aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/tty/rocket.c
diff options
context:
space:
mode:
authorGreg Kroah-Hartman <gregkh@suse.de>2011-02-22 19:14:56 -0500
committerGreg Kroah-Hartman <gregkh@suse.de>2011-02-22 19:14:56 -0500
commita6afd9f3e819de4795fcd356e5bfad446e4323f2 (patch)
tree3402b3981867fd4057b4eb33583b6300ae93b9a6 /drivers/tty/rocket.c
parent44ed76b78e158d852f640d533b7acc08b91f2132 (diff)
tty: move a number of tty drivers from drivers/char/ to drivers/tty/
As planned by Arnd Bergmann, this moves the following drivers from drivers/char/ to drivers/tty/ as that's where they really belong: amiserial nozomi synclink rocket cyclades moxa mxser isicom bfin_jtag_comm Cc: Arnd Bergmann <arnd@arndb.de> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'drivers/tty/rocket.c')
-rw-r--r--drivers/tty/rocket.c3199
1 files changed, 3199 insertions, 0 deletions
diff --git a/drivers/tty/rocket.c b/drivers/tty/rocket.c
new file mode 100644
index 000000000000..3780da8ad12d
--- /dev/null
+++ b/drivers/tty/rocket.c
@@ -0,0 +1,3199 @@
1/*
2 * RocketPort device driver for Linux
3 *
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23/*
24 * Kernel Synchronization:
25 *
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
29 *
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
37 *
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
40 */
41
42/****** Defines ******/
43#define ROCKET_PARANOIA_CHECK
44#define ROCKET_DISABLE_SIMUSAGE
45
46#undef ROCKET_SOFT_FLOW
47#undef ROCKET_DEBUG_OPEN
48#undef ROCKET_DEBUG_INTR
49#undef ROCKET_DEBUG_WRITE
50#undef ROCKET_DEBUG_FLOW
51#undef ROCKET_DEBUG_THROTTLE
52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53#undef ROCKET_DEBUG_RECEIVE
54#undef ROCKET_DEBUG_HANGUP
55#undef REV_PCI_ORDER
56#undef ROCKET_DEBUG_IO
57
58#define POLL_PERIOD HZ/100 /* Polling period .01 seconds (10ms) */
59
60/****** Kernel includes ******/
61
62#include <linux/module.h>
63#include <linux/errno.h>
64#include <linux/major.h>
65#include <linux/kernel.h>
66#include <linux/signal.h>
67#include <linux/slab.h>
68#include <linux/mm.h>
69#include <linux/sched.h>
70#include <linux/timer.h>
71#include <linux/interrupt.h>
72#include <linux/tty.h>
73#include <linux/tty_driver.h>
74#include <linux/tty_flip.h>
75#include <linux/serial.h>
76#include <linux/string.h>
77#include <linux/fcntl.h>
78#include <linux/ptrace.h>
79#include <linux/mutex.h>
80#include <linux/ioport.h>
81#include <linux/delay.h>
82#include <linux/completion.h>
83#include <linux/wait.h>
84#include <linux/pci.h>
85#include <linux/uaccess.h>
86#include <asm/atomic.h>
87#include <asm/unaligned.h>
88#include <linux/bitops.h>
89#include <linux/spinlock.h>
90#include <linux/init.h>
91
92/****** RocketPort includes ******/
93
94#include "rocket_int.h"
95#include "rocket.h"
96
97#define ROCKET_VERSION "2.09"
98#define ROCKET_DATE "12-June-2003"
99
100/****** RocketPort Local Variables ******/
101
102static void rp_do_poll(unsigned long dummy);
103
104static struct tty_driver *rocket_driver;
105
106static struct rocket_version driver_version = {
107 ROCKET_VERSION, ROCKET_DATE
108};
109
110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
112 /* eg. Bit 0 indicates port 0 has xmit data, ... */
113static atomic_t rp_num_ports_open; /* Number of serial ports open */
114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
117static unsigned long board2;
118static unsigned long board3;
119static unsigned long board4;
120static unsigned long controller;
121static int support_low_speed;
122static unsigned long modem1;
123static unsigned long modem2;
124static unsigned long modem3;
125static unsigned long modem4;
126static unsigned long pc104_1[8];
127static unsigned long pc104_2[8];
128static unsigned long pc104_3[8];
129static unsigned long pc104_4[8];
130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
133static unsigned long rcktpt_io_addr[NUM_BOARDS];
134static int rcktpt_type[NUM_BOARDS];
135static int is_PCI[NUM_BOARDS];
136static rocketModel_t rocketModel[NUM_BOARDS];
137static int max_board;
138static const struct tty_port_operations rocket_port_ops;
139
140/*
141 * The following arrays define the interrupt bits corresponding to each AIOP.
142 * These bits are different between the ISA and regular PCI boards and the
143 * Universal PCI boards.
144 */
145
146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
147 AIOP_INTR_BIT_0,
148 AIOP_INTR_BIT_1,
149 AIOP_INTR_BIT_2,
150 AIOP_INTR_BIT_3
151};
152
153static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
154 UPCI_AIOP_INTR_BIT_0,
155 UPCI_AIOP_INTR_BIT_1,
156 UPCI_AIOP_INTR_BIT_2,
157 UPCI_AIOP_INTR_BIT_3
158};
159
160static Byte_t RData[RDATASIZE] = {
161 0x00, 0x09, 0xf6, 0x82,
162 0x02, 0x09, 0x86, 0xfb,
163 0x04, 0x09, 0x00, 0x0a,
164 0x06, 0x09, 0x01, 0x0a,
165 0x08, 0x09, 0x8a, 0x13,
166 0x0a, 0x09, 0xc5, 0x11,
167 0x0c, 0x09, 0x86, 0x85,
168 0x0e, 0x09, 0x20, 0x0a,
169 0x10, 0x09, 0x21, 0x0a,
170 0x12, 0x09, 0x41, 0xff,
171 0x14, 0x09, 0x82, 0x00,
172 0x16, 0x09, 0x82, 0x7b,
173 0x18, 0x09, 0x8a, 0x7d,
174 0x1a, 0x09, 0x88, 0x81,
175 0x1c, 0x09, 0x86, 0x7a,
176 0x1e, 0x09, 0x84, 0x81,
177 0x20, 0x09, 0x82, 0x7c,
178 0x22, 0x09, 0x0a, 0x0a
179};
180
181static Byte_t RRegData[RREGDATASIZE] = {
182 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
183 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
184 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
185 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
186 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
187 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
188 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
189 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
190 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
191 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
192 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
193 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
194 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
195};
196
197static CONTROLLER_T sController[CTL_SIZE] = {
198 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
199 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
206};
207
208static Byte_t sBitMapClrTbl[8] = {
209 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
210};
211
212static Byte_t sBitMapSetTbl[8] = {
213 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
214};
215
216static int sClockPrescale = 0x14;
217
218/*
219 * Line number is the ttySIx number (x), the Minor number. We
220 * assign them sequentially, starting at zero. The following
221 * array keeps track of the line number assigned to a given board/aiop/channel.
222 */
223static unsigned char lineNumbers[MAX_RP_PORTS];
224static unsigned long nextLineNumber;
225
226/***** RocketPort Static Prototypes *********/
227static int __init init_ISA(int i);
228static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
229static void rp_flush_buffer(struct tty_struct *tty);
230static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model);
231static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
232static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
233static void rp_start(struct tty_struct *tty);
234static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
235 int ChanNum);
236static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
237static void sFlushRxFIFO(CHANNEL_T * ChP);
238static void sFlushTxFIFO(CHANNEL_T * ChP);
239static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
240static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
241static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
242static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
243static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
244static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
245 ByteIO_t * AiopIOList, int AiopIOListSize,
246 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
247 int PeriodicOnly, int altChanRingIndicator,
248 int UPCIRingInd);
249static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
250 ByteIO_t * AiopIOList, int AiopIOListSize,
251 int IRQNum, Byte_t Frequency, int PeriodicOnly);
252static int sReadAiopID(ByteIO_t io);
253static int sReadAiopNumChan(WordIO_t io);
254
255MODULE_AUTHOR("Theodore Ts'o");
256MODULE_DESCRIPTION("Comtrol RocketPort driver");
257module_param(board1, ulong, 0);
258MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
259module_param(board2, ulong, 0);
260MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
261module_param(board3, ulong, 0);
262MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
263module_param(board4, ulong, 0);
264MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
265module_param(controller, ulong, 0);
266MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
267module_param(support_low_speed, bool, 0);
268MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
269module_param(modem1, ulong, 0);
270MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
271module_param(modem2, ulong, 0);
272MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
273module_param(modem3, ulong, 0);
274MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
275module_param(modem4, ulong, 0);
276MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
277module_param_array(pc104_1, ulong, NULL, 0);
278MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
279module_param_array(pc104_2, ulong, NULL, 0);
280MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
281module_param_array(pc104_3, ulong, NULL, 0);
282MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
283module_param_array(pc104_4, ulong, NULL, 0);
284MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
285
286static int rp_init(void);
287static void rp_cleanup_module(void);
288
289module_init(rp_init);
290module_exit(rp_cleanup_module);
291
292
293MODULE_LICENSE("Dual BSD/GPL");
294
295/*************************************************************************/
296/* Module code starts here */
297
298static inline int rocket_paranoia_check(struct r_port *info,
299 const char *routine)
300{
301#ifdef ROCKET_PARANOIA_CHECK
302 if (!info)
303 return 1;
304 if (info->magic != RPORT_MAGIC) {
305 printk(KERN_WARNING "Warning: bad magic number for rocketport "
306 "struct in %s\n", routine);
307 return 1;
308 }
309#endif
310 return 0;
311}
312
313
314/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
315 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
316 * tty layer.
317 */
318static void rp_do_receive(struct r_port *info,
319 struct tty_struct *tty,
320 CHANNEL_t * cp, unsigned int ChanStatus)
321{
322 unsigned int CharNStat;
323 int ToRecv, wRecv, space;
324 unsigned char *cbuf;
325
326 ToRecv = sGetRxCnt(cp);
327#ifdef ROCKET_DEBUG_INTR
328 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
329#endif
330 if (ToRecv == 0)
331 return;
332
333 /*
334 * if status indicates there are errored characters in the
335 * FIFO, then enter status mode (a word in FIFO holds
336 * character and status).
337 */
338 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
339 if (!(ChanStatus & STATMODE)) {
340#ifdef ROCKET_DEBUG_RECEIVE
341 printk(KERN_INFO "Entering STATMODE...\n");
342#endif
343 ChanStatus |= STATMODE;
344 sEnRxStatusMode(cp);
345 }
346 }
347
348 /*
349 * if we previously entered status mode, then read down the
350 * FIFO one word at a time, pulling apart the character and
351 * the status. Update error counters depending on status
352 */
353 if (ChanStatus & STATMODE) {
354#ifdef ROCKET_DEBUG_RECEIVE
355 printk(KERN_INFO "Ignore %x, read %x...\n",
356 info->ignore_status_mask, info->read_status_mask);
357#endif
358 while (ToRecv) {
359 char flag;
360
361 CharNStat = sInW(sGetTxRxDataIO(cp));
362#ifdef ROCKET_DEBUG_RECEIVE
363 printk(KERN_INFO "%x...\n", CharNStat);
364#endif
365 if (CharNStat & STMBREAKH)
366 CharNStat &= ~(STMFRAMEH | STMPARITYH);
367 if (CharNStat & info->ignore_status_mask) {
368 ToRecv--;
369 continue;
370 }
371 CharNStat &= info->read_status_mask;
372 if (CharNStat & STMBREAKH)
373 flag = TTY_BREAK;
374 else if (CharNStat & STMPARITYH)
375 flag = TTY_PARITY;
376 else if (CharNStat & STMFRAMEH)
377 flag = TTY_FRAME;
378 else if (CharNStat & STMRCVROVRH)
379 flag = TTY_OVERRUN;
380 else
381 flag = TTY_NORMAL;
382 tty_insert_flip_char(tty, CharNStat & 0xff, flag);
383 ToRecv--;
384 }
385
386 /*
387 * after we've emptied the FIFO in status mode, turn
388 * status mode back off
389 */
390 if (sGetRxCnt(cp) == 0) {
391#ifdef ROCKET_DEBUG_RECEIVE
392 printk(KERN_INFO "Status mode off.\n");
393#endif
394 sDisRxStatusMode(cp);
395 }
396 } else {
397 /*
398 * we aren't in status mode, so read down the FIFO two
399 * characters at time by doing repeated word IO
400 * transfer.
