aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/usb/storage/alauda.c
diff options
context:
space:
mode:
authorMatthew Dharm <mdharm-usb@one-eyed-alien.net>2005-12-05 01:02:44 -0500
committerGreg Kroah-Hartman <gregkh@suse.de>2006-01-04 16:51:42 -0500
commite80b0fade09ef1ee67b0898d480d4c588f124d5f (patch)
treef521947191f0c659e0e48c429f5eef25968dffc7 /drivers/usb/storage/alauda.c
parenta6c976c6c4628ce0c9277c47e7545956d9d4f441 (diff)
[PATCH] USB Storage: add alauda support
This patch adds another usb-storage subdriver, which supports two fairly old dual-XD/SmartMedia reader-writers (USB1.1 devices). This driver was written by Daniel Drake <dsd@gentoo.org> -- he notes that he wrote this driver without specs, however a vendor-supplied GPL driver for the previous generation of products ("sma03") did prove to be quite useful, as did the sddr09 driver which also has to deal with low-level physical block layout on SmartMedia. The original patch has been reformed by me, as it clashed with the libusual patches. We really need to consolidate some of this common SmartMedia code, and get together with the MTD guys to share it with them as well. Signed-off-by: Daniel Drake <dsd@gentoo.org> Signed-off-by: Matthew Dharm <mdharm-usb@one-eyed-alien.net> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'drivers/usb/storage/alauda.c')
-rw-r--r--drivers/usb/storage/alauda.c1119
1 files changed, 1119 insertions, 0 deletions
diff --git a/drivers/usb/storage/alauda.c b/drivers/usb/storage/alauda.c
new file mode 100644
index 000000000000..4d3cbb12b713
--- /dev/null
+++ b/drivers/usb/storage/alauda.c
@@ -0,0 +1,1119 @@
1/*
2 * Driver for Alauda-based card readers
3 *
4 * Current development and maintenance by:
5 * (c) 2005 Daniel Drake <dsd@gentoo.org>
6 *
7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
8 *
9 * Alauda implements a vendor-specific command set to access two media reader
10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
11 * which are accepted by these devices.
12 *
13 * The driver was developed through reverse-engineering, with the help of the
14 * sddr09 driver which has many similarities, and with some help from the
15 * (very old) vendor-supplied GPL sma03 driver.
16 *
17 * For protocol info, see http://alauda.sourceforge.net
18 *
19 * This program is free software; you can redistribute it and/or modify it
20 * under the terms of the GNU General Public License as published by the
21 * Free Software Foundation; either version 2, or (at your option) any
22 * later version.
23 *
24 * This program is distributed in the hope that it will be useful, but
25 * WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <scsi/scsi.h>
35#include <scsi/scsi_cmnd.h>
36#include <scsi/scsi_device.h>
37
38#include "usb.h"
39#include "transport.h"
40#include "protocol.h"
41#include "debug.h"
42#include "alauda.h"
43
44#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
45#define LSB_of(s) ((s)&0xFF)
46#define MSB_of(s) ((s)>>8)
47
48#define MEDIA_PORT(us) us->srb->device->lun
49#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
50
51#define PBA_LO(pba) ((pba & 0xF) << 5)
52#define PBA_HI(pba) (pba >> 3)
53#define PBA_ZONE(pba) (pba >> 11)
54
55/*
56 * Media handling
57 */
58
59struct alauda_card_info {
60 unsigned char id; /* id byte */
61 unsigned char chipshift; /* 1<<cs bytes total capacity */
62 unsigned char pageshift; /* 1<<ps bytes in a page */
63 unsigned char blockshift; /* 1<<bs pages per block */
64 unsigned char zoneshift; /* 1<<zs blocks per zone */
65};
66
67static struct alauda_card_info alauda_card_ids[] = {
68 /* NAND flash */
69 { 0x6e, 20, 8, 4, 8}, /* 1 MB */
70 { 0xe8, 20, 8, 4, 8}, /* 1 MB */
71 { 0xec, 20, 8, 4, 8}, /* 1 MB */
72 { 0x64, 21, 8, 4, 9}, /* 2 MB */
73 { 0xea, 21, 8, 4, 9}, /* 2 MB */
74 { 0x6b, 22, 9, 4, 9}, /* 4 MB */
75 { 0xe3, 22, 9, 4, 9}, /* 4 MB */
76 { 0xe5, 22, 9, 4, 9}, /* 4 MB */
77 { 0xe6, 23, 9, 4, 10}, /* 8 MB */
78 { 0x73, 24, 9, 5, 10}, /* 16 MB */
79 { 0x75, 25, 9, 5, 10}, /* 32 MB */
80 { 0x76, 26, 9, 5, 10}, /* 64 MB */
81 { 0x79, 27, 9, 5, 10}, /* 128 MB */
82 { 0x71, 28, 9, 5, 10}, /* 256 MB */
83
84 /* MASK ROM */
85 { 0x5d, 21, 9, 4, 8}, /* 2 MB */
86 { 0xd5, 22, 9, 4, 9}, /* 4 MB */
87 { 0xd6, 23, 9, 4, 10}, /* 8 MB */
88 { 0x57, 24, 9, 4, 11}, /* 16 MB */
89 { 0x58, 25, 9, 4, 12}, /* 32 MB */
90 { 0,}
91};
92
93static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
94 int i;
95
96 for (i = 0; alauda_card_ids[i].id != 0; i++)
97 if (alauda_card_ids[i].id == id)
98 return &(alauda_card_ids[i]);
99 return NULL;
100}
101
102/*
103 * ECC computation.
