, NULL, "I: B (%zu bytes)\n", blen);
255 d_dump(4, NULL, b, blen);
256 d_printf(4, NULL, "I: B 0-padding (%zu bytes)\n", zero_padding);
257 d_printf(4, NULL, "D: IV before crypto (%zu)\n", ivsize);
258 d_dump(4, NULL, iv, ivsize);
259
260 sg_init_table(sg, ARRAY_SIZE(sg));
261 sg_set_buf(&sg[0], &b0, sizeof(b0));
262 sg_set_buf(&sg[1], &b1, sizeof(b1));
263 sg_set_buf(&sg[2], b, blen);
264 /* 0 if well behaved :) */
265 sg_set_buf(&sg[3], bzero, zero_padding);
266 sg_init_one(&sg_dst, dst_buf, dst_size);
267
268 desc.tfm = tfm_cbc;
269 desc.flags = 0;
270 result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
271 if (result < 0) {
272 printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
273 result);
274 goto error_cbc_crypt;
275 }
276 d_printf(4, NULL, "D: MIC tag\n");
277 d_dump(4, NULL, iv, ivsize);
278
279 /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
280 * The procedure is to AES crypt the A0 block and XOR the MIC
281 * Tag agains it; we only do the first 8 bytes and place it
282 * directly in the destination buffer.
283 *
284 * POS Crypto API: size is assumed to be AES's block size.
285 * Thanks for documenting it -- tip taken from airo.c
286 */
287 ax.flags = 0x01; /* as per WUSB 1.0 spec */
288 ax.ccm_nonce = *n;
289 ax.counter = 0;
290 crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
291 bytewise_xor(mic, &ax, iv, 8);
292 d_printf(4, NULL, "D: CTR[MIC]\n");
293 d_dump(4, NULL, &ax, 8);
294 d_printf(4, NULL, "D: CCM-MIC tag\n");
295 d_dump(4, NULL, mic, 8);
296 result = 8;
297error_cbc_crypt:
298 kfree(dst_buf);
299error_dst_buf:
300 d_fnend(3, NULL, "(tfm_cbc %p, tfm_aes %p, mic %p, "
301 "n %p, a %p, b %p, blen %zu)\n",
302 tfm_cbc, tfm_aes, mic, n, a, b, blen);
303 return result;
304}
305
306/*
307 * WUSB Pseudo Random Function (WUSB1.0[6.5])
308 *
309 * @b: buffer to the source data; cannot be a global or const local
310 * (will confuse the scatterlists)
311 */
312ssize_t wusb_prf(void *out, size_t out_size,
313 const u8 key[16], const struct aes_ccm_nonce *_n,
314 const struct aes_ccm_label *a,
315 const void *b, size_t blen, size_t len)
316{
317 ssize_t result, bytes = 0, bitr;
318 struct aes_ccm_nonce n = *_n;
319 struct crypto_blkcipher *tfm_cbc;
320 struct crypto_cipher *tfm_aes;
321 u64 sfn = 0;
322 __le64 sfn_le;
323
324 d_fnstart(3, NULL, "(out %p, out_size %zu, key %p, _n %p, "
325 "a %p, b %p, blen %zu, len %zu)\n", out, out_size,
326 key, _n, a, b, blen, len);
327
328 tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
329 if (IS_ERR(tfm_cbc)) {
330 result = PTR_ERR(tfm_cbc);
331 printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
332 goto error_alloc_cbc;
333 }
334 result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
335 if (result < 0) {
336 printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
337 goto error_setkey_cbc;
338 }
339
340 tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
341 if (IS_ERR(tfm_aes)) {
342 result = PTR_ERR(tfm_aes);
343 printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
344 goto error_alloc_aes;
345 }
346 result = crypto_cipher_setkey(tfm_aes, key, 16);
347 if (result < 0) {
348 printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
349 goto error_setkey_aes;
350 }
351
352 for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
353 sfn_le = cpu_to_le64(sfn++);
354 memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
355 result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
356 &n, a, b, blen);
357 if (result < 0)
358 goto error_ccm_mac;
359 bytes += result;
360 }
361 result = bytes;
362error_ccm_mac:
363error_setkey_aes:
364 crypto_free_cipher(tfm_aes);
365error_alloc_aes:
366error_setkey_cbc:
367 crypto_free_blkcipher(tfm_cbc);
368error_alloc_cbc:
369 d_fnend(3, NULL, "(out %p, out_size %zu, key %p, _n %p, "
370 "a %p, b %p, blen %zu, len %zu) = %d\n", out, out_size,
371 key, _n, a, b, blen, len, (int)bytes);
372 return result;
373}
374
375/* WUSB1.0[A.2] test vectors */
376static const u8 stv_hsmic_key[16] = {
377 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
378 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
379};
380
381static const struct aes_ccm_nonce stv_hsmic_n = {
382 .sfn = { 0 },
383 .tkid = { 0x76, 0x98, 0x01, },
384 .dest_addr = { .data = { 0xbe, 0x00 } },
385 .src_addr = { .data = { 0x76, 0x98 } },
386};
387
388/*
389 * Out-of-band MIC Generation verification code
390 *
391 */
392static int wusb_oob_mic_verify(void)
393{
394 int result;
395 u8 mic[8];
396 /* WUSB1.0[A.2] test vectors
397 *
398 * Need to keep it in the local stack as GCC 4.1.3something
399 * messes up and generates noise.