401 */
402 space = tty_prepare_flip_string(tty, &cbuf, ToRecv);
403 if (space < ToRecv) {
404#ifdef ROCKET_DEBUG_RECEIVE
405 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
406#endif
407 if (space <= 0)
408 return;
409 ToRecv = space;
410 }
411 wRecv = ToRecv >> 1;
412 if (wRecv)
413 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
414 if (ToRecv & 1)
415 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
416 }
417 /* Push the data up to the tty layer */
418 tty_flip_buffer_push(tty);
419}
420
421/*
422 * Serial port transmit data function. Called from the timer polling loop as a
423 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
424 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
425 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
426 */
427static void rp_do_transmit(struct r_port *info)
428{
429 int c;
430 CHANNEL_t *cp = &info->channel;
431 struct tty_struct *tty;
432 unsigned long flags;
433
434#ifdef ROCKET_DEBUG_INTR
435 printk(KERN_DEBUG "%s\n", __func__);
436#endif
437 if (!info)
438 return;
439 tty = tty_port_tty_get(&info->port);
440
441 if (tty == NULL) {
442 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
443 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
444 return;
445 }
446
447 spin_lock_irqsave(&info->slock, flags);
448 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
449
450 /* Loop sending data to FIFO until done or FIFO full */
451 while (1) {
452 if (tty->stopped || tty->hw_stopped)
453 break;
454 c = min(info->xmit_fifo_room, info->xmit_cnt);
455 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
456 if (c <= 0 || info->xmit_fifo_room <= 0)
457 break;
458 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
459 if (c & 1)
460 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
461 info->xmit_tail += c;
462 info->xmit_tail &= XMIT_BUF_SIZE - 1;
463 info->xmit_cnt -= c;
464 info->xmit_fifo_room -= c;
465#ifdef ROCKET_DEBUG_INTR
466 printk(KERN_INFO "tx %d chars...\n", c);
467#endif
468 }
469
470 if (info->xmit_cnt == 0)
471 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
472
473 if (info->xmit_cnt < WAKEUP_CHARS) {
474 tty_wakeup(tty);
475#ifdef ROCKETPORT_HAVE_POLL_WAIT
476 wake_up_interruptible(&tty->poll_wait);
477#endif
478 }
479
480 spin_unlock_irqrestore(&info->slock, flags);
481 tty_kref_put(tty);
482
483#ifdef ROCKET_DEBUG_INTR
484 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
485 info->xmit_tail, info->xmit_fifo_room);
486#endif
487}
488
489/*
490 * Called when a serial port signals it has read data in it's RX FIFO.
491 * It checks what interrupts are pending and services them, including
492 * receiving serial data.
493 */
494static void rp_handle_port(struct r_port *info)
495{
496 CHANNEL_t *cp;
497 struct tty_struct *tty;
498 unsigned int IntMask, ChanStatus;
499
500 if (!info)
501 return;
502
503 if ((info->port.flags & ASYNC_INITIALIZED) == 0) {
504 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
505 "info->flags & NOT_INIT\n");
506 return;
507 }
508 tty = tty_port_tty_get(&info->port);
509 if (!tty) {
510 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
511 "tty==NULL\n");
512 return;
513 }
514 cp = &info->channel;
515
516 IntMask = sGetChanIntID(cp) & info->intmask;
517#ifdef ROCKET_DEBUG_INTR
518 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
519#endif
520 ChanStatus = sGetChanStatus(cp);
521 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
522 rp_do_receive(info, tty, cp, ChanStatus);
523 }
524 if (IntMask & DELTA_CD) { /* CD change */
525#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
526 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
527 (ChanStatus & CD_ACT) ? "on" : "off");
528#endif
529 if (!(ChanStatus & CD_ACT) && info->cd_status) {
530#ifdef ROCKET_DEBUG_HANGUP
531 printk(KERN_INFO "CD drop, calling hangup.\n");
532#endif
533 tty_hangup(tty);
534 }
535 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
536 wake_up_interruptible(&info->port.open_wait);
537 }
538#ifdef ROCKET_DEBUG_INTR
539 if (IntMask & DELTA_CTS) { /* CTS change */
540 printk(KERN_INFO "CTS change...\n");
541 }
542 if (IntMask & DELTA_DSR) { /* DSR change */
543 printk(KERN_INFO "DSR change...\n");
544 }
545#endif
546 tty_kref_put(tty);
547}
548
549/*
550 * The top level polling routine. Repeats every 1/100 HZ (10ms).
551 */
552static void rp_do_poll(unsigned long dummy)
553{
554 CONTROLLER_t *ctlp;
555 int ctrl, aiop, ch, line;
556 unsigned int xmitmask, i;
557 unsigned int CtlMask;
558 unsigned char AiopMask;
559 Word_t bit;
560
561 /* Walk through all the boards (ctrl's) */
562 for (ctrl = 0; ctrl < max_board; ctrl++) {
563 if (rcktpt_io_addr[ctrl] <= 0)
564 continue;
565
566 /* Get a ptr to the board's control struct */
567 ctlp = sCtlNumToCtlPtr(ctrl);
568
569 /* Get the interrupt status from the board */
570#ifdef CONFIG_PCI
571 if (ctlp->BusType == isPCI)
572 CtlMask = sPCIGetControllerIntStatus(ctlp);
573 else
574#endif
575 CtlMask = sGetControllerIntStatus(ctlp);
576
577 /* Check if any AIOP read bits are set */
578 for (aiop = 0; CtlMask; aiop++) {
579 bit = ctlp->AiopIntrBits[aiop];
580 if (CtlMask & bit) {
581 CtlMask &= ~bit;
582 AiopMask = sGetAiopIntStatus(ctlp, aiop);
583
584 /* Check if any port read bits are set */
585 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
586 if (AiopMask & 1) {
587
588 /* Get the line number (/dev/ttyRx number). */
589 /* Read the data from the port. */
590 line = GetLineNumber(ctrl, aiop, ch);
591 rp_handle_port(rp_table[line]);
592 }
593 }
594 }
595 }
596
597 xmitmask = xmit_flags[ctrl];
598
599 /*
600 * xmit_flags contains bit-significant flags, indicating there is data
601 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
602 * 1, ... (32 total possible). The variable i has the aiop and ch
603 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
604 */
605 if (xmitmask) {
606 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
607 if (xmitmask & (1 << i)) {
608 aiop = (i & 0x18) >> 3;
609 ch = i & 0x07;
610 line = GetLineNumber(ctrl, aiop, ch);
611 rp_do_transmit(rp_table[line]);
612 }
613 }
614 }
615 }
616
617 /*
618 * Reset the timer so we get called at the next clock tick (10ms).
619 */
620 if (atomic_read(&rp_num_ports_open))
621 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
622}
623
624/*
625 * Initializes the r_port structure for a port, as well as enabling the port on
626 * the board.
627 * Inputs: board, aiop, chan numbers
628 */
629static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
630{
631 unsigned rocketMode;
632 struct r_port *info;
633 int line;
634 CONTROLLER_T *ctlp;
635
636 /* Get the next available line number */
637 line = SetLineNumber(board, aiop, chan);
638
639 ctlp = sCtlNumToCtlPtr(board);
640
641 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
642 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
643 if (!info) {
644 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
645 line);
646 return;
647 }
648
649 info->magic = RPORT_MAGIC;
650 info->line = line;
651 info->ctlp = ctlp;
652 info->board = board;
653 info->aiop = aiop;
654 info->chan = chan;
655 tty_port_init(&info->port);
656 info->port.ops = &rocket_port_ops;
657 init_completion(&info->close_wait);
658 info->flags &= ~ROCKET_MODE_MASK;
659 switch (pc104[board][line]) {
660 case 422:
661 info->flags |= ROCKET_MODE_RS422;
662 break;
663 case 485:
664 info->flags |= ROCKET_MODE_RS485;
665 break;
666 case 232:
667 default:
668 info->flags |= ROCKET_MODE_RS232;
669 break;
670 }
671
672 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
673 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
674 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
675 board, aiop, chan);
676 kfree(info);
677 return;
678 }
679
680 rocketMode = info->flags & ROCKET_MODE_MASK;
681
682 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
683 sEnRTSToggle(&info->channel);
684 else
685 sDisRTSToggle(&info->channel);
686
687 if (ctlp->boardType == ROCKET_TYPE_PC104) {
688 switch (rocketMode) {
689 case ROCKET_MODE_RS485:
690 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
691 break;
692 case ROCKET_MODE_RS422:
693 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
694 break;
695 case ROCKET_MODE_RS232:
696 default:
697 if (info->flags & ROCKET_RTS_TOGGLE)
698 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
699 else
700 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
701 break;
702 }
703 }
704 spin_lock_init(&info->slock);
705 mutex_init(&info->write_mtx);
706 rp_table[line] = info;
707 tty_register_device(rocket_driver, line, pci_dev ? &pci_dev->dev :
708 NULL);
709}
710
711/*
712 * Configures a rocketport port according to its termio settings. Called from
713 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
714 */
715static void configure_r_port(struct tty_struct *tty, struct r_port *info,
716 struct ktermios *old_termios)
717{
718 unsigned cflag;
719 unsigned long flags;
720 unsigned rocketMode;
721 int bits, baud, divisor;
722 CHANNEL_t *cp;
723 struct ktermios *t = tty->termios;
724
725 cp = &info->channel;
726 cflag = t->c_cflag;
727
728 /* Byte size and parity */
729 if ((cflag & CSIZE) == CS8) {
730 sSetData8(cp);
731 bits = 10;
732 } else {
733 sSetData7(cp);
734 bits = 9;
735 }
736 if (cflag & CSTOPB) {
737 sSetStop2(cp);
738 bits++;
739 } else {
740 sSetStop1(cp);
741 }
742
743 if (cflag & PARENB) {
744 sEnParity(cp);
745 bits++;
746 if (cflag & PARODD) {
747 sSetOddParity(cp);
748 } else {
749 sSetEvenParity(cp);
750 }
751 } else {
752 sDisParity(cp);
753 }
754
755 /* baud rate */
756 baud = tty_get_baud_rate(tty);
757 if (!baud)
758 baud = 9600;
759 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
760 if ((divisor >= 8192 || divisor < 0) && old_termios) {
761 baud = tty_termios_baud_rate(old_termios);
762 if (!baud)
763 baud = 9600;
764 divisor = (rp_baud_base[info->board] / baud) - 1;
765 }
766 if (divisor >= 8192 || divisor < 0) {
767 baud = 9600;
768 divisor = (rp_baud_base[info->board] / baud) - 1;
769 }
770 info->cps = baud / bits;
771 sSetBaud(cp, divisor);
772
773 /* FIXME: Should really back compute a baud rate from the divisor */
774 tty_encode_baud_rate(tty, baud, baud);
775
776 if (cflag & CRTSCTS) {
777 info->intmask |= DELTA_CTS;
778 sEnCTSFlowCtl(cp);
779 } else {
780 info->intmask &= ~DELTA_CTS;
781 sDisCTSFlowCtl(cp);
782 }
783 if (cflag & CLOCAL) {
784 info->intmask &= ~DELTA_CD;
785 } else {
786 spin_lock_irqsave(&info->slock, flags);
787 if (sGetChanStatus(cp) & CD_ACT)
788 info->cd_status = 1;
789 else
790 info->cd_status = 0;
791 info->intmask |= DELTA_CD;
792 spin_unlock_irqrestore(&info->slock, flags);
793 }
794
795 /*
796 * Handle software flow control in the board
797 */
798#ifdef ROCKET_SOFT_FLOW
799 if (I_IXON(tty)) {
800 sEnTxSoftFlowCtl(cp);
801 if (I_IXANY(tty)) {
802 sEnIXANY(cp);
803 } else {
804 sDisIXANY(cp);
805 }
806 sSetTxXONChar(cp, START_CHAR(tty));
807 sSetTxXOFFChar(cp, STOP_CHAR(tty));
808 } else {
809 sDisTxSoftFlowCtl(cp);
810 sDisIXANY(cp);
811 sClrTxXOFF(cp);
812 }
813#endif
814
815 /*
816 * Set up ignore/read mask words
817 */
818 info->read_status_mask = STMRCVROVRH | 0xFF;
819 if (I_INPCK(tty))
820 info->read_status_mask |= STMFRAMEH | STMPARITYH;
821 if (I_BRKINT(tty) || I_PARMRK(tty))
822 info->read_status_mask |= STMBREAKH;
823
824 /*
825 * Characters to ignore
826 */
827 info->ignore_status_mask = 0;
828 if (I_IGNPAR(tty))
829 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
830 if (I_IGNBRK(tty)) {
831 info->ignore_status_mask |= STMBREAKH;
832 /*
833 * If we're ignoring parity and break indicators,
834 * ignore overruns too. (For real raw support).
