aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/usb/host/xhci.c
diff options
context:
space:
mode:
authorSarah Sharp <sarah.a.sharp@linux.intel.com>2010-12-16 14:21:10 -0500
committerSarah Sharp <sarah.a.sharp@linux.intel.com>2011-03-13 21:23:39 -0400
commitf6ff0ac878eb420011fa2448851dd48c3a7e7b31 (patch)
tree4073e9de7541030ee7b775d118a1ee1d1821a0c7 /drivers/usb/host/xhci.c
parent5233630fcdd6f7d415dcbed264031439cab73f9d (diff)
xhci: Register second xHCI roothub.
This patch changes the xHCI driver to allocate two roothubs. This touches the driver initialization and shutdown paths, roothub emulation code, and port status change event handlers. This is a rather large patch, but it can't be broken up, or it would break git-bisect. Make the xHCI driver register its own PCI probe function. This will call the USB core to create the USB 2.0 roothub, and then create the USB 3.0 roothub. This gets the code for registering a shared roothub out of the USB core, and allows other HCDs later to decide if and how many shared roothubs they want to allocate. Make sure the xHCI's reset method marks the xHCI host controller's primary roothub as the USB 2.0 roothub. This ensures that the high speed bus will be processed first when the PCI device is resumed, and any USB 3.0 devices that have migrated over to high speed will migrate back after being reset. This ensures that USB persist works with these odd devices. The reset method will also mark the xHCI USB2 roothub as having an integrated TT. Like EHCI host controllers with a "rate matching hub" the xHCI USB 2.0 roothub doesn't have an OHCI or UHCI companion controller. It doesn't really have a TT, but we'll lie and say it has an integrated TT. We need to do this because the USB core will reject LS/FS devices under a HS hub without a TT. Other details: ------------- The roothub emulation code is changed to return the correct number of ports for the two roothubs. For the USB 3.0 roothub, it only reports the USB 3.0 ports. For the USB 2.0 roothub, it reports all the LS/FS/HS ports. The code to disable a port now checks the speed of the roothub, and refuses to disable SuperSpeed ports under the USB 3.0 roothub. The code for initializing a new device context must be changed to set the proper roothub port number. Since we've split the xHCI host into two roothubs, we can't just use the port number in the ancestor hub. Instead, we loop through the array of hardware port status register speeds and find the Nth port with a similar speed. The port status change event handler is updated to figure out whether the port that reported the change is a USB 3.0 port, or a non-SuperSpeed port. Once it figures out the port speed, it kicks the proper roothub. The function to find a slot ID based on the port index is updated to take into account that the two roothubs will have over-lapping port indexes. It checks that the virtual device with a matching port index is the same speed as the passed in roothub. There's also changes to the driver initialization and shutdown paths: 1. Make sure that the xhci_hcd pointer is shared across the two usb_hcd structures. The xhci_hcd pointer is allocated and the registers are mapped in when xhci_pci_setup() is called with the primary HCD. When xhci_pci_setup() is called with the non-primary HCD, the xhci_hcd pointer is stored. 2. Make sure to set the sg_tablesize for both usb_hcd structures. Set the PCI DMA mask for the non-primary HCD to allow for 64-bit or 32-bit DMA. (The PCI DMA mask is set from the primary HCD further down in the xhci_pci_setup() function.) 3. Ensure that the host controller doesn't start kicking khubd in response to port status changes before both usb_hcd structures are registered. xhci_run() only starts the xHC running once it has been called with the non-primary roothub. Similarly, the xhci_stop() function only halts the host controller when it is called with the non-primary HCD. Then on the second call, it resets and cleans up the MSI-X irqs. Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
Diffstat (limited to 'drivers/usb/host/xhci.c')
-rw-r--r--drivers/usb/host/xhci.c62
1 files changed, 51 insertions, 11 deletions
diff --git a/drivers/usb/host/xhci.c b/drivers/usb/host/xhci.c
index 8d45bbde3da4..4549068758f5 100644
--- a/drivers/usb/host/xhci.c
+++ b/drivers/usb/host/xhci.c
@@ -375,6 +375,21 @@ void xhci_event_ring_work(unsigned long arg)
375} 375}
376#endif 376#endif
377 377
378static int xhci_run_finished(struct xhci_hcd *xhci)
379{
380 if (xhci_start(xhci)) {
381 xhci_halt(xhci);
382 return -ENODEV;
383 }
384 xhci->shared_hcd->state = HC_STATE_RUNNING;
385
386 if (xhci->quirks & XHCI_NEC_HOST)
387 xhci_ring_cmd_db(xhci);
388
389 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
390 return 0;
391}
392
378/* 393/*
379 * Start the HC after it was halted. 394 * Start the HC after it was halted.