400 */
401 struct usb_handshake stv_hsmic_hs = {
402 .bMessageNumber = 2,
403 .bStatus = 00,
404 .tTKID = { 0x76, 0x98, 0x01 },
405 .bReserved = 00,
406 .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
407 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
408 0x3c, 0x3d, 0x3e, 0x3f },
409 .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
410 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
411 0x2c, 0x2d, 0x2e, 0x2f },
412 .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
413 0x14, 0x7b } ,
414 };
415 size_t hs_size;
416
417 result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
418 if (result < 0)
419 printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
420 else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
421 printk(KERN_ERR "E: OOB MIC test: "
422 "mismatch between MIC result and WUSB1.0[A2]\n");
423 hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
424 printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
425 dump_bytes(NULL, &stv_hsmic_hs, hs_size);
426 printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
427 sizeof(stv_hsmic_n));
428 dump_bytes(NULL, &stv_hsmic_n, sizeof(stv_hsmic_n));
429 printk(KERN_ERR "E: MIC out:\n");
430 dump_bytes(NULL, mic, sizeof(mic));
431 printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
432 dump_bytes(NULL, stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
433 result = -EINVAL;
434 } else
435 result = 0;
436 return result;
437}
438
439/*
440 * Test vectors for Key derivation
441 *
442 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
443 * (errata corrected in 2005/07).
444 */
445static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
446 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
447 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
448};
449
450static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
451 .sfn = { 0 },
452 .tkid = { 0x76, 0x98, 0x01, },
453 .dest_addr = { .data = { 0xbe, 0x00 } },
454 .src_addr = { .data = { 0x76, 0x98 } },
455};
456
457static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
458 .kck = {
459 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
460 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
461 },
462 .ptk = {
463 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
464 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
465 }
466};
467
468/*
469 * Performa a test to make sure we match the vectors defined in
470 * WUSB1.0[A.1](Errata2006/12)
471 */
472static int wusb_key_derive_verify(void)
473{
474 int result = 0;
475 struct wusb_keydvt_out keydvt_out;
476 /* These come from WUSB1.0[A.1] + 2006/12 errata
477 * NOTE: can't make this const or global -- somehow it seems
478 * the scatterlists for crypto get confused and we get
479 * bad data. There is no doc on this... */
480 struct wusb_keydvt_in stv_keydvt_in_a1 = {
481 .hnonce = {
482 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
483 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
484 },
485 .dnonce = {
486 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
487 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
488 }
489 };
490
491 result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
492 &stv_keydvt_in_a1);
493 if (result < 0)
494 printk(KERN_ERR "E: WUSB key derivation test: "
495 "derivation failed: %d\n", result);
496 if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
497 printk(KERN_ERR "E: WUSB key derivation test: "
498 "mismatch between key derivation result "
499 "and WUSB1.0[A1] Errata 2006/12\n");
500 printk(KERN_ERR "E: keydvt in: key (%zu bytes)\n",
501 sizeof(stv_key_a1));
502 dump_bytes(NULL, stv_key_a1, sizeof(stv_key_a1));
503 printk(KERN_ERR "E: keydvt in: nonce (%zu bytes)\n",
504 sizeof(stv_keydvt_n_a1));
505 dump_bytes(NULL, &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
506 printk(KERN_ERR "E: keydvt in: hnonce & dnonce (%zu bytes)\n",
507 sizeof(stv_keydvt_in_a1));
508 dump_bytes(NULL, &stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
509 printk(KERN_ERR "E: keydvt out: KCK\n");
510 dump_bytes(NULL, &keydvt_out.kck, sizeof(keydvt_out.kck));
511 printk(KERN_ERR "E: keydvt out: PTK\n");
512 dump_bytes(NULL, &keydvt_out.ptk, sizeof(keydvt_out.ptk));
513 result = -EINVAL;
514 } else
515 result = 0;
516 return result;
517}
518
519/*
520 * Initialize crypto system
521 *
522 * FIXME: we do nothing now, other than verifying. Later on we'll
523 * cache the encryption stuff, so that's why we have a separate init.