835 */
836 if (I_IGNPAR(tty))
837 info->ignore_status_mask |= STMRCVROVRH;
838 }
839
840 rocketMode = info->flags & ROCKET_MODE_MASK;
841
842 if ((info->flags & ROCKET_RTS_TOGGLE)
843 || (rocketMode == ROCKET_MODE_RS485))
844 sEnRTSToggle(cp);
845 else
846 sDisRTSToggle(cp);
847
848 sSetRTS(&info->channel);
849
850 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
851 switch (rocketMode) {
852 case ROCKET_MODE_RS485:
853 sSetInterfaceMode(cp, InterfaceModeRS485);
854 break;
855 case ROCKET_MODE_RS422:
856 sSetInterfaceMode(cp, InterfaceModeRS422);
857 break;
858 case ROCKET_MODE_RS232:
859 default:
860 if (info->flags & ROCKET_RTS_TOGGLE)
861 sSetInterfaceMode(cp, InterfaceModeRS232T);
862 else
863 sSetInterfaceMode(cp, InterfaceModeRS232);
864 break;
865 }
866 }
867}
868
869static int carrier_raised(struct tty_port *port)
870{
871 struct r_port *info = container_of(port, struct r_port, port);
872 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
873}
874
875static void dtr_rts(struct tty_port *port, int on)
876{
877 struct r_port *info = container_of(port, struct r_port, port);
878 if (on) {
879 sSetDTR(&info->channel);
880 sSetRTS(&info->channel);
881 } else {
882 sClrDTR(&info->channel);
883 sClrRTS(&info->channel);
884 }
885}
886
887/*
888 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
889 * port's r_port struct. Initializes the port hardware.
890 */
891static int rp_open(struct tty_struct *tty, struct file *filp)
892{
893 struct r_port *info;
894 struct tty_port *port;
895 int line = 0, retval;
896 CHANNEL_t *cp;
897 unsigned long page;
898
899 line = tty->index;
900 if (line < 0 || line >= MAX_RP_PORTS || ((info = rp_table[line]) == NULL))
901 return -ENXIO;
902 port = &info->port;
903
904 page = __get_free_page(GFP_KERNEL);
905 if (!page)
906 return -ENOMEM;
907
908 if (port->flags & ASYNC_CLOSING) {
909 retval = wait_for_completion_interruptible(&info->close_wait);
910 free_page(page);
911 if (retval)
912 return retval;
913 return ((port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
914 }
915
916 /*
917 * We must not sleep from here until the port is marked fully in use.
918 */
919 if (info->xmit_buf)
920 free_page(page);
921 else
922 info->xmit_buf = (unsigned char *) page;
923
924 tty->driver_data = info;
925 tty_port_tty_set(port, tty);
926
927 if (port->count++ == 0) {
928 atomic_inc(&rp_num_ports_open);
929
930#ifdef ROCKET_DEBUG_OPEN
931 printk(KERN_INFO "rocket mod++ = %d...\n",
932 atomic_read(&rp_num_ports_open));
933#endif
934 }
935#ifdef ROCKET_DEBUG_OPEN
936 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
937#endif
938
939 /*
940 * Info->count is now 1; so it's safe to sleep now.
941 */
942 if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) {
943 cp = &info->channel;
944 sSetRxTrigger(cp, TRIG_1);
945 if (sGetChanStatus(cp) & CD_ACT)
946 info->cd_status = 1;
947 else
948 info->cd_status = 0;
949 sDisRxStatusMode(cp);
950 sFlushRxFIFO(cp);
951 sFlushTxFIFO(cp);
952
953 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
954 sSetRxTrigger(cp, TRIG_1);
955
956 sGetChanStatus(cp);
957 sDisRxStatusMode(cp);
958 sClrTxXOFF(cp);
959
960 sDisCTSFlowCtl(cp);
961 sDisTxSoftFlowCtl(cp);
962
963 sEnRxFIFO(cp);
964 sEnTransmit(cp);
965
966 set_bit(ASYNCB_INITIALIZED, &info->port.flags);
967
968 /*
969 * Set up the tty->alt_speed kludge
970 */
971 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
972 tty->alt_speed = 57600;
973 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
974 tty->alt_speed = 115200;
975 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
976 tty->alt_speed = 230400;
977 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
978 tty->alt_speed = 460800;
979
980 configure_r_port(tty, info, NULL);
981 if (tty->termios->c_cflag & CBAUD) {
982 sSetDTR(cp);
983 sSetRTS(cp);
984 }
985 }
986 /* Starts (or resets) the maint polling loop */
987 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
988
989 retval = tty_port_block_til_ready(port, tty, filp);
990 if (retval) {
991#ifdef ROCKET_DEBUG_OPEN
992 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
993#endif
994 return retval;
995 }
996 return 0;
997}
998
999/*
1000 * Exception handler that closes a serial port. info->port.count is considered critical.
1001 */
1002static void rp_close(struct tty_struct *tty, struct file *filp)
1003{
1004 struct r_port *info = tty->driver_data;
1005 struct tty_port *port = &info->port;
1006 int timeout;
1007 CHANNEL_t *cp;
1008
1009 if (rocket_paranoia_check(info, "rp_close"))
1010 return;
1011
1012#ifdef ROCKET_DEBUG_OPEN
1013 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
1014#endif
1015
1016 if (tty_port_close_start(port, tty, filp) == 0)
1017 return;
1018
1019 mutex_lock(&port->mutex);
1020 cp = &info->channel;
1021 /*
1022 * Before we drop DTR, make sure the UART transmitter
1023 * has completely drained; this is especially
1024 * important if there is a transmit FIFO!
1025 */
1026 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1027 if (timeout == 0)
1028 timeout = 1;
1029 rp_wait_until_sent(tty, timeout);
1030 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1031
1032 sDisTransmit(cp);
1033 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1034 sDisCTSFlowCtl(cp);
1035 sDisTxSoftFlowCtl(cp);
1036 sClrTxXOFF(cp);
1037 sFlushRxFIFO(cp);
1038 sFlushTxFIFO(cp);
1039 sClrRTS(cp);
1040 if (C_HUPCL(tty))
1041 sClrDTR(cp);
1042
1043 rp_flush_buffer(tty);
1044
1045 tty_ldisc_flush(tty);
1046
1047 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1048
1049 /* We can't yet use tty_port_close_end as the buffer handling in this
1050 driver is a bit different to the usual */
1051
1052 if (port->blocked_open) {
1053 if (port->close_delay) {
1054 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1055 }
1056 wake_up_interruptible(&port->open_wait);
1057 } else {
1058 if (info->xmit_buf) {
1059 free_page((unsigned long) info->xmit_buf);
1060 info->xmit_buf = NULL;
1061 }
1062 }
1063 spin_lock_irq(&port->lock);
1064 info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_CLOSING | ASYNC_NORMAL_ACTIVE);
1065 tty->closing = 0;
1066 spin_unlock_irq(&port->lock);
1067 mutex_unlock(&port->mutex);
1068 tty_port_tty_set(port, NULL);
1069
1070 wake_up_interruptible(&port->close_wait);
1071 complete_all(&info->close_wait);
1072 atomic_dec(&rp_num_ports_open);
1073
1074#ifdef ROCKET_DEBUG_OPEN
1075 printk(KERN_INFO "rocket mod-- = %d...\n",
1076 atomic_read(&rp_num_ports_open));
1077 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1078#endif
1079
1080}
1081
1082static void rp_set_termios(struct tty_struct *tty,
1083 struct ktermios *old_termios)
1084{
1085 struct r_port *info = tty->driver_data;
1086 CHANNEL_t *cp;
1087 unsigned cflag;
1088
1089 if (rocket_paranoia_check(info, "rp_set_termios"))
1090 return;
1091
1092 cflag = tty->termios->c_cflag;
1093
1094 /*
1095 * This driver doesn't support CS5 or CS6
1096 */
1097 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1098 tty->termios->c_cflag =
1099 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1100 /* Or CMSPAR */
1101 tty->termios->c_cflag &= ~CMSPAR;
1102
1103 configure_r_port(tty, info, old_termios);
1104
1105 cp = &info->channel;
1106
1107 /* Handle transition to B0 status */
1108 if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) {
1109 sClrDTR(cp);
1110 sClrRTS(cp);
1111 }
1112
1113 /* Handle transition away from B0 status */
1114 if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) {
1115 if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS))
1116 sSetRTS(cp);
1117 sSetDTR(cp);
1118 }
1119
1120 if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) {
1121 tty->hw_stopped = 0;
1122 rp_start(tty);
1123 }
1124}
1125
1126static int rp_break(struct tty_struct *tty, int break_state)
1127{
1128 struct r_port *info = tty->driver_data;
1129 unsigned long flags;
1130
1131 if (rocket_paranoia_check(info, "rp_break"))
1132 return -EINVAL;
1133
1134 spin_lock_irqsave(&info->slock, flags);
1135 if (break_state == -1)
1136 sSendBreak(&info->channel);
1137 else
1138 sClrBreak(&info->channel);
1139 spin_unlock_irqrestore(&info->slock, flags);
1140 return 0;
1141}
1142
1143/*
1144 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1145 * the UPCI boards was added, it was decided to make this a function because
1146 * the macro was getting too complicated. All cases except the first one
1147 * (UPCIRingInd) are taken directly from the original macro.
1148 */
1149static int sGetChanRI(CHANNEL_T * ChP)
1150{
1151 CONTROLLER_t *CtlP = ChP->CtlP;
1152 int ChanNum = ChP->ChanNum;
1153 int RingInd = 0;
1154
1155 if (CtlP->UPCIRingInd)
1156 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1157 else if (CtlP->AltChanRingIndicator)
1158 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1159 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1160 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1161
1162 return RingInd;
1163}
1164
1165/********************************************************************************************/
1166/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1167
1168/*
1169 * Returns the state of the serial modem control lines. These next 2 functions
1170 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1171 */
1172static int rp_tiocmget(struct tty_struct *tty)
1173{
1174 struct r_port *info = tty->driver_data;
1175 unsigned int control, result, ChanStatus;
1176
1177 ChanStatus = sGetChanStatusLo(&info->channel);
1178 control = info->channel.TxControl[3];
1179 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1180 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1181 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1182 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1183 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1184 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1185
1186 return result;
1187}
1188
1189/*
1190 * Sets the modem control lines
1191 */
1192static int rp_tiocmset(struct tty_struct *tty,
1193 unsigned int set, unsigned int clear)
1194{
1195 struct r_port *info = tty->driver_data;
1196
1197 if (set & TIOCM_RTS)
1198 info->channel.TxControl[3] |= SET_RTS;
1199 if (set & TIOCM_DTR)
1200 info->channel.TxControl[3] |= SET_DTR;
1201 if (clear & TIOCM_RTS)
1202 info->channel.TxControl[3] &= ~SET_RTS;
1203 if (clear & TIOCM_DTR)
1204 info->channel.TxControl[3] &= ~SET_DTR;
1205
1206 out32(info->channel.IndexAddr, info->channel.TxControl);
1207 return 0;
1208}
1209
1210static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1211{
1212 struct rocket_config tmp;
1213
1214 if (!retinfo)
1215 return -EFAULT;
1216 memset(&tmp, 0, sizeof (tmp));
1217 mutex_lock(&info->port.mutex);
1218 tmp.line = info->line;
1219 tmp.flags = info->flags;
1220 tmp.close_delay = info->port.close_delay;
1221 tmp.closing_wait = info->port.closing_wait;
1222 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1223 mutex_unlock(&info->port.mutex);
1224
1225 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1226 return -EFAULT;
1227 return 0;
1228}
1229
1230static int set_config(struct tty_struct *tty, struct r_port *info,
1231 struct rocket_config __user *new_info)
1232{
1233 struct rocket_config new_serial;
1234
1235 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1236 return -EFAULT;
1237
1238 mutex_lock(&info->port.mutex);
1239 if (!capable(CAP_SYS_ADMIN))
1240 {
1241 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1242 mutex_unlock(&info->port.mutex);
1243 return -EPERM;
1244 }
1245 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1246 configure_r_port(tty, info, NULL);
1247 mutex_unlock(&info->port.mutex);
1248 return 0;
1249 }
1250
1251 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1252 info->port.close_delay = new_serial.close_delay;
1253 info->port.closing_wait = new_serial.closing_wait;
1254
1255 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1256 tty->alt_speed = 57600;
1257 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1258 tty->alt_speed = 115200;
1259 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1260 tty->alt_speed = 230400;
1261 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1262 tty->alt_speed = 460800;
1263 mutex_unlock(&info->port.mutex);
1264
1265 configure_r_port(tty, info, NULL);
1266 return 0;
1267}
1268
1269/*
1270 * This function fills in a rocket_ports struct with information
1271 * about what boards/ports are in the system. This info is passed
1272 * to user space. See setrocket.c where the info is used to create
1273 * the /dev/ttyRx ports.
