diff options
author | Linus Torvalds <torvalds@g5.osdl.org> | 2006-01-14 13:43:26 -0500 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-01-14 13:43:26 -0500 |
commit | 61b7efddc5256225099d13185659e9ad9d8abc8a (patch) | |
tree | 7cbfec9c0012b07c7a236a953f5e067304725415 /drivers/spi | |
parent | 3e2b32b69308e974cd1167beaf266d3c716e4734 (diff) | |
parent | 2e10c84b9cf0b2d269c5629048d8d6e35eaf6b2b (diff) |
Merge master.kernel.org:/pub/scm/linux/kernel/git/gregkh/spi-2.6
Diffstat (limited to 'drivers/spi')
-rw-r--r-- | drivers/spi/Kconfig | 109 | ||||
-rw-r--r-- | drivers/spi/Makefile | 25 | ||||
-rw-r--r-- | drivers/spi/spi.c | 642 | ||||
-rw-r--r-- | drivers/spi/spi_bitbang.c | 472 | ||||
-rw-r--r-- | drivers/spi/spi_butterfly.c | 423 |
5 files changed, 1671 insertions, 0 deletions
diff --git a/drivers/spi/Kconfig b/drivers/spi/Kconfig new file mode 100644 index 000000000000..b77dbd63e596 --- /dev/null +++ b/drivers/spi/Kconfig | |||
@@ -0,0 +1,109 @@ | |||
1 | # | ||
2 | # SPI driver configuration | ||
3 | # | ||
4 | # NOTE: the reason this doesn't show SPI slave support is mostly that | ||
5 | # nobody's needed a slave side API yet. The master-role API is not | ||
6 | # fully appropriate there, so it'd need some thought to do well. | ||
7 | # | ||
8 | menu "SPI support" | ||
9 | |||
10 | config SPI | ||
11 | bool "SPI support" | ||
12 | help | ||
13 | The "Serial Peripheral Interface" is a low level synchronous | ||
14 | protocol. Chips that support SPI can have data transfer rates | ||
15 | up to several tens of Mbit/sec. Chips are addressed with a | ||
16 | controller and a chipselect. Most SPI slaves don't support | ||
17 | dynamic device discovery; some are even write-only or read-only. | ||
18 | |||
19 | SPI is widely used by microcontollers to talk with sensors, | ||
20 | eeprom and flash memory, codecs and various other controller | ||
21 | chips, analog to digital (and d-to-a) converters, and more. | ||
22 | MMC and SD cards can be accessed using SPI protocol; and for | ||
23 | DataFlash cards used in MMC sockets, SPI must always be used. | ||
24 | |||
25 | SPI is one of a family of similar protocols using a four wire | ||
26 | interface (select, clock, data in, data out) including Microwire | ||
27 | (half duplex), SSP, SSI, and PSP. This driver framework should | ||
28 | work with most such devices and controllers. | ||
29 | |||
30 | config SPI_DEBUG | ||
31 | boolean "Debug support for SPI drivers" | ||
32 | depends on SPI && DEBUG_KERNEL | ||
33 | help | ||
34 | Say "yes" to enable debug messaging (like dev_dbg and pr_debug), | ||
35 | sysfs, and debugfs support in SPI controller and protocol drivers. | ||
36 | |||
37 | # | ||
38 | # MASTER side ... talking to discrete SPI slave chips including microcontrollers | ||
39 | # | ||
40 | |||
41 | config SPI_MASTER | ||
42 | # boolean "SPI Master Support" | ||
43 | boolean | ||
44 | default SPI | ||
45 | help | ||
46 | If your system has an master-capable SPI controller (which | ||
47 | provides the clock and chipselect), you can enable that | ||
48 | controller and the protocol drivers for the SPI slave chips | ||
49 | that are connected. | ||
50 | |||
51 | comment "SPI Master Controller Drivers" | ||
52 | depends on SPI_MASTER | ||
53 | |||
54 | config SPI_BITBANG | ||
55 | tristate "Bitbanging SPI master" | ||
56 | depends on SPI_MASTER && EXPERIMENTAL | ||
57 | help | ||
58 | With a few GPIO pins, your system can bitbang the SPI protocol. | ||
59 | Select this to get SPI support through I/O pins (GPIO, parallel | ||
60 | port, etc). Or, some systems' SPI master controller drivers use | ||
61 | this code to manage the per-word or per-transfer accesses to the | ||
62 | hardware shift registers. | ||
63 | |||
64 | This is library code, and is automatically selected by drivers that | ||
65 | need it. You only need to select this explicitly to support driver | ||
66 | modules that aren't part of this kernel tree. | ||
67 | |||
68 | config SPI_BUTTERFLY | ||
69 | tristate "Parallel port adapter for AVR Butterfly (DEVELOPMENT)" | ||
70 | depends on SPI_MASTER && PARPORT && EXPERIMENTAL | ||
71 | select SPI_BITBANG | ||
72 | help | ||
73 | This uses a custom parallel port cable to connect to an AVR | ||
74 | Butterfly <http://www.atmel.com/products/avr/butterfly>, an | ||
75 | inexpensive battery powered microcontroller evaluation board. | ||
76 | This same cable can be used to flash new firmware. | ||
77 | |||
78 | config SPI_BUTTERFLY | ||
79 | tristate "Parallel port adapter for AVR Butterfly (DEVELOPMENT)" | ||
80 | depends on SPI_MASTER && PARPORT && EXPERIMENTAL | ||
81 | select SPI_BITBANG | ||
82 | help | ||
83 | This uses a custom parallel port cable to connect to an AVR | ||
84 | Butterfly <http://www.atmel.com/products/avr/butterfly>, an | ||
85 | inexpensive battery powered microcontroller evaluation board. | ||
86 | This same cable can be used to flash new firmware. | ||
87 | |||
88 | # | ||
89 | # Add new SPI master controllers in alphabetical order above this line | ||
90 | # | ||
91 | |||
92 | |||
93 | # | ||
94 | # There are lots of SPI device types, with sensors and memory | ||
95 | # being probably the most widely used ones. | ||
96 | # | ||
97 | comment "SPI Protocol Masters" | ||
98 | depends on SPI_MASTER | ||
99 | |||
100 | |||
101 | # | ||
102 | # Add new SPI protocol masters in alphabetical order above this line | ||
103 | # | ||
104 | |||
105 | |||
106 | # (slave support would go here) | ||
107 | |||
108 | endmenu # "SPI support" | ||
109 | |||
diff --git a/drivers/spi/Makefile b/drivers/spi/Makefile new file mode 100644 index 000000000000..c2c87e845abf --- /dev/null +++ b/drivers/spi/Makefile | |||
@@ -0,0 +1,25 @@ | |||
1 | # | ||
2 | # Makefile for kernel SPI drivers. | ||
3 | # | ||
4 | |||
5 | ifeq ($(CONFIG_SPI_DEBUG),y) | ||
6 | EXTRA_CFLAGS += -DDEBUG | ||
7 | endif | ||
8 | |||
9 | # small core, mostly translating board-specific | ||
10 | # config declarations into driver model code | ||
11 | obj-$(CONFIG_SPI_MASTER) += spi.o | ||
12 | |||
13 | # SPI master controller drivers (bus) | ||
14 | obj-$(CONFIG_SPI_BITBANG) += spi_bitbang.o | ||
15 | obj-$(CONFIG_SPI_BUTTERFLY) += spi_butterfly.o | ||
16 | # ... add above this line ... | ||
17 | |||
18 | # SPI protocol drivers (device/link on bus) | ||
19 | # ... add above this line ... | ||
20 | |||
21 | # SPI slave controller drivers (upstream link) | ||
22 | # ... add above this line ... | ||
23 | |||
24 | # SPI slave drivers (protocol for that link) | ||
25 | # ... add above this line ... | ||
diff --git a/drivers/spi/spi.c b/drivers/spi/spi.c new file mode 100644 index 000000000000..791c4dc550ae --- /dev/null +++ b/drivers/spi/spi.c | |||
@@ -0,0 +1,642 @@ | |||
1 | /* | ||
2 | * spi.c - SPI init/core code | ||
3 | * | ||
4 | * Copyright (C) 2005 David Brownell | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License as published by | ||
8 | * the Free Software Foundation; either version 2 of the License, or | ||
9 | * (at your option) any later version. | ||
10 | * | ||
11 | * This program is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | * GNU General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU General Public License | ||
17 | * along with this program; if not, write to the Free Software | ||
18 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
19 | */ | ||
20 | |||
21 | #include <linux/autoconf.h> | ||
22 | #include <linux/kernel.h> | ||
23 | #include <linux/device.h> | ||
24 | #include <linux/init.h> | ||
25 | #include <linux/cache.h> | ||
26 | #include <linux/spi/spi.h> | ||
27 | |||
28 | |||
29 | /* SPI bustype and spi_master class are registered after board init code | ||