524 */
525int wusb_crypto_init(void)
526{
527 int result;
528
529 result = wusb_key_derive_verify();
530 if (result < 0)
531 return result;
532 return wusb_oob_mic_verify();
533}
534
535void wusb_crypto_exit(void)
536{
537 /* FIXME: free cached crypto transforms */
538}
diff --git a/drivers/usb/wusbcore/security.c b/drivers/usb/wusbcore/security.c
new file mode 100644
index 000000000000..a101cad6a8d4
--- /dev/null
+++ b/drivers/usb/wusbcore/security.c
@@ -0,0 +1,642 @@
1/*
2 * Wireless USB Host Controller
3 * Security support: encryption enablement, etc
4 *
5 * Copyright (C) 2006 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
21 *
22 *
23 * FIXME: docs
24 */
25#include <linux/types.h>
26#include <linux/usb/ch9.h>
27#include <linux/random.h>
28#include "wusbhc.h"
29
30/*
31 * DEBUG & SECURITY WARNING!!!!
32 *
33 * If you enable this past 1, the debug code will weaken the
34 * cryptographic safety of the system (on purpose, for debugging).
35 *
36 * Weaken means:
37 * we print secret keys and intermediate values all the way,
38 */
39#undef D_LOCAL
40#define D_LOCAL 2
41#include <linux/uwb/debug.h>
42
43static void wusbhc_set_gtk_callback(struct urb *urb);
44static void wusbhc_gtk_rekey_done_work(struct work_struct *work);
45
46int wusbhc_sec_create(struct wusbhc *wusbhc)
47{
48 wusbhc->gtk.descr.bLength = sizeof(wusbhc->gtk.descr) + sizeof(wusbhc->gtk.data);
49 wusbhc->gtk.descr.bDescriptorType = USB_DT_KEY;
50 wusbhc->gtk.descr.bReserved = 0;
51
52 wusbhc->gtk_index = wusb_key_index(0, WUSB_KEY_INDEX_TYPE_GTK,
53 WUSB_KEY_INDEX_ORIGINATOR_HOST);
54
55 INIT_WORK(&wusbhc->gtk_rekey_done_work, wusbhc_gtk_rekey_done_work);
56
57 return 0;
58}
59
60
61/* Called when the HC is destroyed */
62void wusbhc_sec_destroy(struct wusbhc *wusbhc)
63{
64}
65
66
67/**
68 * wusbhc_next_tkid - generate a new, currently unused, TKID
69 * @wusbhc: the WUSB host controller
70 * @wusb_dev: the device whose PTK the TKID is for
71 * (or NULL for a TKID for a GTK)
72 *
73 * The generated TKID consist of two parts: the device's authenicated
74 * address (or 0 or a GTK); and an incrementing number. This ensures
75 * that TKIDs cannot be shared between devices and by the time the
76 * incrementing number wraps around the older TKIDs will no longer be
77 * in use (a maximum of two keys may be active at any one time).
78 */
79static u32 wusbhc_next_tkid(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev)
80{
81 u32 *tkid;
82 u32 addr;
83
84 if (wusb_dev == NULL) {
85 tkid = &wusbhc->gtk_tkid;
86 addr = 0;
87 } else {
88 tkid = &wusb_port_by_idx(wusbhc, wusb_dev->port_idx)->ptk_tkid;
89 addr = wusb_dev->addr & 0x7f;
90 }
91
92 *tkid = (addr << 8) | ((*tkid + 1) & 0xff);
93
94 return *tkid;
95}
96
97static void wusbhc_generate_gtk(struct wusbhc *wusbhc)
98{
99 const size_t key_size = sizeof(wusbhc->gtk.data);
100 u32 tkid;
101
102 tkid = wusbhc_next_tkid(wusbhc, NULL);
103
104 wusbhc->gtk.descr.tTKID[0] = (tkid >> 0) & 0xff;
105 wusbhc->gtk.descr.tTKID[1] = (tkid >> 8) & 0xff;
106 wusbhc->gtk.descr.tTKID[2] = (tkid >> 16) & 0xff;
107
108 get_random_bytes(wusbhc->gtk.descr.bKeyData, key_size);
109}
110
111/**
112 * wusbhc_sec_start - start the security management process
113 * @wusbhc: the WUSB host controller
114 *
115 * Generate and set an initial GTK on the host controller.
116 *
117 * Called when the HC is started.