104 */
105
106static unsigned char parity[256];
107static unsigned char ecc2[256];
108
109static void nand_init_ecc(void) {
110 int i, j, a;
111
112 parity[0] = 0;
113 for (i = 1; i < 256; i++)
114 parity[i] = (parity[i&(i-1)] ^ 1);
115
116 for (i = 0; i < 256; i++) {
117 a = 0;
118 for (j = 0; j < 8; j++) {
119 if (i & (1<<j)) {
120 if ((j & 1) == 0)
121 a ^= 0x04;
122 if ((j & 2) == 0)
123 a ^= 0x10;
124 if ((j & 4) == 0)
125 a ^= 0x40;
126 }
127 }
128 ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
129 }
130}
131
132/* compute 3-byte ecc on 256 bytes */
133static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
134 int i, j, a;
135 unsigned char par, bit, bits[8];
136
137 par = 0;
138 for (j = 0; j < 8; j++)
139 bits[j] = 0;
140
141 /* collect 16 checksum bits */
142 for (i = 0; i < 256; i++) {
143 par ^= data[i];
144 bit = parity[data[i]];
145 for (j = 0; j < 8; j++)
146 if ((i & (1<<j)) == 0)
147 bits[j] ^= bit;
148 }
149
150 /* put 4+4+4 = 12 bits in the ecc */
151 a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
152 ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
153
154 a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
155 ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
156
157 ecc[2] = ecc2[par];
158}
159
160static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
161 return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
162}
163
164static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
165 memcpy(data, ecc, 3);
166}
167
168/*
169 * Alauda driver
170 */
171
172/*
173 * Forget our PBA <---> LBA mappings for a particular port
174 */
175static void alauda_free_maps (struct alauda_media_info *media_info)
176{
177 unsigned int shift = media_info->zoneshift
178 + media_info->blockshift + media_info->pageshift;
179 unsigned int num_zones = media_info->capacity >> shift;
180 unsigned int i;
181
182 if (media_info->lba_to_pba != NULL)
183 for (i = 0; i < num_zones; i++) {
184 kfree(media_info->lba_to_pba[i]);
185 media_info->lba_to_pba[i] = NULL;
186 }
187
188 if (media_info->pba_to_lba != NULL)
189 for (i = 0; i < num_zones; i++) {
190 kfree(media_info->pba_to_lba[i]);
191 media_info->pba_to_lba[i] = NULL;
192 }
193}
194
195/*
196 * Returns 2 bytes of status data
197 * The first byte describes media status, and second byte describes door status
198 */
199static int alauda_get_media_status(struct us_data *us, unsigned char *data)
200{
201 int rc;
202 unsigned char command;
203
204 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
205 command = ALAUDA_GET_XD_MEDIA_STATUS;
206 else
207 command = ALAUDA_GET_SM_MEDIA_STATUS;
208
209 rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
210 command, 0xc0, 0, 1, data, 2);
211
212 US_DEBUGP("alauda_get_media_status: Media status %02X %02X\n",
213 data[0], data[1]);
214
215 return rc;
216}
217
218/*
219 * Clears the "media was changed" bit so that we know when it changes again
220 * in the future.
221 */
222static int alauda_ack_media(struct us_data *us)
223{
224 unsigned char command;
225
226 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
227 command = ALAUDA_ACK_XD_MEDIA_CHANGE;
228 else
229 command = ALAUDA_ACK_SM_MEDIA_CHANGE;
230
231 return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
232 command, 0x40, 0, 1, NULL, 0);
233}
234
235/*
236 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
237 * and some other details.
238 */
239static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
240{
241 unsigned char command;
242
243 if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
244 command = ALAUDA_GET_XD_MEDIA_SIG;
245 else
246 command = ALAUDA_GET_SM_MEDIA_SIG;
247
248 return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
249 command, 0xc0, 0, 0, data, 4);
250}
251
252/*
253 * Resets the media status (but not the whole device?)