1274 */
1275static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1276{
1277 struct rocket_ports tmp;
1278 int board;
1279
1280 if (!retports)
1281 return -EFAULT;
1282 memset(&tmp, 0, sizeof (tmp));
1283 tmp.tty_major = rocket_driver->major;
1284
1285 for (board = 0; board < 4; board++) {
1286 tmp.rocketModel[board].model = rocketModel[board].model;
1287 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1288 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1289 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1290 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1291 }
1292 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1293 return -EFAULT;
1294 return 0;
1295}
1296
1297static int reset_rm2(struct r_port *info, void __user *arg)
1298{
1299 int reset;
1300
1301 if (!capable(CAP_SYS_ADMIN))
1302 return -EPERM;
1303
1304 if (copy_from_user(&reset, arg, sizeof (int)))
1305 return -EFAULT;
1306 if (reset)
1307 reset = 1;
1308
1309 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1310 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1311 return -EINVAL;
1312
1313 if (info->ctlp->BusType == isISA)
1314 sModemReset(info->ctlp, info->chan, reset);
1315 else
1316 sPCIModemReset(info->ctlp, info->chan, reset);
1317
1318 return 0;
1319}
1320
1321static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1322{
1323 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1324 return -EFAULT;
1325 return 0;
1326}
1327
1328/* IOCTL call handler into the driver */
1329static int rp_ioctl(struct tty_struct *tty,
1330 unsigned int cmd, unsigned long arg)
1331{
1332 struct r_port *info = tty->driver_data;
1333 void __user *argp = (void __user *)arg;
1334 int ret = 0;
1335
1336 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1337 return -ENXIO;
1338
1339 switch (cmd) {
1340 case RCKP_GET_STRUCT:
1341 if (copy_to_user(argp, info, sizeof (struct r_port)))
1342 ret = -EFAULT;
1343 break;
1344 case RCKP_GET_CONFIG:
1345 ret = get_config(info, argp);
1346 break;
1347 case RCKP_SET_CONFIG:
1348 ret = set_config(tty, info, argp);
1349 break;
1350 case RCKP_GET_PORTS:
1351 ret = get_ports(info, argp);
1352 break;
1353 case RCKP_RESET_RM2:
1354 ret = reset_rm2(info, argp);
1355 break;
1356 case RCKP_GET_VERSION:
1357 ret = get_version(info, argp);
1358 break;
1359 default:
1360 ret = -ENOIOCTLCMD;
1361 }
1362 return ret;
1363}
1364
1365static void rp_send_xchar(struct tty_struct *tty, char ch)
1366{
1367 struct r_port *info = tty->driver_data;
1368 CHANNEL_t *cp;
1369
1370 if (rocket_paranoia_check(info, "rp_send_xchar"))
1371 return;
1372
1373 cp = &info->channel;
1374 if (sGetTxCnt(cp))
1375 sWriteTxPrioByte(cp, ch);
1376 else
1377 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1378}
1379
1380static void rp_throttle(struct tty_struct *tty)
1381{
1382 struct r_port *info = tty->driver_data;
1383 CHANNEL_t *cp;
1384
1385#ifdef ROCKET_DEBUG_THROTTLE
1386 printk(KERN_INFO "throttle %s: %d....\n", tty->name,
1387 tty->ldisc.chars_in_buffer(tty));
1388#endif
1389
1390 if (rocket_paranoia_check(info, "rp_throttle"))
1391 return;
1392
1393 cp = &info->channel;
1394 if (I_IXOFF(tty))
1395 rp_send_xchar(tty, STOP_CHAR(tty));
1396
1397 sClrRTS(&info->channel);
1398}
1399
1400static void rp_unthrottle(struct tty_struct *tty)
1401{
1402 struct r_port *info = tty->driver_data;
1403 CHANNEL_t *cp;
1404#ifdef ROCKET_DEBUG_THROTTLE
1405 printk(KERN_INFO "unthrottle %s: %d....\n", tty->name,
1406 tty->ldisc.chars_in_buffer(tty));
1407#endif
1408
1409 if (rocket_paranoia_check(info, "rp_throttle"))
1410 return;
1411
1412 cp = &info->channel;
1413 if (I_IXOFF(tty))
1414 rp_send_xchar(tty, START_CHAR(tty));
1415
1416 sSetRTS(&info->channel);
1417}
1418
1419/*
1420 * ------------------------------------------------------------
1421 * rp_stop() and rp_start()
1422 *
1423 * This routines are called before setting or resetting tty->stopped.
1424 * They enable or disable transmitter interrupts, as necessary.
1425 * ------------------------------------------------------------
1426 */
1427static void rp_stop(struct tty_struct *tty)
1428{
1429 struct r_port *info = tty->driver_data;
1430
1431#ifdef ROCKET_DEBUG_FLOW
1432 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1433 info->xmit_cnt, info->xmit_fifo_room);
1434#endif
1435
1436 if (rocket_paranoia_check(info, "rp_stop"))
1437 return;
1438
1439 if (sGetTxCnt(&info->channel))
1440 sDisTransmit(&info->channel);
1441}
1442
1443static void rp_start(struct tty_struct *tty)
1444{
1445 struct r_port *info = tty->driver_data;
1446
1447#ifdef ROCKET_DEBUG_FLOW
1448 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1449 info->xmit_cnt, info->xmit_fifo_room);
1450#endif
1451
1452 if (rocket_paranoia_check(info, "rp_stop"))
1453 return;
1454
1455 sEnTransmit(&info->channel);
1456 set_bit((info->aiop * 8) + info->chan,
1457 (void *) &xmit_flags[info->board]);
1458}
1459
1460/*
1461 * rp_wait_until_sent() --- wait until the transmitter is empty
1462 */
1463static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1464{
1465 struct r_port *info = tty->driver_data;
1466 CHANNEL_t *cp;
1467 unsigned long orig_jiffies;
1468 int check_time, exit_time;
1469 int txcnt;
1470
1471 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1472 return;
1473
1474 cp = &info->channel;
1475
1476 orig_jiffies = jiffies;
1477#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1478 printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout,
1479 jiffies);
1480 printk(KERN_INFO "cps=%d...\n", info->cps);
1481#endif
1482 while (1) {
1483 txcnt = sGetTxCnt(cp);
1484 if (!txcnt) {
1485 if (sGetChanStatusLo(cp) & TXSHRMT)
1486 break;
1487 check_time = (HZ / info->cps) / 5;
1488 } else {
1489 check_time = HZ * txcnt / info->cps;
1490 }
1491 if (timeout) {
1492 exit_time = orig_jiffies + timeout - jiffies;
1493 if (exit_time <= 0)
1494 break;
1495 if (exit_time < check_time)
1496 check_time = exit_time;
1497 }
1498 if (check_time == 0)
1499 check_time = 1;
1500#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1501 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1502 jiffies, check_time);
1503#endif
1504 msleep_interruptible(jiffies_to_msecs(check_time));
1505 if (signal_pending(current))
1506 break;
1507 }
1508 __set_current_state(TASK_RUNNING);
1509#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1510 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1511#endif
1512}
1513
1514/*
1515 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1516 */
1517static void rp_hangup(struct tty_struct *tty)
1518{
1519 CHANNEL_t *cp;
1520 struct r_port *info = tty->driver_data;
1521 unsigned long flags;
1522
1523 if (rocket_paranoia_check(info, "rp_hangup"))
1524 return;
1525
1526#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1527 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1528#endif
1529 rp_flush_buffer(tty);
1530 spin_lock_irqsave(&info->port.lock, flags);
1531 if (info->port.flags & ASYNC_CLOSING) {
1532 spin_unlock_irqrestore(&info->port.lock, flags);
1533 return;
1534 }
1535 if (info->port.count)
1536 atomic_dec(&rp_num_ports_open);
1537 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1538 spin_unlock_irqrestore(&info->port.lock, flags);
1539
1540 tty_port_hangup(&info->port);
1541
1542 cp = &info->channel;
1543 sDisRxFIFO(cp);
1544 sDisTransmit(cp);
1545 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1546 sDisCTSFlowCtl(cp);
1547 sDisTxSoftFlowCtl(cp);
1548 sClrTxXOFF(cp);
1549 clear_bit(ASYNCB_INITIALIZED, &info->port.flags);
1550
1551 wake_up_interruptible(&info->port.open_wait);
1552}
1553
1554/*
1555 * Exception handler - write char routine. The RocketPort driver uses a
1556 * double-buffering strategy, with the twist that if the in-memory CPU
1557 * buffer is empty, and there's space in the transmit FIFO, the
1558 * writing routines will write directly to transmit FIFO.
1559 * Write buffer and counters protected by spinlocks
1560 */
1561static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1562{
1563 struct r_port *info = tty->driver_data;
1564 CHANNEL_t *cp;
1565 unsigned long flags;
1566
1567 if (rocket_paranoia_check(info, "rp_put_char"))
1568 return 0;
1569
1570 /*
1571 * Grab the port write mutex, locking out other processes that try to
1572 * write to this port
1573 */
1574 mutex_lock(&info->write_mtx);
1575
1576#ifdef ROCKET_DEBUG_WRITE
1577 printk(KERN_INFO "rp_put_char %c...\n", ch);
1578#endif
1579
1580 spin_lock_irqsave(&info->slock, flags);
1581 cp = &info->channel;
1582
1583 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0)
1584 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1585
1586 if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1587 info->xmit_buf[info->xmit_head++] = ch;
1588 info->xmit_head &= XMIT_BUF_SIZE - 1;
1589 info->xmit_cnt++;
1590 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1591 } else {
1592 sOutB(sGetTxRxDataIO(cp), ch);
1593 info->xmit_fifo_room--;
1594 }
1595 spin_unlock_irqrestore(&info->slock, flags);
1596 mutex_unlock(&info->write_mtx);
1597 return 1;
1598}
1599
1600/*
1601 * Exception handler - write routine, called when user app writes to the device.
1602 * A per port write mutex is used to protect from another process writing to
1603 * this port at the same time. This other process could be running on the other CPU
1604 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1605 * Spinlocks protect the info xmit members.
1606 */
1607static int rp_write(struct tty_struct *tty,
1608 const unsigned char *buf, int count)
1609{
1610 struct r_port *info = tty->driver_data;
1611 CHANNEL_t *cp;
1612 const unsigned char *b;
1613 int c, retval = 0;
1614 unsigned long flags;
1615
1616 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1617 return 0;
1618
1619 if (mutex_lock_interruptible(&info->write_mtx))
1620 return -ERESTARTSYS;
1621
1622#ifdef ROCKET_DEBUG_WRITE
1623 printk(KERN_INFO "rp_write %d chars...\n", count);
1624#endif
1625 cp = &info->channel;
1626
1627 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count)
1628 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1629
1630 /*
1631 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1632 * into FIFO. Use the write queue for temp storage.