118 */
119int wusbhc_sec_start(struct wusbhc *wusbhc)
120{
121 const size_t key_size = sizeof(wusbhc->gtk.data);
122 int result;
123
124 wusbhc_generate_gtk(wusbhc);
125
126 result = wusbhc->set_gtk(wusbhc, wusbhc->gtk_tkid,
127 &wusbhc->gtk.descr.bKeyData, key_size);
128 if (result < 0)
129 dev_err(wusbhc->dev, "cannot set GTK for the host: %d\n",
130 result);
131
132 return result;
133}
134
135/**
136 * wusbhc_sec_stop - stop the security management process
137 * @wusbhc: the WUSB host controller
138 *
139 * Wait for any pending GTK rekeys to stop.
140 */
141void wusbhc_sec_stop(struct wusbhc *wusbhc)
142{
143 cancel_work_sync(&wusbhc->gtk_rekey_done_work);
144}
145
146
147/** @returns encryption type name */
148const char *wusb_et_name(u8 x)
149{
150 switch (x) {
151 case USB_ENC_TYPE_UNSECURE: return "unsecure";
152 case USB_ENC_TYPE_WIRED: return "wired";
153 case USB_ENC_TYPE_CCM_1: return "CCM-1";
154 case USB_ENC_TYPE_RSA_1: return "RSA-1";
155 default: return "unknown";
156 }
157}
158EXPORT_SYMBOL_GPL(wusb_et_name);
159
160/*
161 * Set the device encryption method
162 *
163 * We tell the device which encryption method to use; we do this when
164 * setting up the device's security.
165 */
166static int wusb_dev_set_encryption(struct usb_device *usb_dev, int value)
167{
168 int result;
169 struct device *dev = &usb_dev->dev;
170 struct wusb_dev *wusb_dev = usb_dev->wusb_dev;
171
172 if (value) {
173 value = wusb_dev->ccm1_etd.bEncryptionValue;
174 } else {
175 /* FIXME: should be wusb_dev->etd[UNSECURE].bEncryptionValue */
176 value = 0;
177 }
178 /* Set device's */
179 result = usb_control_msg(usb_dev, usb_sndctrlpipe(usb_dev, 0),
180 USB_REQ_SET_ENCRYPTION,
181 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
182 value, 0, NULL, 0, 1000 /* FIXME: arbitrary */);
183 if (result < 0)
184 dev_err(dev, "Can't set device's WUSB encryption to "
185 "%s (value %d): %d\n",
186 wusb_et_name(wusb_dev->ccm1_etd.bEncryptionType),
187 wusb_dev->ccm1_etd.bEncryptionValue, result);
188 return result;
189}
190
191/*
192 * Set the GTK to be used by a device.
193 *
194 * The device must be authenticated.
195 */
196static int wusb_dev_set_gtk(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev)
197{
198 struct usb_device *usb_dev = wusb_dev->usb_dev;
199
200 return usb_control_msg(
201 usb_dev, usb_sndctrlpipe(usb_dev, 0),
202 USB_REQ_SET_DESCRIPTOR,
203 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
204 USB_DT_KEY << 8 | wusbhc->gtk_index, 0,
205 &wusbhc->gtk.descr, wusbhc->gtk.descr.bLength,
206 1000);
207}
208
209
210/* FIXME: prototype for adding security */
211int wusb_dev_sec_add(struct wusbhc *wusbhc,
212 struct usb_device *usb_dev, struct wusb_dev *wusb_dev)
213{
214 int result, bytes, secd_size;
215 struct device *dev = &usb_dev->dev;
216 struct usb_security_descriptor secd;
217 const struct usb_encryption_descriptor *etd, *ccm1_etd = NULL;
218 void *secd_buf;
219 const void *itr, *top;
220 char buf[64];
221
222 d_fnstart(3, dev, "(usb_dev %p, wusb_dev %p)\n", usb_dev, wusb_dev);
223 result = usb_get_descriptor(usb_dev, USB_DT_SECURITY,
224 0, &secd, sizeof(secd));
225 if (result < sizeof(secd)) {
226 dev_err(dev, "Can't read security descriptor or "
227 "not enough data: %d\n", result);
228 goto error_secd;
229 }
230 secd_size = le16_to_cpu(secd.wTotalLength);
231 d_printf(5, dev, "got %d bytes of sec descriptor, total is %d\n",
232 result, secd_size);