254 */
255static int alauda_reset_media(struct us_data *us)
256{
257 unsigned char *command = us->iobuf;
258
259 memset(command, 0, 9);
260 command[0] = ALAUDA_BULK_CMD;
261 command[1] = ALAUDA_BULK_RESET_MEDIA;
262 command[8] = MEDIA_PORT(us);
263
264 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
265 command, 9, NULL);
266}
267
268/*
269 * Examines the media and deduces capacity, etc.
270 */
271static int alauda_init_media(struct us_data *us)
272{
273 unsigned char *data = us->iobuf;
274 int ready = 0;
275 struct alauda_card_info *media_info;
276 unsigned int num_zones;
277
278 while (ready == 0) {
279 msleep(20);
280
281 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
282 return USB_STOR_TRANSPORT_ERROR;
283
284 if (data[0] & 0x10)
285 ready = 1;
286 }
287
288 US_DEBUGP("alauda_init_media: We are ready for action!\n");
289
290 if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
291 return USB_STOR_TRANSPORT_ERROR;
292
293 msleep(10);
294
295 if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
296 return USB_STOR_TRANSPORT_ERROR;
297
298 if (data[0] != 0x14) {
299 US_DEBUGP("alauda_init_media: Media not ready after ack\n");
300 return USB_STOR_TRANSPORT_ERROR;
301 }
302
303 if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
304 return USB_STOR_TRANSPORT_ERROR;
305
306 US_DEBUGP("alauda_init_media: Media signature: %02X %02X %02X %02X\n",
307 data[0], data[1], data[2], data[3]);
308 media_info = alauda_card_find_id(data[1]);
309 if (media_info == NULL) {
310 printk("alauda_init_media: Unrecognised media signature: "
311 "%02X %02X %02X %02X\n",
312 data[0], data[1], data[2], data[3]);
313 return USB_STOR_TRANSPORT_ERROR;
314 }
315
316 MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
317 US_DEBUGP("Found media with capacity: %ldMB\n",
318 MEDIA_INFO(us).capacity >> 20);
319
320 MEDIA_INFO(us).pageshift = media_info->pageshift;
321 MEDIA_INFO(us).blockshift = media_info->blockshift;
322 MEDIA_INFO(us).zoneshift = media_info->zoneshift;
323
324 MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
325 MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
326 MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
327
328 MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
329 MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
330
331 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
332 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
333 MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
334 MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
335
336 if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
337 return USB_STOR_TRANSPORT_ERROR;
338
339 return USB_STOR_TRANSPORT_GOOD;
340}
341
342/*
343 * Examines the media status and does the right thing when the media has gone,
344 * appeared, or changed.
345 */
346static int alauda_check_media(struct us_data *us)
347{
348 struct alauda_info *info = (struct alauda_info *) us->extra;
349 unsigned char status[2];
350 int rc;
351
352 rc = alauda_get_media_status(us, status);
353
354 /* Check for no media or door open */
355 if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
356 || ((status[1] & 0x01) == 0)) {
357 US_DEBUGP("alauda_check_media: No media, or door open\n");
358 alauda_free_maps(&MEDIA_INFO(us));
359 info->sense_key = 0x02;
360 info->sense_asc = 0x3A;
361 info->sense_ascq = 0x00;
362 return USB_STOR_TRANSPORT_FAILED;
363 }
364
365 /* Check for media change */
366 if (status[0] & 0x08) {
367 US_DEBUGP("alauda_check_media: Media change detected\n");
368 alauda_free_maps(&MEDIA_INFO(us));
369 alauda_init_media(us);
370
371 info->sense_key = UNIT_ATTENTION;
372 info->sense_asc = 0x28;
373 info->sense_ascq = 0x00;
374 return USB_STOR_TRANSPORT_FAILED;
375 }
376
377 return USB_STOR_TRANSPORT_GOOD;
378}
379
380/*
381 * Checks the status from the 2nd status register
382 * Returns 3 bytes of status data, only the first is known
383 */
384static int alauda_check_status2(struct us_data *us)
385{
386 int rc;
387 unsigned char command[] = {
388 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
389 0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
390 };
391 unsigned char data[3];
392
393 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
394 command, 9, NULL);
395 if (rc != USB_STOR_XFER_GOOD)
396 return rc;
397
398 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
399 data, 3, NULL);
400 if (rc != USB_STOR_XFER_GOOD)
401 return rc;
402
403 US_DEBUGP("alauda_check_status2: %02X %02X %02X\n", data[0], data[1], data[2]);
404 if (data[0] & ALAUDA_STATUS_ERROR)
405 return USB_STOR_XFER_ERROR;
406
407 return USB_STOR_XFER_GOOD;
408}
409
410/*
411 * Gets the redundancy data for the first page of a PBA
412 * Returns 16 bytes.