30 | * provides the SPI device tables, ensuring that both are present by the | ||
31 | * time controller driver registration causes spi_devices to "enumerate". | ||
32 | */ | ||
33 | static void spidev_release(struct device *dev) | ||
34 | { | ||
35 | const struct spi_device *spi = to_spi_device(dev); | ||
36 | |||
37 | /* spi masters may cleanup for released devices */ | ||
38 | if (spi->master->cleanup) | ||
39 | spi->master->cleanup(spi); | ||
40 | |||
41 | spi_master_put(spi->master); | ||
42 | kfree(dev); | ||
43 | } | ||
44 | |||
45 | static ssize_t | ||
46 | modalias_show(struct device *dev, struct device_attribute *a, char *buf) | ||
47 | { | ||
48 | const struct spi_device *spi = to_spi_device(dev); | ||
49 | |||
50 | return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias); | ||
51 | } | ||
52 | |||
53 | static struct device_attribute spi_dev_attrs[] = { | ||
54 | __ATTR_RO(modalias), | ||
55 | __ATTR_NULL, | ||
56 | }; | ||
57 | |||
58 | /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, | ||
59 | * and the sysfs version makes coldplug work too. | ||
60 | */ | ||
61 | |||
62 | static int spi_match_device(struct device *dev, struct device_driver *drv) | ||
63 | { | ||
64 | const struct spi_device *spi = to_spi_device(dev); | ||
65 | |||
66 | return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0; | ||
67 | } | ||
68 | |||
69 | static int spi_uevent(struct device *dev, char **envp, int num_envp, | ||
70 | char *buffer, int buffer_size) | ||
71 | { | ||
72 | const struct spi_device *spi = to_spi_device(dev); | ||
73 | |||
74 | envp[0] = buffer; | ||
75 | snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias); | ||
76 | envp[1] = NULL; | ||
77 | return 0; | ||
78 | } | ||
79 | |||
80 | #ifdef CONFIG_PM | ||
81 | |||
82 | /* | ||
83 | * NOTE: the suspend() method for an spi_master controller driver | ||
84 | * should verify that all its child devices are marked as suspended; | ||
85 | * suspend requests delivered through sysfs power/state files don't | ||
86 | * enforce such constraints. | ||
87 | */ | ||
88 | static int spi_suspend(struct device *dev, pm_message_t message) | ||
89 | { | ||
90 | int value; | ||
91 | struct spi_driver *drv = to_spi_driver(dev->driver); | ||
92 | |||
93 | if (!drv->suspend) | ||
94 | return 0; | ||
95 | |||
96 | /* suspend will stop irqs and dma; no more i/o */ | ||
97 | value = drv->suspend(to_spi_device(dev), message); | ||
98 | if (value == 0) | ||
99 | dev->power.power_state = message; | ||
100 | return value; | ||
101 | } | ||
102 | |||
103 | static int spi_resume(struct device *dev) | ||
104 | { | ||
105 | int value; | ||
106 | struct spi_driver *drv = to_spi_driver(dev->driver); | ||
107 | |||
108 | if (!drv->resume) | ||
109 | return 0; | ||
110 | |||
111 | /* resume may restart the i/o queue */ | ||
112 | value = drv->resume(to_spi_device(dev)); | ||
113 | if (value == 0) | ||
114 | dev->power.power_state = PMSG_ON; | ||
115 | return value; | ||
116 | } | ||
117 | |||
118 | #else | ||
119 | #define spi_suspend NULL | ||
120 | #define spi_resume NULL | ||
121 | #endif | ||
122 | |||
123 | struct bus_type spi_bus_type = { | ||
124 | .name = "spi", | ||
125 | .dev_attrs = spi_dev_attrs, | ||
126 | .match = spi_match_device, | ||
127 | .uevent = spi_uevent, | ||
128 | .suspend = spi_suspend, | ||
129 | .resume = spi_resume, | ||
130 | }; | ||
131 | EXPORT_SYMBOL_GPL(spi_bus_type); | ||
132 | |||
133 | |||
134 | static int spi_drv_probe(struct device *dev) | ||
135 | { | ||
136 | const struct spi_driver *sdrv = to_spi_driver(dev->driver); | ||
137 | |||
138 | return sdrv->probe(to_spi_device(dev)); | ||
139 | } | ||
140 | |||
141 | static int spi_drv_remove(struct device *dev) | ||
142 | { | ||
143 | const struct spi_driver *sdrv = to_spi_driver(dev->driver); | ||
144 | |||
145 | return sdrv->remove(to_spi_device(dev)); | ||
146 | } | ||
147 | |||
148 | static void spi_drv_shutdown(struct device *dev) | ||
149 | { | ||
150 | const struct spi_driver *sdrv = to_spi_driver(dev->driver); | ||
151 | |||
152 | sdrv->shutdown(to_spi_device(dev)); | ||
153 | } | ||
154 | |||
155 | int spi_register_driver(struct spi_driver *sdrv) | ||
156 | { | ||
157 | sdrv->driver.bus = &spi_bus_type; | ||
158 | if (sdrv->probe) | ||
159 | sdrv->driver.probe = spi_drv_probe; | ||
160 | if (sdrv->remove) | ||
161 | sdrv->driver.remove = spi_drv_remove; | ||
162 | if (sdrv->shutdown) | ||
163 | sdrv->driver.shutdown = spi_drv_shutdown; | ||
164 | return driver_register(&sdrv->driver); | ||
165 | } | ||
166 | EXPORT_SYMBOL_GPL(spi_register_driver); | ||
167 | |||
168 | /*-------------------------------------------------------------------------*/ | ||
169 | |||
170 | /* SPI devices should normally not be created by SPI device drivers; that | ||
171 | * would make them board-specific. Similarly with SPI master drivers. | ||
172 | * Device registration normally goes into like arch/.../mach.../board-YYY.c | ||
173 | * with other readonly (flashable) information about mainboard devices. | ||
174 | */ | ||
175 | |||
176 | struct boardinfo { | ||
177 | struct list_head list; | ||
178 | unsigned n_board_info; | ||
179 | struct spi_board_info board_info[0]; | ||
180 | }; | ||
181 | |||
182 | static LIST_HEAD(board_list); | ||
183 | static DECLARE_MUTEX(board_lock); | ||
184 | |||
185 | |||
186 | /* On typical mainboards, this is purely internal; and it's not needed | ||
187 | * after board init creates the hard-wired devices. Some development | ||
188 | * platforms may not be able to use spi_register_board_info though, and | ||
189 | * this is exported so that for example a USB or parport based adapter | ||
190 | * driver could add devices (which it would learn about out-of-band). | ||
191 | */ | ||
192 | struct spi_device *__init_or_module | ||
193 | spi_new_device(struct spi_master *master, struct spi_board_info *chip) | ||
194 | { | ||
195 | struct spi_device *proxy; | ||
196 | struct device *dev = master->cdev.dev; | ||
197 | int status; | ||
198 | |||
199 | /* NOTE: caller did any chip->bus_num checks necessary */ | ||
200 | |||
201 | if (!spi_master_get(master)) | ||
202 | return NULL; | ||
203 | |||
204 | proxy = kzalloc(sizeof *proxy, GFP_KERNEL); | ||
205 | if (!proxy) { | ||
206 | dev_err(dev, "can't alloc dev for cs%d\n", | ||
207 | chip->chip_select); | ||
208 | goto fail; | ||
209 | } | ||
210 | proxy->master = master; | ||
211 | proxy->chip_select = chip->chip_select; | ||
212 | proxy->max_speed_hz = chip->max_speed_hz; | ||
213 | proxy->irq = chip->irq; | ||
214 | proxy->modalias = chip->modalias; | ||
215 | |||
216 | snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id, | ||
217 | "%s.%u", master->cdev.class_id, | ||
218 | chip->chip_select); | ||
219 | proxy->dev.parent = dev; | ||
220 | proxy->dev.bus = &spi_bus_type; | ||
221 | proxy->dev.platform_data = (void *) chip->platform_data; | ||
222 | proxy->controller_data = chip->controller_data; | ||
223 | proxy->controller_state = NULL; | ||
224 | proxy->dev.release = spidev_release; | ||
225 | |||
226 | /* drivers may modify this default i/o setup */ | ||
227 | status = master->setup(proxy); | ||
228 | if (status < 0) { | ||
229 | dev_dbg(dev, "can't %s %s, status %d\n", | ||
230 | "setup", proxy->dev.bus_id, status); | ||
231 | goto fail; | ||
232 | } | ||
233 | |||
234 | /* driver core catches callers that misbehave by defining | ||
235 | * devices that already exist. | ||
236 | */ | ||
237 | status = device_register(&proxy->dev); | ||
238 | if (status < 0) { | ||
239 | dev_dbg(dev, "can't %s %s, status %d\n", | ||
240 | "add", proxy->dev.bus_id, status); | ||
241 | goto fail; | ||