233 secd_buf = kmalloc(secd_size, GFP_KERNEL);
234 if (secd_buf == NULL) {
235 dev_err(dev, "Can't allocate space for security descriptors\n");
236 goto error_secd_alloc;
237 }
238 result = usb_get_descriptor(usb_dev, USB_DT_SECURITY,
239 0, secd_buf, secd_size);
240 if (result < secd_size) {
241 dev_err(dev, "Can't read security descriptor or "
242 "not enough data: %d\n", result);
243 goto error_secd_all;
244 }
245 d_printf(5, dev, "got %d bytes of sec descriptors\n", result);
246 bytes = 0;
247 itr = secd_buf + sizeof(secd);
248 top = secd_buf + result;
249 while (itr < top) {
250 etd = itr;
251 if (top - itr < sizeof(*etd)) {
252 dev_err(dev, "BUG: bad device security descriptor; "
253 "not enough data (%zu vs %zu bytes left)\n",
254 top - itr, sizeof(*etd));
255 break;
256 }
257 if (etd->bLength < sizeof(*etd)) {
258 dev_err(dev, "BUG: bad device encryption descriptor; "
259 "descriptor is too short "
260 "(%u vs %zu needed)\n",
261 etd->bLength, sizeof(*etd));
262 break;
263 }
264 itr += etd->bLength;
265 bytes += snprintf(buf + bytes, sizeof(buf) - bytes,
266 "%s (0x%02x/%02x) ",
267 wusb_et_name(etd->bEncryptionType),
268 etd->bEncryptionValue, etd->bAuthKeyIndex);
269 if (etd->bEncryptionType == USB_ENC_TYPE_CCM_1)
270 ccm1_etd = etd;
271 }
272 /* This code only supports CCM1 as of now. */
273 /* FIXME: user has to choose which sec mode to use?
274 * In theory we want CCM */
275 if (ccm1_etd == NULL) {
276 dev_err(dev, "WUSB device doesn't support CCM1 encryption, "
277 "can't use!\n");
278 result = -EINVAL;
279 goto error_no_ccm1;
280 }
281 wusb_dev->ccm1_etd = *ccm1_etd;
282 dev_info(dev, "supported encryption: %s; using %s (0x%02x/%02x)\n",
283 buf, wusb_et_name(ccm1_etd->bEncryptionType),
284 ccm1_etd->bEncryptionValue, ccm1_etd->bAuthKeyIndex);
285 result = 0;
286 kfree(secd_buf);
287out:
288 d_fnend(3, dev, "(usb_dev %p, wusb_dev %p) = %d\n",
289 usb_dev, wusb_dev, result);
290 return result;
291
292
293error_no_ccm1:
294error_secd_all:
295 kfree(secd_buf);
296error_secd_alloc:
297error_secd:
298 goto out;
299}
300
301void wusb_dev_sec_rm(struct wusb_dev *wusb_dev)
302{
303 /* Nothing so far */
304}
305
306static void hs_printk(unsigned level, struct device *dev,
307 struct usb_handshake *hs)
308{
309 d_printf(level, dev,
310 " bMessageNumber: %u\n"
311 " bStatus: %u\n"
312 " tTKID: %02x %02x %02x\n"
313 " CDID: %02x %02x %02x %02x %02x %02x %02x %02x\n"
314 " %02x %02x %02x %02x %02x %02x %02x %02x\n"
315 " nonce: %02x %02x %02x %02x %02x %02x %02x %02x\n"
316 " %02x %02x %02x %02x %02x %02x %02x %02x\n"
317 " MIC: %02x %02x %02x %02x %02x %02x %02x %02x\n",
318 hs->bMessageNumber, hs->bStatus,
319 hs->tTKID[2], hs->tTKID[1], hs->tTKID[0],
320 hs->CDID[0], hs->CDID[1], hs->CDID[2], hs->CDID[3],
321 hs->CDID[4], hs->CDID[5], hs->CDID[6], hs->CDID[7],
322 hs->CDID[8], hs->CDID[9], hs->CDID[10], hs->CDID[11],
323 hs->CDID[12], hs->CDID[13], hs->CDID[14], hs->CDID[15],
324 hs->nonce[0], hs->nonce[1], hs->nonce[2], hs->nonce[3],
325 hs->nonce[4], hs->nonce[5], hs->nonce[6], hs->nonce[7],
326 hs->nonce[8], hs->nonce[9], hs->nonce[10], hs->nonce[11],
327 hs->nonce[12], hs->nonce[13], hs->nonce[14], hs->nonce[15],
328 hs->MIC[0], hs->MIC[1], hs->MIC[2], hs->MIC[3],
329 hs->MIC[4], hs->MIC[5], hs->MIC[6], hs->MIC[7]);
330}
331
332/**
333 * Update the address of an unauthenticated WUSB device
334 *
335 * Once we have successfully authenticated, we take it to addr0 state
336 * and then to a normal address.