413 */
414static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
415{
416 int rc;
417 unsigned char command[] = {
418 ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
419 PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
420 };
421
422 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
423 command, 9, NULL);
424 if (rc != USB_STOR_XFER_GOOD)
425 return rc;
426
427 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
428 data, 16, NULL);
429}
430
431/*
432 * Finds the first unused PBA in a zone
433 * Returns the absolute PBA of an unused PBA, or 0 if none found.
434 */
435static u16 alauda_find_unused_pba(struct alauda_media_info *info,
436 unsigned int zone)
437{
438 u16 *pba_to_lba = info->pba_to_lba[zone];
439 unsigned int i;
440
441 for (i = 0; i < info->zonesize; i++)
442 if (pba_to_lba[i] == UNDEF)
443 return (zone << info->zoneshift) + i;
444
445 return 0;
446}
447
448/*
449 * Reads the redundancy data for all PBA's in a zone
450 * Produces lba <--> pba mappings
451 */
452static int alauda_read_map(struct us_data *us, unsigned int zone)
453{
454 unsigned char *data = us->iobuf;
455 int result;
456 int i, j;
457 unsigned int zonesize = MEDIA_INFO(us).zonesize;
458 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
459 unsigned int lba_offset, lba_real, blocknum;
460 unsigned int zone_base_lba = zone * uzonesize;
461 unsigned int zone_base_pba = zone * zonesize;
462 u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
463 u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
464 if (lba_to_pba == NULL || pba_to_lba == NULL) {
465 result = USB_STOR_TRANSPORT_ERROR;
466 goto error;
467 }
468
469 US_DEBUGP("alauda_read_map: Mapping blocks for zone %d\n", zone);
470
471 /* 1024 PBA's per zone */
472 for (i = 0; i < zonesize; i++)
473 lba_to_pba[i] = pba_to_lba[i] = UNDEF;
474
475 for (i = 0; i < zonesize; i++) {
476 blocknum = zone_base_pba + i;
477
478 result = alauda_get_redu_data(us, blocknum, data);
479 if (result != USB_STOR_XFER_GOOD) {
480 result = USB_STOR_TRANSPORT_ERROR;
481 goto error;
482 }
483
484 /* special PBAs have control field 0^16 */
485 for (j = 0; j < 16; j++)
486 if (data[j] != 0)
487 goto nonz;
488 pba_to_lba[i] = UNUSABLE;
489 US_DEBUGP("alauda_read_map: PBA %d has no logical mapping\n", blocknum);
490 continue;
491
492 nonz:
493 /* unwritten PBAs have control field FF^16 */
494 for (j = 0; j < 16; j++)
495 if (data[j] != 0xff)
496 goto nonff;
497 continue;
498
499 nonff:
500 /* normal PBAs start with six FFs */
501 if (j < 6) {
502 US_DEBUGP("alauda_read_map: PBA %d has no logical mapping: "
503 "reserved area = %02X%02X%02X%02X "
504 "data status %02X block status %02X\n",
505 blocknum, data[0], data[1], data[2], data[3],
506 data[4], data[5]);
507 pba_to_lba[i] = UNUSABLE;
508 continue;
509 }
510
511 if ((data[6] >> 4) != 0x01) {
512 US_DEBUGP("alauda_read_map: PBA %d has invalid address "
513 "field %02X%02X/%02X%02X\n",
514 blocknum, data[6], data[7], data[11], data[12]);
515 pba_to_lba[i] = UNUSABLE;
516 continue;
517 }
518
519 /* check even parity */
520 if (parity[data[6] ^ data[7]]) {
521 printk("alauda_read_map: Bad parity in LBA for block %d"
522 " (%02X %02X)\n", i, data[6], data[7]);
523 pba_to_lba[i] = UNUSABLE;
524 continue;
525 }
526
527 lba_offset = short_pack(data[7], data[6]);
528 lba_offset = (lba_offset & 0x07FF) >> 1;
529 lba_real = lba_offset + zone_base_lba;
530
531 /*
532 * Every 1024 physical blocks ("zone"), the LBA numbers
533 * go back to zero, but are within a higher block of LBA's.
534 * Also, there is a maximum of 1000 LBA's per zone.
535 * In other words, in PBA 1024-2047 you will find LBA 0-999
536 * which are really LBA 1000-1999. This allows for 24 bad
537 * or special physical blocks per zone.