242 | } | ||
243 | dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id); | ||
244 | return proxy; | ||
245 | |||
246 | fail: | ||
247 | spi_master_put(master); | ||
248 | kfree(proxy); | ||
249 | return NULL; | ||
250 | } | ||
251 | EXPORT_SYMBOL_GPL(spi_new_device); | ||
252 | |||
253 | /* | ||
254 | * Board-specific early init code calls this (probably during arch_initcall) | ||
255 | * with segments of the SPI device table. Any device nodes are created later, | ||
256 | * after the relevant parent SPI controller (bus_num) is defined. We keep | ||
257 | * this table of devices forever, so that reloading a controller driver will | ||
258 | * not make Linux forget about these hard-wired devices. | ||
259 | * | ||
260 | * Other code can also call this, e.g. a particular add-on board might provide | ||
261 | * SPI devices through its expansion connector, so code initializing that board | ||
262 | * would naturally declare its SPI devices. | ||
263 | * | ||
264 | * The board info passed can safely be __initdata ... but be careful of | ||
265 | * any embedded pointers (platform_data, etc), they're copied as-is. | ||
266 | */ | ||
267 | int __init | ||
268 | spi_register_board_info(struct spi_board_info const *info, unsigned n) | ||
269 | { | ||
270 | struct boardinfo *bi; | ||
271 | |||
272 | bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL); | ||
273 | if (!bi) | ||
274 | return -ENOMEM; | ||
275 | bi->n_board_info = n; | ||
276 | memcpy(bi->board_info, info, n * sizeof *info); | ||
277 | |||
278 | down(&board_lock); | ||
279 | list_add_tail(&bi->list, &board_list); | ||
280 | up(&board_lock); | ||
281 | return 0; | ||
282 | } | ||
283 | EXPORT_SYMBOL_GPL(spi_register_board_info); | ||
284 | |||
285 | /* FIXME someone should add support for a __setup("spi", ...) that | ||
286 | * creates board info from kernel command lines | ||
287 | */ | ||
288 | |||
289 | static void __init_or_module | ||
290 | scan_boardinfo(struct spi_master *master) | ||
291 | { | ||
292 | struct boardinfo *bi; | ||
293 | struct device *dev = master->cdev.dev; | ||
294 | |||
295 | down(&board_lock); | ||
296 | list_for_each_entry(bi, &board_list, list) { | ||
297 | struct spi_board_info *chip = bi->board_info; | ||
298 | unsigned n; | ||
299 | |||
300 | for (n = bi->n_board_info; n > 0; n--, chip++) { | ||
301 | if (chip->bus_num != master->bus_num) | ||
302 | continue; | ||
303 | /* some controllers only have one chip, so they | ||
304 | * might not use chipselects. otherwise, the | ||
305 | * chipselects are numbered 0..max. | ||
306 | */ | ||
307 | if (chip->chip_select >= master->num_chipselect | ||
308 | && master->num_chipselect) { | ||
309 | dev_dbg(dev, "cs%d > max %d\n", | ||
310 | chip->chip_select, | ||
311 | master->num_chipselect); | ||
312 | continue; | ||
313 | } | ||
314 | (void) spi_new_device(master, chip); | ||
315 | } | ||
316 | } | ||
317 | up(&board_lock); | ||
318 | } | ||
319 | |||
320 | /*-------------------------------------------------------------------------*/ | ||
321 | |||
322 | static void spi_master_release(struct class_device *cdev) | ||
323 | { | ||
324 | struct spi_master *master; | ||
325 | |||
326 | master = container_of(cdev, struct spi_master, cdev); | ||
327 | kfree(master); | ||
328 | } | ||
329 | |||
330 | static struct class spi_master_class = { | ||
331 | .name = "spi_master", | ||
332 | .owner = THIS_MODULE, | ||
333 | .release = spi_master_release, | ||
334 | }; | ||
335 | |||
336 | |||
337 | /** | ||
338 | * spi_alloc_master - allocate SPI master controller | ||
339 | * @dev: the controller, possibly using the platform_bus | ||
340 | * @size: how much driver-private data to preallocate; the pointer to this | ||
341 | * memory is in the class_data field of the returned class_device, | ||
342 | * accessible with spi_master_get_devdata(). | ||
343 | * | ||
344 | * This call is used only by SPI master controller drivers, which are the | ||
345 | * only ones directly touching chip registers. It's how they allocate | ||
346 | * an spi_master structure, prior to calling spi_add_master(). | ||
347 | * | ||
348 | * This must be called from context that can sleep. It returns the SPI | ||
349 | * master structure on success, else NULL. | ||
350 | * | ||
351 | * The caller is responsible for assigning the bus number and initializing | ||
352 | * the master's methods before calling spi_add_master(); and (after errors | ||
353 | * adding the device) calling spi_master_put() to prevent a memory leak. | ||
354 | */ | ||
355 | struct spi_master * __init_or_module | ||
356 | spi_alloc_master(struct device *dev, unsigned size) | ||
357 | { | ||
358 | struct spi_master *master; | ||
359 | |||
360 | if (!dev) | ||
361 | return NULL; | ||
362 | |||
363 | master = kzalloc(size + sizeof *master, SLAB_KERNEL); | ||
364 | if (!master) | ||
365 | return NULL; | ||
366 | |||
367 | class_device_initialize(&master->cdev); | ||
368 | master->cdev.class = &spi_master_class; | ||
369 | master->cdev.dev = get_device(dev); | ||
370 | spi_master_set_devdata(master, &master[1]); | ||
371 | |||
372 | return master; | ||
373 | } | ||
374 | EXPORT_SYMBOL_GPL(spi_alloc_master); | ||
375 | |||
376 | /** | ||
377 | * spi_register_master - register SPI master controller | ||
378 | * @master: initialized master, originally from spi_alloc_master() | ||
379 | * | ||
380 | * SPI master controllers connect to their drivers using some non-SPI bus, | ||
381 | * such as the platform bus. The final stage of probe() in that code | ||
382 | * includes calling spi_register_master() to hook up to this SPI bus glue. | ||
383 | * | ||
384 | * SPI controllers use board specific (often SOC specific) bus numbers, | ||
385 | * and board-specific addressing for SPI devices combines those numbers | ||
386 | * with chip select numbers. Since SPI does not directly support dynamic | ||
387 | * device identification, boards need configuration tables telling which | ||
388 | * chip is at which address. | ||
389 | * | ||
390 | * This must be called from context that can sleep. It returns zero on | ||
391 | * success, else a negative error code (dropping the master's refcount). | ||
392 | * After a successful return, the caller is responsible for calling | ||
393 | * spi_unregister_master(). | ||
394 | */ | ||
395 | int __init_or_module | ||
396 | spi_register_master(struct spi_master *master) | ||
397 | { | ||
398 | static atomic_t dyn_bus_id = ATOMIC_INIT(0); | ||
399 | struct device *dev = master->cdev.dev; | ||
400 | int status = -ENODEV; | ||
401 | int dynamic = 0; | ||
402 | |||
403 | if (!dev) | ||
404 | return -ENODEV; | ||
405 | |||
406 | /* convention: dynamically assigned bus IDs count down from the max */ | ||
407 | if (master->bus_num == 0) { | ||
408 | master->bus_num = atomic_dec_return(&dyn_bus_id); | ||
409 | dynamic = 1; | ||
410 | } | ||
411 | |||
412 | /* register the device, then userspace will see it. | ||
413 | * registration fails if the bus ID is in use. | ||
414 | */ | ||
415 | snprintf(master->cdev.class_id, sizeof master->cdev.class_id, | ||
416 | "spi%u", master->bus_num); | ||
417 | status = class_device_add(&master->cdev); | ||
418 | if (status < 0) | ||
419 | goto done; | ||
420 | dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id, | ||
421 | dynamic ? " (dynamic)" : ""); | ||
422 | |||
423 | /* populate children from any spi device tables */ | ||
424 | scan_boardinfo(master); | ||
425 | status = 0; | ||
426 | done: | ||
427 | return status; | ||
428 | } | ||
429 | EXPORT_SYMBOL_GPL(spi_register_master); | ||
430 | |||
431 | |||
432 | static int __unregister(struct device *dev, void *unused) | ||
433 | { | ||