1633 */
1634 if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1635 c = min(count, info->xmit_fifo_room);
1636 b = buf;
1637
1638 /* Push data into FIFO, 2 bytes at a time */
1639 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1640
1641 /* If there is a byte remaining, write it */
1642 if (c & 1)
1643 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1644
1645 retval += c;
1646 buf += c;
1647 count -= c;
1648
1649 spin_lock_irqsave(&info->slock, flags);
1650 info->xmit_fifo_room -= c;
1651 spin_unlock_irqrestore(&info->slock, flags);
1652 }
1653
1654 /* If count is zero, we wrote it all and are done */
1655 if (!count)
1656 goto end;
1657
1658 /* Write remaining data into the port's xmit_buf */
1659 while (1) {
1660 /* Hung up ? */
1661 if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags))
1662 goto end;
1663 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1664 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1665 if (c <= 0)
1666 break;
1667
1668 b = buf;
1669 memcpy(info->xmit_buf + info->xmit_head, b, c);
1670
1671 spin_lock_irqsave(&info->slock, flags);
1672 info->xmit_head =
1673 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1674 info->xmit_cnt += c;
1675 spin_unlock_irqrestore(&info->slock, flags);
1676
1677 buf += c;
1678 count -= c;
1679 retval += c;
1680 }
1681
1682 if ((retval > 0) && !tty->stopped && !tty->hw_stopped)
1683 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1684
1685end:
1686 if (info->xmit_cnt < WAKEUP_CHARS) {
1687 tty_wakeup(tty);
1688#ifdef ROCKETPORT_HAVE_POLL_WAIT
1689 wake_up_interruptible(&tty->poll_wait);
1690#endif
1691 }
1692 mutex_unlock(&info->write_mtx);
1693 return retval;
1694}
1695
1696/*
1697 * Return the number of characters that can be sent. We estimate
1698 * only using the in-memory transmit buffer only, and ignore the
1699 * potential space in the transmit FIFO.
1700 */
1701static int rp_write_room(struct tty_struct *tty)
1702{
1703 struct r_port *info = tty->driver_data;
1704 int ret;
1705
1706 if (rocket_paranoia_check(info, "rp_write_room"))
1707 return 0;
1708
1709 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1710 if (ret < 0)
1711 ret = 0;
1712#ifdef ROCKET_DEBUG_WRITE
1713 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1714#endif
1715 return ret;
1716}
1717
1718/*
1719 * Return the number of characters in the buffer. Again, this only
1720 * counts those characters in the in-memory transmit buffer.
1721 */
1722static int rp_chars_in_buffer(struct tty_struct *tty)
1723{
1724 struct r_port *info = tty->driver_data;
1725 CHANNEL_t *cp;
1726
1727 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1728 return 0;
1729
1730 cp = &info->channel;
1731
1732#ifdef ROCKET_DEBUG_WRITE
1733 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1734#endif
1735 return info->xmit_cnt;
1736}
1737
1738/*
1739 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1740 * r_port struct for the port. Note that spinlock are used to protect info members,
1741 * do not call this function if the spinlock is already held.
1742 */
1743static void rp_flush_buffer(struct tty_struct *tty)
1744{
1745 struct r_port *info = tty->driver_data;
1746 CHANNEL_t *cp;
1747 unsigned long flags;
1748
1749 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1750 return;
1751
1752 spin_lock_irqsave(&info->slock, flags);
1753 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1754 spin_unlock_irqrestore(&info->slock, flags);
1755
1756#ifdef ROCKETPORT_HAVE_POLL_WAIT
1757 wake_up_interruptible(&tty->poll_wait);
1758#endif
1759 tty_wakeup(tty);
1760
1761 cp = &info->channel;
1762 sFlushTxFIFO(cp);
1763}
1764
1765#ifdef CONFIG_PCI
1766
1767static struct pci_device_id __devinitdata __used rocket_pci_ids[] = {
1768 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_ANY_ID) },
1769 { }
1770};
1771MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1772
1773/*
1774 * Called when a PCI card is found. Retrieves and stores model information,
1775 * init's aiopic and serial port hardware.
1776 * Inputs: i is the board number (0-n)
1777 */
1778static __init int register_PCI(int i, struct pci_dev *dev)
1779{
1780 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1781 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1782 char *str, *board_type;
1783 CONTROLLER_t *ctlp;
1784
1785 int fast_clock = 0;
1786 int altChanRingIndicator = 0;
1787 int ports_per_aiop = 8;
1788 WordIO_t ConfigIO = 0;
1789 ByteIO_t UPCIRingInd = 0;
1790
1791 if (!dev || pci_enable_device(dev))
1792 return 0;
1793
1794 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1795
1796 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1797 rocketModel[i].loadrm2 = 0;
1798 rocketModel[i].startingPortNumber = nextLineNumber;
1799
1800 /* Depending on the model, set up some config variables */
1801 switch (dev->device) {
1802 case PCI_DEVICE_ID_RP4QUAD:
1803 str = "Quadcable";
1804 max_num_aiops = 1;
1805 ports_per_aiop = 4;
1806 rocketModel[i].model = MODEL_RP4QUAD;
1807 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1808 rocketModel[i].numPorts = 4;
1809 break;
1810 case PCI_DEVICE_ID_RP8OCTA:
1811 str = "Octacable";
1812 max_num_aiops = 1;
1813 rocketModel[i].model = MODEL_RP8OCTA;
1814 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1815 rocketModel[i].numPorts = 8;
1816 break;
1817 case PCI_DEVICE_ID_URP8OCTA:
1818 str = "Octacable";
1819 max_num_aiops = 1;
1820 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1821 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1822 rocketModel[i].numPorts = 8;
1823 break;
1824 case PCI_DEVICE_ID_RP8INTF:
1825 str = "8";
1826 max_num_aiops = 1;
1827 rocketModel[i].model = MODEL_RP8INTF;
1828 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1829 rocketModel[i].numPorts = 8;
1830 break;
1831 case PCI_DEVICE_ID_URP8INTF:
1832 str = "8";
1833 max_num_aiops = 1;
1834 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1835 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1836 rocketModel[i].numPorts = 8;
1837 break;
1838 case PCI_DEVICE_ID_RP8J:
1839 str = "8J";
1840 max_num_aiops = 1;
1841 rocketModel[i].model = MODEL_RP8J;
1842 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1843 rocketModel[i].numPorts = 8;
1844 break;
1845 case PCI_DEVICE_ID_RP4J:
1846 str = "4J";
1847 max_num_aiops = 1;
1848 ports_per_aiop = 4;
1849 rocketModel[i].model = MODEL_RP4J;
1850 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1851 rocketModel[i].numPorts = 4;
1852 break;
1853 case PCI_DEVICE_ID_RP8SNI:
1854 str = "8 (DB78 Custom)";
1855 max_num_aiops = 1;
1856 rocketModel[i].model = MODEL_RP8SNI;
1857 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1858 rocketModel[i].numPorts = 8;
1859 break;
1860 case PCI_DEVICE_ID_RP16SNI:
1861 str = "16 (DB78 Custom)";
1862 max_num_aiops = 2;
1863 rocketModel[i].model = MODEL_RP16SNI;
1864 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1865 rocketModel[i].numPorts = 16;
1866 break;
1867 case PCI_DEVICE_ID_RP16INTF:
1868 str = "16";
1869 max_num_aiops = 2;
1870 rocketModel[i].model = MODEL_RP16INTF;
1871 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1872 rocketModel[i].numPorts = 16;
1873 break;
1874 case PCI_DEVICE_ID_URP16INTF:
1875 str = "16";
1876 max_num_aiops = 2;
1877 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1878 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1879 rocketModel[i].numPorts = 16;
1880 break;
1881 case PCI_DEVICE_ID_CRP16INTF:
1882 str = "16";
1883 max_num_aiops = 2;
1884 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1885 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1886 rocketModel[i].numPorts = 16;
1887 break;
1888 case PCI_DEVICE_ID_RP32INTF:
1889 str = "32";
1890 max_num_aiops = 4;
1891 rocketModel[i].model = MODEL_RP32INTF;
1892 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1893 rocketModel[i].numPorts = 32;
1894 break;
1895 case PCI_DEVICE_ID_URP32INTF:
1896 str = "32";
1897 max_num_aiops = 4;
1898 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1899 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1900 rocketModel[i].numPorts = 32;
1901 break;
1902 case PCI_DEVICE_ID_RPP4:
1903 str = "Plus Quadcable";
1904 max_num_aiops = 1;
1905 ports_per_aiop = 4;
1906 altChanRingIndicator++;
1907 fast_clock++;
1908 rocketModel[i].model = MODEL_RPP4;
1909 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
1910 rocketModel[i].numPorts = 4;
1911 break;
1912 case PCI_DEVICE_ID_RPP8:
1913 str = "Plus Octacable";
1914 max_num_aiops = 2;
1915 ports_per_aiop = 4;
1916 altChanRingIndicator++;
1917 fast_clock++;
1918 rocketModel[i].model = MODEL_RPP8;
1919 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
1920 rocketModel[i].numPorts = 8;
1921 break;
1922 case PCI_DEVICE_ID_RP2_232:
1923 str = "Plus 2 (RS-232)";
1924 max_num_aiops = 1;
1925 ports_per_aiop = 2;
1926 altChanRingIndicator++;
1927 fast_clock++;
1928 rocketModel[i].model = MODEL_RP2_232;
1929 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
1930 rocketModel[i].numPorts = 2;
1931 break;
1932 case PCI_DEVICE_ID_RP2_422:
1933 str = "Plus 2 (RS-422)";
1934 max_num_aiops = 1;
1935 ports_per_aiop = 2;
1936 altChanRingIndicator++;
1937 fast_clock++;
1938 rocketModel[i].model = MODEL_RP2_422;
1939 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
1940 rocketModel[i].numPorts = 2;
1941 break;
1942 case PCI_DEVICE_ID_RP6M:
1943
1944 max_num_aiops = 1;
1945 ports_per_aiop = 6;
1946 str = "6-port";
1947
1948 /* If revision is 1, the rocketmodem flash must be loaded.
1949 * If it is 2 it is a "socketed" version. */
1950 if (dev->revision == 1) {
1951 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
1952 rocketModel[i].loadrm2 = 1;
1953 } else {
1954 rcktpt_type[i] = ROCKET_TYPE_MODEM;
1955 }
1956
1957 rocketModel[i].model = MODEL_RP6M;
1958 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
1959 rocketModel[i].numPorts = 6;
1960 break;
1961 case PCI_DEVICE_ID_RP4M:
1962 max_num_aiops = 1;
1963 ports_per_aiop = 4;
1964 str = "4-port";
1965 if (dev->revision == 1) {
1966 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
1967 rocketModel[i].loadrm2 = 1;
1968 } else {
1969 rcktpt_type[i] = ROCKET_TYPE_MODEM;
1970 }
1971
1972 rocketModel[i].model = MODEL_RP4M;
1973 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
1974 rocketModel[i].numPorts = 4;
1975 break;
1976 default:
1977 str = "(unknown/unsupported)";
1978 max_num_aiops = 0;
1979 break;
1980 }
1981
1982 /*
1983 * Check for UPCI boards.
1984 */
1985
1986 switch (dev->device) {
1987 case PCI_DEVICE_ID_URP32INTF:
1988 case PCI_DEVICE_ID_URP8INTF:
1989 case PCI_DEVICE_ID_URP16INTF:
1990 case PCI_DEVICE_ID_CRP16INTF:
1991 case PCI_DEVICE_ID_URP8OCTA:
1992 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1993 ConfigIO = pci_resource_start(dev, 1);
1994 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
1995 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1996
1997 /*
1998 * Check for octa or quad cable.
1999 */
2000 if (!