538 */
539
540 if (lba_offset >= uzonesize) {
541 printk("alauda_read_map: Bad low LBA %d for block %d\n",
542 lba_real, blocknum);
543 continue;
544 }
545
546 if (lba_to_pba[lba_offset] != UNDEF) {
547 printk("alauda_read_map: LBA %d seen for PBA %d and %d\n",
548 lba_real, lba_to_pba[lba_offset], blocknum);
549 continue;
550 }
551
552 pba_to_lba[i] = lba_real;
553 lba_to_pba[lba_offset] = blocknum;
554 continue;
555 }
556
557 MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
558 MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
559 result = 0;
560 goto out;
561
562error:
563 kfree(lba_to_pba);
564 kfree(pba_to_lba);
565out:
566 return result;
567}
568
569/*
570 * Checks to see whether we have already mapped a certain zone
571 * If we haven't, the map is generated
572 */
573static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
574{
575 if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
576 || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
577 alauda_read_map(us, zone);
578}
579
580/*
581 * Erases an entire block
582 */
583static int alauda_erase_block(struct us_data *us, u16 pba)
584{
585 int rc;
586 unsigned char command[] = {
587 ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
588 PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
589 };
590 unsigned char buf[2];
591
592 US_DEBUGP("alauda_erase_block: Erasing PBA %d\n", pba);
593
594 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
595 command, 9, NULL);
596 if (rc != USB_STOR_XFER_GOOD)
597 return rc;
598
599 rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
600 buf, 2, NULL);
601 if (rc != USB_STOR_XFER_GOOD)
602 return rc;
603
604 US_DEBUGP("alauda_erase_block: Erase result: %02X %02X\n",
605 buf[0], buf[1]);
606 return rc;
607}
608
609/*
610 * Reads data from a certain offset page inside a PBA, including interleaved
611 * redundancy data. Returns (pagesize+64)*pages bytes in data.
612 */
613static int alauda_read_block_raw(struct us_data *us, u16 pba,
614 unsigned int page, unsigned int pages, unsigned char *data)
615{
616 int rc;
617 unsigned char command[] = {
618 ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
619 PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
620 };
621
622 US_DEBUGP("alauda_read_block: pba %d page %d count %d\n",
623 pba, page, pages);
624
625 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
626 command, 9, NULL);
627 if (rc != USB_STOR_XFER_GOOD)
628 return rc;
629
630 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
631 data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
632}
633
634/*
635 * Reads data from a certain offset page inside a PBA, excluding redundancy
636 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
637 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
638 * trailing bytes outside this function.
639 */
640static int alauda_read_block(struct us_data *us, u16 pba,
641 unsigned int page, unsigned int pages, unsigned char *data)
642{
643 int i, rc;
644 unsigned int pagesize = MEDIA_INFO(us).pagesize;
645
646 rc = alauda_read_block_raw(us, pba, page, pages, data);
647 if (rc != USB_STOR_XFER_GOOD)
648 return rc;
649
650 /* Cut out the redundancy data */
651 for (i = 0; i < pages; i++) {
652 int dest_offset = i * pagesize;
653 int src_offset = i * (pagesize + 64);
654 memmove(data + dest_offset, data + src_offset, pagesize);
655 }
656
657 return rc;
658}
659
660/*
661 * Writes an entire block of data and checks status after write.
662 * Redundancy data must be already included in data. Data should be
663 * (pagesize+64)*blocksize bytes in length.
664 */
665static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
666{
667 int rc;
668 struct alauda_info *info = (struct alauda_info *) us->extra;
669 unsigned char command[] = {
670 ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
671 PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
672 };
673
674 US_DEBUGP("alauda_write_block: pba %d\n", pba);
675
676 rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
677 command, 9, NULL);
678 if (rc != USB_STOR_XFER_GOOD)
679 return rc;
680
681 rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
682 (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
683 NULL);
684 if (rc != USB_STOR_XFER_GOOD)
685 return rc;
686
687 return alauda_check_status2(us);
688}
689
690/*
691 * Write some data to a specific LBA.
692 */
693static int alauda_write_lba(struct us_data *us, u16 lba,
694 unsigned int page, unsigned int pages,
695 unsigned char *ptr, unsigned char *blockbuffer)
696{
697 u16 pba, lbap, new_pba;
698 unsigned char *bptr, *cptr, *xptr;
699 unsigned char ecc[3];
700 int i, result;
701 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
702 unsigned int zonesize = MEDIA_INFO(us).zonesize;
703 unsigned int pagesize = MEDIA_INFO(us).pagesize;
704 unsigned int blocksize = MEDIA_INFO(us).blocksize;
705 unsigned int lba_offset = lba % uzonesize;
706 unsigned int new_pba_offset;
707 unsigned int zone = lba / uzonesize;
708
709 alauda_ensure_map_for_zone(us, zone);
710
711 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
712 if (pba == 1) {
713 /* Maybe it is impossible to write to PBA 1.