434 | /* note: before about 2.6.14-rc1 this would corrupt memory: */ | ||
435 | spi_unregister_device(to_spi_device(dev)); | ||
436 | return 0; | ||
437 | } | ||
438 | |||
439 | /** | ||
440 | * spi_unregister_master - unregister SPI master controller | ||
441 | * @master: the master being unregistered | ||
442 | * | ||
443 | * This call is used only by SPI master controller drivers, which are the | ||
444 | * only ones directly touching chip registers. | ||
445 | * | ||
446 | * This must be called from context that can sleep. | ||
447 | */ | ||
448 | void spi_unregister_master(struct spi_master *master) | ||
449 | { | ||
450 | (void) device_for_each_child(master->cdev.dev, NULL, __unregister); | ||
451 | class_device_unregister(&master->cdev); | ||
452 | master->cdev.dev = NULL; | ||
453 | } | ||
454 | EXPORT_SYMBOL_GPL(spi_unregister_master); | ||
455 | |||
456 | /** | ||
457 | * spi_busnum_to_master - look up master associated with bus_num | ||
458 | * @bus_num: the master's bus number | ||
459 | * | ||
460 | * This call may be used with devices that are registered after | ||
461 | * arch init time. It returns a refcounted pointer to the relevant | ||
462 | * spi_master (which the caller must release), or NULL if there is | ||
463 | * no such master registered. | ||
464 | */ | ||
465 | struct spi_master *spi_busnum_to_master(u16 bus_num) | ||
466 | { | ||
467 | if (bus_num) { | ||
468 | char name[8]; | ||
469 | struct kobject *bus; | ||
470 | |||
471 | snprintf(name, sizeof name, "spi%u", bus_num); | ||
472 | bus = kset_find_obj(&spi_master_class.subsys.kset, name); | ||
473 | if (bus) | ||
474 | return container_of(bus, struct spi_master, cdev.kobj); | ||
475 | } | ||
476 | return NULL; | ||
477 | } | ||
478 | EXPORT_SYMBOL_GPL(spi_busnum_to_master); | ||
479 | |||
480 | |||
481 | /*-------------------------------------------------------------------------*/ | ||
482 | |||
483 | static void spi_complete(void *arg) | ||
484 | { | ||
485 | complete(arg); | ||
486 | } | ||
487 | |||
488 | /** | ||
489 | * spi_sync - blocking/synchronous SPI data transfers | ||
490 | * @spi: device with which data will be exchanged | ||
491 | * @message: describes the data transfers | ||
492 | * | ||
493 | * This call may only be used from a context that may sleep. The sleep | ||
494 | * is non-interruptible, and has no timeout. Low-overhead controller | ||
495 | * drivers may DMA directly into and out of the message buffers. | ||
496 | * | ||
497 | * Note that the SPI device's chip select is active during the message, | ||
498 | * and then is normally disabled between messages. Drivers for some | ||
499 | * frequently-used devices may want to minimize costs of selecting a chip, | ||
500 | * by leaving it selected in anticipation that the next message will go | ||
501 | * to the same chip. (That may increase power usage.) | ||
502 | * | ||
503 | * Also, the caller is guaranteeing that the memory associated with the | ||
504 | * message will not be freed before this call returns. | ||
505 | * | ||
506 | * The return value is a negative error code if the message could not be | ||
507 | * submitted, else zero. When the value is zero, then message->status is | ||
508 | * also defined: it's the completion code for the transfer, either zero | ||
509 | * or a negative error code from the controller driver. | ||
510 | */ | ||
511 | int spi_sync(struct spi_device *spi, struct spi_message *message) | ||
512 | { | ||
513 | DECLARE_COMPLETION(done); | ||
514 | int status; | ||
515 | |||
516 | message->complete = spi_complete; | ||
517 | message->context = &done; | ||
518 | status = spi_async(spi, message); | ||
519 | if (status == 0) | ||
520 | wait_for_completion(&done); | ||
521 | message->context = NULL; | ||
522 | return status; | ||
523 | } | ||
524 | EXPORT_SYMBOL_GPL(spi_sync); | ||
525 | |||
526 | #define SPI_BUFSIZ (SMP_CACHE_BYTES) | ||
527 | |||
528 | static u8 *buf; | ||
529 | |||
530 | /** | ||
531 | * spi_write_then_read - SPI synchronous write followed by read | ||
532 | * @spi: device with which data will be exchanged | ||
533 | * @txbuf: data to be written (need not be dma-safe) | ||
534 | * @n_tx: size of txbuf, in bytes | ||
535 | * @rxbuf: buffer into which data will be read | ||
536 | * @n_rx: size of rxbuf, in bytes (need not be dma-safe) | ||
537 | * | ||
538 | * This performs a half duplex MicroWire style transaction with the | ||
539 | * device, sending txbuf and then reading rxbuf. The return value | ||
540 | * is zero for success, else a negative errno status code. | ||
541 | * This call may only be used from a context that may sleep. | ||
542 | * | ||
543 | * Parameters to this routine are always copied using a small buffer; | ||
544 | * performance-sensitive or bulk transfer code should instead use | ||
545 | * spi_{async,sync}() calls with dma-safe buffers. | ||
546 | */ | ||
547 | int spi_write_then_read(struct spi_device *spi, | ||
548 | const u8 *txbuf, unsigned n_tx, | ||
549 | u8 *rxbuf, unsigned n_rx) | ||
550 | { | ||
551 | static DECLARE_MUTEX(lock); | ||
552 | |||
553 | int status; | ||
554 | struct spi_message message; | ||
555 | struct spi_transfer x[2]; | ||
556 | u8 *local_buf; | ||
557 | |||
558 | /* Use preallocated DMA-safe buffer. We can't avoid copying here, | ||
559 | * (as a pure convenience thing), but we can keep heap costs | ||
560 | * out of the hot path ... | ||
561 | */ | ||
562 | if ((n_tx + n_rx) > SPI_BUFSIZ) | ||
563 | return -EINVAL; | ||
564 | |||
565 | spi_message_init(&message); | ||
566 | memset(x, 0, sizeof x); | ||
567 | if (n_tx) { | ||
568 | x[0].len = n_tx; | ||
569 | spi_message_add_tail(&x[0], &message); | ||
570 | } | ||
571 | if (n_rx) { | ||
572 | x[1].len = n_rx; | ||
573 | spi_message_add_tail(&x[1], &message); | ||
574 | } | ||
575 | |||
576 | /* ... unless someone else is using the pre-allocated buffer */ | ||
577 | if (down_trylock(&lock)) { | ||
578 | local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); | ||
579 | if (!local_buf) | ||
580 | return -ENOMEM; | ||
581 | } else | ||
582 | local_buf = buf; | ||
583 | |||
584 | memcpy(local_buf, txbuf, n_tx); | ||
585 | x[0].tx_buf = local_buf; | ||
586 | x[1].rx_buf = local_buf + n_tx; | ||
587 | |||
588 | /* do the i/o */ | ||
589 | status = spi_sync(spi, &message); | ||
590 | if (status == 0) { | ||
591 | memcpy(rxbuf, x[1].rx_buf, n_rx); | ||
592 | status = message.status; | ||
593 | } | ||
594 | |||
595 | if (x[0].tx_buf == buf) | ||
596 | up(&lock); | ||
597 | else | ||
598 | kfree(local_buf); | ||
599 | |||
600 | return status; | ||
601 | } | ||
602 | EXPORT_SYMBOL_GPL(spi_write_then_read); | ||
603 | |||
604 | /*-------------------------------------------------------------------------*/ | ||
605 | |||
606 | static int __init spi_init(void) | ||
607 | { | ||
608 | int status; | ||
609 | |||
610 | buf = kmalloc(SPI_BUFSIZ, SLAB_KERNEL); | ||
611 | if (!buf) { | ||
612 | status = -ENOMEM; | ||
613 | goto err0; | ||
614 | } | ||
615 | |||
616 | status = bus_register(&spi_bus_type); | ||
617 | if (status < 0) | ||
618 | goto err1; | ||
619 | |||
620 | status = class_register(&spi_master_class); | ||
621 | if (status < 0) | ||
622 | goto err2; | ||
623 | return 0; | ||
624 | |||
625 | err2: | ||
626 | bus_unregister(&spi_bus_type); | ||
627 | err1: | ||
628 | kfree(buf); | ||
629 | buf = NULL; | ||
630 | err0: | ||
631 | return status; | ||
632 | } | ||
633 | |||
634 | /* board_info is normally registered in arch_initcall(), | ||
635 | * but even essential drivers wait till later | ||
636 | * | ||
637 | * REVISIT only boardinfo really needs static linking. the rest (device and | ||
638 | * driver registration) _could_ be dynamically linked (modular) ... costs | ||