2001 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2002 PCI_GPIO_CTRL_8PORT)) {
2003 str = "Quadcable";
2004 ports_per_aiop = 4;
2005 rocketModel[i].numPorts = 4;
2006 }
2007 }
2008 break;
2009 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2010 str = "8 ports";
2011 max_num_aiops = 1;
2012 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2013 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2014 rocketModel[i].numPorts = 8;
2015 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2016 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2017 ConfigIO = pci_resource_start(dev, 1);
2018 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2019 break;
2020 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2021 str = "4 ports";
2022 max_num_aiops = 1;
2023 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2024 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2025 rocketModel[i].numPorts = 4;
2026 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2027 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2028 ConfigIO = pci_resource_start(dev, 1);
2029 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2030 break;
2031 default:
2032 break;
2033 }
2034
2035 switch (rcktpt_type[i]) {
2036 case ROCKET_TYPE_MODEM:
2037 board_type = "RocketModem";
2038 break;
2039 case ROCKET_TYPE_MODEMII:
2040 board_type = "RocketModem II";
2041 break;
2042 case ROCKET_TYPE_MODEMIII:
2043 board_type = "RocketModem III";
2044 break;
2045 default:
2046 board_type = "RocketPort";
2047 break;
2048 }
2049
2050 if (fast_clock) {
2051 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2052 rp_baud_base[i] = 921600;
2053 } else {
2054 /*
2055 * If support_low_speed is set, use the slow clock
2056 * prescale, which supports 50 bps
2057 */
2058 if (support_low_speed) {
2059 /* mod 9 (divide by 10) prescale */
2060 sClockPrescale = 0x19;
2061 rp_baud_base[i] = 230400;
2062 } else {
2063 /* mod 4 (devide by 5) prescale */
2064 sClockPrescale = 0x14;
2065 rp_baud_base[i] = 460800;
2066 }
2067 }
2068
2069 for (aiop = 0; aiop < max_num_aiops; aiop++)
2070 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2071 ctlp = sCtlNumToCtlPtr(i);
2072 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2073 for (aiop = 0; aiop < max_num_aiops; aiop++)
2074 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2075
2076 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2077 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2078 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2079 rocketModel[i].startingPortNumber,
2080 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2081
2082 if (num_aiops <= 0) {
2083 rcktpt_io_addr[i] = 0;
2084 return (0);
2085 }
2086 is_PCI[i] = 1;
2087
2088 /* Reset the AIOPIC, init the serial ports */
2089 for (aiop = 0; aiop < num_aiops; aiop++) {
2090 sResetAiopByNum(ctlp, aiop);
2091 num_chan = ports_per_aiop;
2092 for (chan = 0; chan < num_chan; chan++)
2093 init_r_port(i, aiop, chan, dev);
2094 }
2095
2096 /* Rocket modems must be reset */
2097 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2098 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2099 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2100 num_chan = ports_per_aiop;
2101 for (chan = 0; chan < num_chan; chan++)
2102 sPCIModemReset(ctlp, chan, 1);
2103 msleep(500);
2104 for (chan = 0; chan < num_chan; chan++)
2105 sPCIModemReset(ctlp, chan, 0);
2106 msleep(500);
2107 rmSpeakerReset(ctlp, rocketModel[i].model);
2108 }
2109 return (1);
2110}
2111
2112/*
2113 * Probes for PCI cards, inits them if found
2114 * Input: board_found = number of ISA boards already found, or the
2115 * starting board number
2116 * Returns: Number of PCI boards found
2117 */
2118static int __init init_PCI(int boards_found)
2119{
2120 struct pci_dev *dev = NULL;
2121 int count = 0;
2122
2123 /* Work through the PCI device list, pulling out ours */
2124 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2125 if (register_PCI(count + boards_found, dev))
2126 count++;
2127 }
2128 return (count);
2129}
2130
2131#endif /* CONFIG_PCI */
2132
2133/*
2134 * Probes for ISA cards
2135 * Input: i = the board number to look for
2136 * Returns: 1 if board found, 0 else
2137 */
2138static int __init init_ISA(int i)
2139{
2140 int num_aiops, num_chan = 0, total_num_chan = 0;
2141 int aiop, chan;
2142 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2143 CONTROLLER_t *ctlp;
2144 char *type_string;
2145
2146 /* If io_addr is zero, no board configured */
2147 if (rcktpt_io_addr[i] == 0)
2148 return (0);
2149
2150 /* Reserve the IO region */
2151 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2152 printk(KERN_ERR "Unable to reserve IO region for configured "
2153 "ISA RocketPort at address 0x%lx, board not "
2154 "installed...\n", rcktpt_io_addr[i]);
2155 rcktpt_io_addr[i] = 0;
2156 return (0);
2157 }
2158
2159 ctlp = sCtlNumToCtlPtr(i);
2160
2161 ctlp->boardType = rcktpt_type[i];
2162
2163 switch (rcktpt_type[i]) {
2164 case ROCKET_TYPE_PC104:
2165 type_string = "(PC104)";
2166 break;
2167 case ROCKET_TYPE_MODEM:
2168 type_string = "(RocketModem)";
2169 break;
2170 case ROCKET_TYPE_MODEMII:
2171 type_string = "(RocketModem II)";
2172 break;
2173 default:
2174 type_string = "";
2175 break;
2176 }
2177
2178 /*
2179 * If support_low_speed is set, use the slow clock prescale,
2180 * which supports 50 bps
2181 */
2182 if (support_low_speed) {
2183 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2184 rp_baud_base[i] = 230400;
2185 } else {
2186 sClockPrescale = 0x14; /* mod 4 (devide by 5) prescale */
2187 rp_baud_base[i] = 460800;
2188 }
2189
2190 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2191 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2192
2193 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2194
2195 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2196 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2197 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2198 }
2199
2200 /* If something went wrong initing the AIOP's release the ISA IO memory */
2201 if (num_aiops <= 0) {
2202 release_region(rcktpt_io_addr[i], 64);
2203 rcktpt_io_addr[i] = 0;
2204 return (0);
2205 }
2206
2207 rocketModel[i].startingPortNumber = nextLineNumber;
2208
2209 for (aiop = 0; aiop < num_aiops; aiop++) {
2210 sResetAiopByNum(ctlp, aiop);
2211 sEnAiop(ctlp, aiop);
2212 num_chan = sGetAiopNumChan(ctlp, aiop);
2213 total_num_chan += num_chan;
2214 for (chan = 0; chan < num_chan; chan++)
2215 init_r_port(i, aiop, chan, NULL);
2216 }
2217 is_PCI[i] = 0;
2218 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2219 num_chan = sGetAiopNumChan(ctlp, 0);
2220 total_num_chan = num_chan;
2221 for (chan = 0; chan < num_chan; chan++)
2222 sModemReset(ctlp, chan, 1);
2223 msleep(500);
2224 for (chan = 0; chan < num_chan; chan++)
2225 sModemReset(ctlp, chan, 0);
2226 msleep(500);
2227 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2228 } else {
2229 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2230 }
2231 rocketModel[i].numPorts = total_num_chan;
2232 rocketModel[i].model = MODEL_ISA;
2233
2234 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2235 i, rcktpt_io_addr[i], num_aiops, type_string);
2236
2237 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2238 rocketModel[i].modelString,
2239 rocketModel[i].startingPortNumber,
2240 rocketModel[i].startingPortNumber +
2241 rocketModel[i].numPorts - 1);
2242
2243 return (1);
2244}
2245
2246static const struct tty_operations rocket_ops = {
2247 .open = rp_open,
2248 .close = rp_close,
2249 .write = rp_write,
2250 .put_char = rp_put_char,
2251 .write_room = rp_write_room,
2252 .chars_in_buffer = rp_chars_in_buffer,
2253 .flush_buffer = rp_flush_buffer,
2254 .ioctl = rp_ioctl,
2255 .throttle = rp_throttle,
2256 .unthrottle = rp_unthrottle,
2257 .set_termios = rp_set_termios,
2258 .stop = rp_stop,
2259 .start = rp_start,
2260 .hangup = rp_hangup,
2261 .break_ctl = rp_break,
2262 .send_xchar = rp_send_xchar,
2263 .wait_until_sent = rp_wait_until_sent,
2264 .tiocmget = rp_tiocmget,
2265 .tiocmset = rp_tiocmset,
2266};
2267
2268static const struct tty_port_operations rocket_port_ops = {
2269 .carrier_raised = carrier_raised,
2270 .dtr_rts = dtr_rts,
2271};
2272
2273/*
2274 * The module "startup" routine; it's run when the module is loaded.
2275 */
2276static int __init rp_init(void)
2277{
2278 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2279
2280 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2281 ROCKET_VERSION, ROCKET_DATE);
2282
2283 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2284 if (!rocket_driver)
2285 goto err;
2286
2287 /*
2288 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2289 * zero, use the default controller IO address of board1 + 0x40.
2290 */
2291 if (board1) {
2292 if (controller == 0)
2293 controller = board1 + 0x40;
2294 } else {
2295 controller = 0; /* Used as a flag, meaning no ISA boards */
2296 }
2297
2298 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2299 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2300 printk(KERN_ERR "Unable to reserve IO region for first "
2301 "configured ISA RocketPort controller 0x%lx. "
2302 "Driver exiting\n", controller);
2303 ret = -EBUSY;
2304 goto err_tty;
2305 }
2306
2307 /* Store ISA variable retrieved from command line or .conf file. */
2308 rcktpt_io_addr[0] = board1;
2309 rcktpt_io_addr[1] = board2;
2310 rcktpt_io_addr[2] = board3;
2311 rcktpt_io_addr[3] = board4;
2312
2313 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2314 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2315 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2316 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2317 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2318 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2319 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2320 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2321
2322 /*
2323 * Set up the tty driver structure and then register this
2324 * driver with the tty layer.
2325 */
2326
2327 rocket_driver->owner = THIS_MODULE;
2328 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2329 rocket_driver->name = "ttyR";
2330 rocket_driver->driver_name = "Comtrol RocketPort";
2331 rocket_driver->major = TTY_ROCKET_MAJOR;
2332 rocket_driver->minor_start = 0;
2333 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2334 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2335 rocket_driver->init_termios = tty_std_termios;
2336 rocket_driver->init_termios.c_cflag =
2337 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2338 rocket_driver->init_termios.c_ispeed = 9600;
2339 rocket_driver->init_termios.c_ospeed = 9600;
2340#ifdef ROCKET_SOFT_FLOW
2341 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2342#endif
2343 tty_set_operations(rocket_driver, &rocket_ops);
2344
2345 ret = tty_register_driver(rocket_driver);
2346 if (ret < 0) {
2347 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2348 goto err_controller;
2349 }
2350
2351#ifdef ROCKET_DEBUG_OPEN
2352 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2353#endif
2354
2355 /*
2356 * OK, let's probe each of the controllers looking for boards. Any boards found
2357 * will be initialized here.
2358 */
2359 isa_boards_found = 0;
2360 pci_boards_found = 0;
2361
2362 for (i = 0; i < NUM_BOARDS; i++) {
2363 if (init_ISA(i))
2364 isa_boards_found++;
2365 }
2366
2367#ifdef CONFIG_PCI
2368 if (isa_boards_found < NUM_BOARDS)
2369 pci_boards_found = init_PCI(isa_boards_found);
2370#endif
2371
2372 max_board = pci_boards_found + isa_boards_found;
2373
2374 if (max_board == 0) {
2375 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2376 ret = -ENXIO;
2377 goto err_ttyu;
2378 }
2379
2380 return 0;
2381err_ttyu:
2382 tty_unregister_driver(rocket_driver);
2383err_controller:
2384 if (controller)
2385 release_region(controller, 4);
2386err_tty:
2387 put_tty_driver(rocket_driver);
2388err:
2389 return ret;
2390}
2391
2392
2393static void rp_cleanup_module(void)
2394{
2395 int retval;
2396 int i;
2397
2398 del_timer_sync(&rocket_timer);
2399
2400 retval = tty_unregister_driver(rocket_driver);
2401 if (retval)
2402 printk(KERN_ERR "Error %d while trying to unregister "
2403 "rocketport driver\n", -retval);
2404
2405 for (i = 0; i < MAX_RP_PORTS; i++)
2406 if (rp_table[i]) {
2407 tty_unregister_device(rocket_driver, i);
2408 kfree(rp_table[i]);
2409 }
2410
2411 put_tty_driver(rocket_driver);
2412
2413 for (i = 0; i < NUM_BOARDS; i++) {
2414 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2415 continue;
2416 release_region(rcktpt_io_addr[i], 64);
2417 }
2418 if (controller)
2419 release_region(controller, 4);
2420}
2421
2422/***************************************************************************
2423Function: sInitController
2424Purpose: Initialization of controller global registers and controller
2425 structure.
2426Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2427 IRQNum,Frequency,PeriodicOnly)
2428 CONTROLLER_T *CtlP; Ptr to controller structure
2429 int CtlNum; Controller number
2430 ByteIO_t MudbacIO; Mudbac base I/O address.
2431 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2432 This list must be in the order the AIOPs will be found on the
2433 controller. Once an AIOP in the list is not found, it is
2434 assumed that there are no more AIOPs on the controller.
2435 int AiopIOListSize; Number of addresses in AiopIOList
2436 int IRQNum; Interrupt Request number. Can be any of the following:
2437 0: Disable global interrupts
2438 3: IRQ 3
2439 4: IRQ 4
2440 5: IRQ 5
2441 9: IRQ 9
2442 10: IRQ 10
2443 11: IRQ 11
2444 12: IRQ 12
2445 15: IRQ 15
2446 Byte_t Frequency: A flag identifying the frequency
2447 of the periodic interrupt, can be any one of the following:
2448 FREQ_DIS - periodic interrupt disabled
2449 FREQ_137HZ - 137 Hertz
2450 FREQ_69HZ - 69 Hertz
2451 FREQ_34HZ - 34 Hertz
2452 FREQ_17HZ - 17 Hertz
2453 FREQ_9HZ - 9 Hertz
2454 FREQ_4HZ - 4 Hertz
2455 If IRQNum is set to 0 the Frequency parameter is
2456 overidden, it is forced to a value of FREQ_DIS.