714 Fake success, but don't do anything. */
715 printk("alauda_write_lba: avoid writing to pba 1\n");
716 return USB_STOR_TRANSPORT_GOOD;
717 }
718
719 new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
720 if (!new_pba) {
721 printk("alauda_write_lba: Out of unused blocks\n");
722 return USB_STOR_TRANSPORT_ERROR;
723 }
724
725 /* read old contents */
726 if (pba != UNDEF) {
727 result = alauda_read_block_raw(us, pba, 0,
728 blocksize, blockbuffer);
729 if (result != USB_STOR_XFER_GOOD)
730 return result;
731 } else {
732 memset(blockbuffer, 0, blocksize * (pagesize + 64));
733 }
734
735 lbap = (lba_offset << 1) | 0x1000;
736 if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
737 lbap ^= 1;
738
739 /* check old contents and fill lba */
740 for (i = 0; i < blocksize; i++) {
741 bptr = blockbuffer + (i * (pagesize + 64));
742 cptr = bptr + pagesize;
743 nand_compute_ecc(bptr, ecc);
744 if (!nand_compare_ecc(cptr+13, ecc)) {
745 US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
746 i, pba);
747 nand_store_ecc(cptr+13, ecc);
748 }
749 nand_compute_ecc(bptr + (pagesize / 2), ecc);
750 if (!nand_compare_ecc(cptr+8, ecc)) {
751 US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
752 i, pba);
753 nand_store_ecc(cptr+8, ecc);
754 }
755 cptr[6] = cptr[11] = MSB_of(lbap);
756 cptr[7] = cptr[12] = LSB_of(lbap);
757 }
758
759 /* copy in new stuff and compute ECC */
760 xptr = ptr;
761 for (i = page; i < page+pages; i++) {
762 bptr = blockbuffer + (i * (pagesize + 64));
763 cptr = bptr + pagesize;
764 memcpy(bptr, xptr, pagesize);
765 xptr += pagesize;
766 nand_compute_ecc(bptr, ecc);
767 nand_store_ecc(cptr+13, ecc);
768 nand_compute_ecc(bptr + (pagesize / 2), ecc);
769 nand_store_ecc(cptr+8, ecc);
770 }
771
772 result = alauda_write_block(us, new_pba, blockbuffer);
773 if (result != USB_STOR_XFER_GOOD)
774 return result;
775
776 new_pba_offset = new_pba - (zone * zonesize);
777 MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
778 MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
779 US_DEBUGP("alauda_write_lba: Remapped LBA %d to PBA %d\n",
780 lba, new_pba);
781
782 if (pba != UNDEF) {
783 unsigned int pba_offset = pba - (zone * zonesize);
784 result = alauda_erase_block(us, pba);
785 if (result != USB_STOR_XFER_GOOD)
786 return result;
787 MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
788 }
789
790 return USB_STOR_TRANSPORT_GOOD;
791}
792
793/*
794 * Read data from a specific sector address
795 */
796static int alauda_read_data(struct us_data *us, unsigned long address,
797 unsigned int sectors)
798{
799 unsigned char *buffer;
800 u16 lba, max_lba;
801 unsigned int page, len, index, offset;
802 unsigned int blockshift = MEDIA_INFO(us).blockshift;
803 unsigned int pageshift = MEDIA_INFO(us).pageshift;
804 unsigned int blocksize = MEDIA_INFO(us).blocksize;
805 unsigned int pagesize = MEDIA_INFO(us).pagesize;
806 unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
807 int result;
808
809 /*
810 * Since we only read in one block at a time, we have to create
811 * a bounce buffer and move the data a piece at a time between the
812 * bounce buffer and the actual transfer buffer.
813 * We make this buffer big enough to hold temporary redundancy data,
814 * which we use when reading the data blocks.