639 | * include needing to have boardinfo data structures be much more public. | ||
640 | */ | ||
641 | subsys_initcall(spi_init); | ||
642 | |||
diff --git a/drivers/spi/spi_bitbang.c b/drivers/spi/spi_bitbang.c new file mode 100644 index 000000000000..f037e5593269 --- /dev/null +++ b/drivers/spi/spi_bitbang.c | |||
@@ -0,0 +1,472 @@ | |||
1 | /* | ||
2 | * spi_bitbang.c - polling/bitbanging SPI master controller driver utilities | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | */ | ||
18 | |||
19 | #include <linux/config.h> | ||
20 | #include <linux/init.h> | ||
21 | #include <linux/spinlock.h> | ||
22 | #include <linux/workqueue.h> | ||
23 | #include <linux/interrupt.h> | ||
24 | #include <linux/delay.h> | ||
25 | #include <linux/errno.h> | ||
26 | #include <linux/platform_device.h> | ||
27 | |||
28 | #include <linux/spi/spi.h> | ||
29 | #include <linux/spi/spi_bitbang.h> | ||
30 | |||
31 | |||
32 | /*----------------------------------------------------------------------*/ | ||
33 | |||
34 | /* | ||
35 | * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support. | ||
36 | * Use this for GPIO or shift-register level hardware APIs. | ||
37 | * | ||
38 | * spi_bitbang_cs is in spi_device->controller_state, which is unavailable | ||
39 | * to glue code. These bitbang setup() and cleanup() routines are always | ||
40 | * used, though maybe they're called from controller-aware code. | ||
41 | * | ||
42 | * chipselect() and friends may use use spi_device->controller_data and | ||
43 | * controller registers as appropriate. | ||
44 | * | ||
45 | * | ||
46 | * NOTE: SPI controller pins can often be used as GPIO pins instead, | ||
47 | * which means you could use a bitbang driver either to get hardware | ||
48 | * working quickly, or testing for differences that aren't speed related. | ||
49 | */ | ||
50 | |||
51 | struct spi_bitbang_cs { | ||
52 | unsigned nsecs; /* (clock cycle time)/2 */ | ||
53 | u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs, | ||
54 | u32 word, u8 bits); | ||
55 | unsigned (*txrx_bufs)(struct spi_device *, | ||
56 | u32 (*txrx_word)( | ||
57 | struct spi_device *spi, | ||
58 | unsigned nsecs, | ||
59 | u32 word, u8 bits), | ||
60 | unsigned, struct spi_transfer *); | ||
61 | }; | ||
62 | |||
63 | static unsigned bitbang_txrx_8( | ||
64 | struct spi_device *spi, | ||
65 | u32 (*txrx_word)(struct spi_device *spi, | ||
66 | unsigned nsecs, | ||
67 | u32 word, u8 bits), | ||
68 | unsigned ns, | ||
69 | struct spi_transfer *t | ||
70 | ) { | ||
71 | unsigned bits = spi->bits_per_word; | ||
72 | unsigned count = t->len; | ||
73 | const u8 *tx = t->tx_buf; | ||
74 | u8 *rx = t->rx_buf; | ||
75 | |||
76 | while (likely(count > 0)) { | ||
77 | u8 word = 0; | ||
78 | |||
79 | if (tx) | ||
80 | word = *tx++; | ||
81 | word = txrx_word(spi, ns, word, bits); | ||
82 | if (rx) | ||
83 | *rx++ = word; | ||
84 | count -= 1; | ||
85 | } | ||
86 | return t->len - count; | ||
87 | } | ||
88 | |||
89 | static unsigned bitbang_txrx_16( | ||
90 | struct spi_device *spi, | ||
91 | u32 (*txrx_word)(struct spi_device *spi, | ||
92 | unsigned nsecs, | ||
93 | u32 word, u8 bits), | ||
94 | unsigned ns, | ||
95 | struct spi_transfer *t | ||
96 | ) { | ||
97 | unsigned bits = spi->bits_per_word; | ||
98 | unsigned count = t->len; | ||
99 | const u16 *tx = t->tx_buf; | ||
100 | u16 *rx = t->rx_buf; | ||
101 | |||
102 | while (likely(count > 1)) { | ||
103 | u16 word = 0; | ||
104 | |||
105 | if (tx) | ||
106 | word = *tx++; | ||
107 | word = txrx_word(spi, ns, word, bits); | ||
108 | if (rx) | ||
109 | *rx++ = word; | ||
110 | count -= 2; | ||
111 | } | ||
112 | return t->len - count; | ||
113 | } | ||
114 | |||
115 | static unsigned bitbang_txrx_32( | ||
116 | struct spi_device *spi, | ||
117 | u32 (*txrx_word)(struct spi_device *spi, | ||
118 | unsigned nsecs, | ||
119 | u32 word, u8 bits), | ||
120 | unsigned ns, | ||
121 | struct spi_transfer *t | ||
122 | ) { | ||
123 | unsigned bits = spi->bits_per_word; | ||
124 | unsigned count = t->len; | ||
125 | const u32 *tx = t->tx_buf; | ||
126 | u32 *rx = t->rx_buf; | ||
127 | |||
128 | while (likely(count > 3)) { | ||
129 | u32 word = 0; | ||
130 | |||
131 | if (tx) | ||
132 | word = *tx++; | ||
133 | word = txrx_word(spi, ns, word, bits); | ||
134 | if (rx) | ||
135 | *rx++ = word; | ||
136 | count -= 4; | ||
137 | } | ||
138 | return t->len - count; | ||
139 | } | ||
140 | |||
141 | /** | ||
142 | * spi_bitbang_setup - default setup for per-word I/O loops | ||
143 | */ | ||
144 | int spi_bitbang_setup(struct spi_device *spi) | ||
145 | { | ||
146 | struct spi_bitbang_cs *cs = spi->controller_state; | ||
147 | struct spi_bitbang *bitbang; | ||
148 | |||
149 | if (!spi->max_speed_hz) | ||
150 | return -EINVAL; | ||
151 | |||
152 | if (!cs) { | ||
153 | cs = kzalloc(sizeof *cs, SLAB_KERNEL); | ||
154 | if (!cs) | ||
155 | return -ENOMEM; | ||
156 | spi->controller_state = cs; | ||
157 | } | ||
158 | bitbang = spi_master_get_devdata(spi->master); | ||
159 | |||
160 | if (!spi->bits_per_word) | ||
161 | spi->bits_per_word = 8; | ||
162 | |||
163 | /* spi_transfer level calls that work per-word */ | ||
164 | if (spi->bits_per_word <= 8) | ||
165 | cs->txrx_bufs = bitbang_txrx_8; | ||
166 | else if (spi->bits_per_word <= 16) | ||
167 | cs->txrx_bufs = bitbang_txrx_16; | ||
168 | else if (spi->bits_per_word <= 32) | ||
169 | cs->txrx_bufs = bitbang_txrx_32; | ||
170 | else | ||
171 | return -EINVAL; | ||
172 | |||
173 | /* per-word shift register access, in hardware or bitbanging */ | ||
174 | cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)]; | ||
175 | if (!cs->txrx_word) | ||
176 | return -EINVAL; | ||
177 | |||
178 | /* nsecs = (clock period)/2 */ | ||
179 | cs->nsecs = (1000000000/2) / (spi->max_speed_hz); | ||
180 | if (cs->nsecs > MAX_UDELAY_MS * 1000) | ||
181 | return -EINVAL; | ||
182 | |||
183 | dev_dbg(&spi->dev, "%s, mode %d, %u bits/w, %u nsec\n", | ||
184 | __FUNCTION__, spi->mode & (SPI_CPOL | SPI_CPHA), | ||
185 | spi->bits_per_word, 2 * cs->nsecs); | ||
186 | |||
187 | /* NOTE we _need_ to call chipselect() early, ideally with adapter | ||
188 | * setup, unless the hardware defaults cooperate to avoid confusion | ||
189 | * between normal (active low) and inverted chipselects. | ||
190 | */ | ||
191 | |||
192 | /* deselect chip (low or high) */ | ||
193 | spin_lock(&bitbang->lock); | ||
194 | if (!bitbang->busy) { | ||
195 | bitbang->chipselect(spi, BITBANG_CS_INACTIVE); | ||
196 | ndelay(cs->nsecs); | ||
197 | } | ||
198 | spin_unlock(&bitbang->lock); | ||
199 | |||
200 | return 0; | ||
201 | } | ||
202 | EXPORT_SYMBOL_GPL(spi_bitbang_setup); | ||
203 | |||
204 | /** | ||
205 | * spi_bitbang_cleanup - default cleanup for per-word I/O loops | ||
206 | */ | ||
207 | void spi_bitbang_cleanup(const struct spi_device *spi) | ||
208 | { | ||
209 | kfree(spi->controller_state); | ||
210 | } | ||
211 | EXPORT_SYMBOL_GPL(spi_bitbang_cleanup); | ||
212 | |||
213 | static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t) | ||
214 | { | ||
215 | struct spi_bitbang_cs *cs = spi->controller_state; | ||
216 | unsigned nsecs = cs->nsecs; | ||
217 | |||
218 | return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t); | ||
219 | } | ||
220 | |||
221 | /*----------------------------------------------------------------------*/ | ||
222 | |||
223 | /* | ||
224 | * SECOND PART ... simple transfer queue runner. | ||
225 | * | ||
226 | * This costs a task context per controller, running the queue by | ||
227 | * performing each transfer in sequence. Smarter hardware can queue | ||