380 * 395 *
@@ -395,7 +410,13 @@ int xhci_run(struct usb_hcd *hcd)
395 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 410 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
396 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); 411 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
397 412
413 /* Start the xHCI host controller running only after the USB 2.0 roothub
414 * is setup.
415 */
416
398 hcd->uses_new_polling = 1; 417 hcd->uses_new_polling = 1;
418 if (!usb_hcd_is_primary_hcd(hcd))
419 return xhci_run_finished(xhci);
399 420
400 xhci_dbg(xhci, "xhci_run\n"); 421 xhci_dbg(xhci, "xhci_run\n");
401 /* unregister the legacy interrupt */ 422 /* unregister the legacy interrupt */
@@ -469,16 +490,23 @@ int xhci_run(struct usb_hcd *hcd)
469 xhci_queue_vendor_command(xhci, 0, 0, 0, 490 xhci_queue_vendor_command(xhci, 0, 0, 0,
470 TRB_TYPE(TRB_NEC_GET_FW)); 491 TRB_TYPE(TRB_NEC_GET_FW));
471 492
472 if (xhci_start(xhci)) { 493 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
473 xhci_halt(xhci); 494 return 0;
474 return -ENODEV; 495}
475 }
476 496
477 if (xhci->quirks & XHCI_NEC_HOST) 497static void xhci_only_stop_hcd(struct usb_hcd *hcd)
478 xhci_ring_cmd_db(xhci); 498{
499 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
479 500
480 xhci_dbg(xhci, "Finished xhci_run\n"); 501 spin_lock_irq(&xhci->lock);
481 return 0; 502 xhci_halt(xhci);
503
504 /* The shared_hcd is going to be deallocated shortly (the USB core only
505 * calls this function when allocation fails in usb_add_hcd(), or
506 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
507 */
508 xhci->shared_hcd = NULL;
509 spin_unlock_irq(&xhci->lock);
482} 510}
483 511
484/* 512/*
@@ -495,7 +523,15 @@ void xhci_stop(struct usb_hcd *hcd)
495 u32 temp; 523 u32 temp;
496 struct xhci_hcd *xhci = hcd_to_xhci(hcd); 524 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
497 525
526 if (!usb_hcd_is_primary_hcd(hcd)) {
527 xhci_only_stop_hcd(xhci->shared_hcd);
528 return;
529 }
530
498 spin_lock_irq(&xhci->lock); 531 spin_lock_irq(&xhci->lock);
532 /* Make sure the xHC is halted for a USB3 roothub
533 * (xhci_stop() could be called as part of failed init).
534 */
499 xhci_halt(xhci); 535 xhci_halt(xhci);
500 xhci_reset(xhci); 536 xhci_reset(xhci);
501 spin_unlock_irq(&xhci->lock); 537 spin_unlock_irq(&xhci->lock);
@@ -528,6 +564,8 @@ void xhci_stop(struct usb_hcd *hcd)
528 * This is called when the machine is rebooting or halting. We assume that the 564 * This is called when the machine is rebooting or halting. We assume that the
529 * machine will be powered off, and the HC's internal state will be reset. 565 * machine will be powered off, and the HC's internal state will be reset.
530 * Don't bother to free memory. 566 * Don't bother to free memory.
567 *
568 * This will only ever be called with the main usb_hcd (the USB3 roothub).
531 */ 569 */
532void xhci_shutdown(struct usb_hcd *hcd) 570void xhci_shutdown(struct usb_hcd *hcd)
533{ 571{
@@ -694,10 +732,12 @@ int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
694 struct usb_hcd *hcd = xhci_to_hcd(xhci); 732 struct usb_hcd *hcd = xhci_to_hcd(xhci);
695 int retval; 733 int retval;
696 734
697 /* Wait a bit if the bus needs to settle from the transistion to 735 /* Wait a bit if either of the roothubs need to settle from the
698 * suspend. 736 * transistion into bus suspend.
699 */ 737 */
700 if (time_before(jiffies, xhci->bus_state[0].next_statechange)) 738 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
739 time_before(jiffies,
740 xhci->bus_state[1].next_statechange))
701 msleep(100); 741 msleep(100);
702 742
703 spin_lock_irq(&xhci->lock); 743 spin_lock_irq(&xhci->lock);