815 */
816
817 len = min(sectors, blocksize) * (pagesize + 64);
818 buffer = kmalloc(len, GFP_NOIO);
819 if (buffer == NULL) {
820 printk("alauda_read_data: Out of memory\n");
821 return USB_STOR_TRANSPORT_ERROR;
822 }
823
824 /* Figure out the initial LBA and page */
825 lba = address >> blockshift;
826 page = (address & MEDIA_INFO(us).blockmask);
827 max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
828
829 result = USB_STOR_TRANSPORT_GOOD;
830 index = offset = 0;
831
832 while (sectors > 0) {
833 unsigned int zone = lba / uzonesize; /* integer division */
834 unsigned int lba_offset = lba - (zone * uzonesize);
835 unsigned int pages;
836 u16 pba;
837 alauda_ensure_map_for_zone(us, zone);
838
839 /* Not overflowing capacity? */
840 if (lba >= max_lba) {
841 US_DEBUGP("Error: Requested lba %u exceeds "
842 "maximum %u\n", lba, max_lba);
843 result = USB_STOR_TRANSPORT_ERROR;
844 break;
845 }
846
847 /* Find number of pages we can read in this block */
848 pages = min(sectors, blocksize - page);
849 len = pages << pageshift;
850
851 /* Find where this lba lives on disk */
852 pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
853
854 if (pba == UNDEF) { /* this lba was never written */
855 US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
856 pages, lba, page);
857
858 /* This is not really an error. It just means
859 that the block has never been written.
860 Instead of returning USB_STOR_TRANSPORT_ERROR
861 it is better to return all zero data. */
862
863 memset(buffer, 0, len);
864 } else {
865 US_DEBUGP("Read %d pages, from PBA %d"
866 " (LBA %d) page %d\n",
867 pages, pba, lba, page);
868
869 result = alauda_read_block(us, pba, page, pages, buffer);
870 if (result != USB_STOR_TRANSPORT_GOOD)
871 break;
872 }
873
874 /* Store the data in the transfer buffer */
875 usb_stor_access_xfer_buf(buffer, len, us->srb,
876 &index, &offset, TO_XFER_BUF);
877
878 page = 0;
879 lba++;
880 sectors -= pages;
881 }
882
883 kfree(buffer);
884 return result;
885}
886
887/*
888 * Write data to a specific sector address
889 */
890static int alauda_write_data(struct us_data *us, unsigned long address,
891 unsigned int sectors)
892{
893 unsigned char *buffer, *blockbuffer;
894 unsigned int page, len, index, offset;
895 unsigned int blockshift = MEDIA_INFO(us).blockshift;
896 unsigned int pageshift = MEDIA_INFO(us).pageshift;
897 unsigned int blocksize = MEDIA_INFO(us).blocksize;
898 unsigned int pagesize = MEDIA_INFO(us).pagesize;
899 u16 lba, max_lba;
900 int result;
901
902 /*
903 * Since we don't write the user data directly to the device,
904 * we have to create a bounce buffer and move the data a piece
905 * at a time between the bounce buffer and the actual transfer buffer.
906 */
907
908 len = min(sectors, blocksize) * pagesize;
909 buffer = kmalloc(len, GFP_NOIO);
910 if (buffer == NULL) {
911 printk("alauda_write_data: Out of memory\n");
912 return USB_STOR_TRANSPORT_ERROR;
913 }
914
915 /*
916 * We also need a temporary block buffer, where we read in the old data,
917 * overwrite parts with the new data, and manipulate the redundancy data
918 */
919 blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
920 if (blockbuffer == NULL) {
921 printk("alauda_write_data: Out of memory\n");
922 kfree(buffer);
923 return USB_STOR_TRANSPORT_ERROR;
924 }
925
926 /* Figure out the initial LBA and page */
927 lba = address >> blockshift;
928 page = (address & MEDIA_INFO(us).blockmask);
929 max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
930
931 result = USB_STOR_TRANSPORT_GOOD;
932 index = offset = 0;
933
934 while (sectors > 0) {
935 /* Write as many sectors as possible in this block */
936 unsigned int pages = min(sectors, blocksize - page);
937 len = pages << pageshift;
938
939 /* Not overflowing capacity? */
940 if (lba >= max_lba) {
941 US_DEBUGP("alauda_write_data: Requested lba %u exceeds "
942 "maximum %u\n", lba, max_lba);
943 result = USB_STOR_TRANSPORT_ERROR;
944 break;
945 }
946
947 /* Get the data from the transfer buffer */
948 usb_stor_access_xfer_buf(buffer, len, us->srb,
949 &index, &offset, FROM_XFER_BUF);
950
951 result = alauda_write_lba(us, lba, page, pages, buffer,
952 blockbuffer);
953 if (result != USB_STOR_TRANSPORT_GOOD)
954 break;
955
956 page = 0;
957 lba++;
958 sectors -= pages;
959 }
960
961 kfree(buffer);
962 kfree(blockbuffer);
963 return result;
964}
965
966/*
967 * Our interface with the rest of the world