228 | * several DMA transfers at once, and process several controller queues | ||
229 | * in parallel; this driver doesn't match such hardware very well. | ||
230 | * | ||
231 | * Drivers can provide word-at-a-time i/o primitives, or provide | ||
232 | * transfer-at-a-time ones to leverage dma or fifo hardware. | ||
233 | */ | ||
234 | static void bitbang_work(void *_bitbang) | ||
235 | { | ||
236 | struct spi_bitbang *bitbang = _bitbang; | ||
237 | unsigned long flags; | ||
238 | |||
239 | spin_lock_irqsave(&bitbang->lock, flags); | ||
240 | bitbang->busy = 1; | ||
241 | while (!list_empty(&bitbang->queue)) { | ||
242 | struct spi_message *m; | ||
243 | struct spi_device *spi; | ||
244 | unsigned nsecs; | ||
245 | struct spi_transfer *t = NULL; | ||
246 | unsigned tmp; | ||
247 | unsigned cs_change; | ||
248 | int status; | ||
249 | |||
250 | m = container_of(bitbang->queue.next, struct spi_message, | ||
251 | queue); | ||
252 | list_del_init(&m->queue); | ||
253 | spin_unlock_irqrestore(&bitbang->lock, flags); | ||
254 | |||
255 | /* FIXME this is made-up ... the correct value is known to | ||
256 | * word-at-a-time bitbang code, and presumably chipselect() | ||
257 | * should enforce these requirements too? | ||
258 | */ | ||
259 | nsecs = 100; | ||
260 | |||
261 | spi = m->spi; | ||
262 | tmp = 0; | ||
263 | cs_change = 1; | ||
264 | status = 0; | ||
265 | |||
266 | list_for_each_entry (t, &m->transfers, transfer_list) { | ||
267 | if (bitbang->shutdown) { | ||
268 | status = -ESHUTDOWN; | ||
269 | break; | ||
270 | } | ||
271 | |||
272 | /* set up default clock polarity, and activate chip; | ||
273 | * this implicitly updates clock and spi modes as | ||
274 | * previously recorded for this device via setup(). | ||
275 | * (and also deselects any other chip that might be | ||
276 | * selected ...) | ||
277 | */ | ||
278 | if (cs_change) { | ||
279 | bitbang->chipselect(spi, BITBANG_CS_ACTIVE); | ||
280 | ndelay(nsecs); | ||
281 | } | ||
282 | cs_change = t->cs_change; | ||
283 | if (!t->tx_buf && !t->rx_buf && t->len) { | ||
284 | status = -EINVAL; | ||
285 | break; | ||
286 | } | ||
287 | |||
288 | /* transfer data. the lower level code handles any | ||
289 | * new dma mappings it needs. our caller always gave | ||
290 | * us dma-safe buffers. | ||
291 | */ | ||
292 | if (t->len) { | ||
293 | /* REVISIT dma API still needs a designated | ||
294 | * DMA_ADDR_INVALID; ~0 might be better. | ||
295 | */ | ||
296 | if (!m->is_dma_mapped) | ||
297 | t->rx_dma = t->tx_dma = 0; | ||
298 | status = bitbang->txrx_bufs(spi, t); | ||
299 | } | ||
300 | if (status != t->len) { | ||
301 | if (status > 0) | ||
302 | status = -EMSGSIZE; | ||
303 | break; | ||
304 | } | ||
305 | m->actual_length += status; | ||
306 | status = 0; | ||
307 | |||
308 | /* protocol tweaks before next transfer */ | ||
309 | if (t->delay_usecs) | ||
310 | udelay(t->delay_usecs); | ||
311 | |||
312 | if (!cs_change) | ||
313 | continue; | ||
314 | if (t->transfer_list.next == &m->transfers) | ||
315 | break; | ||
316 | |||
317 | /* sometimes a short mid-message deselect of the chip | ||
318 | * may be needed to terminate a mode or command | ||
319 | */ | ||
320 | ndelay(nsecs); | ||
321 | bitbang->chipselect(spi, BITBANG_CS_INACTIVE); | ||
322 | ndelay(nsecs); | ||
323 | } | ||
324 | |||
325 | m->status = status; | ||
326 | m->complete(m->context); | ||
327 | |||
328 | /* normally deactivate chipselect ... unless no error and | ||
329 | * cs_change has hinted that the next message will probably | ||
330 | * be for this chip too. | ||
331 | */ | ||
332 | if (!(status == 0 && cs_change)) { | ||
333 | ndelay(nsecs); | ||
334 | bitbang->chipselect(spi, BITBANG_CS_INACTIVE); | ||
335 | ndelay(nsecs); | ||
336 | } | ||
337 | |||
338 | spin_lock_irqsave(&bitbang->lock, flags); | ||
339 | } | ||
340 | bitbang->busy = 0; | ||
341 | spin_unlock_irqrestore(&bitbang->lock, flags); | ||
342 | } | ||
343 | |||
344 | /** | ||
345 | * spi_bitbang_transfer - default submit to transfer queue | ||
346 | */ | ||
347 | int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m) | ||
348 | { | ||
349 | struct spi_bitbang *bitbang; | ||
350 | unsigned long flags; | ||
351 | |||
352 | m->actual_length = 0; | ||
353 | m->status = -EINPROGRESS; | ||
354 | |||
355 | bitbang = spi_master_get_devdata(spi->master); | ||
356 | if (bitbang->shutdown) | ||
357 | return -ESHUTDOWN; | ||
358 | |||
359 | spin_lock_irqsave(&bitbang->lock, flags); | ||
360 | list_add_tail(&m->queue, &bitbang->queue); | ||
361 | queue_work(bitbang->workqueue, &bitbang->work); | ||
362 | spin_unlock_irqrestore(&bitbang->lock, flags); | ||
363 | |||
364 | return 0; | ||
365 | } | ||
366 | EXPORT_SYMBOL_GPL(spi_bitbang_transfer); | ||
367 | |||
368 | /*----------------------------------------------------------------------*/ | ||
369 | |||
370 | /** | ||
371 | * spi_bitbang_start - start up a polled/bitbanging SPI master driver | ||
372 | * @bitbang: driver handle | ||
373 | * | ||
374 | * Caller should have zero-initialized all parts of the structure, and then | ||
375 | * provided callbacks for chip selection and I/O loops. If the master has | ||
376 | * a transfer method, its final step should call spi_bitbang_transfer; or, | ||
377 | * that's the default if the transfer routine is not initialized. It should | ||
378 | * also set up the bus number and number of chipselects. | ||
379 | * | ||
380 | * For i/o loops, provide callbacks either per-word (for bitbanging, or for | ||
381 | * hardware that basically exposes a shift register) or per-spi_transfer | ||
382 | * (which takes better advantage of hardware like fifos or DMA engines). | ||
383 | * | ||
384 | * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup and | ||
385 | * spi_bitbang_cleanup to handle those spi master methods. Those methods are | ||
386 | * the defaults if the bitbang->txrx_bufs routine isn't initialized. | ||
387 | * | ||
388 | * This routine registers the spi_master, which will process requests in a | ||
389 | * dedicated task, keeping IRQs unblocked most of the time. To stop | ||
390 | * processing those requests, call spi_bitbang_stop(). | ||
391 | */ | ||
392 | int spi_bitbang_start(struct spi_bitbang *bitbang) | ||
393 | { | ||
394 | int status; | ||
395 | |||
396 | if (!bitbang->master || !bitbang->chipselect) | ||
397 | return -EINVAL; | ||
398 | |||
399 | INIT_WORK(&bitbang->work, bitbang_work, bitbang); | ||
400 | spin_lock_init(&bitbang->lock); | ||
401 | INIT_LIST_HEAD(&bitbang->queue); | ||
402 | |||
403 | if (!bitbang->master->transfer) | ||
404 | bitbang->master->transfer = spi_bitbang_transfer; | ||
405 | if (!bitbang->txrx_bufs) { | ||
406 | bitbang->use_dma = 0; | ||
407 | bitbang->txrx_bufs = spi_bitbang_bufs; | ||
408 | if (!bitbang->master->setup) { | ||
409 | bitbang->master->setup = spi_bitbang_setup; | ||
410 | bitbang->master->cleanup = spi_bitbang_cleanup; | ||
411 | } | ||
412 | } else if (!bitbang->master->setup) | ||
413 | return -EINVAL; | ||
414 | |||
415 | /* this task is the only thing to touch the SPI bits */ | ||
416 | bitbang->busy = 0; | ||
417 | bitbang->workqueue = create_singlethread_workqueue( | ||
418 | bitbang->master->cdev.dev->bus_id); | ||
419 | if (bitbang->workqueue == NULL) { | ||
420 | status = -EBUSY; | ||
421 | goto err1; | ||
422 | } | ||
423 | |||
424 | /* driver may get busy before register() returns, especially | ||
425 | * if someone registered boardinfo for devices | ||
426 | */ | ||
427 | status = spi_register_master(bitbang->master); | ||
428 | if (status < 0) | ||
429 | goto err2; | ||
430 | |||
431 | return status; | ||
432 | |||
433 | err2: | ||
434 | destroy_workqueue(bitbang->workqueue); | ||
435 | err1: | ||