337 *
338 * Before the device's address (as known by it) was usb_dev->devnum |
339 * 0x80 (unauthenticated address). With this we update it to usb_dev->devnum.
340 */
341static int wusb_dev_update_address(struct wusbhc *wusbhc,
342 struct wusb_dev *wusb_dev)
343{
344 int result = -ENOMEM;
345 struct usb_device *usb_dev = wusb_dev->usb_dev;
346 struct device *dev = &usb_dev->dev;
347 u8 new_address = wusb_dev->addr & 0x7F;
348
349 /* Set address 0 */
350 result = usb_control_msg(usb_dev, usb_sndctrlpipe(usb_dev, 0),
351 USB_REQ_SET_ADDRESS, 0,
352 0, 0, NULL, 0, 1000 /* FIXME: arbitrary */);
353 if (result < 0) {
354 dev_err(dev, "auth failed: can't set address 0: %d\n",
355 result);
356 goto error_addr0;
357 }
358 result = wusb_set_dev_addr(wusbhc, wusb_dev, 0);
359 if (result < 0)
360 goto error_addr0;
361 usb_ep0_reinit(usb_dev);
362
363 /* Set new (authenticated) address. */
364 result = usb_control_msg(usb_dev, usb_sndctrlpipe(usb_dev, 0),
365 USB_REQ_SET_ADDRESS, 0,
366 new_address, 0, NULL, 0,
367 1000 /* FIXME: arbitrary */);
368 if (result < 0) {
369 dev_err(dev, "auth failed: can't set address %u: %d\n",
370 new_address, result);
371 goto error_addr;
372 }
373 result = wusb_set_dev_addr(wusbhc, wusb_dev, new_address);
374 if (result < 0)
375 goto error_addr;
376 usb_ep0_reinit(usb_dev);
377 usb_dev->authenticated = 1;
378error_addr:
379error_addr0:
380 return result;
381}
382
383/*
384 *
385 *
386 */
387/* FIXME: split and cleanup */
388int wusb_dev_4way_handshake(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev,
389 struct wusb_ckhdid *ck)
390{
391 int result = -ENOMEM;
392 struct usb_device *usb_dev = wusb_dev->usb_dev;
393 struct device *dev = &usb_dev->dev;
394 u32 tkid;
395 __le32 tkid_le;
396 struct usb_handshake *hs;
397 struct aes_ccm_nonce ccm_n;
398 u8 mic[8];
399 struct wusb_keydvt_in keydvt_in;
400 struct wusb_keydvt_out keydvt_out;
401
402 hs = kzalloc(3*sizeof(hs[0]), GFP_KERNEL);
403 if (hs == NULL) {
404 dev_err(dev, "can't allocate handshake data\n");
405 goto error_kzalloc;
406 }
407
408 /* We need to turn encryption before beginning the 4way
409 * hshake (WUSB1.0[.3.2.2]) */
410 result = wusb_dev_set_encryption(usb_dev, 1);
411 if (result < 0)
412 goto error_dev_set_encryption;
413
414 tkid = wusbhc_next_tkid(wusbhc, wusb_dev);
415 tkid_le = cpu_to_le32(tkid);
416
417 hs[0].bMessageNumber = 1;
418 hs[0].bStatus = 0;
419 memcpy(hs[0].tTKID, &tkid_le, sizeof(hs[0].tTKID));
420 hs[0].bReserved = 0;
421 memcpy(hs[0].CDID, &wusb_dev->cdid, sizeof(hs[0].CDID));
422 get_random_bytes(&hs[0].nonce, sizeof(hs[0].nonce));
423 memset(hs[0].MIC, 0, sizeof(hs[0].MIC)); /* Per WUSB1.0[T7-22] */
424
425 d_printf(1, dev, "I: sending hs1:\n");
426 hs_printk(2, dev, &hs[0]);
427
428 result = usb_control_msg(
429 usb_dev, usb_sndctrlpipe(usb_dev, 0),
430 USB_REQ_SET_HANDSHAKE,
431 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
432 1, 0, &hs[0], sizeof(hs[0]), 1000 /* FIXME: arbitrary */);
433 if (result < 0) {
434 dev_err(dev, "Handshake1: request failed: %d\n", result);
435 goto error_hs1;
436 }
437
438 /* Handshake 2, from the device -- need to verify fields */
439 result = usb_control_msg(
440 usb_dev, usb_rcvctrlpipe(usb_dev, 0),
441 USB_REQ_GET_HANDSHAKE,
442 USB_DIR_IN | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