968 */
969
970static void alauda_info_destructor(void *extra)
971{
972 struct alauda_info *info = (struct alauda_info *) extra;
973 int port;
974
975 if (!info)
976 return;
977
978 for (port = 0; port < 2; port++) {
979 struct alauda_media_info *media_info = &info->port[port];
980
981 alauda_free_maps(media_info);
982 kfree(media_info->lba_to_pba);
983 kfree(media_info->pba_to_lba);
984 }
985}
986
987/*
988 * Initialize alauda_info struct and find the data-write endpoint
989 */
990int init_alauda(struct us_data *us)
991{
992 struct alauda_info *info;
993 struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
994 nand_init_ecc();
995
996 us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
997 if (!us->extra) {
998 US_DEBUGP("init_alauda: Gah! Can't allocate storage for"
999 "alauda info struct!\n");
1000 return USB_STOR_TRANSPORT_ERROR;
1001 }
1002 info = (struct alauda_info *) us->extra;
1003 us->extra_destructor = alauda_info_destructor;
1004
1005 info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1006 altsetting->endpoint[0].desc.bEndpointAddress
1007 & USB_ENDPOINT_NUMBER_MASK);
1008
1009 return USB_STOR_TRANSPORT_GOOD;
1010}
1011
1012int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1013{
1014 int rc;
1015 struct alauda_info *info = (struct alauda_info *) us->extra;
1016 unsigned char *ptr = us->iobuf;
1017 static unsigned char inquiry_response[36] = {
1018 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1019 };
1020
1021 if (srb->cmnd[0] == INQUIRY) {
1022 US_DEBUGP("alauda_transport: INQUIRY. "
1023 "Returning bogus response.\n");
1024 memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1025 fill_inquiry_response(us, ptr, 36);
1026 return USB_STOR_TRANSPORT_GOOD;
1027 }
1028
1029 if (srb->cmnd[0] == TEST_UNIT_READY) {
1030 US_DEBUGP("alauda_transport: TEST_UNIT_READY.\n");
1031 return alauda_check_media(us);
1032 }
1033
1034 if (srb->cmnd[0] == READ_CAPACITY) {
1035 unsigned int num_zones;
1036 unsigned long capacity;
1037
1038 rc = alauda_check_media(us);
1039 if (rc != USB_STOR_TRANSPORT_GOOD)
1040 return rc;
1041
1042 num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1043 + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1044
1045 capacity = num_zones * MEDIA_INFO(us).uzonesize
1046 * MEDIA_INFO(us).blocksize;
1047
1048 /* Report capacity and page size */
1049 ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1050 ((__be32 *) ptr)[1] = cpu_to_be32(512);
1051
1052 usb_stor_set_xfer_buf(ptr, 8, srb);
1053 return USB_STOR_TRANSPORT_GOOD;
1054 }
1055
1056 if (srb->cmnd[0] == READ_10) {
1057 unsigned int page, pages;
1058
1059 rc = alauda_check_media(us);
1060 if (rc != USB_STOR_TRANSPORT_GOOD)
1061 return rc;
1062
1063 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1064 page <<= 16;
1065 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1066 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1067
1068 US_DEBUGP("alauda_transport: READ_10: page %d pagect %d\n",
1069 page, pages);
1070
1071 return alauda_read_data(us, page, pages);
1072 }
1073
1074 if (srb->cmnd[0] == WRITE_10) {
1075 unsigned int page, pages;
1076
1077 rc = alauda_check_media(us);
1078 if (rc != USB_STOR_TRANSPORT_GOOD)
1079 return rc;
1080
1081 page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1082 page <<= 16;
1083 page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1084 pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1085
1086 US_DEBUGP("alauda_transport: WRITE_10: page %d pagect %d\n",
1087 page, pages);
1088
1089 return alauda_write_data(us, page, pages);
1090 }
1091
1092 if (srb->cmnd[0] == REQUEST_SENSE) {
1093 US_DEBUGP("alauda_transport: REQUEST_SENSE.\n");
1094
1095 memset(ptr, 0, 18);
1096 ptr[0] = 0xF0;
1097 ptr[2] = info->sense_key;
1098 ptr[7] = 11;
1099 ptr[12] = info->sense_asc;
1100 ptr[13] = info->sense_ascq;
1101 usb_stor_set_xfer_buf(ptr, 18, srb);
1102
1103 return USB_STOR_TRANSPORT_GOOD;
1104 }
1105
1106 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1107 /* sure. whatever. not like we can stop the user from popping
1108 the media out of the device (no locking doors, etc) */
1109 return USB_STOR_TRANSPORT_GOOD;
1110 }
1111
1112 US_DEBUGP("alauda_transport: Gah! Unknown command: %d (0x%x)\n",
1113 srb->cmnd[0], srb->cmnd[0]);
1114 info->sense_key = 0x05;
1115 info->sense_asc = 0x20;
1116 info->sense_ascq = 0x00;
1117 return USB_STOR_TRANSPORT_FAILED;
1118}
1119