436 | return status; | ||
437 | } | ||
438 | EXPORT_SYMBOL_GPL(spi_bitbang_start); | ||
439 | |||
440 | /** | ||
441 | * spi_bitbang_stop - stops the task providing spi communication | ||
442 | */ | ||
443 | int spi_bitbang_stop(struct spi_bitbang *bitbang) | ||
444 | { | ||
445 | unsigned limit = 500; | ||
446 | |||
447 | spin_lock_irq(&bitbang->lock); | ||
448 | bitbang->shutdown = 0; | ||
449 | while (!list_empty(&bitbang->queue) && limit--) { | ||
450 | spin_unlock_irq(&bitbang->lock); | ||
451 | |||
452 | dev_dbg(bitbang->master->cdev.dev, "wait for queue\n"); | ||
453 | msleep(10); | ||
454 | |||
455 | spin_lock_irq(&bitbang->lock); | ||
456 | } | ||
457 | spin_unlock_irq(&bitbang->lock); | ||
458 | if (!list_empty(&bitbang->queue)) { | ||
459 | dev_err(bitbang->master->cdev.dev, "queue didn't empty\n"); | ||
460 | return -EBUSY; | ||
461 | } | ||
462 | |||
463 | destroy_workqueue(bitbang->workqueue); | ||
464 | |||
465 | spi_unregister_master(bitbang->master); | ||
466 | |||
467 | return 0; | ||
468 | } | ||
469 | EXPORT_SYMBOL_GPL(spi_bitbang_stop); | ||
470 | |||
471 | MODULE_LICENSE("GPL"); | ||
472 | |||
diff --git a/drivers/spi/spi_butterfly.c b/drivers/spi/spi_butterfly.c new file mode 100644 index 000000000000..79a3c59615ab --- /dev/null +++ b/drivers/spi/spi_butterfly.c | |||
@@ -0,0 +1,423 @@ | |||
1 | /* | ||
2 | * spi_butterfly.c - parport-to-butterfly adapter | ||
3 | * | ||
4 | * Copyright (C) 2005 David Brownell | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License as published by | ||
8 | * the Free Software Foundation; either version 2 of the License, or | ||
9 | * (at your option) any later version. | ||
10 | * | ||
11 | * This program is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | * GNU General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU General Public License | ||
17 | * along with this program; if not, write to the Free Software | ||
18 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
19 | */ | ||
20 | #include <linux/config.h> | ||
21 | #include <linux/kernel.h> | ||
22 | #include <linux/init.h> | ||
23 | #include <linux/delay.h> | ||
24 | #include <linux/platform_device.h> | ||
25 | #include <linux/parport.h> | ||
26 | |||
27 | #include <linux/spi/spi.h> | ||
28 | #include <linux/spi/spi_bitbang.h> | ||
29 | #include <linux/spi/flash.h> | ||
30 | |||
31 | #include <linux/mtd/partitions.h> | ||
32 | |||
33 | |||
34 | /* | ||
35 | * This uses SPI to talk with an "AVR Butterfly", which is a $US20 card | ||
36 | * with a battery powered AVR microcontroller and lots of goodies. You | ||
37 | * can use GCC to develop firmware for this. | ||
38 | * | ||
39 | * See Documentation/spi/butterfly for information about how to build | ||
40 | * and use this custom parallel port cable. | ||
41 | */ | ||
42 | |||
43 | #undef HAVE_USI /* nyet */ | ||
44 | |||
45 | |||
46 | /* DATA output bits (pins 2..9 == D0..D7) */ | ||
47 | #define butterfly_nreset (1 << 1) /* pin 3 */ | ||
48 | |||
49 | #define spi_sck_bit (1 << 0) /* pin 2 */ | ||
50 | #define spi_mosi_bit (1 << 7) /* pin 9 */ | ||
51 | |||
52 | #define usi_sck_bit (1 << 3) /* pin 5 */ | ||
53 | #define usi_mosi_bit (1 << 4) /* pin 6 */ | ||
54 | |||
55 | #define vcc_bits ((1 << 6) | (1 << 5)) /* pins 7, 8 */ | ||
56 | |||
57 | /* STATUS input bits */ | ||
58 | #define spi_miso_bit PARPORT_STATUS_BUSY /* pin 11 */ | ||
59 | |||
60 | #define usi_miso_bit PARPORT_STATUS_PAPEROUT /* pin 12 */ | ||
61 | |||
62 | /* CONTROL output bits */ | ||
63 | #define spi_cs_bit PARPORT_CONTROL_SELECT /* pin 17 */ | ||
64 | /* USI uses no chipselect */ | ||
65 | |||
66 | |||
67 | |||
68 | static inline struct butterfly *spidev_to_pp(struct spi_device *spi) | ||
69 | { | ||
70 | return spi->controller_data; | ||
71 | } | ||
72 | |||
73 | static inline int is_usidev(struct spi_device *spi) | ||
74 | { | ||
75 | #ifdef HAVE_USI | ||
76 | return spi->chip_select != 1; | ||
77 | #else | ||
78 | return 0; | ||
79 | #endif | ||
80 | } | ||
81 | |||
82 | |||
83 | struct butterfly { | ||
84 | /* REVISIT ... for now, this must be first */ | ||
85 | struct spi_bitbang bitbang; | ||
86 | |||
87 | struct parport *port; | ||
88 | struct pardevice *pd; | ||
89 | |||
90 | u8 lastbyte; | ||
91 | |||
92 | struct spi_device *dataflash; | ||
93 | struct spi_device *butterfly; | ||
94 | struct spi_board_info info[2]; | ||
95 | |||
96 | }; | ||
97 | |||
98 | /*----------------------------------------------------------------------*/ | ||
99 | |||
100 | /* | ||
101 | * these routines may be slower than necessary because they're hiding | ||
102 | * the fact that there are two different SPI busses on this cable: one | ||
103 | * to the DataFlash chip (or AVR SPI controller), the other to the | ||
104 | * AVR USI controller. | ||
105 | */ | ||
106 | |||
107 | static inline void | ||
108 | setsck(struct spi_device *spi, int is_on) | ||
109 | { | ||
110 | struct butterfly *pp = spidev_to_pp(spi); | ||
111 | u8 bit, byte = pp->lastbyte; | ||
112 | |||
113 | if (is_usidev(spi)) | ||
114 | bit = usi_sck_bit; | ||
115 | else | ||
116 | bit = spi_sck_bit; | ||
117 | |||
118 | if (is_on) | ||
119 | byte |= bit; | ||
120 | else | ||
121 | byte &= ~bit; | ||
122 | parport_write_data(pp->port, byte); | ||
123 | pp->lastbyte = byte; | ||
124 | } | ||
125 | |||
126 | static inline void | ||
127 | setmosi(struct spi_device *spi, int is_on) | ||
128 | { | ||
129 | struct butterfly *pp = spidev_to_pp(spi); | ||
130 | u8 bit, byte = pp->lastbyte; | ||
131 | |||
132 | if (is_usidev(spi)) | ||
133 | bit = usi_mosi_bit; | ||
134 | else | ||
135 | bit = spi_mosi_bit; | ||
136 | |||
137 | if (is_on) | ||
138 | byte |= bit; | ||
139 | else | ||
140 | byte &= ~bit; | ||
141 | parport_write_data(pp->port, byte); | ||
142 | pp->lastbyte = byte; | ||
143 | } | ||
144 | |||
145 | static inline int getmiso(struct spi_device *spi) | ||
146 | { | ||
147 | struct butterfly *pp = spidev_to_pp(spi); | ||
148 | int value; | ||
149 | u8 bit; | ||
150 | |||
151 | if (is_usidev(spi)) | ||
152 | bit = usi_miso_bit; | ||
153 | else | ||
154 | bit = spi_miso_bit; | ||
155 | |||
156 | /* only STATUS_BUSY is NOT negated */ | ||
157 | value = !(parport_read_status(pp->port) & bit); | ||
158 | return (bit == PARPORT_STATUS_BUSY) ? value : !value; | ||
159 | } | ||
160 | |||
161 | static void butterfly_chipselect(struct spi_device *spi, int value) | ||
162 | { | ||
163 | struct butterfly *pp = spidev_to_pp(spi); | ||
164 | |||
165 | /* set default clock polarity */ | ||
166 | if (value) | ||
167 | setsck(spi, spi->mode & SPI_CPOL); | ||
168 | |||
169 | /* no chipselect on this USI link config */ | ||
170 | if (is_usidev(spi)) | ||
171 | return; | ||
172 | |||
173 | /* here, value == "activate or not" */ | ||
174 | |||
175 | /* most PARPORT_CONTROL_* bits are negated */ | ||
176 | if (spi_cs_bit == PARPORT_CONTROL_INIT) | ||
177 | value = !value; | ||
178 | |||
179 | /* here, value == "bit value to write in control register" */ | ||
180 | |||
181 | parport_frob_control(pp->port, spi_cs_bit, value ? spi_cs_bit : 0); | ||
182 | } | ||
183 | |||
184 | |||
185 | /* we only needed to implement one mode here, and choose SPI_MODE_0 */ | ||
186 | |||
187 | #define spidelay(X) do{}while(0) | ||
188 | //#define spidelay ndelay | ||
189 | |||
190 | #define EXPAND_BITBANG_TXRX | ||
191 | #include <linux/spi/spi_bitbang.h> | ||
192 | |||
193 | static u32 | ||
194 | butterfly_txrx_word_mode0(struct spi_device *spi, | ||
195 | unsigned nsecs, | ||
196 | u32 word, u8 bits) | ||
197 | { | ||
198 | return bitbang_txrx_be_cpha0(spi, nsecs, 0, word, bits); | ||
199 | } | ||
200 | |||