2457 int PeriodicOnly: 1 if all interrupts except the periodic
2458 interrupt are to be blocked.
2459 0 is both the periodic interrupt and
2460 other channel interrupts are allowed.
2461 If IRQNum is set to 0 the PeriodicOnly parameter is
2462 overidden, it is forced to a value of 0.
2463Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2464 initialization failed.
2465
2466Comments:
2467 If periodic interrupts are to be disabled but AIOP interrupts
2468 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2469
2470 If interrupts are to be completely disabled set IRQNum to 0.
2471
2472 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2473 invalid combination.
2474
2475 This function performs initialization of global interrupt modes,
2476 but it does not actually enable global interrupts. To enable
2477 and disable global interrupts use functions sEnGlobalInt() and
2478 sDisGlobalInt(). Enabling of global interrupts is normally not
2479 done until all other initializations are complete.
2480
2481 Even if interrupts are globally enabled, they must also be
2482 individually enabled for each channel that is to generate
2483 interrupts.
2484
2485Warnings: No range checking on any of the parameters is done.
2486
2487 No context switches are allowed while executing this function.
2488
2489 After this function all AIOPs on the controller are disabled,
2490 they can be enabled with sEnAiop().
2491*/
2492static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2493 ByteIO_t * AiopIOList, int AiopIOListSize,
2494 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2495{
2496 int i;
2497 ByteIO_t io;
2498 int done;
2499
2500 CtlP->AiopIntrBits = aiop_intr_bits;
2501 CtlP->AltChanRingIndicator = 0;
2502 CtlP->CtlNum = CtlNum;
2503 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2504 CtlP->BusType = isISA;
2505 CtlP->MBaseIO = MudbacIO;
2506 CtlP->MReg1IO = MudbacIO + 1;
2507 CtlP->MReg2IO = MudbacIO + 2;
2508 CtlP->MReg3IO = MudbacIO + 3;
2509#if 1
2510 CtlP->MReg2 = 0; /* interrupt disable */
2511 CtlP->MReg3 = 0; /* no periodic interrupts */
2512#else
2513 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2514 CtlP->MReg2 = 0; /* interrupt disable */
2515 CtlP->MReg3 = 0; /* no periodic interrupts */
2516 } else {
2517 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2518 CtlP->MReg3 = Frequency; /* set frequency */
2519 if (PeriodicOnly) { /* periodic interrupt only */
2520 CtlP->MReg3 |= PERIODIC_ONLY;
2521 }
2522 }
2523#endif
2524 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2525 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2526 sControllerEOI(CtlP); /* clear EOI if warm init */
2527 /* Init AIOPs */
2528 CtlP->NumAiop = 0;
2529 for (i = done = 0; i < AiopIOListSize; i++) {
2530 io = AiopIOList[i];
2531 CtlP->AiopIO[i] = (WordIO_t) io;
2532 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2533 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2534 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2535 if (done)
2536 continue;
2537 sEnAiop(CtlP, i); /* enable the AIOP */
2538 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2539 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2540 done = 1; /* done looking for AIOPs */
2541 else {
2542 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2543 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2544 sOutB(io + _INDX_DATA, sClockPrescale);
2545 CtlP->NumAiop++; /* bump count of AIOPs */
2546 }
2547 sDisAiop(CtlP, i); /* disable AIOP */
2548 }
2549
2550 if (CtlP->NumAiop == 0)
2551 return (-1);
2552 else
2553 return (CtlP->NumAiop);
2554}
2555
2556/***************************************************************************
2557Function: sPCIInitController
2558Purpose: Initialization of controller global registers and controller
2559 structure.
2560Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
2561 IRQNum,Frequency,PeriodicOnly)
2562 CONTROLLER_T *CtlP; Ptr to controller structure
2563 int CtlNum; Controller number
2564 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2565 This list must be in the order the AIOPs will be found on the
2566 controller. Once an AIOP in the list is not found, it is
2567 assumed that there are no more AIOPs on the controller.
2568 int AiopIOListSize; Number of addresses in AiopIOList
2569 int IRQNum; Interrupt Request number. Can be any of the following:
2570 0: Disable global interrupts
2571 3: IRQ 3
2572 4: IRQ 4
2573 5: IRQ 5
2574 9: IRQ 9
2575 10: IRQ 10
2576 11: IRQ 11
2577 12: IRQ 12
2578 15: IRQ 15
2579 Byte_t Frequency: A flag identifying the frequency
2580 of the periodic interrupt, can be any one of the following:
2581 FREQ_DIS - periodic interrupt disabled
2582 FREQ_137HZ - 137 Hertz
2583 FREQ_69HZ - 69 Hertz
2584 FREQ_34HZ - 34 Hertz
2585 FREQ_17HZ - 17 Hertz
2586 FREQ_9HZ - 9 Hertz
2587 FREQ_4HZ - 4 Hertz
2588 If IRQNum is set to 0 the Frequency parameter is
2589 overidden, it is forced to a value of FREQ_DIS.
2590 int PeriodicOnly: 1 if all interrupts except the periodic
2591 interrupt are to be blocked.
2592 0 is both the periodic interrupt and
2593 other channel interrupts are allowed.
2594 If IRQNum is set to 0 the PeriodicOnly parameter is
2595 overidden, it is forced to a value of 0.
2596Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2597 initialization failed.
2598
2599Comments:
2600 If periodic interrupts are to be disabled but AIOP interrupts
2601 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2602
2603 If interrupts are to be completely disabled set IRQNum to 0.
2604
2605 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2606 invalid combination.
2607
2608 This function performs initialization of global interrupt modes,
2609 but it does not actually enable global interrupts. To enable
2610 and disable global interrupts use functions sEnGlobalInt() and
2611 sDisGlobalInt(). Enabling of global interrupts is normally not
2612 done until all other initializations are complete.
2613
2614 Even if interrupts are globally enabled, they must also be
2615 individually enabled for each channel that is to generate
2616 interrupts.
2617
2618Warnings: No range checking on any of the parameters is done.
2619
2620 No context switches are allowed while executing this function.
2621
2622 After this function all AIOPs on the controller are disabled,
2623 they can be enabled with sEnAiop().
2624*/
2625static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
2626 ByteIO_t * AiopIOList, int AiopIOListSize,
2627 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
2628 int PeriodicOnly, int altChanRingIndicator,
2629 int UPCIRingInd)
2630{
2631 int i;
2632 ByteIO_t io;
2633
2634 CtlP->AltChanRingIndicator = altChanRingIndicator;
2635 CtlP->UPCIRingInd = UPCIRingInd;
2636 CtlP->CtlNum = CtlNum;
2637 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2638 CtlP->BusType = isPCI; /* controller release 1 */
2639
2640 if (ConfigIO) {
2641 CtlP->isUPCI = 1;
2642 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
2643 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
2644 CtlP->AiopIntrBits = upci_aiop_intr_bits;
2645 } else {
2646 CtlP->isUPCI = 0;
2647 CtlP->PCIIO =
2648 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
2649 CtlP->AiopIntrBits = aiop_intr_bits;
2650 }
2651
2652 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
2653 /* Init AIOPs */
2654 CtlP->NumAiop = 0;
2655 for (i = 0; i < AiopIOListSize; i++) {
2656 io = AiopIOList[i];
2657 CtlP->AiopIO[i] = (WordIO_t) io;
2658 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2659
2660 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2661 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2662 break; /* done looking for AIOPs */
2663
2664 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2665 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2666 sOutB(io + _INDX_DATA, sClockPrescale);
2667 CtlP->NumAiop++; /* bump count of AIOPs */
2668 }
2669
2670 if (CtlP->NumAiop == 0)
2671 return (-1);
2672 else
2673 return (CtlP->NumAiop);
2674}
2675
2676/***************************************************************************
2677Function: sReadAiopID
2678Purpose: Read the AIOP idenfication number directly from an AIOP.
2679Call: sReadAiopID(io)
2680 ByteIO_t io: AIOP base I/O address
2681Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2682 is replace by an identifying number.
2683 Flag AIOPID_NULL if no valid AIOP is found
2684Warnings: No context switches are allowed while executing this function.
2685
2686*/
2687static int sReadAiopID(ByteIO_t io)
2688{
2689 Byte_t AiopID; /* ID byte from AIOP */
2690
2691 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2692 sOutB(io + _CMD_REG, 0x0);
2693 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2694 if (AiopID == 0x06)
2695 return (1);
2696 else /* AIOP does not exist */
2697 return (-1);
2698}
2699
2700/***************************************************************************
2701Function: sReadAiopNumChan
2702Purpose: Read the number of channels available in an AIOP directly from
2703 an AIOP.
2704Call: sReadAiopNumChan(io)
2705 WordIO_t io: AIOP base I/O address
2706Return: int: The number of channels available
2707Comments: The number of channels is determined by write/reads from identical
2708 offsets within the SRAM address spaces for channels 0 and 4.
2709 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2710 AIOP, otherwise it is an 8 channel.
2711Warnings: No context switches are allowed while executing this function.
2712*/
2713static int sReadAiopNumChan(WordIO_t io)
2714{
2715 Word_t x;
2716 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2717
2718 /* write to chan 0 SRAM */
2719 out32((DWordIO_t) io + _INDX_ADDR, R);
2720 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2721 x = sInW(io + _INDX_DATA);
2722 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2723 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2724 return (8);
2725 else
2726 return (4);
2727}
2728
2729/***************************************************************************
2730Function: sInitChan
2731Purpose: Initialization of a channel and channel structure
2732Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2733 CONTROLLER_T *CtlP; Ptr to controller structure
2734 CHANNEL_T *ChP; Ptr to channel structure
2735 int AiopNum; AIOP number within controller
2736 int ChanNum; Channel number within AIOP
2737Return: int: 1 if initialization succeeded, 0 if it fails because channel
2738 number exceeds number of channels available in AIOP.
2739Comments: This function must be called before a channel can be used.
2740Warnings: No range checking on any of the parameters is done.
2741
2742 No context switches are allowed while executing this function.
2743*/
2744static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2745 int ChanNum)
2746{
2747 int i;
2748 WordIO_t AiopIO;
2749 WordIO_t ChIOOff;
2750 Byte_t *ChR;
2751 Word_t ChOff;
2752 static Byte_t R[4];
2753 int brd9600;
2754
2755 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2756 return 0; /* exceeds num chans in AIOP */
2757
2758 /* Channel, AIOP, and controller identifiers */
2759 ChP->CtlP = CtlP;
2760 ChP->ChanID = CtlP->AiopID[AiopNum];
2761 ChP->AiopNum = AiopNum;
2762 ChP->ChanNum = ChanNum;
2763
2764 /* Global direct addresses */
2765 AiopIO = CtlP->AiopIO[AiopNum];
2766 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2767 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2768 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2769 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2770 ChP->IndexData = AiopIO + _INDX_DATA;
2771
2772 /* Channel direct addresses */
2773 ChIOOff = AiopIO + ChP->ChanNum * 2;
2774 ChP->TxRxData = ChIOOff + _TD0;
2775 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2776 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2777 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2778
2779 /* Initialize the channel from the RData array */
2780 for (i = 0; i < RDATASIZE; i += 4) {
2781 R[0] = RData[i];
2782 R[1] = RData[i + 1] + 0x10 * ChanNum;
2783 R[2] = RData[i + 2];
2784 R[3] = RData[i + 3];
2785 out32(ChP->IndexAddr, R);
2786 }
2787
2788 ChR = ChP->R;
2789 for (i = 0; i < RREGDATASIZE; i += 4) {
2790 ChR[i] = RRegData[i];
2791 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2792 ChR[i + 2] = RRegData[i + 2];
2793 ChR[i + 3] = RRegData[i + 3];
2794 }
2795
2796 /* Indexed registers */
2797 ChOff = (Word_t) ChanNum *0x1000;
2798
2799 if (sClockPrescale == 0x14)
2800 brd9600 = 47;
2801 else
2802 brd9600 = 23;
2803
2804 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2805 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2806 ChP->BaudDiv[2] = (Byte_t) brd9600;
2807 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2808 out32(ChP->IndexAddr, ChP->BaudDiv);
2809
2810 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2811 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2812 ChP->TxControl[2] = 0;
2813 ChP->TxControl[3] = 0;
2814 out32(ChP->IndexAddr, ChP->TxControl);
2815
2816 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2817 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2818 ChP->RxControl[2] = 0;
2819 ChP->RxControl[3] = 0;
2820 out32(ChP->IndexAddr, ChP->RxControl);
2821
2822 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2823 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2824 ChP->TxEnables[2] = 0;
2825 ChP->TxEnables[3] = 0;
2826 out32(ChP->IndexAddr, ChP->TxEnables);
2827
2828 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2829 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2830 ChP->TxCompare[2] = 0;
2831 ChP->TxCompare[3] = 0;
2832 out32(ChP->IndexAddr, ChP->TxCompare);
2833
2834 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2835 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2836 ChP->TxReplace1[2] = 0;
2837 ChP->TxReplace1[3] = 0;
2838 out32(ChP->IndexAddr, ChP->TxReplace1);
2839
2840 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2841 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2842 ChP->TxReplace2[2] = 0;
2843 ChP->TxReplace2[3] = 0;
2844 out32(ChP->IndexAddr, ChP->TxReplace2);
2845
2846 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2847 ChP->TxFIFO = ChOff + _TX_FIFO;
2848
2849 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2850 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2851 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2852 sOutW(ChP->IndexData, 0);
2853 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2854 ChP->RxFIFO = ChOff + _RX_FIFO;
2855
2856 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2857 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2858 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2859 sOutW(ChP->IndexData, 0);
2860 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2861 sOutW(ChP->IndexData, 0);
2862 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2863 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2864 sOutB(ChP->IndexData, 0);
2865 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2866 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2867 sOutB(ChP->IndexData, 0);
2868 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2869 sEnRxProcessor(ChP); /* start the Rx processor */
2870
2871 return 1;
2872}
2873
2874/***************************************************************************
2875Function: sStopRxProcessor
2876Purpose: Stop the receive processor from processing a channel.