443 2, 0, &hs[1], sizeof(hs[1]), 1000 /* FIXME: arbitrary */);
444 if (result < 0) {
445 dev_err(dev, "Handshake2: request failed: %d\n", result);
446 goto error_hs2;
447 }
448 d_printf(1, dev, "got HS2:\n");
449 hs_printk(2, dev, &hs[1]);
450
451 result = -EINVAL;
452 if (hs[1].bMessageNumber != 2) {
453 dev_err(dev, "Handshake2 failed: bad message number %u\n",
454 hs[1].bMessageNumber);
455 goto error_hs2;
456 }
457 if (hs[1].bStatus != 0) {
458 dev_err(dev, "Handshake2 failed: bad status %u\n",
459 hs[1].bStatus);
460 goto error_hs2;
461 }
462 if (memcmp(hs[0].tTKID, hs[1].tTKID, sizeof(hs[0].tTKID))) {
463 dev_err(dev, "Handshake2 failed: TKID mismatch "
464 "(#1 0x%02x%02x%02x vs #2 0x%02x%02x%02x)\n",
465 hs[0].tTKID[0], hs[0].tTKID[1], hs[0].tTKID[2],
466 hs[1].tTKID[0], hs[1].tTKID[1], hs[1].tTKID[2]);
467 goto error_hs2;
468 }
469 if (memcmp(hs[0].CDID, hs[1].CDID, sizeof(hs[0].CDID))) {
470 dev_err(dev, "Handshake2 failed: CDID mismatch\n");
471 goto error_hs2;
472 }
473
474 /* Setup the CCM nonce */
475 memset(&ccm_n.sfn, 0, sizeof(ccm_n.sfn)); /* Per WUSB1.0[6.5.2] */
476 memcpy(ccm_n.tkid, &tkid_le, sizeof(ccm_n.tkid));
477 ccm_n.src_addr = wusbhc->uwb_rc->uwb_dev.dev_addr;
478 ccm_n.dest_addr.data[0] = wusb_dev->addr;
479 ccm_n.dest_addr.data[1] = 0;
480
481 /* Derive the KCK and PTK from CK, the CCM, H and D nonces */
482 memcpy(keydvt_in.hnonce, hs[0].nonce, sizeof(keydvt_in.hnonce));
483 memcpy(keydvt_in.dnonce, hs[1].nonce, sizeof(keydvt_in.dnonce));
484 result = wusb_key_derive(&keydvt_out, ck->data, &ccm_n, &keydvt_in);
485 if (result < 0) {
486 dev_err(dev, "Handshake2 failed: cannot derive keys: %d\n",
487 result);
488 goto error_hs2;
489 }
490 d_printf(2, dev, "KCK:\n");
491 d_dump(2, dev, keydvt_out.kck, sizeof(keydvt_out.kck));
492 d_printf(2, dev, "PTK:\n");
493 d_dump(2, dev, keydvt_out.ptk, sizeof(keydvt_out.ptk));
494
495 /* Compute MIC and verify it */
496 result = wusb_oob_mic(mic, keydvt_out.kck, &ccm_n, &hs[1]);
497 if (result < 0) {
498 dev_err(dev, "Handshake2 failed: cannot compute MIC: %d\n",
499 result);
500 goto error_hs2;
501 }
502
503 d_printf(2, dev, "MIC:\n");
504 d_dump(2, dev, mic, sizeof(mic));
505 if (memcmp(hs[1].MIC, mic, sizeof(hs[1].MIC))) {
506 dev_err(dev, "Handshake2 failed: MIC mismatch\n");
507 goto error_hs2;
508 }
509
510 /* Send Handshake3 */
511 hs[2].bMessageNumber = 3;
512 hs[2].bStatus = 0;
513 memcpy(hs[2].tTKID, &tkid_le, sizeof(hs[2].tTKID));
514 hs[2].bReserved = 0;
515 memcpy(hs[2].CDID, &wusb_dev->cdid, sizeof(hs[2].CDID));
516 memcpy(hs[2].nonce, hs[0].nonce, sizeof(hs[2].nonce));
517 result = wusb_oob_mic(hs[2].MIC, keydvt_out.kck, &ccm_n, &hs[2]);
518 if (result < 0) {
519 dev_err(dev, "Handshake3 failed: cannot compute MIC: %d\n",
520 result);
521 goto error_hs2;
522 }
523
524 d_printf(1, dev, "I: sending hs3:\n");
525 hs_printk(2, dev, &hs[2]);
526
527 result = usb_control_msg(
528 usb_dev, usb_sndctrlpipe(usb_dev, 0),
529 USB_REQ_SET_HANDSHAKE,
530 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
531 3, 0, &hs[2], sizeof(hs[2]), 1000 /* FIXME: arbitrary */);
532 if (result < 0) {
533 dev_err(dev, "Handshake3: request failed: %d\n", result);
534 goto error_hs3;
535 }
536
537 d_printf(1, dev, "I: turning on encryption on host for device\n");