201 | /*----------------------------------------------------------------------*/ | ||
202 | |||
203 | /* override default partitioning with cmdlinepart */ | ||
204 | static struct mtd_partition partitions[] = { { | ||
205 | /* JFFS2 wants partitions of 4*N blocks for this device ... */ | ||
206 | |||
207 | /* sector 0 = 8 pages * 264 bytes/page (1 block) | ||
208 | * sector 1 = 248 pages * 264 bytes/page | ||
209 | */ | ||
210 | .name = "bookkeeping", // 66 KB | ||
211 | .offset = 0, | ||
212 | .size = (8 + 248) * 264, | ||
213 | // .mask_flags = MTD_WRITEABLE, | ||
214 | }, { | ||
215 | /* sector 2 = 256 pages * 264 bytes/page | ||
216 | * sectors 3-5 = 512 pages * 264 bytes/page | ||
217 | */ | ||
218 | .name = "filesystem", // 462 KB | ||
219 | .offset = MTDPART_OFS_APPEND, | ||
220 | .size = MTDPART_SIZ_FULL, | ||
221 | } }; | ||
222 | |||
223 | static struct flash_platform_data flash = { | ||
224 | .name = "butterflash", | ||
225 | .parts = partitions, | ||
226 | .nr_parts = ARRAY_SIZE(partitions), | ||
227 | }; | ||
228 | |||
229 | |||
230 | /* REVISIT remove this ugly global and its "only one" limitation */ | ||
231 | static struct butterfly *butterfly; | ||
232 | |||
233 | static void butterfly_attach(struct parport *p) | ||
234 | { | ||
235 | struct pardevice *pd; | ||
236 | int status; | ||
237 | struct butterfly *pp; | ||
238 | struct spi_master *master; | ||
239 | struct platform_device *pdev; | ||
240 | |||
241 | if (butterfly) | ||
242 | return; | ||
243 | |||
244 | /* REVISIT: this just _assumes_ a butterfly is there ... no probe, | ||
245 | * and no way to be selective about what it binds to. | ||
246 | */ | ||
247 | |||
248 | /* FIXME where should master->cdev.dev come from? | ||
249 | * e.g. /sys/bus/pnp0/00:0b, some PCI thing, etc | ||
250 | * setting up a platform device like this is an ugly kluge... | ||
251 | */ | ||
252 | pdev = platform_device_register_simple("butterfly", -1, NULL, 0); | ||
253 | |||
254 | master = spi_alloc_master(&pdev->dev, sizeof *pp); | ||
255 | if (!master) { | ||
256 | status = -ENOMEM; | ||
257 | goto done; | ||
258 | } | ||
259 | pp = spi_master_get_devdata(master); | ||
260 | |||
261 | /* | ||
262 | * SPI and bitbang hookup | ||
263 | * | ||
264 | * use default setup(), cleanup(), and transfer() methods; and | ||
265 | * only bother implementing mode 0. Start it later. | ||
266 | */ | ||
267 | master->bus_num = 42; | ||
268 | master->num_chipselect = 2; | ||
269 | |||
270 | pp->bitbang.master = spi_master_get(master); | ||
271 | pp->bitbang.chipselect = butterfly_chipselect; | ||
272 | pp->bitbang.txrx_word[SPI_MODE_0] = butterfly_txrx_word_mode0; | ||
273 | |||
274 | /* | ||
275 | * parport hookup | ||
276 | */ | ||
277 | pp->port = p; | ||
278 | pd = parport_register_device(p, "spi_butterfly", | ||
279 | NULL, NULL, NULL, | ||
280 | 0 /* FLAGS */, pp); | ||
281 | if (!pd) { | ||
282 | status = -ENOMEM; | ||
283 | goto clean0; | ||
284 | } | ||
285 | pp->pd = pd; | ||
286 | |||
287 | status = parport_claim(pd); | ||
288 | if (status < 0) | ||
289 | goto clean1; | ||
290 | |||
291 | /* | ||
292 | * Butterfly reset, powerup, run firmware | ||
293 | */ | ||
294 | pr_debug("%s: powerup/reset Butterfly\n", p->name); | ||
295 | |||
296 | /* nCS for dataflash (this bit is inverted on output) */ | ||
297 | parport_frob_control(pp->port, spi_cs_bit, 0); | ||
298 | |||
299 | /* stabilize power with chip in reset (nRESET), and | ||
300 | * both spi_sck_bit and usi_sck_bit clear (CPOL=0) | ||
301 | */ | ||
302 | pp->lastbyte |= vcc_bits; | ||
303 | parport_write_data(pp->port, pp->lastbyte); | ||
304 | msleep(5); | ||
305 | |||
306 | /* take it out of reset; assume long reset delay */ | ||
307 | pp->lastbyte |= butterfly_nreset; | ||
308 | parport_write_data(pp->port, pp->lastbyte); | ||
309 | msleep(100); | ||
310 | |||
311 | |||
312 | /* | ||
313 | * Start SPI ... for now, hide that we're two physical busses. | ||
314 | */ | ||
315 | status = spi_bitbang_start(&pp->bitbang); | ||
316 | if (status < 0) | ||
317 | goto clean2; | ||
318 | |||
319 | /* Bus 1 lets us talk to at45db041b (firmware disables AVR) | ||
320 | * or AVR (firmware resets at45, acts as spi slave) | ||
321 | */ | ||
322 | pp->info[0].max_speed_hz = 15 * 1000 * 1000; | ||
323 | strcpy(pp->info[0].modalias, "mtd_dataflash"); | ||
324 | pp->info[0].platform_data = &flash; | ||
325 | pp->info[0].chip_select = 1; | ||
326 | pp->info[0].controller_data = pp; | ||
327 | pp->dataflash = spi_new_device(pp->bitbang.master, &pp->info[0]); | ||
328 | if (pp->dataflash) | ||
329 | pr_debug("%s: dataflash at %s\n", p->name, | ||
330 | pp->dataflash->dev.bus_id); | ||
331 | |||
332 | #ifdef HAVE_USI | ||
333 | /* even more custom AVR firmware */ | ||
334 | pp->info[1].max_speed_hz = 10 /* ?? */ * 1000 * 1000; | ||
335 | strcpy(pp->info[1].modalias, "butterfly"); | ||
336 | // pp->info[1].platform_data = ... TBD ... ; | ||
337 | pp->info[1].chip_select = 2, | ||
338 | pp->info[1].controller_data = pp; | ||
339 | pp->butterfly = spi_new_device(pp->bitbang.master, &pp->info[1]); | ||
340 | if (pp->butterfly) | ||
341 | pr_debug("%s: butterfly at %s\n", p->name, | ||
342 | pp->butterfly->dev.bus_id); | ||
343 | |||
344 | /* FIXME setup ACK for the IRQ line ... */ | ||
345 | #endif | ||
346 | |||
347 | // dev_info(_what?_, ...) | ||
348 | pr_info("%s: AVR Butterfly\n", p->name); | ||
349 | butterfly = pp; | ||
350 | return; | ||
351 | |||
352 | clean2: | ||
353 | /* turn off VCC */ | ||
354 | parport_write_data(pp->port, 0); | ||
355 | |||
356 | parport_release(pp->pd); | ||
357 | clean1: | ||
358 | parport_unregister_device(pd); | ||
359 | clean0: | ||
360 | (void) spi_master_put(pp->bitbang.master); | ||
361 | done: | ||
362 | platform_device_unregister(pdev); | ||
363 | pr_debug("%s: butterfly probe, fail %d\n", p->name, status); | ||
364 | } | ||
365 | |||
366 | static void butterfly_detach(struct parport *p) | ||
367 | { | ||
368 | struct butterfly *pp; | ||
369 | struct platform_device *pdev; | ||
370 | int status; | ||
371 | |||
372 | /* FIXME this global is ugly ... but, how to quickly get from | ||
373 | * the parport to the "struct butterfly" associated with it? | ||
374 | * "old school" driver-internal device lists? | ||
375 | */ | ||
376 | if (!butterfly || butterfly->port != p) | ||
377 | return; | ||
378 | pp = butterfly; | ||
379 | butterfly = NULL; | ||
380 | |||
381 | #ifdef HAVE_USI | ||
382 | spi_unregister_device(pp->butterfly); | ||
383 | pp->butterfly = NULL; | ||
384 | #endif | ||
385 | spi_unregister_device(pp->dataflash); | ||
386 | pp->dataflash = NULL; | ||
387 | |||
388 | status = spi_bitbang_stop(&pp->bitbang); | ||
389 | |||
390 | /* turn off VCC */ | ||
391 | parport_write_data(pp->port, 0); | ||
392 | msleep(10); | ||
393 | |||
394 | parport_release(pp->pd); | ||
395 | parport_unregister_device(pp->pd); | ||
396 | |||
397 | pdev = to_platform_device(pp->bitbang.master->cdev.dev); | ||
398 | |||
399 | (void) spi_master_put(pp->bitbang.master); | ||
400 | |||
401 | platform_device_unregister(pdev); | ||
402 | } | ||
403 | |||
404 | static struct parport_driver butterfly_driver = { | ||
405 | .name = "spi_butterfly", | ||
406 | .attach = butterfly_attach, | ||
407 | .detach = butterfly_detach, | ||
408 | }; | ||
409 | |||
410 | |||
411 | static int __init butterfly_init(void) | ||
412 | { | ||
413 | return parport_register_driver(&butterfly_driver); | ||
414 | } | ||
415 | device_initcall(butterfly_init); | ||
416 | |||
417 | static void __exit butterfly_exit(void) | ||
418 | { | ||
419 | parport_unregister_driver(&butterfly_driver); | ||
420 | } | ||
421 | module_exit(butterfly_exit); | ||
422 | |||
423 | MODULE_LICENSE("GPL"); | ||