2877Call: sStopRxProcessor(ChP)
2878 CHANNEL_T *ChP; Ptr to channel structure
2879
2880Comments: The receive processor can be started again with sStartRxProcessor().
2881 This function causes the receive processor to skip over the
2882 stopped channel. It does not stop it from processing other channels.
2883
2884Warnings: No context switches are allowed while executing this function.
2885
2886 Do not leave the receive processor stopped for more than one
2887 character time.
2888
2889 After calling this function a delay of 4 uS is required to ensure
2890 that the receive processor is no longer processing this channel.
2891*/
2892static void sStopRxProcessor(CHANNEL_T * ChP)
2893{
2894 Byte_t R[4];
2895
2896 R[0] = ChP->R[0];
2897 R[1] = ChP->R[1];
2898 R[2] = 0x0a;
2899 R[3] = ChP->R[3];
2900 out32(ChP->IndexAddr, R);
2901}
2902
2903/***************************************************************************
2904Function: sFlushRxFIFO
2905Purpose: Flush the Rx FIFO
2906Call: sFlushRxFIFO(ChP)
2907 CHANNEL_T *ChP; Ptr to channel structure
2908Return: void
2909Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2910 while it is being flushed the receive processor is stopped
2911 and the transmitter is disabled. After these operations a
2912 4 uS delay is done before clearing the pointers to allow
2913 the receive processor to stop. These items are handled inside
2914 this function.
2915Warnings: No context switches are allowed while executing this function.
2916*/
2917static void sFlushRxFIFO(CHANNEL_T * ChP)
2918{
2919 int i;
2920 Byte_t Ch; /* channel number within AIOP */
2921 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2922
2923 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2924 return; /* don't need to flush */
2925
2926 RxFIFOEnabled = 0;
2927 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2928 RxFIFOEnabled = 1;
2929 sDisRxFIFO(ChP); /* disable it */
2930 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2931 sInB(ChP->IntChan); /* depends on bus i/o timing */
2932 }
2933 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2934 Ch = (Byte_t) sGetChanNum(ChP);
2935 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2936 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2937 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2938 sOutW(ChP->IndexData, 0);
2939 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2940 sOutW(ChP->IndexData, 0);
2941 if (RxFIFOEnabled)
2942 sEnRxFIFO(ChP); /* enable Rx FIFO */
2943}
2944
2945/***************************************************************************
2946Function: sFlushTxFIFO
2947Purpose: Flush the Tx FIFO
2948Call: sFlushTxFIFO(ChP)
2949 CHANNEL_T *ChP; Ptr to channel structure
2950Return: void
2951Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2952 while it is being flushed the receive processor is stopped
2953 and the transmitter is disabled. After these operations a
2954 4 uS delay is done before clearing the pointers to allow
2955 the receive processor to stop. These items are handled inside
2956 this function.
2957Warnings: No context switches are allowed while executing this function.
2958*/
2959static void sFlushTxFIFO(CHANNEL_T * ChP)
2960{
2961 int i;
2962 Byte_t Ch; /* channel number within AIOP */
2963 int TxEnabled; /* 1 if transmitter enabled */
2964
2965 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2966 return; /* don't need to flush */
2967
2968 TxEnabled = 0;
2969 if (ChP->TxControl[3] & TX_ENABLE) {
2970 TxEnabled = 1;
2971 sDisTransmit(ChP); /* disable transmitter */
2972 }
2973 sStopRxProcessor(ChP); /* stop Rx processor */
2974 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2975 sInB(ChP->IntChan); /* depends on bus i/o timing */
2976 Ch = (Byte_t) sGetChanNum(ChP);
2977 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2978 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2979 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2980 sOutW(ChP->IndexData, 0);
2981 if (TxEnabled)
2982 sEnTransmit(ChP); /* enable transmitter */
2983 sStartRxProcessor(ChP); /* restart Rx processor */
2984}
2985
2986/***************************************************************************
2987Function: sWriteTxPrioByte
2988Purpose: Write a byte of priority transmit data to a channel
2989Call: sWriteTxPrioByte(ChP,Data)
2990 CHANNEL_T *ChP; Ptr to channel structure
2991 Byte_t Data; The transmit data byte
2992
2993Return: int: 1 if the bytes is successfully written, otherwise 0.
2994
2995Comments: The priority byte is transmitted before any data in the Tx FIFO.
2996
2997Warnings: No context switches are allowed while executing this function.
2998*/
2999static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
3000{
3001 Byte_t DWBuf[4]; /* buffer for double word writes */
3002 Word_t *WordPtr; /* must be far because Win SS != DS */
3003 register DWordIO_t IndexAddr;
3004
3005 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
3006 IndexAddr = ChP->IndexAddr;
3007 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
3008 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
3009 return (0); /* nothing sent */
3010
3011 WordPtr = (Word_t *) (&DWBuf[0]);
3012 *WordPtr = ChP->TxPrioBuf; /* data byte address */
3013
3014 DWBuf[2] = Data; /* data byte value */
3015 out32(IndexAddr, DWBuf); /* write it out */
3016
3017 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
3018
3019 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
3020 DWBuf[3] = 0; /* priority buffer pointer */
3021 out32(IndexAddr, DWBuf); /* write it out */
3022 } else { /* write it to Tx FIFO */
3023
3024 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
3025 }
3026 return (1); /* 1 byte sent */
3027}
3028
3029/***************************************************************************
3030Function: sEnInterrupts
3031Purpose: Enable one or more interrupts for a channel
3032Call: sEnInterrupts(ChP,Flags)
3033 CHANNEL_T *ChP; Ptr to channel structure
3034 Word_t Flags: Interrupt enable flags, can be any combination
3035 of the following flags:
3036 TXINT_EN: Interrupt on Tx FIFO empty
3037 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3038 sSetRxTrigger())
3039 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3040 MCINT_EN: Interrupt on modem input change
3041 CHANINT_EN: Allow channel interrupt signal to the AIOP's
3042 Interrupt Channel Register.
3043Return: void
3044Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3045 enabled. If an interrupt enable flag is not set in Flags, that
3046 interrupt will not be changed. Interrupts can be disabled with
3047 function sDisInterrupts().
3048
3049 This function sets the appropriate bit for the channel in the AIOP's
3050 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3051 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3052
3053 Interrupts must also be globally enabled before channel interrupts
3054 will be passed on to the host. This is done with function
3055 sEnGlobalInt().
3056
3057 In some cases it may be desirable to disable interrupts globally but
3058 enable channel interrupts. This would allow the global interrupt
3059 status register to be used to determine which AIOPs need service.
3060*/
3061static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3062{
3063 Byte_t Mask; /* Interrupt Mask Register */
3064
3065 ChP->RxControl[2] |=
3066 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3067
3068 out32(ChP->IndexAddr, ChP->RxControl);
3069
3070 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3071
3072 out32(ChP->IndexAddr, ChP->TxControl);
3073
3074 if (Flags & CHANINT_EN) {
3075 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3076 sOutB(ChP->IntMask, Mask);
3077 }
3078}
3079
3080/***************************************************************************
3081Function: sDisInterrupts
3082Purpose: Disable one or more interrupts for a channel
3083Call: sDisInterrupts(ChP,Flags)
3084 CHANNEL_T *ChP; Ptr to channel structure
3085 Word_t Flags: Interrupt flags, can be any combination
3086 of the following flags:
3087 TXINT_EN: Interrupt on Tx FIFO empty
3088 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3089 sSetRxTrigger())
3090 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3091 MCINT_EN: Interrupt on modem input change
3092 CHANINT_EN: Disable channel interrupt signal to the
3093 AIOP's Interrupt Channel Register.
3094Return: void
3095Comments: If an interrupt flag is set in Flags, that interrupt will be
3096 disabled. If an interrupt flag is not set in Flags, that
3097 interrupt will not be changed. Interrupts can be enabled with
3098 function sEnInterrupts().
3099
3100 This function clears the appropriate bit for the channel in the AIOP's
3101 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3102 this channel's bit from being set in the AIOP's Interrupt Channel
3103 Register.
3104*/
3105static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3106{
3107 Byte_t Mask; /* Interrupt Mask Register */
3108
3109 ChP->RxControl[2] &=
3110 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3111 out32(ChP->IndexAddr, ChP->RxControl);
3112 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3113 out32(ChP->IndexAddr, ChP->TxControl);
3114
3115 if (Flags & CHANINT_EN) {
3116 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3117 sOutB(ChP->IntMask, Mask);
3118 }
3119}
3120
3121static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3122{
3123 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3124}
3125
3126/*
3127 * Not an official SSCI function, but how to reset RocketModems.
3128 * ISA bus version
3129 */
3130static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3131{
3132 ByteIO_t addr;
3133 Byte_t val;
3134
3135 addr = CtlP->AiopIO[0] + 0x400;
3136 val = sInB(CtlP->MReg3IO);
3137 /* if AIOP[1] is not enabled, enable it */
3138 if ((val & 2) == 0) {
3139 val = sInB(CtlP->MReg2IO);
3140 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3141 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3142 }
3143
3144 sEnAiop(CtlP, 1);
3145 if (!on)
3146 addr += 8;
3147 sOutB(addr + chan, 0); /* apply or remove reset */
3148 sDisAiop(CtlP, 1);
3149}
3150
3151/*
3152 * Not an official SSCI function, but how to reset RocketModems.
3153 * PCI bus version
3154 */
3155static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3156{
3157 ByteIO_t addr;
3158
3159 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3160 if (!on)
3161 addr += 8;
3162 sOutB(addr + chan, 0); /* apply or remove reset */
3163}
3164
3165/* Resets the speaker controller on RocketModem II and III devices */
3166static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
3167{
3168 ByteIO_t addr;
3169
3170 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
3171 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
3172 addr = CtlP->AiopIO[0] + 0x4F;
3173 sOutB(addr, 0);
3174 }
3175
3176 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
3177 if ((model == MODEL_UPCI_RM3_8PORT)
3178 || (model == MODEL_UPCI_RM3_4PORT)) {
3179 addr = CtlP->AiopIO[0] + 0x88;
3180 sOutB(addr, 0);
3181 }
3182}
3183
3184/* Returns the line number given the controller (board), aiop and channel number */
3185static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3186{
3187 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3188}
3189
3190/*
3191 * Stores the line number associated with a given controller (board), aiop
3192 * and channel number.
3193 * Returns: The line number assigned
3194 */
3195static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3196{
3197 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3198 return (nextLineNumber - 1);
3199}