538 d_dump(2, dev, keydvt_out.ptk, sizeof(keydvt_out.ptk));
539 result = wusbhc->set_ptk(wusbhc, wusb_dev->port_idx, tkid,
540 keydvt_out.ptk, sizeof(keydvt_out.ptk));
541 if (result < 0)
542 goto error_wusbhc_set_ptk;
543
544 d_printf(1, dev, "I: setting a GTK\n");
545 result = wusb_dev_set_gtk(wusbhc, wusb_dev);
546 if (result < 0) {
547 dev_err(dev, "Set GTK for device: request failed: %d\n",
548 result);
549 goto error_wusbhc_set_gtk;
550 }
551
552 /* Update the device's address from unauth to auth */
553 if (usb_dev->authenticated == 0) {
554 d_printf(1, dev, "I: updating addres to auth from non-auth\n");
555 result = wusb_dev_update_address(wusbhc, wusb_dev);
556 if (result < 0)
557 goto error_dev_update_address;
558 }
559 result = 0;
560 d_printf(1, dev, "I: 4way handshke done, device authenticated\n");
561
562error_dev_update_address:
563error_wusbhc_set_gtk:
564error_wusbhc_set_ptk:
565error_hs3:
566error_hs2:
567error_hs1:
568 memset(hs, 0, 3*sizeof(hs[0]));
569 memset(&keydvt_out, 0, sizeof(keydvt_out));
570 memset(&keydvt_in, 0, sizeof(keydvt_in));
571 memset(&ccm_n, 0, sizeof(ccm_n));
572 memset(mic, 0, sizeof(mic));
573 if (result < 0) {
574 /* error path */
575 wusb_dev_set_encryption(usb_dev, 0);
576 }
577error_dev_set_encryption:
578 kfree(hs);
579error_kzalloc:
580 return result;
581}
582
583/*
584 * Once all connected and authenticated devices have received the new
585 * GTK, switch the host to using it.
586 */
587static void wusbhc_gtk_rekey_done_work(struct work_struct *work)
588{
589 struct wusbhc *wusbhc = container_of(work, struct wusbhc, gtk_rekey_done_work);
590 size_t key_size = sizeof(wusbhc->gtk.data);
591
592 mutex_lock(&wusbhc->mutex);
593
594 if (--wusbhc->pending_set_gtks == 0)
595 wusbhc->set_gtk(wusbhc, wusbhc->gtk_tkid, &wusbhc->gtk.descr.bKeyData, key_size);
596
597 mutex_unlock(&wusbhc->mutex);
598}
599
600static void wusbhc_set_gtk_callback(struct urb *urb)
601{
602 struct wusbhc *wusbhc = urb->context;
603
604 queue_work(wusbd, &wusbhc->gtk_rekey_done_work);
605}
606
607/**
608 * wusbhc_gtk_rekey - generate and distribute a new GTK
609 * @wusbhc: the WUSB host controller
610 *
611 * Generate a new GTK and distribute it to all connected and
612 * authenticated devices. When all devices have the new GTK, the host
613 * starts using it.
614 *
615 * This must be called after every device disconnect (see [WUSB]
616 * section 6.2.11.2).
617 */
618void wusbhc_gtk_rekey(struct wusbhc *wusbhc)
619{
620 static const size_t key_size = sizeof(wusbhc->gtk.data);
621 int p;
622
623 wusbhc_generate_gtk(wusbhc);
624
625 for (p = 0; p < wusbhc->ports_max; p++) {
626 struct wusb_dev *wusb_dev;
627
628 wusb_dev = wusbhc->port[p].wusb_dev;
629 if (!wusb_dev || !wusb_dev->usb_dev | !wusb_dev->usb_dev->authenticated)
630 continue;
631
632 usb_fill_control_urb(wusb_dev->set_gtk_urb, wusb_dev->usb_dev,
633 usb_sndctrlpipe(wusb_dev->usb_dev, 0),
634 (void *)wusb_dev->set_gtk_req,
635 &wusbhc->gtk.descr, wusbhc->gtk.descr.bLength,
636 wusbhc_set_gtk_callback, wusbhc);
637 if (usb_submit_urb(wusb_dev->set_gtk_urb, GFP_KERNEL) == 0)
638 wusbhc->pending_set_gtks++;
639 }
640 if (wusbhc->pending_set_gtks == 0)
641 wusbhc->set_gtk(wusbhc, wusbhc->gtk_tkid, &wusbhc->gtk.descr.bKeyData, key_size);
642}